第七章平行线的证明全章教案

合集下载

北师大版八年级上册第七章平行线的证明第二节第一课时定义与命题教案

北师大版八年级上册第七章平行线的证明第二节第一课时定义与命题教案

第七章平行线的证明第二节定义与命题教案一、教学目标1. 知识目标:学生将理解平行线的证明定义与相关命题,掌握平行线的判定方法和性质。

2. 能力目标:学生将能够运用平行线的证明方法和相关命题解决几何问题,培养逻辑推理和证明能力。

3. 情感目标:学生将激发对几何学习的兴趣,培养对数学严谨性和规范性的认识,提高独立思考和解决问题的能力。

二、教学重点和难点1. 教学重点:学生需要掌握平行线的证明定义与相关命题,能够运用这些知识解决实际问题。

2. 教学难点:学生需要理解平行线的证明过程和方法,能够正确进行证明,遵循几何证明的规范。

三、教学过程1. 引入新知:通过实例引入平行线的概念及证明定义,并介绍平行线在几何学中的重要性。

2. 讲解证明方法:通过讲解和演示,使学生理解平行线的证明方法和过程,包括命题的推导和证明方法。

3. 详细解释命题:针对相关命题,进行详细解释和说明,让学生理解其含义和应用。

4. 举例说明:通过举出一些实际例子,让学生理解平行线的证明方法和相关命题的应用。

5. 课堂互动:组织学生进行讨论和提问,鼓励学生分享自己的思路和方法,促进互相学习和提高。

6. 巩固练习:针对刚学到的知识点,设计一些练习题,让学生通过实际操作加深理解。

7. 课堂小结:总结本节课的重点和难点,回顾所学知识,帮助学生加深记忆和理解。

四、教学方法和手段1. 讲解法:通过讲解,使学生理解平行线的证明定义和相关命题的含义和应用。

2. 演示法:通过演示例题,让学生了解如何进行平行线的证明,掌握解题技巧和方法。

3. 互动法:通过课堂互动,鼓励学生提问和讨论,提高学生的参与度和理解度。

4. 练习法:通过大量练习,加深学生对平行线证明的理解和掌握。

五、课堂练习、作业与评价方式1. 课堂练习:课堂上给出一些练习题,让学生当堂练习,加深对知识的理解和掌握。

2. 作业:布置一些课后作业,让学生回家后继续练习,巩固所学知识。

3. 评价方式:对学生的练习和作业进行评分,及时发现和解决学生的问题,同时对学生的学习情况进行评估,以便更好地调整教学策略。

北师大版八年级数学上册:第七章《平行线的证明》教案

北师大版八年级数学上册:第七章《平行线的证明》教案

第七章平行线的证明1为什么要证明1.使学生经历通过观察、猜想、归纳等得到的结论不一定正确的过程认识到证明的必要性.2.理解并掌握检验数学结论是否正确的常用方法:实验验证、举出反例推理证明等,理解数学的严谨性.3.发展学生的探索意识以及合作交流的习惯;关注现实,培养学生进行深入思考的能力和质疑精神.重点理解判断一个结论正确与否需要进行推理证明,理解并掌握应用实验进行证明、举反例验证、利用推理论证来验证某些结论是否正确的方法.难点体会数学推理的重要性和必要性.一、情境导入师:在以前的学习过程中,我们通过观察、实验、归纳得到了很多正确的结论,那么通过观察、实验、归纳得到的结论一定正确吗?下面我们一起来学习第七章第一节的内容:为什么要证明.二、探究新知1.探究一:观察得到的结论正确吗?课件出示教材第162页“做一做”上面的题目.学生凭着自己的观察和直观感觉说出想法后,组织学生动手量一量、算一算,验证结论是否正确.然后引导学生回答下列问题.(1)由观察得到的结论正确吗?(2)你还能举出日常生活中的例子吗?2.探究二:归纳得到的结论正确吗?(1)听故事“公鸡归纳法”.某主妇养小鸡十只,公母各半.她预备将母鸡养大留着生蛋,公鸡则养到一百天就陆续杀以佐餐.每天早晨她拿米喂鸡,到第一百天的早晨,其中的一只公鸡正在想:“第一天早晨有米吃,第二天早晨有米吃……第九十九天早晨有米吃,所以今天,第一百天的早晨,一定有米吃.”这时,该主妇来了,正好把这只公鸡抓去杀了.师:第1天有米吃,第2天有米吃……第99天有米吃,一定能推出第100天有米吃吗?从这个故事中你明白了什么道理?同桌之间相互交流.(2)算一算验证“归纳法”.课件出示教材第162页“做一做”第(1)题.师:我们是不是可以由此得出结论:当n为任意自然数时,n2-n+11的值一定是质数呢?让学生再多取几个数代入代数式中,验证结论是否正确.(不正确,比如当n=11时,n2-n+11=121,结果是合数.)思考:由归纳得到的结论一定正确吗?(3)再次验证“归纳法”.课件出示教材第162页“做一做”第(2)题.DE与BC平行,且等于BC长度的一半;引导学生尝试猜想:连接三角形两条边的中点所得的线段平行第三条边,且是第三条边长度的一半;组织学生进行归纳并验证结论,发现这样的结论对所有的三角形都成立.小结:归纳得到的结论有的正确有的不正确.3.交流与发现.师:通过上述几类问题的分析,你有什么发现吗?师:通过实验、观察、归纳得到的结论是否都正确?怎样判断一个结论是否正确呢?总结:实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.三、举例分析1.课件出示教材第163页“随堂练习”第1题第(1)题.解:线段b与线段d在同一条直线上.2.课件出示教材第163“随堂练习”第1题第(2)题.分析:观察往往会产生错觉,得出的结论不一定正确,想要判断两条线段是否一样长,最科学、合理的方式是量一量,组织学生动手操作量一量.解:两条线段一样长.四、练习巩固观察下图,左图中间的圆圈大还是右图中间的圆圈大?解:一样大.说明:实验、观察、归纳得出的结论不一定都正确,必须推理论证后才能得出正确的结论.五、小结1.通过本节课的学习,我们了解了实验、观察、归纳得到的结论不一定正确,从而明白证明的意义和必要性.2.让学生反思自己在本节课学习中的优缺点及改进的方法,并能积极地参与总结性的发言.六、课外作业教材第164页习题7.1第1~3题.本节课的教学设计是建立在“以学生的发展为本,为学生的终身学习奠定基础”的教育理念上,融入了新课标的思想内涵,尊重学生的直观感觉,并从学生的直观感觉出发逐步将学生的思维引向严密性、逻辑证明等方面.不是一味地强调证明的必要性,而是通过几个事实的说明来让学生意识到证明的必要性,设计中突出体现了学生的主体地位.2定义与命题第1课时定义与命题1.了解定义与命题的含义,会区分某些语句是不是命题;能找出命题的条件和结论.2.用数学的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断,养成严谨的思考习惯.重点理解命题的概念,找出命题的条件和结论.难点正确找出命题的条件和结论.一、情境导入课件出示:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……师:在这个故事中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)二、探究新知1.命题.课件出示教材第165页“议一议”.学生小组讨论,指名汇报,教师点评,并引出命题的概念.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.例如,上面“议一议”中的(1)(2)(3)(4)对事情进行了判断,都是命题.如果一个句子没有对某一事情做出任何判断,那么它就不是命题.例如,上面“议一议”中的(5)(6)都不是命题.师:大家能举出这样的例子吗?学生分小组讨论回答:任意一个三角形都有一个直角.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.全等三角形的对应角相等.……2.命题的条件和结论.阅读教材第166页“想一想”,完成下列小题.(1)这些命题都有________________的结构特征.(2)一般地,每个命题都由________和________两部分组成,________是已知的事项,________是由已知事项推断出的事项.命题通常可以写成“如果……那么……”的形式,其中“________”引出的部分是条件,“________”引出的部分是结论.3.完成教材第166页“做一做”.三、举例分析1.举出一些是命题的语句.教师引导学生回答问题.2.举出一些不是命题的语句.教师引导学生回答问题.四、练习巩固1.下列句子中哪些是命题?(1)画线段AB=3 cm;(2)两条直线相交,有几个交点?(3)等于同一个角的两个角相等吗?(4)在射线OA上,任取两点B,C.2.指出下列命题的条件和结论.(1)若a>0,b>0,则ab>0;(2)如果a∥b,b∥c,那么a∥c;(3)同角的补角相等;(4)内错角相等,两直线平行.五、小结1.定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义.2.命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.