一元一次方程教学案例分析

合集下载

教 学 典 型 案 例

教  学  典  型  案  例

教学典型案例离石一中闫建荣一元一次方程(一)本节课在教学内容上起着承上启下的作用。

它是继小学算式解应用题后一种新的列式方法,它打破了列算式时只能用已知数的限制。

方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的突破。

所以,比列算式考虑起来更直接、更自然,因而有更多的优越性,且“从算式到方程是数学的进步”,是以后学习其他方程、方程组、一次函数、二次函数的基础。

今后学习的各种方程、方程组,建立一次函数、二次函数表达式等都要转化成列含有未知数的等式——方程。

所以学好本节尤为重要。

一、教学目标(一)教学知识点1、使学生了解什么是方程,什么是一元一次方程。

2、使学生体会用字母表示数的好处、画示意图有利于分析问题、找相等关系是列方程的重要一步,从算式到方程是数学的一大进步。

(二)能力训练要求1、会将实际问题抽象为数学问题,通过列方程解决问题。

2、认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系的符号化方法。

3、使学生能结合具体例子认识一元一次方程的定义,体会认识用未知数列方程的过程,会用方程表示简单实际问题的相等关系。

(三)情感与价值感要求体会“从算式到方程是数学的进步”。

增强用数学的意识,激发学生学习数学的热情。

(四)教学重点1、知道什么是方程,什么是一元一次方程。

2、会找相关关系、列方程。

(五)教学难点找相等关系列方程。

(六)教学方法引导、转化教学法。

(七)教具准备课件、图片二、教学过程Ⅰ、创设问题情境,引入新课【活动1】问题1、世界上最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨?问题2、课本图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如图所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄距翠湖的路程有多远?【设计意图】问题1用算术解法较容易解决,但问题2就不是那么容易了,这样学生有了困惑,产生了矛盾冲突,使学生认识到进一步学习数学的必要性。

5.2一元一次方程(教案)

5.2一元一次方程(教案)
-掌握一元一次方程的解法:包括移项、合并同类项、系数化为1等方法。
-举例:解方程5x - 2 = 3x + 1时,需要将同类项移至同一边,得到2x = 3,然后系数化为1,得到x = 1.5。
-应用一元一次方程解决实际问题:培养学生将方程应用于解决生活中的问题。
-举例:利用一元一次方程解决速度与时间、单价与总价等实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是只含有一个未知数,并且未知数的最高次数为1的方程。它在数学中具有重要地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算小明购买苹果的总花费,通过建立一元一次方程,我们可以轻松解决这个问题。
五、教学反思
在今天的教学中,我发现学生们对于一元一次方程的概念和解法掌握得还不错,但在实际应用方面还存在一些困难。让我来具体谈谈几个观察到的现象和相应的思考。
首先,我发现很多同学在从实际问题中抽象出一元一次方程时感到困惑。他们知道要用方程来解决问题,但不知道如何将问题中的信息转化为数学表达式。这说明我们在教学中需要更多地强调如何从文字描述中提炼出关键信息,如何将现实问题转化为数学问题。我考虑在下一节课中增加一些具体的例子,让学生多加练习,以便提高他们这方面的能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

