金属中自由电子气体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)经典定理固体原子作独立的简谐振动+能量均分定理仅在室温和高温范围内符合实验
2)爱因斯坦理论固体原子的振动模满足谐振子解+所有固体原子作同频共振+原子在振动模上服从玻尔兹曼分布在低温上定性符合3)德拜理论(非金属固体)固体原子的振动模式按频率的分布服从驻波条件+固体原子的振动模式的能量满足谐振子解+每一个振动模式只与一个原子的振动相对应+原子在振动模式上服从玻尔兹曼分布在低温时定性符合4)索末菲理(金属固体)对于金属固体:离子振动贡献+自由电子气体贡献。对自由电子气体:电子具有波粒二象性+电子的量子态满足驻波条件+自由电子在量子态上的填充满足费米分布。对离子振动:服从德拜理论,在低温处①金属中的自由电子形成强简并的费米气体,或者说自由电子气体以强简并形式占据量子态。
②德布罗意假设——电子具有波粒二象性
③电子自旋为1/2,且电子间为库仑相互作用。金属中的自由电子服从费米分布
④在体积V 内,能量在的范围内,电子的实际量子态为⑤0K 时费米温度和电子简并压。当T=0K 时,化学势设为,则由费米分布有平均粒子数(体现了占据最低能量态和泡利不相容原理)
一般情况下,,即电子气体的分布与0K 时相差不大,与十分接近。由的分布可知,只有能量在附近,量级为的范围内的电子对热容量有贡献。这部分粒子数为、对能量和热容的贡献为固体的热容量问题
金属中的自由电子气体由自由电子在量子态上的费米分布,总电子数为
费米能级
费米动量费米温度(根据单个粒子的等效热温度概念)
0K 时的自由电子气体的内能
0K 时的自由电子气体的压强
T>0K 时自由电子气体性质自由电子气体的热容量的定量计算
低温下金属固体的实际定容热容量贡献的来源:金属中的离子振动——德拜理论+金属中的自由电子气体——索末菲理论。低温下金属的总定容热容量为自由电子气体