六、课外作业教材第167页习题7.2第1~3题.教学中以学生自主探索为主,通过学生活动,了解定义的含义.通过学生的自主探索、合作交流、归纳出命题的题设和结论,加深了学生对命题结构的理解与记忆.整个教学过程中以学生讨论为主,极大地调动了学生的学习积极性,激发了学生学习的兴趣.在教学中教师要加强对已经学过的相关知识的梳理,加深对新知识的认识,逐渐形成对知识的迁移与应用.第2课时公理、定理及证明1.理解公理和定理的概念;会在简单情况下判断一个命题的真假,会区分定理、公理和命题.2.通过对真假命题的判断,培养学生树立科学严谨的学习方法.3.使学生在接受专业知识的同时增强学习的兴趣,调动学生探索发现问题的积极性.重点理解公理、定理的概念.难点正确认识公理、定理、命题(真命题)之间的区别与联系.一、复习导入1.下列句子中,哪些是命题?哪些不是命题?(1)同一平面内的两条直线不是平行就是相交;(2)画一个长方形和正方形;(3)直角小于钝角;(4)4是偶数吗?师:判断一件事情的句子叫做命题.命题由题设(或条件)和结论两部分组成.2.下列命题的条件是什么?结论是什么?(1)如果地面是潮湿的,那么下雨了;(2)同位角相等,两条直线平行;(3)三角形两边之和大于第三边.师:在上述命题中,哪些正确?哪些不正确?你的理由是什么?二、探究新知1.真命题、假命题.课件出示教材第166页“做一做”.学生完成后,指名汇报,教师点评,并引出真命题、假命题的概念.正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,通常可以举出一个例子,使它具备命题的条件,而不具备命题的结论,这种例子称反例.2.公理、定理.指导学生阅读教材第168~169页的内容,并回答下列问题:(1)什么叫公理?公理的意义是什么?(2)定理的概念是什么?它和公理有什么区别和联系?(3)我们学过哪些公理?哪些定理?小结:(1)公理:人类经过长期实践后公认为正确的命题,作为证实其他命题的出发点和依据.这样公认为正确的命题叫做公理.(2)定理:经过证明的真命题叫做定理.(3)定理和公理都可以作为判断其他命题真假的依据.三、举例分析课件出示教材第169页例题.由上面的例题,得到定理:对顶角相等.四、练习巩固1.判断.(1)所有的命题都是公理;所有的真命题都是定理.(2)所有的定理是真命题;所有的公理是真命题.2.请你完成下列定理的证明.(1)同角(等角)的补角相等;(2)同角(等角)的余角相等.几何证明如下:(1)已知:∠1=∠2,∠3是∠1的补角,∠4是∠2的补角.求证:∠3=∠4.证明:∵∠3是∠1的补角,∠4是∠2的补角(已知),∴∠3=180°-∠1,∠4=180°-∠2(补角的定义).∵∠1=∠2(已知),∴∠3=∠4(等量代换).(2)证明过程与(1)类似,鼓励学生自己证明.五、小结本节课的重点是了解命题中的真假命题、公理、定理的含义,通过学习学会区分命题的条件、结论,学会判别真、假命题,理解反例、证明等概念.六、课外作业1.下列说法正确的是()A.真命题都可以作为定理B.公理不需要证明C.定理不一定都要证明D.证明只能根据定义、公理证明2.教材第170页“随堂练习”.本节课主要学习了公理、定理的概念,了解了判断一个命题是真命题还是假命题.教学中应注意培养学生通过举反例判断假命题的能力,应让学生明白:经过确认可以通过逻辑推理证明的真命题才有可能作为定理,成为以后证明的依据,另外应注重培养学生知识间的联系与应用,培养学生综合运用所学知识解决问题的能力.3平行线的判定1.熟练掌握平行线的判定定理;能对平行线的判定进行灵活运用,并把它们应用于几何证明中.2.通过学生画图、讨论、推理等活动,体会证明的基本方法和过程,体验推理的严谨性和结论的确定性,同时给学生渗透化归思想和分类思想.重点掌握平行线的判定定理及灵活运用.难点平行线判定定理的应用.一、复习导入1.什么叫做平行线?(同一平面内,两条直线不相交,就叫做平行线)2.什么叫做同位角、内错角和同旁内角?3.前面我们探索过两条直线平行的哪些判别条件?师:通过前面的学习我们知道,判断一个数学结论是否正确还需要有根有据的证明,那么,利用“同位角相等,两直线平行”这个基本事实,你能证明下列定理吗?我们一起来试一试.二、探究新知1.平行线的判定定理一.(1)定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简述为:内错角相等,两直线平行.(2)证明这个定理需要先把定理转化成几何语言,谁能说一说,怎么转化?(画出两条直线a,b,被第三条直线c所截,标出内错角∠1和∠2,表示如果∠1=∠2,那么a∥b.)已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b.(3)怎么证明呢?请写出完整的证明过程.证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).∴a∥b(同位角相等,两直线平行).2.平行线的判定定理二.(1)定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简述为:同旁内角互补,两直线平行.(2)让学生利用证明定理一的经验自主证明定理二.(3)讨论:要由同旁内角互补证明两直线平行,怎么证明?(我们知道有基本事实“同位角相等,两直线平行”,如果能由同旁内角互补推出同位角相等,那么根据已有的这个基本事实就能证明两直线平行)(4)学生板书证明过程.三、举例分析1.如图①所示,由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,可判断哪两条直线平行?2.如图②,已知∠1=45°,∠2=135°,l1∥l2吗?为什么?学生思考后回答问题,教师点评.四、练习巩固1.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥d B.b⊥d C.a⊥d D.b∥c2.如图,∠B=60°,∠1=________时,DE∥BC,理由是________________.五、小结1.如何判断两条直线平行?2.通过这节课的学习你还有哪些收获?六、课外作业教材第173~174页习题7.4第1~4题.本节课学习了判定两条直线平行的三个方法,其中一条是判定公理,另外两个是判定定理.判定公理是我们证明两直线平行的原始依据,在具体证明过程中,应根据已知条件灵活地选择判定方法.很多时候往往不能直接运用判定定理,此时需要进行适当地转化,有时需要添加必要的辅助线.注意:作铺助线时应用虚线.4平行线的性质1.掌握平行线的三条性质定理;能熟练运用这三条性质定理证明几何题;进一步理解和总结证明的步骤、格式、方法.2.经历观察、操作、推理、交流等学习活动,进一步发展空间观念、推理能力和有条理表达的能力.重点掌握平行线的性质定理.难点平行线性质定理的应用.一、复习导入师:平行线的判定方法有哪些?师:在上一节课中,我们证明了有关平行线的判定定理,那么对于平行线的性质,又怎么证明呢?能运用上节课积累的方法进行证明吗?今天这节课我们一起再来试一试证明它们.二、探究新知1.平行线的性质定理一.证明:两直线平行,同位角相等.(1)你能用几何语言描述这样的证明题吗?已知:直线AB∥CD,∠1和∠2是直线AB,CD被直线EF截出的同位角.求证:∠1=∠2.(2)如果直接进行证明的话,难以找到能够作为依据的相关事实、定理,该怎么办?(提示学生可以用反证法,假设结论错误,再从错误的结论出发推出与定理、事实相矛盾的地方,说明假设不成立,从而得证)(3)如果∠1≠∠2,那么是否存在另外一条直线,它被第三条直线所截的∠2的另一同位角∠1′,有∠1′=∠2呢?(有)(4)如果有,是否意味着这条直线和CD平行?(是的,同位角相等,两直线平行)这条直线可以是任意一条,也就是说我们可以过M点(AB与EF相交于点M)作这样的一条直线,此时我们发现过M点有两条直线与CD平行,这可能吗?(不可能,过直线外一点有且只有一条直线与这条直线平行)(5)这样看来假设不能成立,说明什么?(∠1=∠2)(6)学生根据讨论、交流,板书证明过程.证明:假设∠1≠∠2,那么我们可以过点M作直线GH,使∠EMH=∠2,如图所示.根据“同位角相等,两直线平行”,可知GH∥CD.又因为AB∥CD,这样经过点M存在两条直线AB和GH都与直线CD平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”相矛盾.这说明∠1≠∠2的假设不成立,所以∠1=∠2.2.平行线的性质定理二.证明:两直线平行,内错角相等.(1) 你能用几何语言描述题目要求吗?已知:如图,直线l1∥l2,∠1和∠2是直线l1,l2被直线l截出的内错角.求证:∠1=∠2.(2)我们已经证明了两直线平行,同位角相等,可以将这个作为基本的事实(定理),你能尝试完成吗?