源于生活,用于生活——“一元一次方程的应用复习”教学案例分析

源于生活,用于生活——“一元一次方程的应用复习”教学案例分析

案例评析2022年5月下半月㊀㊀㊀源于生活,用于生活一元一次方程的应用复习 教学案例分析◉上海市嘉定区娄塘学校㊀陈欢欢㊀㊀摘要:数学来源于生活又服务于生活.在教学中,从学生熟悉的现实生活出发,由生活情境引出具体的 一元一次方程的应用 的数学问题,在解决不同类型问题的过程中,引导学生找出问题中已知量与未知量间的等量关系,构建数学模型,运用方程的思想解决问题,从而培养学生分析问题和解决问题的能力,提高学生的数学核心素养.关键词:生活情境;一元一次方程的应用;数学建模;方程思想1引言«新课程标准»要求:根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际问题的全过程,体会方程是刻画现实世界的一个有效的数学模型.在解决一元一次方程的应用问题时,由于问题的数量关系比较隐蔽,方程的建模思想又是学生初步接触,所以,寻找已知量与未知量之间的等量关系对学生来说还较为困难.为了突破这个难点,让学生能够进一步掌握列一元一次方程解应用题的方法和步骤,也为以后学习二次方程㊁分式方程的应用打下基础,笔者精心设计了 一元一次方程的应用复习 .在教学中,以学生身边的实际问题贯穿整个教学环节,让学生在活动中感受数学与生活的联系,感悟数学的价值,提高学生学以致用的能力,激发学生学习的积极性[1].2联系生活实际,引出问题五一 假期,小杰和小丽两家人相约一起去杭州游玩,在游玩过程中碰到了各种各样的实际问题,今天就由我们班的各位 大侠 相助一番.课堂教学中创设生活情境,设计一系列游玩过程中的数学问题,激发学生学习兴趣,通过课堂探究,使学生主动参与到解决问题的实际中,将数学知识和情感教育相结合,将现实生活㊁数学应用融为一体,使课堂教学洋溢着浓浓的生活气息和数学趣味[1].3经历探究活动,研究问题数学源于生活,又用于生活.学生一起探究去杭州游玩前㊁游玩时遇到的一些储蓄㊁行程㊁和差倍分㊁盈亏等问题,在解决问题的过程中,学会找到问题中的等量关系,建立方程模型.场景一(出发前):小杰妈妈和小丽妈妈要去银行取些现金,以备不时之需.探究1:小杰妈妈选择储蓄的银行的年利率是2.25%,取出时刚好存期满二年,取出的人民币为5225元.假如不计算利息税,请同学们利用所学过的知识,算一算,小杰妈妈在银行存入的本金是多少?师:问题中给出的已知量和未知量各是什么?生1:已知量是年利率㊁期数㊁本利和;未知量是本金.师:很好,那已知量与未知量之间存在着怎样的等量关系?生2:本利和=本金+本金ˑ利率ˑ期数.师:同学们是否还记得列方程解应用题的一般步骤是什么?生3:设未知数(元)㊁列方程㊁解方程㊁检验并作答.师:那么探究1如何设?列出的方程是什么?生4:设小杰妈妈在银行存入的本金是x元,则x+x 2.25%ˑ2=5225.师:回答得很棒.通过解方程得到x=5000,检验正确后再作答.师:刚才我们运用了什么数学思想帮助小杰妈妈解决了她的问题?齐:方程的数学思想.师生总结:通过对实际问题的分析,找到已知量与未知量的等量关系,再设合适的未知数构建方程,解出方程的解,然后验证解的合理性并作答,从而解决实际问题.63Copyright©博看网. All Rights Reserved.2022年5月下半月㊀案例评析㊀㊀㊀㊀根据实际情境,设计了出发前储蓄存款的问题,通过师生互动,问题环环相扣,引发学生深入思考,根据已知量和未知量找到等量关系构建方程,体会并总结方程的思想.练习:小丽妈妈在银行存了3000元,年利率为2.75%,存款到期后取出的人民币为3330元,问小丽妈妈的这笔存款存期为几年通过探究1的变式练习,学生巩固所学,从中体验成功,获得学习的自信.场景二(出发过程):取好钱,收拾好行李,小杰和小丽两家人打算从嘉定自驾去杭州.探究2:小杰一家,若提早出门,以80k m /h 的速度行驶,可比预定的时间早到15m i n ;若晚出门,路上较堵,以60k m /h 的速度行驶,则比预定时间晚到0.5h .求嘉定与杭州之间的距离?师:问题中给出的已知量和未知量各是什么?生1:已知量是早出门的速度㊁提早时间㊁晚出门的速度㊁迟到的时间;未知量是路程.师:还有没有其他的未知量?生2:预定时间也是未知量.师:有两个未知量怎么办?生3:一个未知量用来设未知数,另一个未知量用来找等量关系.师:很好,你能找到已知量与未知量之间存在着怎样的等量关系吗小组讨论并在学习单上列出方程.师:哪位同学说下自己的解题思路?生4:由预定时间相同,得等量关系为,路程80+提早时间=路程60-迟到时间.师:方程如何列?生5:设从嘉定到杭州的路程为x k m ,则x 80+1560=x60-0.5.师:非常好,同学们还有其他方法吗?生6:由路程相同,找到等量关系,(预定时间-提早时间)ˑ早出门的速度=(预定时间+迟到时间)ˑ晚出门的速度.设预定时间为y h ,则(y -1560)ˑ80=(y +0.5)ˑ60.师:在列方程解应用题时,可直接设元也可以间接设元,关键要找准等量关系.问题中出现两个未知量时,一个未知量用来设未知数,另一个未知量用来找等量关系.通过小组合作讨论,在探究的过程中得到两种解题思路,一题多解,拓宽学生思维,体验建立方程模型解决问题的一般过程,从而提高对方程建模解决实际问题的应用价值的认识.这样的教学组织,有利于学生数学抽象㊁推理㊁建模的学科素养悄然形成与发展.练习:小杰一家离开嘉定60k m 后,小丽一家才从同一地点沿同一路线出发,小杰一家开车行驶速度为80k m /h ,小丽一家开车行驶的速度为100k m /h,那么小丽一家需要多长时间可以追上小杰一家?小组讨论交流解决实际生活中的追击问题,通过画图来帮助找到等量关系从而列出方程.场景三(游玩景区):两家人到达杭州,休息一晚后,第二天一起去了西溪国家湿地公园进行游玩.探究3:景区成人票价每张80元,学生享受5折优惠,3人以上可参加团购价每张50元,小杰和小丽两家共7人,如果他们按团购价购买门票,比按正常购买门票共少花90元,请问两家中共有几个学生?师:问题中有哪些等量关系?生1:学生票价=成人票价ˑ50%;学生人数+成人人数=7;正常购买门票的花费-团购门票的花费=90.师:总的等量关系是什么?生2:正常购买门票的花费-团购门票的花费=90,即学生票价ˑ学生人数+成人票价ˑ成人人数-团购价ˑ总人数=90.师:根据找到的等量关系,请同学们在学习单上列出方程并求解.学生通过帮助小杰和小丽解决在游玩过程中遇到了购买门票问题,学会找出问题中的所有等量关系,理清思路,找准总的等量关系列出方程,进一步体验方程建模解决问题的过程,进一步掌握运用方程解决实际问题的一般过程和基本步骤,培养分析问题㊁解决问题的能力,增强方程应用意识.随后,小杰和小丽两家人来到游客服务中心,在门口发现旅游海报上宣传:微信扫二维码 答旅游安全题,满分奖西溪摇橹船票 ,小杰想试一试,就扫了二维码开始答题.练习:试题由50道选择题组成,选对一题得2分,不选得0分,选错倒扣1分.小杰最终得分85分,那么小杰选对了多少道题?学生独立思考并在学习单上完成练习,探究解决竞赛题的问题.场景四(丝绸城购物):赏玩西溪湿地的风景后,小杰和小丽两家人决定第三天去购物,买些杭州的特产,所以大家一起来到了杭州中国丝绸城游玩.小丽妈73Copyright ©博看网. All Rights Reserved.案例评析2022年5月下半月㊀㊀㊀妈进了一家正在搞 五一 大促销活动的服装店,看上了一件有杭绣的丝绸旗袍.探究4:这件旗袍的原价是880元,按照7折出售,服装店可获得10%的利润,则这件旗袍成本价是多少师:通过问题分析,哪位同学可以帮助小丽妈妈算一算这件旗袍的成本?生:由已知量原价和折扣,可以算出现价为880ˑ70%=616,再找到等量关系:现价-成本=盈利,设这件旗袍的成本是x 元,则列出方程为616-x =10%x ,就可以解出成本x 了.师:思路很清楚,回答得非常棒,你帮助小丽妈妈解决了她的难题,好样的!经过之前的探究学习,学生进一步掌握了列方程解应用题的步骤及方法,可以独立思考分析探究4的问题,找到问题中的等量关系,再次运用方程建模的思想解决盈亏问题,提高了分析问题和解决问题的能力.4通过实际应用,深化问题在杭州中国丝绸城游玩的过程中,小杰和小丽看到了漂亮的古风扇(团扇和折扇),想到再过一个月就是 六一 儿童节了,每逢这个时候,学校就会举行爱心义卖活动,而古风扇款式新颖又符合季节需求,肯定好卖,所以两人不约而同地购买了一批古风扇作为义卖品.讨论:古风扇的批发价格都是一把8元,两人共购买了20把,购买的团扇与折扇之比是2ʒ3.(1)那么两人购买的团扇㊁折扇各是多少把?(2)两人打算先按照进价的50%标价出售,当卖出15把古风扇的时候,为加快卖出的速度,打折将剩余的扇子全部卖出.如果想要盈利68元,问最后剩余的扇子打几折出售?学生先独立思考,再小组合作讨论交流解题思路,在学习单上完成后,由小组代表给大家讲解.此题设置了比例和盈亏的问题,包含的等量关系多,对前面探究问题进行了深化,找到总的等量关系是关键,然后逐步拆解为单一的等量关系,从而建立方程求解,提升数学的思维水平,提高数学建模的能力.将各项探究活动与学生的现实生活结合起来,让他们从自己的世界出发,用心去感受生活中的问题,用所学数学知识探究生活中的问题,不仅可以培养学以致用的意识,提高分析问题和解决问题的能力,而且通过在问题情境中融入杭州的人文风貌及特产,培养了学生热爱生活的情感,体现了数学学科的德育价值.5案例分析5.1联系生活实际,强化学以致用生活中处处有数学,平时要善于用数学的眼光捕捉生活中的问题,运用数学的思维思考㊁分析和解决现实问题,增强学以致用的意识,提高生活实践的能力.在教学中设计合适的问题情境,不仅可以使课堂生动有趣,激发学生学习数学的兴趣,还可以让学生在解决储蓄存款㊁行程㊁比例㊁盈亏等不同类型的现实问题的过程中,体悟方程思想㊁提升数学建模思想和数学应用意识[2].5.2注重建模过程,发展核心素养教学的每个环节都是围绕着生活中的实际问题展开的,在具体情境中抽象出数学问题,学生在用数学符号建立方程的探究活动中,体验抽象过程㊁分析等量关系㊁思考解决方法㊁构建方程模型㊁体悟方程思想㊁感悟学以致用的价值.在教学中,营造轻松愉悦的学习氛围,注重培养学生主动探究㊁合作交流意识,锻炼学生数学表达能力,提高学生的数学核心素养.5.3强调以生为本,注重学生发展课堂立足于学生的 学 ,从单一的学生独立学习变为独立学+小组合作学+师生一起学的多元学习方式,鼓励学生多观察㊁多思考㊁多讨论,通过小组合作㊁教师引导,帮助学生提升自主探究和主动学习的能力,培养学生合作意识和交流能力,提高学生分析问题和解决问题的能力.授人以鱼,不如授人以渔 [3],教会学生列一元一次方程解决生活实际问题的方法,不仅达到了学以致用的目的,还培养了学生学习数学的兴趣和解决问题的能力.参考文献:[1]熊有辉.在实践活动中让学生学会解决问题 优化应用题教学案例[J ].文理导航,2019(33):17.[2]刘春妮,舒萍,莫慧琼等.数学课堂教学注重发展学生应用意识的案例研究[J ].广西教育,2015(4):45G48.[3]周雪梅.一元二次方程的应用课堂教学案例分析[J ].新课程,2020(37):110.Z83Copyright ©博看网. All Rights Reserved.。

一元一次方程数学教案

一元一次方程数学教案

一元一次方程数学教案第一章:一元一次方程的概念与解法一、教学目标1. 了解一元一次方程的概念,理解方程中的未知数、系数、常数等基本元素。

2. 学会一元一次方程的解法,能够熟练地求解简单的一元一次方程。

3. 能够应用一元一次方程解决实际问题,培养学生的数学应用能力。

二、教学内容1. 一元一次方程的概念:未知数、系数、常数等。

2. 一元一次方程的解法:加减法、乘除法、移项、化简等。

3. 一元一次方程的应用:实际问题求解。

三、教学重点与难点1. 重点:一元一次方程的概念、解法及应用。

2. 难点:一元一次方程的解法,特别是移项和化简。

四、教学方法1. 采用讲授法,讲解一元一次方程的概念、解法及应用。

2. 利用例题,引导学生掌握一元一次方程的解法。

3. 利用小组讨论法,让学生合作解决实际问题。

五、教学步骤1. 引入未知数、系数、常数等概念,讲解一元一次方程的定义。

2. 通过例题,讲解一元一次方程的解法,引导学生掌握解题步骤。

3. 布置练习题,让学生巩固一元一次方程的解法。

4. 利用小组讨论,让学生应用一元一次方程解决实际问题。

5. 总结本章内容,布置课后作业。

第二章:一元一次方程的解法与应用一、教学目标1. 掌握一元一次方程的解法,能够熟练地求解复杂的一元一次方程。

2. 培养学生的数学思维能力,提高学生解决实际问题的能力。

二、教学内容1. 一元一次方程的解法:加减法、乘除法、移项、化简等。

2. 一元一次方程的应用:实际问题求解。

三、教学重点与难点1. 重点:一元一次方程的解法及应用。

2. 难点:复杂一元一次方程的解法。

四、教学方法1. 采用讲授法,讲解一元一次方程的解法及应用。

2. 利用例题,引导学生掌握复杂一元一次方程的解法。

3. 利用小组讨论法,让学生合作解决实际问题。

五、教学步骤1. 通过复习,回顾一元一次方程的解法。

2. 讲解复杂一元一次方程的解法,引导学生掌握解题步骤。

3. 布置练习题,让学生巩固复杂一元一次方程的解法。

初中数学教学案例分析

初中数学教学案例分析

初中数学教学案例分析教学案例一:解一元一次方程教学目标:通过解一元一次方程的案例,帮助学生理解方程的概念,掌握解方程的方法。

案例描述:小明购买了若干部手机,每部手机的售价为x元。

总共花费了450元。

他注意到,如果手机的售价再便宜20元,他就能多买一部手机。

请问,每部手机的售价是多少?解答过程:1. 设每部手机的售价为x元;2. 根据题意,得到方程:x * n + (x - 20) = 450,其中n为手机的数量;3. 将方程化简为一元一次方程:x * n + x - 20 = 450;4. 将方程进一步化简,得到:(n + 1) * x = 470;5. 除以(n + 1)后,得到x = 470 / (n + 1);6. 根据选项可得n + 1 = 10,因此n = 9;7. 将n = 9代入方程,解得x = 470 / 10 = 47。

教学评析:通过这个案例,学生能够通过实际问题推导出方程,然后运用解一元一次方程的方法求解,并且将解代入验证答案的正确性。

教师在教学过程中可以适时引导学生思考问题和求解思路,激发学生的学习兴趣。

教学案例二:几何图形的构造教学目标:通过几何图形的构造案例,帮助学生巩固几何图形的基本概念和构造方法。

案例描述:已知一个三角形ABC,已知AB = 5 cm,BC = 6 cm,AC = 7 cm。

请你用尺规作图的方法,构造这个三角形。

解答过程:1. 画一条线段AB,长度为5 cm;2. 以点A为圆心,以5 cm为半径画一个圆,与线段AB交于点C 和点D;3. 以点B为圆心,以6 cm为半径画一个圆,与线段BC交于点E;4. 连接线段AE,AE即为所求的线段AC;5. 连接线段CE,CE即为所求的线段BC。

教学评析:通过这个案例,学生不仅能够巩固三角形的基本概念,还能够通过尺规作图的方法进行几何图形的构造。

在教学过程中,教师可以引导学生观察图形,分析问题,运用几何知识进行构造,培养学生的空间想象能力和解决问题的能力。

七年级数学教学案例分析

七年级数学教学案例分析

初一数学《一元一次方程》教学案例分析教学内容:人教版义务教育课程标准实验教科书《数学》七九年级上册第101页例5.教学目标:1.知识与技能进一步掌握利用一元一次方程解决实际问题。

培养分析问题,解决问题的能力。

2.过程与方法经历分析工程问题中的数量关系,运用方程解决实际问题的过程,进一步体会“建模”思想。

3.情感、态度与价值观鼓励学生积极思考,合作交流,发展数学才能。

教学重难点:1.重点:工程中的工作量、工作效率和工作时间的关系,以及找出相等关系。

2.难点:把全部工作看作1。

3.关键:建立等量关系。

评析:目标的制定上从形式上体现了三维目标,但每一项目标都是空洞的,没有可操作性和可检验性,目标显得假、空、大。

本课时的目标应为:1.掌握与工程问题有关的工作量,工作时间,工作效率之间的关系(工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率);2.能根据它们之间的等量关系形成等式进而列出方程,解决实际问题;3.能够根据具体问题的实际意义,检验结果是否合理;4.体会方程是刻画现实世界的一个有效的数学模型。