证明:∵l1∥l2(已知),∴∠1=∠3(两直线平行,同位角相等).又∵∠2=∠3(对顶角相等),∴∠1=∠2(等量代换).3.平行线的性质定理三.师:你能按照上面的思路证明两直线平行,同旁内角互补吗?学生完成,指名板演,教师讲评.三、举例分析课件出示教材第176页例题.通过例题,得出定理:平行于同一条直线的两条直线平行.四、练习巩固1.请你对比这些平行线的性质与前面所学的平行线的判定,它们有什么不同?2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是() A.相等B.互补C.相等或互补D.相等且互补五、小结1.这节课你有什么收获?2.平行线的性质定理有哪些?3.完成一个命题的证明,需要哪些环节?六、课外作业教材第177页习题7.5第1~4题.本节课主要学习了平行线的三条性质定理:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.平行线的性质定理和判定定理中的条件和结论刚好相反,在具体应用时要注意,当知道两条直线平行时,要利用其性质得出相关的角相等或互补,当不知道两条直线是否平行时,要用相关的角相等或互补判定两直线平行.5三角形内角和定理第1课时三角形的内角1.掌握三角形内角和定理的证明及简单应用;灵活运用三角形内角和定理解决相关问题.2.用多种方法证明三角形内角和定理,培养一题多解的能力.重点掌握三角形内角和定理的证明及简单应用.难点灵活运用三角形内角和定理解决相关问题.一、情境导入用折纸的方法验证三角形内角和定理.先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图①),然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图②、③),最后得图④所示的结果.试用自己的语言说明这一结论的证明思路.想一想,还有其他折法吗?二、探究新知1.将纸片三角形三顶角剪下,随意将它们拼凑在一起.试用自己的语言说明这一结论的证明思路.想一想,如果只剪下一个角呢?2.用严谨的证明来论证三角形内角和定理.看哪个同学想的方法最多?方法一:过A点作DE∥BC.∵DE∥BC,∴________________(两直线平行,内错角相等).∵∠DAB+∠BAC+∠EAC=180°,∴________________ (等量代换).方法二:延长BC到D,过点C作射线CE∥BA.∵CE∥BA,∴∠B=________________(两直线平行,同位角相等).∠A=________________(两直线平行,内错角相等).∵∠BCA+∠ACE+∠ECD=180°,∴∠A+∠B+∠ACB=________________ (等量代换).添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.三、举例分析课件出示教材第179页例1.小组合作解决问题并完成证明.四、巩固练习教材第179页“随堂练习”第1~3题.五、小结1.通过本节课的学习,我们了解证明三角形内角和定理的几种方法,学会了作辅助线创造条件以达到证明的目的.2.让学生反思自己本节课学习中的优缺点及改进的方法.六、课外作业教材第180页习题7.6第1~4题.根据课程的特点,创设问题情境,以引导学生探索、运用为主线来展开.坚持以学生为本的原则,引导学生操作、探索、讨论、归纳.在教学过程中,引导学生去探索,使学生感受到添加辅助线的教学思想,更好地掌握三角形内角和定理的证明及简单的应用,从而实现教师是引导者和学生是主体的课堂教学理念.第2课时三角形的外角1.掌握三角形外角的两条性质;进一步熟悉和掌握证明的步骤、格式、方法、技巧;灵活运用三角形外角的两条性质解决相关问题.2.进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识.重点掌握三角形外角的两条性质.难点灵活运用三角形外角的两条性质解决相关问题.一、情境导入师:在证明三角形内角和定理时,用到了把△ABC的边BC延长到D得到∠ACD,这个角叫做什么角呢?下面我们就给这个角命名,并且来研究它的性质.二、探究新知1.三角形外角的概念.三角形的外角:三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.(1)如下图,∠________是△ABC的一个外角.你还能作出△ABC其他的外角吗?(2)观察上图的外角,你能总结出三角形外角有哪些特征?①顶点在________________上;②一条边是三角形的____________;③另一条边是三角形某条边的______________.2.三角形内角和定理的推论.课件出示:如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,能由∠A、∠B求出∠ACD吗?如果能,∠ACD与∠A、∠B有什么关系?师:由上面的推导过程我们可以得到两个定理:定理1: 三角形的一个外角等于和它不相邻的两个内角的和.定理2:三角形的一个外角大于任何一个和它不相邻的内角.推论:由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.三、举例分析1.课件出示教材第181页例2.(1)要证明AD∥BC,只需证明哪两个角相等?(2)如何利用题目中的条件?(3)你能说说自己的解题思路吗?(4)你还有其他的证明方法吗?(5)大家通过小组合作能解决问题并完成证明吗?证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∠B=∠C(已知),∴2∠B=∠EAC(等式的性质).∵AD平分∠EAC(已知),∴2∠DAE=∠EAC(角平分线的定义).∴∠DAE=∠B(等量代换).∴AD∥BC(同位角相等,两直线平行).2.课件出示教材第182页例3.引导学生用不同的方法证明.四、练习巩固教材第183页“随堂练习”第1,2题.五、小结1.这节课你有什么收获?2.三角形外角的两条定理是什么?六、课外作业教材第183页习题7.7第1~3题.本节课主要学习三角形外角的两个性质.因为这两个性质是由三角形内角和定理经过推理得来的,所以这两个性质也叫三角形的内角和定理的推论.当遇到证明角的不等关系时应自然想到用三角形的外角的性质.在解决实际问题时,根据题意构建几何模型是解题的关键.综合与实践⊙计算器运用与功能探索1.指导学生学会应用计算器进行实数的加、减、乘、除、乘方运算及混合运算.2.用计算器完成较为繁杂的计算,鼓励学生用计算器探索规律.3.使学生了解计算工具的发展历史,进一步认识到数学来源于生活服务于生活的道理,通过类比认识到现代信息技术是学习数学和解决问题的强有力的工具.重点计算器的使用及技巧.难点运用计算器进行较为繁琐的运算和探索规律,熟练准确地运用计算器进行计算.一、情境导入我们日常生活中常常会遇到很多的计算问题,如到市场买菜、到超市买生活用品、到银行存款、到商店买学习用品等都会遇到计算问题,这些地方是怎样计算价格的?学生回答可能有:口算、用计算器、用算盘、电脑,综合学生的回答作如下引导,同学们发现了没有,这些计算方法各有什么特点?(心算快捷用于简单的运算,算盘用于较为麻烦的运算,但是用的人越来越少,计算器使用范围广,操作简便,男女老少都能用,电脑在银行、超市中使用准确,快捷)由学生的回答进一步引导,大家知道计算器的发展历史吗?由学生回答后教师作简单的讲解(见准备材料).二、探究新知1.探究问题1.课件出示问题1:任选一个三位数(要求:百位数比个位数至少大2),将这个数的百位、十位、个位数字顺序完全颠倒,得到另一个三位数,用其中较大的那个三位数减去较小的三位数,再将所得差的各位数字的顺序完全颠倒,又得到一个三位数,将这个三位数再加上差本身,你得到的结果是多少?学生小组讨论完成.注意:教师要强调运算的顺序,任何一步的错误都会影响结果和规律的探索.师:请同学们用计算器验证刚才计算的过程,看结果是否一致.学生小组验证,进一步明确计算的过程,选一名代表作记录.师:再换几个数试试,你发现了什么?学生小组合作完成,谈论发现的规律,派代表发言.(按照问题1的过程计算,所得结果都是1 089)师:任选一个四位数,仿照上面的规则,你会得到什么结果呢?如果任选一个五位数呢?……学生小组交流讨论,汇总所得的结果,对结果进行分析找出存在的规律.2.探究问题2.课件出示问题2:任选一个正数,执行下列操作:加1,再取倒数.将所得到的结果不断执行上述操作……你发现了什么?学生小组合作探究,派代表作记录,观察所得到的结果存在的规律.(所得结果取三位小数都是0.618)师:如果改变操作规则:加2,再取倒数.将所得到的结果不断执行上述操作……你发现了什么?学生小组合作探究,派代表作记录,观察所得到的结果存在的规律.(所得结果取三位小。

北师大版八年级上册第7章 平行线的证明 复习教案

北师大版八年级上册第7章  平行线的证明   复习教案
2016-2017学年上学期
八年级数学备课组教案
教师
授课时间
2016年12月日
课时
2
课题
第7章平行线的证明复习课
课型
新授
教学目的
1、了解定义与命题的概念,能区分真、假命题及公理、定理
2、掌握平行线的判定及性质,并能写出具体的证明过程
3、理解并掌握三角形的内角和及外角,能根据已知条件,求出角的度数
重点
小结
掌握知识脉络,能灵活应用知识.
作业布置
配套试卷
课后
反思
知识点二:两平行线的判定和性质定理
1.平行线的判定方法:①同位角相等,两直线平行(公理)
②内错角相等,两直线平行
③同旁内角互补,两直线平行
④平行于同一条直线的两条直线互相平行
2.平行线的性质定理:两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
例题1、把命题“对顶角相等”改写成“如果…那么…”的形式
知识点三:三角形的内角和定理
1.三角形的内角和等于180°
2.与外角有关的定理:三角形的一个外角等于和它不相邻的两个内角的和。
三角形的一个外角大于任何一个和它不相邻的内角
例2.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠AEC的度数。
1.一个三角形的一个内角等于另外两个内角的和,这个三角形是(A)
2、下列句子中,不属于命题的是( )
A.三角形的内角和等于180°B.对顶角相等
C.过直线外一点作已知直线的平行线D.两点之间,线段最短
3、如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,求∠3的度数

北师大版八年级数学上册第七章平行线的证明单元教学设计

北师大版八年级数学上册第七章平行线的证明单元教学设计
4.让学生掌握平行线与相交线的区别与联系,培养学生在实际问题中发现平行线、运用平行线的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在探索、发现、总结平行线性质的过程中,培养观察、分析、归纳的能力。
2.引导学生运用演绎推理方法,从特殊到一般,逐步掌握平行线的判定方法,提高学生的逻辑思维能力。
二、学情分析
八年级学生在经过之前的学习,已经具备了一定的几何基础,对几何图形有一定的认识和理解。在此基础上,学生对平行线的概念及性质已有初步的了解,但在判定方法、性质应用等方面仍需加强。此外,学生在演绎推理、问题解决等方面的能力有待提高。因此,在教学过程中,应关注以下学情:
1.学生对平行线性质的理解程度,注重引导学生从直观到抽象,逐步提高对平行线性质的认识。
c.解决实际问题,运用平行线性质求解。
2.学生独立完成练习题,教师巡回指导,对学生的解答进行点评,及时纠正错误,巩固所学知识。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,让学生用自己的话总结平行线的性质、判定方法及其在实际问题中的应用。
2.教师强调本节课的重点知识,提醒学生注意平行线性质及判定方法的灵活运用。
2.教师提出问题:我们已经学过直线、线段、射线等基本概念,那么如何判断两条直线是否平行?这节课我们就来探讨这个问题。
(二)讲授新知
1.教师引导学生回顾同位角、内错角、同旁内角等概念,为后续学习平行线的判定方法打下基础。
2.教师通过几何画板演示,引导学生观察并总结出平行线的性质,如同位角相等、内错角相等、同旁内角互补等。
(二)教学设想
1.创设情境,激发兴趣:
通过生活中的实例,如铁轨、教室墙壁等,引出平行线的概念,激发学生对平行线性质探究的兴趣。

北师大版八年级上册第七章平行线的证明课程设计 (2)

北师大版八年级上册第七章平行线的证明课程设计 (2)

北师大版八年级上册第七章平行线的证明课程设计一、课程的背景平行线的证明是初中数学中的重要内容之一,是学习几何的基础知识。

八年级上册第七章主要讲述平行线的概念、性质以及平行线的证明方法,对学生形成正确的思维方式、提高学生的证明能力和应用解决问题的能力都有着重要的意义。

在学习这个章节之前,学生应该已经掌握了基本的几何知识和初步证明方法,如角平分线、垂直平分线等。

因此,通过本课程设计的教学,使学生更全面、深入地了解平行线的概念、性质,提高证明能力,优化数学学习体验。

二、教学目标本课程的目标是帮助学生:•掌握平行线的基本概念和性质;•熟练运用平行线的证明方法;•培养利用几何知识解决有关问题的能力;•提高思维能力和创新意识三、教学内容和方法本课程的教学内容主要为平行线的概念、性质以及平行线的证明方法。

根据这些内容,教师可以采用“讲授-练习-探究”等多种教学方法,引导学生自主学习、交流合作、探究实践。

具体措施如下:1. 讲授教师先向学生介绍平行线的基本概念和性质,包括平行线的定义、判定和基本性质等。

在讲解的过程中,教师可以结合图像、视频、PPT等多种辅助工具,帮助学生更深入地理解相关内容。

同时,教师还要注重培养学生的证明能力,提示学生如何运用“前提-结论”的证明方法,掌握常用的证明方法和技巧。

2. 练习在讲授过程中适时安排练习,帮助学生巩固所学知识,并且培养学生的分析和解决问题的能力。

针对不同的题型,教师可以及时给予反馈,并指导学生如何正确解题,包括对证明步骤和方法的指导,引导学生在细节和思路上提高自我要求。

3. 探究引导学生通过探究的方式深入了解问题,展开自己的创造性思维。

例如,可以让学生自行推导证明平行线的定理,或者通过讨论多种情况,发掘更多的应用方法。

四、学生评价方式本课程可以采取以下评价方式:•日常学习评价:包括课堂表现、作业完成情况、课外学习成果等。

•周期性考核评价:例如小测验、阶段性测试等,主要检测学生基础知识掌握情况以及应用能力。

第七章平行线的证明全章教案

第七章平行线的证明全章教案

第七章平行线的证明1.为什么要证明一、学生知识状况分析学生的技能基础:学生经历了很多验证结论合理性的过程,有了初步的逻辑推理思维。

学生活动经验基础:学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.二、教学任务分析学生的直观能力是仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时的教学目标是:1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.2.经历观察、验证、归纳等过程,使学生认识证明的必要性,培养学生的推理意识.3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.三、教学过程:1、验证活动(1)某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n,n2-n+11的值都是质数.你认为呢?与同伴交流.注意事项:学生通过列表归纳,根据自己以往的经验判断,在n=10以前都一直认为n2-n+11是一个质数,但当n=10时,找到了一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性.2、验证活动(2)如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?参考答案:设赤道周长为c ,铁丝与地球赤道之间的间隙为 :)(16.021221m c c ≈=-+πππ 它们的间隙不仅能放进一个红枣,而且也能放进一个拳头. 注意事项:要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生。