本课的难点应该是:从具体问题中找出等量关系。

这是因为:在小五年级和六年级的教学中,题目中没明确问题的工作量时,都是将工作量视为单位1处理的,只要小学基础在中等水平的学生,都能自觉地将工作量看作单位1,这就体现该知识点不可能成为难点。

而题目中所蕴藏的等量关是隐蔽的,学生不易发现,特别是七年级的学生,阅读理解能力有待提高,要发现并用文字表述等量关系是有困难的,为此找出问题中等量关系并用文字表述才是该课时的难点也是关键所在。

如果要说难点是:把全部工作量看作1,我认为也应该是:为什么将全部工作量看作单位1。

教学过程及评析:一、复习提问师:工程问题有哪三个基本量这些基本量之间有怎样的关系生:工作量=工作效率×工作时间,师:还可变形为什么生:工作效率=工作量÷工作时间;工作时间=工作量÷工作效率师:问题:一件工作,如果甲单独做2小时完成,那么甲单独做1小时完成全部工作量的多少生答:师:怎样理解生:也为1小时的工作效率,即1小时完成全部工作的。

北师大版七年级数学上册5.1认识一元一次方程优秀教学案例

北师大版七年级数学上册5.1认识一元一次方程优秀教学案例
2.同伴评价:组织学生相互评价,促进学生之间的交流与合作,共同提高。
3.教师评价:教师对学生的学习成果进行评价,给予及时反馈,指导学生正确认识和评价自己的学习成果。
四、教学内容与过程
(一)导入新课
1.生活实例:以学生的日常生活为背景,提出一个与一元一次方程相关的问题,激发学生的学习兴趣,引导学生主动探究。
本节课的亮点主要体现在教学情境的创设、问题导向的教学策略、小组合作的学习方式、多元化的评价方式以及学生自主学习能力的培养等方面。这些亮点不仅使学生更好地理解和掌握了一元一次方程的知识,还提高了学生的数学思维能力、团队合作能力和自主学习能力。
二、教学目标
(一)知识与技能
1.让学生理解一元一次方程的概念,掌握一元一次方程的解法,能够运用一元一次方程解决实际问题。
2.培养学生运用数学知识描述和解决问题的能力,提高学生的数学思维水平。
3.通过对一元一次方程的学习,使学生了解数学在生活中的应用,培养学生的应用意识。
(二)过程与方法
1.引导学生通过观察、分析、归纳等数学活动,自主发现一元一次方程的规律,培养学生的探究能力。
2.利用多媒体课件、实物模型等教学资源,为学生提供丰富的学习素材,增强学生的直观感受,提高学生的学习兴趣。
3.设计具有挑战性的数学问题,激发学生的思考,培养学生解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,树立学生学习数学的自信心,让学生体验到数学学习的快乐。
2.通过对一元一次方程的学习,使学生感受到数学与生活的紧密联系,培养学生的应用意识。
2.媒体辅助:利用多媒体课件,展示与一元一次方程相关的图片或视频,增强学生的直观感受。
3.回顾旧知:简要回顾已学过的知识,如不等式、有理数等,为新课的学习做好铺垫。

初中数学教学案例分析一等奖 【完整版】

初中数学教学案例分析一等奖 【完整版】

初中数学教学案例分析一等奖【完整版】一元一次方程的应用——教学案例分析XXX一、教材分析本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要研究用一元一次方程解决路程问题。

在前两节课的基础上,本节课将结合路程问题,进一步研究如何从实际问题中分析数量关系,用一元一次方程解决实际问题。

这对研究函数、不等式与其他方程解实际问题都具有重要的意义和作用。

二、教学目标知识目标:能借助“画示意图”的方法审题、找等量关系,进而用一元一次方程解决路程问题。

能力目标:进一步培养学生分析问题,解决实际问题的能力。

情感目标:通过实际问题的解决,让学生认识数学的价值和研究数学的必要性。

三、教学重点引导学生借助“画示意图”找等量关系,用一元一次方程模型解决路程问题的过程。

在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,所以我把方法获取过程作为本课的重点。

四、教学难点掌握用画“示意图”的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。

体会“画示意图”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。

五、教法学法本节课主要采用“学生主体性研究”的教学模式。

通过多媒体创设情境,激发学生兴趣,提供问题让学生想,设计问题让学生做,方法技巧让学生归纳。

教师的作用在于组织、引导、点拨,促进学生主动探索,积极思考,总结归纳,充分发挥学生的主体作用,让学生真正成为课堂的主人。

六、教学工具三角板一个,每种不同颜色的磁钉两个。

七、教学环节1.复引入:回顾列方程解应用题的一般步骤和行程问题中的基本数量和关系。

学生思考,举手回答。

七年级一元一次方程行程问题的教学设计

七年级一元一次方程行程问题的教学设计

七年级一元一次方程行程问题的教学设计全文共四篇示例,供读者参考第一篇示例:一、教学目标1. 知识目标:学生能够掌握一元一次方程的基本概念,能够利用一元一次方程解决实际问题。

2. 能力目标:学生能够灵活运用一元一次方程解决问题,培养学生的数学建模能力和实际问题解决能力。

3. 情感目标:培养学生的合作意识和团队精神,提高学生的数学自信心。

二、教学内容本节课主要教学内容为七年级一元一次方程行程问题的解决方法。

通过具体的实例让学生了解一元一次方程的应用场景和解决步骤,培养学生的问题解决能力和逻辑思维能力。

三、教学过程1.导入(5分钟)老师出示一个简单的行程问题给学生,让学生通过讨论和思考来解决问题,引导学生了解一元一次方程解决实际问题的重要性。

教师通过示范的方式引入一元一次方程的概念,让学生了解方程的定义和基本形式。

并举例说明一元一次方程在行程问题中的运用。

3.练习与讨论(25分钟)学生分组完成一些简单的行程问题,通过小组合作和讨论来解决问题。

教师及时进行指导和点评,帮助学生巩固知识点。

4.拓展与应用(20分钟)教师提供一些较难的行程问题给学生,让学生运用所学知识解决问题。

学生可以自由发挥,尝试不同的方法来解决问题,培养学生的创新能力。

教师对本节课所学内容进行总结,强调一元一次方程在实际问题中的应用价值,鼓励学生多多练习,提高解决问题的能力。

四、教学反思通过本节课的教学设计,学生在实际问题中理解了一元一次方程的运用,并培养了团队协作和解决问题的能力。

教师还可以通过不同难度的行程问题来巩固学生的知识点,提高学生的学习兴趣和自信心。

【以上仅供参考,可根据实际情况做适当调整】。

第二篇示例:七年级学生对一元一次方程的理解往往有一定难度,特别是在应用问题中的运用。

为了帮助学生更好地掌握这一知识点,本文将针对七年级一元一次方程的行程问题进行教学设计,通过实际问题的引入和解决,帮助学生更直观地理解方程的应用。

一、知识概要在七年级一元一次方程的学习中,行程问题是一个重要的应用题型。

一元一次方程的应用(储蓄问题)案例分析

一元一次方程的应用(储蓄问题)案例分析

《一元一次方程的应用:(储蓄问题)》案例分析“以学生的发展为本”,是通过转变学生的学习方式和教师的教学方式,培养学生创新精神和实践能力。

要求数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在动手实践、自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动的经验。