3、反馈练习1.如图中两条线段a 与b 的长度相等吗?请你先观察,再度量一下. 答案:a 与b 的长度相等.第1小题图 第2小题图2.如图中三条线段a 、b 、c ,哪一条线段与线段d 在同一直线上?请你先观察,再用三角尺验证一下.答案:线段b 与线段d 在同一直线上.3.当n 为正整数时,n 2+3n +1的值一定是质数吗?答案:经验证:当n 为正整数时,n 2+3n +1的值一定是质数. 4、课堂小结5、 巩固练习 课本第217页习题7.1 第2,3题.四、教学反思2.定义与命题(第1课时)一、学生知识状况分析学生技能基础:本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.活动经验基础:学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.二、教学目标是:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.三、教学过程1、情景引入在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)(很多学生对黑客的概念是很熟悉的,而小品中出现的黑客的定义与自己所熟知的黑客的概念完全不同,由此产生了对定义的兴趣.)2、命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.归纳:在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.3、反馈练习.举出一些不是命题的语句.如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.4、课堂小结①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.5、课后练习搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.6、教学反思2.定义与命题(第2课时)一、知识状况学生技能基础:学生已经学习过一些公理和定理。

八年级数学上册第七章《平行线的证明》教案

八年级数学上册第七章《平行线的证明》教案

第七章平行线的证明1.理解证明的必要性和设置基本事实的必要性,体会演绎推理的严谨性和结论的确定性,初步树立步步有据的推理意识,发展推理能力.2.通过具体实例了解定义、命题、定理、推论的含义,会区分命题的条件和结论.3.了解反例的作用,知道利用反例可以判断一个命题是错误的.经历对顶角定理、两直线平行的有关判定定理、两直线平行的有关性质定理、三角形内角和定理及其推论的证明过程,初步掌握综合法证明的格式;能利用这些定理解决简单的问题.初步感受公理化思想,以及公理化方法对数学发展和促进人类文明进步的价值.《标准》在“图形的性质”的有关要求中,比较多地使用了“探索并证明……”的表述,也就是要在一定的情境中,引导学生借助已有的知识和经验,借助图形的直观,通过操作、实验,运用合情推理或图形运动等方法,探索发现图形可能具有的性质,这与用单纯地给出“已知、求证、证明”的方式来研究图形的性质是有区别的,两者相比,前者更有利于学生在获取有关知识的过程中,不断提高研究几何图形性质的能力,发展创新意识和创新能力,为了实现《标准》的这一意图,本套教科书选择了先分“两阶段”(探索阶段和证明阶段)后合二为一(边探索边证明)的处理方式:对与平行线、三角形有关的内容采取了分两个阶段的学习方式;对有关四边形、相似、圆等内容,采取了探索加证明的方式,也就是引导学生通过观察、测量、操作、实验等活动探究结论,同时对这些探究的结论进行严格的论证.这样处理,使得学生在探索阶段通过亲身探究活动,展开合情推理,合情推理能力和探究发现能力得到了很好的发展,主体性也得到了充分的发挥;同时由于把探索阶段的重心放在结论的探究上,几何学习的语言表述等难点得以分解,有利于降低几何入门教学的难度,激发学生的学习兴趣.本章是证明的起始阶段,淡化了先前已经通过观察、测量、实验、操作等活动探究得到了一些几何结论,学生也尝试进行了一些验证和说理,基本认可这些结论,但毕竟不是证明.本章首先要让学生明确认识到:这些探究的结论需要加以证明;同时证明需要一个话语体系,为此就有了所谓的定义、命题等.其次,证明需要确定一些出发点,为此需要梳理有关结论,选择某些结论作为证明的出发点(实际上这就是构建局部的公理体系);有了这些证明的出发点,接着就依次证明一些先前探究得到的定理,在证明过程中,初步掌握证明的要求和格式,认识到证明的严谨性,做到步步有据,发展学生的推理能力.【重点】1.明确证明的必要性和相关的概念.2.平行线的判定和性质.3.三角形内角和定理.【难点】1.准确证明命题或定理.2.平行线的判定定理和性质定理的灵活运用.1.关注对证明必要性的理解和证明意识的建立.要让学生知道数学需要证明,数学之外的其他事物,也应该追究其缘由、问个为什么;初步感受公理化方法在数学和人类文明中的作用,证明的必要性,不仅要从几何的角度加以认识,还要从代数甚至其他学科、实际生活等角度加以认识,让学生认识到说话办事要有根有据,对于猜测、实验、归纳得到的结论一定要给予证明.2.兼顾探索与证明,发展学生的推理能力.推理能力的发展应贯穿于整个数学学习过程中,本章侧重于发展学生的演绎推理能力,但并不意味着不要关注合情推理,在解决问题的过程中,两种推理的功能不同,相辅相成.合情推理用于探索思路、发现结论;演绎推理用于证明结论.数学中关注这两种能力的发展,在关注证明的同时,也应尽可能创设探究活动、实践活动,在活动中发展学生的合情推理能力.3.关注证明的依据和规范性.由于本章的多数结论之前已经探究过,因此在证明过程中难免会出现一些循环论证的现象.教学中,在证明一个命题时,要注意引导学生区分哪些结论可以作为证明的依据,哪些结论不可以作为证明的依据;提醒学生,只有作为证明的出发点的基本事实和前面已经证明过的定理才能作为证明的依据.在今后学习完“三角形的证明”之后,所有前面已经得到的结论都可以作为证明的依据.因此,学生出现了循环论证的情况,加以引导即可,不必过于担心,更不要给学生过大的压力,避免因压力过大造成学生兴趣的流失.1为什么要证明1课时2定义与命题2课时3平行线的判定1课时4平行线的性质1课时5三角形内角和定理2课时回顾与思考1课时1为什么要证明体会检验数学结论的常用方法:实验验证、举出反例、推理等,发展学生的推理能力.经历观察、验证、归纳等过程,使学生对由这些方法所得的结论产生怀疑,以此激发学生的好奇心理,从而认识证明的必要性,培养学生的推理意识.通过积极参与,获取正确的数学推理方法,理解数学的严密性,并培养与他人合作的意识.【重点】要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理.【难点】通过对一些规律的探讨和分析,养成动脑思考问题的习惯.【教师准备】教材图7 - 1、图7 - 2、图7 - 3的投影图片.【学生准备】有刻度的直尺.导入一:师:同学们,请你们用学过的数学知识解决下面的问题。

北师大版2019年八上数学:第7章-平行线的证明示范教案

北师大版2019年八上数学:第7章-平行线的证明示范教案

北师大版2019年八上数学:第7章-平行线的证明示范教案一. 教材分析北师大版2019年八上数学第7章主要讲解平行线的证明。

本章内容是学生进一步深化对直线、射线、线段概念的理解,提高运用几何知识解决实际问题的能力。

通过本章的学习,学生将掌握平行线的判定和性质,为后续学习几何的其他内容打下基础。

二. 学情分析八年级的学生已经掌握了直线、射线、线段的基本概念,具备一定的空间想象能力和逻辑思维能力。

但学生在解决实际问题时,往往不能灵活运用所学知识,对几何图形的判断和分析能力有待提高。

因此,在教学过程中,教师需要关注学生的认知水平,引导他们发现规律,提高解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握平行线的判定和性质,能运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、交流、归纳等活动,培养学生空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极进取的精神。

四. 教学重难点1.重点:平行线的判定和性质。

2.难点:如何运用平行线的性质解决实际问题。

五. 教学方法1.引导发现法:教师引导学生观察、操作、交流,发现平行线的判定和性质。

2.案例分析法:教师通过典型例题,分析平行线的应用。

3.练习法:学生通过课堂练习和课后作业,巩固所学知识。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:几何画板、直尺、圆规。

七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如公路、铁路等,引导学生观察并思考:这些实例中是否存在平行线?如何判断两条直线是否平行?呈现(10分钟)1.教师引导学生观察多媒体展示的几何图形,提出问题:如何判断这两条直线是否平行?2.学生通过观察、讨论,发现判定平行线的方法。

操练(10分钟)1.教师提出一组练习题,要求学生运用所学知识判断直线是否平行。

2.学生独立完成练习题,教师选取部分题目进行讲解。

巩固(10分钟)1.教师引导学生总结平行线的性质。

最新北师大版八年级数学上册《平行线的证明》教学设计

最新北师大版八年级数学上册《平行线的证明》教学设计

第七章平行线的证明7.4平行线的性质一、学生知识状况分析学生技能基础:在学习本课之前,学生对平行线的性质已经比较熟悉,也有了初步的逻辑推理能力,特别是上一节课的学习,使学生对简单的证明步骤有了更为清楚的认识,这为今天的学习奠定了一个良好的基础.活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.二、教学任务分析在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,上一节课安排的《为什么它们平行》和本节课安排的《如果两条直线平行》旨在让学生从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,为此,本课时的教学目标是:1.认识平行线的三条性质。

2.能熟练运用这三条性质证明几何题。

3.进一步理解和总结证明的步骤、格式、方法.4.了解两定理在条件和结构上的区别,体会正逆的思维过程.5. 进一步发展学生的合情推理能力,培养学生的逻辑思维能力。

三、教学过程分析本节课的设计分为四个环节:情境引入——探索与应用——反馈练习——反思与小结第一环节:情境引入活动内容:一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是130°,第二次拐的角∠C是多少度?说明:这是一个实际问题,要求出∠C的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.第二环节:探索与应用活动内容:①画出直线AB的平行线CD,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?②平行公理:两直线平行同位角相等.③两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?∵a∥b(已知),∴∠1=∠2(两条直线平行,同位角相等)∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等.师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.∵a∥b(已知)∴∠1=∠2(两直线平行,同位角相等)∵∠1+∠4=180°(邻补角定义)∴∠2+∠4=180°(等量代换)即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵a∥b,∴∠1=∠2(两直线平行,同位角相等).∵a∥b(已知),∴∠2=∠3(两直线平行,内错角相等).∵a∥b(已知),∴∠2+∠4=180°.(两直线平行,同旁内角互补)(板书在三条性质对应位置上)第三环节:课堂练习活动内容:①已知平行线AB、CD被直线AE所截(1)若∠1=110°,可以知道∠2是多少度吗?为什么?(2)若∠1=110°,可以知道∠3是多少度吗?为什么?(3)若∠1=110°,可以知道∠4是多少度吗,为什么?②变式训练:如图是梯形有上底的一部分,已知量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?解:∵AD∥BC(梯形定义),∴∠A+∠B=180°.∠C+∠D=180°(两直线平行,同旁内角互补),∴∠B=180°-∠A=180°-115°=65°.∴∠C=180°-∠D=180°-100°=80°.③变式练习:如图,已知直线DE经过点A,DE∥BC,∠B=44°,∠C=57°(1)∠DAB等于多少度?为什么?(2)∠EAC等于多少度?为什么?(3)∠BAC、∠BAC+∠B+∠C各等于多少度?④如图,A、B、C、D在同一直线上,AD∥EF.(1)∠E=78°时,∠1、∠2各等于多少度?为什么?(2)∠F=58°时,∠3、∠4各等于多少度?为什么?第四环节:课堂反思与小结活动内容:①归纳两直线平行的判定与性质②总结证明的一般思路及步骤。

北师大版八年级上册第七章 平行线的证明复习教案(教案)

北师大版八年级上册第七章 平行线的证明复习教案(教案)