现就《一元一次方程的应用:(储蓄问题)》的教学实践谈一点看法:一、设计意图本课时根据学生已有的学习经验和生活经验,选取教材一元一次方程的应用例题二(储蓄问题)。

这课题虽是学生所熟悉的,但由于学生缺乏实际的操作而显得有些纸上谈兵。

为了让学生所学知识真正用于生活,也为了让学生明白数学知识是来源于生活,因而在教学准备中,让学生自己去收集有关储蓄信息,让学生了解到银行的储蓄业务并不只是我们所见到的一般储蓄。

在教学的引入过程中,着重复习储蓄计算中的几个基本量以及它们的等量关系,为以后遇到的基本量发生变化而等量关系不变的教学任务打下基础。

在教学过程中抓住列方程解应用题的一般步骤进行教学,通过审题,抓住已知量、未知量,理清数量关系,为进一步开展思维活动提供依据。

二、教学设计课题:生活中的数学————储蓄学习目标1、理解利率问题中的本金、利息等概念;2、掌握利率问题的基本关系,掌握分析数量关系和列方程的方法。

3、继续体验方程概念模型在应用问题求解中的有效刻画。

教学重点经历分析、探究的过程,学会用一元一次方程解决有关储蓄计算的实际问题教学难点经历分析、探究的过程,学会用一元一次方程解决有关储蓄计算的实际问题,列出方程课型新授课时1教师活动环节学生活动修改教师用多媒体展示本课教学目标,并适当介绍. 目标导学学生齐读,明确学习目标,布置自主学习任务请问这张存单给你哪些信息?你对哪条信息比较有兴趣?本金:利息:利息=本息和:1、小明把5000元按一年期的定期储蓄存入银行,年利率为1.98%,到期后可得利息()元。

解一元一次方程优秀教案

解一元一次方程优秀教案

解一元一次方程优秀教案教案标题:解一元一次方程教学目标:1. 理解什么是一元一次方程;2. 掌握解一元一次方程的基本步骤和方法;3. 能够运用所学方法解答日常生活中的实际问题。

教学重难点:1. 理解一元一次方程的概念,掌握解题的基本步骤;2. 运用所学知识解决实际问题。

教学准备:1. 教师准备教室黑板、粉笔等教学工具;2. 学生准备教科书和笔。

教学过程:Step 1:导入与激发1. 教师引入一元一次方程的概念,并通过实例引导学生思考解一元一次方程的方法;2. 提问学生:“你们认为一元一次方程有哪些特点?你们平时在何处或何种情况下会遇到一元一次方程?”激发学生的兴趣。

Step 2:讲解与示范1. 教师讲解一元一次方程的定义和基本形式;2. 通过示范解题,引导学生理解解一元一次方程的基本步骤和方法。

Step 3:练习与拓展1. 学生自主解题,教师巡回指导;2. 分组合作,分享解题过程与经验;3. 教师提供拓展题目,让学生进一步应用所学方法解答。

Step 4:总结与检验1. 教师总结解一元一次方程的基本步骤和方法;2. 提问学生:“你们对解一元一次方程的理解有了哪些变化或深化?”进行检验。

Step 5:巩固与拓展1. 布置相关作业,巩固学生的解题能力;2. 鼓励学生在生活中积极应用所学方法解决实际问题;3. 教师推荐相关拓展资源,鼓励学生进一步拓展应用。

教学评价:1. 观察学生在课堂上解题的表现,评价其对一元一次方程的掌握程度;2. 检查学生的课后作业,评价其解题能力和思维拓展。

教学反思:1. 教师在导入与激发阶段要注意引起学生的兴趣,增强学习动力;2. 教师在讲解与示范阶段要注重直观示范和生动讲解,深化学生对一元一次方程的理解;3. 教师在练习与拓展阶段要充分激发学生的学习主动性,鼓励他们多元思考并互相分享;4. 教师在巩固与拓展阶段要帮助学生将所学知识与实际问题相结合,培养他们的应用能力。

人教版数学七年级上册3.3解一元一次方程(去分母)优秀教学案例

人教版数学七年级上册3.3解一元一次方程(去分母)优秀教学案例
5.引导学生树立正确的价值观,使他们明白只有通过努力才能取得成功。
三、教学策略
(一)情景创设
本节课通过生活实际问题引入,创设生动有趣的情境,激发学生的学习兴趣。例如,可以引入一些与日常生活密切相关的问题,如购物时遇到的折扣问题、分享食物时的分配问题等。这些问题能够激发学生的好奇心,使他们主动参与到学习过程中。在情境创设中,教师应注重引导学生发现问题的关键点,从而引出解一元一次方程(去分母)的方法。
(四)反思与评价
在教学过程中,教师应引导学生进行反思,及时总结经验和教训。例如,在解题过程中,教师可以提问:“你为什么选择这种方法来解方程?有没有更好的方法?”等问题,引导学生反思自己的解题思路。同时,教师还应组织学生进行互评和自评,让他们从不同角度审视自己的解题过程,发现不足之处并进行改进。此外,教师还应对学生的学习成果进行评价,给予肯定和鼓励,增强他们的学习动力。
(二)讲授新知
在导入新课后,我开始了对本节课主要内容的讲授。我首先讲解了分母对方程解题过程的影响,让学生理解去分母的必要性。接着,我详细阐述了去分母的方法和技巧,并通过示例进行讲解。在讲解过程中,我注重引导学生思考,鼓励他们提出问题,从而加深对去分母方法的理解。
(三)学生小组讨论
在讲授新知后,我组织学生进行小组讨论。我提出了几个具有启发性的问题,引导学生运用去分母的方法解决实际问题。学生分组讨论,共同探索解题思路。在这个环节,我巡回指导,及时解答学生的问题,并给予积极的评价,激发他们的自信心。
3.小组合作:采用小组合作的学习方式,培养学生的团队合作意识和沟通能力。学生在小组合作中共同讨论和探究解题方法,通过互相交流和合作,提高解题能力。
4.反思与评价:引导学生进行反思,及时总结经验和教训。学生通过反思自己的解题思路和过程,发现不足之处并进行改进。同时,组织学生进行互评和自评,从不同角度审视自己的解题过程,发现改进的空间。