第七章平行线的证明复习教案(教案)教学目标知识与技能:综合掌握平行线的判定定理和性质定理、三角形内角和定理及其推论.过程与方法:通过对知识的系统复习和整合,提升运用知识解决相关问题的能力.情感态度与价值观:培养学生养成良好的学习习惯,增强数学学习意识.教学重难点【重点】1.平行线的性质定理和判定定理的运用.2.三角形内角和定理的推论.【难点】三角形内角和定理和其推论的综合运用.知识总结—专题讲座专题一定义与命题一、定义对名称和术语的含义加以描述,作出明确的规定.如“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.二、命题判断一件事情的句子叫做命题.反之,如果一个句子没有对一件事情作出任何判断,那么它就不是命题.每个命题都是由条件和结论两部分组成的.条件是已知事项,结论是由已知事项推断出的事项.命题一般都可以写成“如果……那么……”的形式,“如果”引出的部分是条件,“那么”引出的部分是结论.三、真命题、假命题与反例真命题:正确的命题称为真命题.假命题:不正确的命题称为假命题.反例:要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.四、公理、定理、证明公理:公认的真命题称为公理.定理:经过证明的真命题称为定理.证明:演绎推理的过程称为证明.【专题分析】本专题知识是学习证明问题的开始,对于今后的问题证明具有十分重要的基础地位.重点要领会证明的方法和证明过程的严谨性.将下列命题改成“如果……那么……”的形式,并指出条件和结论.(1)等角的余角相等;(2)一组对边平行且不相等的四边形是梯形.〔解析〕命题的改写要注意下列三点:①改写前后内容要保持一致;②改写后的命题要是一个完整的语句;③改写后的条件和结论要表达清楚,有时要补上原命题省略的部分.解:(1)改为:如果两个角相等,那么它们的余角相等.条件为“两个角相等”.结论为“它们的余角相等”.(2)如果一个四边形是一组对边平行且不相等的四边形,那么该四边形是梯形.条件为“一个四边形是一组对边平行且不相等的四边形”.结论为“该四边形是梯形”.[规律方法] 判断是不是命题,关键是看它能否说明一件事情有何结果.一般的陈述句(包括肯定句和否定句)都为命题,疑问句和感叹句及祈使句都不是命题.找命题的条件和结论,一般先把它化成“如果……那么……”的形式.【针对训练1】下列语句哪些是命题?哪些不是命题?如果是命题,请指出命题的条件和结论,并判断命题的真假.(1)画线段AB=5 cm;(2)你吃饭了吗?(3)相等的角是直角;(4)如果两个角不相等,那么这两个角不是对顶角.〔解析〕严格按照命题的定义判断.解:是命题的有(3)(4),不是命题的有(1)(2).命题(3):条件:两个角相等;结论:这两个角是直角,是假命题.命题(4):条件:两个角不相等;结论:这两个角不是对顶角,是真命题.专题二平行线的判定定理和性质定理的应用一、判定两条直线平行的方法(1)同位角相等,两直线平行.(2)同旁内角互补,两直线平行.(3)内错角相等,两直线平行.(4)平行于同一直线的两直线平行.(5)在同一平面内,垂直于同一直线的两直线平行.二、平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.【专题分析】平行线的判定和性质的应用,是研究三角形的角、四边形、多边形相似等知识的重要基础.如图所示,已知AB⊥BC于B,DG⊥AC于D,BE⊥AC于E,∠1=∠2,求证EF⊥AB.证明:∵DG⊥AC,BE⊥AC,∴DG∥BE(平面内,垂直于同一直线的两直线平行),∴∠2=∠EBC(两直线平行,同位角相等).∵∠1=∠2,∴∠EBC=∠1,∴EF∥BC(内错角相等,两直线平行),∴∠EFB+∠CBA=180°(两直线平行,同旁内角互补).∵AB⊥BC,∴∠CBA=90°(垂直的定义),∴∠EFB=90°,∴EF⊥AB(垂直的定义).[规律方法]平行线的性质和判定往往在同一个题目中交替使用,当题目中出现角相等或角之间有互补(互余)关系时,往往要用到判定方法;当题中出现平行时,往往利用性质得到角之间的关系.在今后我们学习多边形时,平行线的性质和判定将起到工具性的作用.【针对训练2】如图,已知AB∥CD,BE,DE分别平分∠ABC和∠ADC,若∠A=45°,∠C=55°,求∠BED的度数.〔解析〕由AB∥CD,可得∠A=∠CDA,∠C=∠ABC,从而求得∠ABE=∠ABC=∠C,∠CDE=∠CDA=∠A,然后过点E作AB的平行线,从而易得∠BED 的度数.解:过点E作E F∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠CDA,∠C=∠ABC,∠BEF=∠ABE,∠DEF=∠CDE.∴∠CDA=∠A=45°,∠ABC=∠C=55°.∵BE,DE分别平分∠ABC和∠ADC,∴∠CDE=∠A=×45°=22.5°,∠ABE=∠C=×55°=27.5°.∵∠BEF=∠ABE,∠DEF=∠CDE,∴∠BED=22.5°+27.5°=50°.专题三三角形内角和定理及有关三角形外角的两个推论1.三角形的内角和等于180°.2.三角形的一个外角等于和它不相邻的两个内角的和.3.三角形的一个外角大于任何一个和它不相邻的内角.【专题分析】本专题三角形角的相关知识是研究几何问题中角的相关知识的基础,它和平行线的知识一起构成了几何问题的两大基点.如图,已知BC⊥DE于O,∠A=27°,∠D=20°,求∠B与∠ACB.〔解析〕∠B在ΔBEO中,已知另外两个角即可,所以问题转化为求∠BEO,而∠BEO是ΔAED的外角,求∠ACB的方法有两种:一种是看做ΔBAC的内角,另外也可看做ΔDCO的外角.解:∵BC⊥DE(已知),∴∠B+∠BEO=90°.∵∠BEO=∠A+∠D=27°+20°=47°,∴∠B=90°-∠BEO=90°-47°=43°.∵在ΔBAC中,∠A+∠B+∠ACB=180°,∴∠ACB=180°-∠A-∠B=180-27°-43°=110°.[易错提示]1.借助三角形求角,一般是把所求的角看成是某一个三角形的内角,图上出现外角时,则要考虑用外角的性质.2.三角形的外角一般为图上条件,在已知条件下并不出现,我们称三角形外角为图上隐含条件,所以在审题时要确认图上已知条件,还要认真审阅图上隐含条件.【针对训练3】如图所示,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDF的度数.〔解析〕本题要充分运用AB∥CD,AD∥BC这两个条件,利用平行线进行转化,转化为三角形的外角.解:因为AD∥BC(已知),所以∠F=∠EDA=60°(两直线平行,同位角相等).因为AB∥CD(已知),所以∠BCD+∠B=180°(两直线平行,同旁内角互补).所以∠BCD=180°-∠B=180°-50°=130°(等式的性质).又因为∠BCD=∠F+∠CDF(三角形的一个外角等于和它不相邻的两个内角的和),所以∠CDF=∠BCD-∠F=130°-60°=70°(等式的性质).专题四方程思想【专题分析】本章中,经常遇到利用三角形内角和定理求角度的问题,当题目中有关各角之间的数量关系比较复杂时,可灵活运用方程(组)求解.如图,在ΔABC中,AB=AC,D,E分别在AC,AB边上,且BC=BD,AD=DE=EB,求∠A的度数.〔解析〕根据同一个三角形中等边对等角的性质,设∠ABD=x,结合三角形外角的性质,则可用含x的代数式表示∠A,∠ABC,∠C,再在ΔABC中,运用三角形的内角和为180°,可求∠A的度数.解:∵DE=EB,∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x.∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x.∵BD=BC,∴∠C=∠BDC=3x.∵AB=AC,∴∠ABC=∠C=3x.在ΔABC中,3x+3x+2x=180°,解得x=22.5°.∴∠A=2x=22.5°×2=45°.[规律方法](1)几何计算题中,依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程思想;(2)求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的外角通常情况下是转化为内角来解决.【针对训练4】如图所示,在ΔABC中,P,Q是BC边上的两点,若∠PAB=∠B,∠QAC=∠C,∠BAC=130°,求∠PAQ的度数.〔解析〕由∠PAB=∠B,∠QAC=∠C与三角形内角和定理相结合,可列出关于∠PAQ的方程组,解方程组即可求得∠PAQ的度数.解:∵∠PAB=∠B,∠QAC=∠C,∴设∠PAB=∠B=x,∠QAC=∠C=y,∠PAQ=θ,则得方程组解方程组,得θ=80°,即∠PAQ=80°.[解题策略]本题中列出的方程组由两个方程组成,但未知数却有3个,显然用常规方法不能解得θ.观察方程组的特点,用①×2-②即可求得θ=80°.专题五转化思想【专题分析】在证明角的不等问题时,如果难以找到所证各角之间的关系,那么可设法把问题转化,从而使有关各角之间的关系由隐蔽化为明显,由复杂化为简单,由抽象化为直观.如图所示,CE是ΔABC的外角(∠ACD)平分线,BF是∠ABC的平分线,CE交BF的延长线于点E,请你判断∠ACE与∠ABE的大小关系,并证明.〔解析〕由题意可知∠ACE=∠DCE,∠ABE=∠CBE,则问题转化为判断∠DCE 与∠CBE的大小关系.解:∠ACE>∠ABE.证明如下:∵CE是ΔABC的外角(∠ACD)平分线(已知),∴∠DCE=∠ACE(角平分线的定义).∵∠DCE是ΔEBC的一个外角,∴∠DCE>∠CBE(三角形的一个外角大于任何一个和它不相邻的内角).∵BE是∠ABC的平分线(已知),∴∠ABE=∠CBE(角平分线的定义).∴∠ACE>∠ABE(等量代换).[解题策略] 在利用有关三角形外角的定理证明角的不等关系时,如果所要证明的两角没有直接联系,那么可发挥某些角(如本题中的∠DCE与∠CBE)的桥梁作用,从而将问题转化.【针对训练5】如图所示,试求∠A+∠B+∠C+∠D+∠E的度数.〔解析〕求多个角的度数和问题,可以联想到三角形的内角和等于180°和外角的性质,将所求角转化到一个或几个三角形中去,从而求得多个角的和.因为∠A,∠B,∠C,∠D,∠E每个角的度数都不确定,且较分散,所以必须把∠A+∠B+∠C+∠D+∠E看成一个整体求它的度数,故考虑将其转化到一个三角形中去.解:因为∠AGE是ΔCGE的外角,所以∠AGE=∠C+∠E.同理∠AFG=∠B+∠D.因为∠AGE+∠AFG+∠A=180°,所以∠A+∠B+∠C+∠D+∠E=180°.专题六构造思想【专题分析】在几何证明中,如果仅靠图中的线段难以说明问题时,那么可通过作辅助线构造某个基本图形,从而使问题的条件或结论发生转化.一大门的栏杆如图(1)所示,BA垂直地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=.〔解析〕过点B作BG∥CD,易证得AB⊥BG,如图(2)所示.根据两直线平行,同旁内角互补,得∠BCD+∠CBG=180°.由题意得∠ABG=90°,所以∠ABC+∠BCD=180°+90°=270°.故填270°.【针对训练6】某校的校园平面图如图(1)所示,已知AB=470 m,BC=560 m.则这个校园的周长是多少米?(图中的每一个角都是直角)〔解析〕将GF沿GH方向平移到HP,ED沿EF方向平移到PQ,GH沿GF方向平移到RQ,EF沿ED方向平移到DR,如图(2)所示,则校园的周长就等于长方形ABCQ 的周长.解:将图(1)的部分线段经过平移,使图形变为如图(2)所示的长方形.由平移的特征知GF=HP,ED=PQ,GH=RQ,EF=RD,所以校园的周长为AB+BC+AH+GF+ED+GH+EF+CD=AB+BC+AH+HP+PQ+RQ+RD+CD=AB+BC+AQ+CQ=2(AB+BC)= 2×(470+560)=2060(m).。