北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教案

北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教案

北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教案一. 教材分析《一元一次方程》是北师大版七年级数学上册3.1.1的内容,本节课主要让学生了解一元一次方程的概念,学会解一元一次方程,并能够应用一元一次方程解决实际问题。

教材通过引入实际问题,引导学生认识一元一次方程,并通过对方程的变形和求解,让学生掌握一元一次方程的解法。

二. 学情分析学生在进入七年级之前,已经学习了代数的基本概念,如代数式、运算等,但对一元一次方程的了解还不够深入。

学生在解决实际问题时,往往不能将问题转化为方程形式,对于方程的解法和应用也还不够熟练。

因此,在教学过程中,需要注重引导学生将实际问题转化为方程,并通过实践操作,让学生掌握一元一次方程的解法。

三. 教学目标1.了解一元一次方程的概念,掌握一元一次方程的解法。

2.能够将实际问题转化为方程,并应用一元一次方程解决问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重难点:一元一次方程的概念和解法。

2.难点:将实际问题转化为方程,并应用一元一次方程解决问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过引入实际问题,引导学生认识一元一次方程,并通过案例教学,让学生掌握一元一次方程的解法。

同时,小组合作学习,让学生在讨论中巩固知识,提高解决问题的能力。

六. 教学准备1.准备相关实际问题,用于引导学生认识一元一次方程。

2.准备一元一次方程的案例,用于讲解和练习。

3.准备小组讨论的问题和任务。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如购物问题、速度问题等,引导学生将这些实际问题转化为方程。

让学生认识到方程是解决问题的一种方法。

2.呈现(10分钟)呈现一元一次方程的定义和性质,通过示例讲解一元一次方程的解法。

让学生了解一元一次方程的基本概念和解法。

3.操练(10分钟)让学生独立完成一些一元一次方程的练习题,巩固所学知识。

初中数学教研员评课案例(3篇)

初中数学教研员评课案例(3篇)

第1篇一、背景为了提高初中数学教学质量,促进教师专业成长,我校开展了初中数学教研活动。

本次活动邀请了市教研员王老师担任评课专家,对四位数学老师的课堂教学进行了点评。

以下是王老师对四位教师课堂教学的评课案例。

二、案例一:八年级数学《一元一次方程的应用》授课教师:张老师教学目标:掌握一元一次方程的应用,学会分析实际问题,建立方程模型。

教学过程:1. 创设情境,导入新课张老师以生活中的购物问题为情境,引导学生回顾一元一次方程的概念,为新课的学习做好铺垫。

2. 合作探究,解决问题张老师将学生分成小组,让学生在小组内讨论并解决生活中的实际问题,如“小明骑自行车去图书馆,速度为10km/h,图书馆距离小明家5km,小明需要多长时间到达图书馆?”等问题。

3. 交流展示,分享成果各小组派代表展示解题过程,张老师对学生的解答进行点评,并引导学生总结解题方法。

4. 巩固练习,提高能力张老师布置了课后作业,让学生巩固所学知识。

评课意见:1. 教学目标明确,教学过程清晰,能够引导学生积极参与课堂活动。

2. 张老师善于创设情境,激发学生的学习兴趣,提高学生的学习效果。

3. 学生在小组合作探究环节表现积极,能够互相帮助,共同解决问题。

4. 张老师在点评环节注重培养学生的分析问题和解决问题的能力。

三、案例二:九年级数学《圆的切线》授课教师:李老师教学目标:掌握圆的切线的性质和判定方法,能够运用圆的切线解决实际问题。

教学过程:1. 复习旧知,导入新课李老师通过复习圆的半径、直径、圆心角等概念,引导学生回顾圆的性质,为新课的学习做好铺垫。

2. 探究新知,解决问题李老师引导学生探究圆的切线的性质和判定方法,通过实例分析,让学生深刻理解所学知识。

3. 课堂练习,巩固提高李老师布置了课堂练习,让学生巩固所学知识,并能够运用圆的切线解决实际问题。

4. 总结归纳,拓展延伸李老师对课堂所学内容进行总结,并引导学生思考圆的切线在实际生活中的应用。

七年级(人教版)集体备课教学设计:3.1.1《一元一次方程》

七年级(人教版)集体备课教学设计:3.1.1《一元一次方程》

七年级(人教版)集体备课教学设计:3.1.1《一元一次方程》一. 教材分析《一元一次方程》是七年级数学的重要内容,它既是一元一次方程知识体系的开端,也是学生从算术到代数的过渡。

通过本节课的学习,学生能够理解一元一次方程的概念,学会用方程表示数量关系,利用数学思想解决实际问题。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学问题的解决有一定的基础。

但是,对于一元一次方程这种新的数学概念,学生可能还存在一定的困难。

因此,在教学过程中,需要关注学生的接受程度,适时调整教学难度。

三. 教学目标1.知识与技能:使学生理解一元一次方程的概念,学会用方程表示数量关系。

2.过程与方法:通过观察、操作、交流等活动,培养学生发现和提出问题、分析和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:一元一次方程的概念及其应用。

2.难点:一元一次方程的解法及其在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活情境引入一元一次方程,使学生感受到数学与生活的联系。

2.启发式教学法:引导学生主动探索、发现和解决问题,培养学生的逻辑思维能力。

3.合作学习法:鼓励学生分组讨论、合作解决问题,提高学生的团队协作能力。

六. 教学准备1.教学素材:准备相关的生活情境案例、PPT课件等。

2.教学工具:多媒体设备、黑板、粉笔等。

3.学生活动:提前让学生预习教材,了解一元一次方程的基本概念。

七. 教学过程1.导入(5分钟)利用生活情境案例,如购物问题、速度与时间问题等,引导学生发现并提出一元一次方程。

通过PPT展示,让学生初步了解一元一次方程的概念。

2.呈现(10分钟)讲解一元一次方程的定义、特点和解法。

通过示例,让学生掌握一元一次方程的基本解法。

3.操练(10分钟)分组讨论,让学生尝试解决一些简单的一元一次方程问题。

教师巡回指导,解答学生的疑问。

一元一次方程与实际应用案例分析及教学反思

一元一次方程与实际应用案例分析及教学反思

一元一次方程与实际应用案例分析及教学反思一元一次方程是初中数学中的重要知识点之一,其核心概念是变量的一次幂。

它不仅是数学学科中的基础,也是实际生活中常见的一种数学模型。

本文将通过分析实际应用案例,探讨一元一次方程在实际问题中的应用,并对教学过程进行反思和总结。

一、实际应用案例分析1. 例题一:小明骑自行车去超市,第一段骑行路程以每小时15公里的速度骑行,之后又以每小时12公里的速度骑行,总共花费时间3小时。

求小明骑行的总路程。

解析:设小明骑行的总路程为x公里,则根据题意,可以列出方程:x/15 + x/12 = 3通过解这个方程,可以得到小明骑行的总路程为36公里。

2. 例题二:某商场进行促销活动,打折力度为原价的30%。

现在有一件原价为300元的商品,问打折后的价格是多少?解析:设打折后的价格为x元,则根据题意,可以列出方程:0.7 * 300 = x通过解这个方程,可以得到打折后的价格为210元。

以上两个例题展示了一元一次方程在实际问题中的应用。

通过将实际问题转化为方程,可以利用数学方法解决问题,使得解题变得简单明了。

二、教学反思在教学一元一次方程时,我发现学生对于实际应用的理解和运用存在一些困难。

为了提高学生的学习效果,我在教学中采取了以下措施:1.提供实际案例:我在教学中增加了更多的实际应用案例,让学生通过解决实际问题来理解一元一次方程的意义和作用。

以生活中的例子为基础,引导学生思考,提高他们对于实际问题的抽象和建模能力。

2.操练训练:除了讲解概念和案例分析,我还加强了对一元一次方程的操练训练,包括解方程的方法和技巧。

通过大量的练习,学生可以加深对知识点的理解和记忆,并提高解题的能力。

3.启发式教学:我鼓励学生在解决问题时积极思考和探索,引导他们形成独立解决问题的思维习惯。

将学生分成小组,让他们自己找到解决问题的思路和方法,并鼓励他们与小组成员分享解题思路,激发合作学习的动力。

通过以上教学反思,我发现学生的学习兴趣和动力有所提高,他们对于一元一次方程的理解和应用能力也得到了明显的提升。

沪科版七年级数学上册优秀教学案例:3.1一元一次方程及其解法(6课时)

沪科版七年级数学上册优秀教学案例:3.1一元一次方程及其解法(6课时)
在教学过程中,我注重引导学生运用数形结合的思想方法,将实际问题转化为方程问题,提高学生的问题解决能力。同时,通过设计不同难度的练习题,让学生在实践中巩固知识,提高学生的运算求解能力。
此外,我还关注学生的个性化发展,尊重学生的差异,给予不同学生有针对性的指导,使他们在原有基础上得到提高。在教学评价环节,我采用多元化评价方式,充分调动学生的积极性,促进学生的全面发展。
2.设计有趣的数学故事,如《狐狸和葡萄》的故事,引发学生对一元一次方程的思考。
3.通过提问方式引导学生回顾已学的知识,如“你能用我们学过的知识解决实际问题吗?”
4.利用多媒体技术展示图片、动画等,形象直观地展示一元一次方程的应用场景。
(二)讲授新知
1.引导学生通过探究活动发现一元一次方程的定义、性质和解法。
2.探究式学习:在教学过程中,我引导学生通过探究活动发现一元一次方程的定义、性质和解法。这种教学方法能够培养学生的自主学习能力和逻辑思维能力,使学生能够更深入地理解和掌握知识。
3.小组合作学习:我组织学生进行小组讨论,共同探讨一元一次方程的解法。这种教学方法不仅能够培养学生的合作精神,还能够促进学生之间的交流和分享,提高学生的团队协作能力。
4.数形结合的教学方法:我引导学生运用数形结合的思想方法,将实际问题转化为方程问题。这种方法能够帮助学生更好地理解和解决实际问题,提高学生的问题解决能力。
5.多元化的教学评价:在教学过程中,我采用多元化的教学评价方式,既关注学生的知识掌握程度,也关注学生的过程与方法、情感态度与价值观等方面的发展。这种评价方式能够充分调动学生的积极性,促进学生的全面发展。
3.利用多媒体技术展示图片、动画等,形象直观地展示一元一次方程的应用场景,帮助学生更好地理解概念。
4.创设问题情境,让学生在解决问题的过程中自然引入一元一次方程,激发学生的求知欲。

初中数学教学案例分析与评析

初中数学教学案例分析与评析

初中数学教学案例分析与评析一、引言数学教学作为中学教育的重点科目之一,在学生学业发展中具有重要的地位。

本文将通过分析具体的数学教学案例,评析其中的教学策略、方法和效果,以期为初中数学教学提供一些有益的启示和指导。

二、案例一:解一元一次方程本案例选取解一元一次方程的教学内容,通过观察学生学习解题过程、分析教师的教学策略和学生的学习效果来评析教学情况。

1. 教学策略教师采用启发式教学法,通过一个生活化的例子引入解一元一次方程的概念,激发学生的学习兴趣。

同时,教师还采用了分组合作学习的方式,让学生在小组内共同解决问题,并鼓励学生提出不同的解题思路。

2. 教学方法教师首先进行知识导入,让学生通过观察解一元一次方程的实际应用情境,理解方程的概念和意义。

然后教师引导学生通过列方程的方法来解决问题,并通过示例演示具体的解题步骤和思路。

接着,教师让学生在小组内尝试解决一些具体的问题,并给予适当的指导和反馈。

最后,教师进行知识总结和归纳,巩固学生的学习成果。

3. 学习效果作中,主动思考问题并提出解题思路。

在教师的引导下,学生能够正确地列出方程并解决问题。

但在个别学生中,仍存在一定的困难和迷惑,需要进一步的巩固和辅导。

综上所述,本案例中的教学策略和方法较为合理,能够有效地提高学生的解题能力和思维能力,但仍需要注意对个别学生的个别差异进行针对性的辅导和引导。

三、案例二:图形的相似与全等本案例选取图形的相似与全等的教学内容,通过观察学生的学习情况评析教学效果。

1. 教学策略教师采用了探究式学习的策略,通过提供相关的学习材料和问题,激发学生主动探索图形相似与全等的性质和判断条件。

同时,教师还鼓励学生运用所学知识解决实际问题,并进行案例分析和归纳总结。

2. 教学方法教师首先引导学生观察和比较不同图形的特征和规律,然后提出问题并让学生通过组内讨论和实际测量来发现相似和全等的判断条件。

接着,教师通过示例演示具体的判断步骤和方法,并引导学生运用所学知识解决一些实际问题。

北师大版数学七年级上册《 第五章 一元一次方程 》教学设计

北师大版数学七年级上册《 第五章 一元一次方程 》教学设计

北师大版数学七年级上册《第五章一元一次方程》教学设计一. 教材分析北师大版数学七年级上册第五章《一元一次方程》是初中学段数学教学的重要内容,主要让学生了解和掌握一元一次方程的定义、解法及其应用。

本章通过实际问题引入方程的概念,让学生感受数学与实际生活的联系,培养学生的数学应用能力。

教材内容安排合理,由浅入深,既注重基础知识的教学,又重视学生能力的培养。

二. 学情分析初入学段的七年级学生在数学知识、技能、思维方式等方面具有一定的基础,但方程概念、解法及应用对于他们来说还是一个新的领域。

因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发他们的求知欲望,引导学生主动探究、合作交流,逐步掌握一元一次方程的知识。

三. 教学目标1.知识与技能目标:使学生了解一元一次方程的概念,掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生发现规律、解决问题的能力。

3.情感态度与价值观目标:培养学生热爱数学、勇于探究的精神,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:一元一次方程的概念、解法及应用。

2.难点:一元一次方程的解法,以及如何将实际问题转化为方程问题。

五. 教学方法1.情境教学法:通过生活实例引入方程概念,让学生感受数学与实际生活的联系。

2.启发式教学法:引导学生主动思考、探究,发现方程的解法及应用。

3.合作学习法:鼓励学生之间相互讨论、交流,提高解决问题的能力。

4.反馈评价法:及时了解学生的学习情况,针对性地调整教学方法及策略。

六. 教学准备1.教学课件:制作生动、直观的课件,辅助教学。

2.教学案例:准备一些实际问题,用于引导学生解决方程问题。

3.练习题库:准备一定数量的练习题,用于巩固所学知识。

4.教学用具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例引入方程的概念,如“小明买书”问题,引导学生感受数学与实际生活的联系。

初中数学教学课例《一元一次方程的认识》教学设计及总结反思

初中数学教学课例《一元一次方程的认识》教学设计及总结反思
共同点,再请小组代表回答,归纳出一元一次方程概念
以及应该满足的三个条件,这样培养学生的观察能力和
总结归纳能力。为了巩固重难点,让学生自主完成几个
闯关练习,由易道到难,让学生了解常考的题型和知识
点。
通过一个简单案例引入新课知识,能够激发学生的
求知欲。准备的几个即时练习,让学生判断方程,这样
的题型对于学生而言完成率较高,让学生观察并且小组 课例研究综
初中数学教学课例《一元一次方程的认识》教学设计及总结 反思
学科初中数学教学课 Nhomakorabea名《一元一次方程的认识》

本节课主要是认识一元一次方程,掌握一元一次方
程概念以及如何列方程,为后面学习应用题和解方程做
教材分析 铺垫。
重点:一元一次方程的概念;方程的解
难点:一元一次方程的概念;列方程
知识与技能目标:掌握一元一次方程的概念;会判
力,最后请学生谈谈本节课你学到了什么来总结本节课
知识点。
首先我是通过一个小案例引入方程,吸引学生的注
意力,激发学生学习兴趣,并由方程概念以及几个方程
让学生观察总结得出方程判断条件。为了及时强化方程
概念,我准备了几个即时练习,让学生判断方程。再给
出三个一元一次方程,让学生观察小组讨论三个式子的 教学过程
题方法时积极做笔记,小组讨论环节前后桌也积极配 力分析
合。根据满足一元一次方程的三个条件求解字母的取值
学生会误以为是求方程的解,这类题型对于学生而言有
一定难度。
采用一个小案例导入(情境导入),教学过程中学
生采用小组讨论、自主学习、合作学习的学习方法,培 教学策略选
养学生的团队协作精神和竞争意识,培养学生的自学能 择与设计
讨论,再请小组代表回答,体现学生才是学习的主体。 述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学案例分析
解一元一次方程——合并同类项与移项
研究目的
数学已经渗透到社会的生活方方面面,无论是我们日常生活的天气预报、储蓄、市场调查与预测,还是基因图谱分析、工程设计、信息编码等,都离不开数学的支持。

本课例是人民教育出版社七年级上册第三章“一元一次方程”第二节内容。

一元一次方程是中学数学的主要内容,在初中占有主导地位,实数与代数式的运算,一元一次方程是基础,在后期学期二次函数这些占有很大的联系。

该课采用教室主导下的学生自主探究数学模式,意在教会学生会利用已知条件,从实际问题中抽象出数学模型,并解释、分析、解决问题。

研究这样的案例,能够在一定程度上了解现实的初中数学课堂教学是怎样处理数学的应用问题的。

教材、学情及教法分析
1.教学内容的地位和作用
“解一元一次方程——合并同类项与移项”是继“从算是到方程”之后的学的习内容,在学习本课之前,已经学习了什么是一元一次方程及等式的性质。

学习怎么解简单的一元一次方程是为了能够更好的应用于生活当中。

2.教学的重点与难点
教学重点是,一元一次方程的解法步骤。

教学难点是,解一元一次方程的合并同类项与移项。

3.目标分析
○1知识目标。

通过合并同类项与移项,会解“(0)
=≠”类型的一元一
ax b a
次方程。

○2能力目标。

培养学生由算术解法过渡到代数解法的解方程的基本能力,渗透化未知为已知的重要数学思想。

○3情感目标。

初步体会一元一次方程的应用价值,感受数学化。

4.教学方法
采用讲练结合
课堂教学实录
一元一次方程解方程检验实际问题的答案
教学路线图
根据课堂活动情况,本课的教学路线图如下:
Ⅰ 复习前面学的内容,是为了今天的这节新
↓ 课内容做铺垫,尤其是等式的基本性质是 ↓
今天解题的重要依据。

↓ Ⅱ首先让学生通过实例来解决问题,知道解题
↓ 的步骤及思路。


Ⅲ学生通过强化练习及思考让学生能够自主的
↓ 找出问题并解决问题。


Ⅳ学生和老师一起总结这堂课的主要内容和再次
通过练习来是学生加深新知识的应用。

教学过程的整体评析
本节课是一节典型的数学应用课,学生在通过对现实生活中的实例来解决怎
样去解决怎样解一元一次方程。

(1)采用讲练结合,让学生在学习知识的同时,也对新知识得到了巩固。

(2)学生主体性较强,开展了比较、分析、归纳等高水平数学活动,课堂生成的问题很多,学生的数学思维能力、合作探索能力扥到了锻炼。

(3)教师主导作用较好,复习和问题设置比较合理。

课堂活动组织有序,师生互动、学生个别发言、学生合作研究配合较好,新旧知识清晰,学生的表达达成了教学目标。

(4)旧大纲的知识要求仍然存在,教师保留了许多超出新课标的知识目标,
整体上本课的知识点容量较大,包括了概念、性质、求解方法等新旧知识要求的全部知识点。

(5)教学效果整体较好,实现了知识、技能、过程、方法、方法的综合培养,体现了数学的探究解决过程的体验和经验积累,课堂生成的问题多,学生的探究热情得到了充分的激发。

教学过程的局部评析
纵观整节课,老师精心设计的课堂教学确实有诸多亮点,但仍然有不少不尽人意之处。

不足1:两个例题的解题过程这样是很容易让学生看懂,但是这样的板书在做作业时是不允许的,老师这点没有强调出来。

不足2:在讲怎样“移项”的时候应用等式的性质没有表达的很明确,老师应该慢慢的教学生怎样理解,为什么“移项”要变号。

优化
鉴于整体分析和局部分析(包括课案里的评注),本课有以下优化的想法:(1)保持该课教学教学方式,增强学生的主体性,充分调动学生提出问题、解决问题的主动性,教师尽可能多地使用提示语,发展学生自主探索、合作交流的方式。

(2)以上一元一次方程的概念机等式性质是课堂预设的重点,存在性质及求解方法的的问题,应该让学生自主复习及发现它的重要性。

(3)老师再解题板书时应该强调一下解题格式,最好是能够好好的板书一个
例子,这样学生能够更好的学习参照。

相关文档
最新文档