北师大版初中数学八年级上册 第七章 平行线的证明复习、回顾与思考 教案

北师大版初中数学八年级上册 第七章 平行线的证明复习、回顾与思考  教案

第七章平行线的证明回顾与思考教学目标1.复习本章的知识点,了解各知识点之间的关系,巩固所学的知识,并能用这些知识解决一些问题。

2.经历知识的总结过程,回顾知识点,发展形成知识结构的能力。

教学重点进一步理解和掌握本章的公理及定理,掌握证明的步骤与格式,在证明过程中发展初步的演绎推理能力。

教学难点掌握证明的方法及应用定理解决问题。

教学方法自主反思,归纳总结.教学教具直尺,三角板,量角器教学过程本节课设计了五个教学环节:知识回顾——做一做——想一想——试一试——反馈练习.第一环节知识回顾活动内容:1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角相关有哪些性质?5.证明题的基本步骤是什么?活动目的:通过学生的回顾与思考,使学生对平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质有一个更深层次的认识,为下一步的简易的逻辑推理作好知识准备. 注意事项:由于学生对于上述概念都有较长时间的学习,但知识点是零散的,因此有必要在学生头脑中形成一个清晰的知识网络,如:}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(第二环节 做一做 活动内容:1.下列语句是命题的有( )(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例.(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。

北师版八年级上册数学第7章 平行线的证明 【教案】平行线的判定

北师版八年级上册数学第7章  平行线的证明 【教案】平行线的判定

7.3 平行线的判定一、学生知识状况分析学生技能基础:在学习本课之前,学生对平行线的判定已经比较熟悉,也有了初步的逻辑推理能力,对简单的证明步骤有较清楚的认识,这为今天的学习奠定了一个良好的基础.活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.二、教学任务分析在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,本节课安排《为什么它们平行》旨在让学生从简单的几何证明入手,逐步形成一个初步的、比较清晰的证明思路,为此,本课时的教学目标是:1.熟练掌握平行线的判定公理及定理;2.能对平行线的判定进行灵活运用,并把它们应用于几何证明中.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.3.通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.三、教学过程分析本节课的设计分为四个环节:情景引入——探索平行线判定方法的证明——反馈练习——反思与小结.第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:①证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.如图,已知,∠1和∠2是直线a 、b 被直线c 截出的同旁内角,且∠1与∠2互补,求证:a∥b.如何证明这个题呢?我们来分析分析.师生分析:要证明直线a 与b 平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a 与b 即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a ∥b (同位角相等,两直线平行)这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初123a b c学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.ABCD师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥bA BC D EF证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第173页的随堂练习活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第173页习题7.4第1,2,3题四、教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。

新北师大版八上数学第七章平行线的证明整章教案

新北师大版八上数学第七章平行线的证明整章教案

第七章 平行线的证明 第1节 为什么要证明教学目标:经历观察、归纳、验证等活动过程,在活动中体会到观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性,发展学生的推理意识。

教学重点:判定一个结论正确与否需进行推理. 教学难点:理解数学推理的重要性. 教学过程:1个课时教学内容一、导入:P1621、比较线段a 、b 的长短2、图中是正方形吗?3、如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大?能放进一个红枣吗?能放进一个拳头吗?二、做一做:P1621、某学习小组发现,当n=0,1,2,3时,代数式n 2-n+11的值都是质数,于是得到结论:对于所有自然数n , n 2-n+11的值都是质数.你认为呢?与同伴交流. n 0 1 2 3 4 5 6 7 8 9 10 11 … n 2-n+11 11 11 13 17 23 31 41 53 67 83 101 121 是否为质数 是 是 是 是 是 是 是 是 是 是 是 不是2、三角形中位线P162三、例:把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上 颜色 红 黄 蓝 白 紫 绿 花的朵数 1 2 3 4 5 6方体,如图所示,那么此长方体的下底面有多少朵花?试写出你的结论并说出推理过程.四、议一议:P163要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有根有据地进行推理.五、练习 六、作业: 1、"当n 是整数时,两个连续整数的平方差22(1)n n +-等于这两个连续整数的和." 这个判断正确吗?试着用你学过的知识说明理由。

第2节 定义与命题教学目标1、了解定义、命题、真命题、假命题、定理的含义,会区分命题的条件和结论,了解判断命题真假的方法,通过实例感受证明的过程与格式。

2、初步感受公理化思想,并了解本套教科书所采用的基本事实。

北师大版八年级上册第七章 平行线的证明复习教案(教案)

北师大版八年级上册第七章 平行线的证明复习教案(教案)

第七章平行线的证明复习教案(教案)教学目标知识与技能:综合掌握平行线的判定定理和性质定理、三角形内角和定理及其推论.过程与方法:通过对知识的系统复习和整合,提升运用知识解决相关问题的能力.情感态度与价值观:培养学生养成良好的学习习惯,增强数学学习意识.教学重难点【重点】1.平行线的性质定理和判定定理的运用.2.三角形内角和定理的推论.【难点】三角形内角和定理和其推论的综合运用.知识总结—专题讲座专题一定义与命题一、定义对名称和术语的含义加以描述,作出明确的规定.如“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.二、命题判断一件事情的句子叫做命题.反之,如果一个句子没有对一件事情作出任何判断,那么它就不是命题.每个命题都是由条件和结论两部分组成的.条件是已知事项,结论是由已知事项推断出的事项.命题一般都可以写成“如果……那么……”的形式,“如果”引出的部分是条件,“那么”引出的部分是结论.三、真命题、假命题与反例真命题:正确的命题称为真命题.假命题:不正确的命题称为假命题.反例:要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.四、公理、定理、证明公理:公认的真命题称为公理.定理:经过证明的真命题称为定理.证明:演绎推理的过程称为证明.【专题分析】本专题知识是学习证明问题的开始,对于今后的问题证明具有十分重要的基础地位.重点要领会证明的方法和证明过程的严谨性.将下列命题改成“如果……那么……”的形式,并指出条件和结论.(1)等角的余角相等;(2)一组对边平行且不相等的四边形是梯形.〔解析〕命题的改写要注意下列三点:①改写前后内容要保持一致;②改写后的命题要是一个完整的语句;③改写后的条件和结论要表达清楚,有时要补上原命题省略的部分.解:(1)改为:如果两个角相等,那么它们的余角相等.条件为“两个角相等”.结论为“它们的余角相等”.(2)如果一个四边形是一组对边平行且不相等的四边形,那么该四边形是梯形.条件为“一个四边形是一组对边平行且不相等的四边形”.结论为“该四边形是梯形”.[规律方法] 判断是不是命题,关键是看它能否说明一件事情有何结果.一般的陈述句(包括肯定句和否定句)都为命题,疑问句和感叹句及祈使句都不是命题.找命题的条件和结论,一般先把它化成“如果……那么……”的形式.【针对训练1】下列语句哪些是命题?哪些不是命题?如果是命题,请指出命题的条件和结论,并判断命题的真假.(1)画线段AB=5 cm;(2)你吃饭了吗?(3)相等的角是直角;(4)如果两个角不相等,那么这两个角不是对顶角.〔解析〕严格按照命题的定义判断.解:是命题的有(3)(4),不是命题的有(1)(2).命题(3):条件:两个角相等;结论:这两个角是直角,是假命题.命题(4):条件:两个角不相等;结论:这两个角不是对顶角,是真命题.专题二平行线的判定定理和性质定理的应用一、判定两条直线平行的方法(1)同位角相等,两直线平行.(2)同旁内角互补,两直线平行.(3)内错角相等,两直线平行.(4)平行于同一直线的两直线平行.(5)在同一平面内,垂直于同一直线的两直线平行.二、平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.【专题分析】平行线的判定和性质的应用,是研究三角形的角、四边形、多边形相似等知识的重要基础.如图所示,已知AB⊥BC于B,DG⊥AC于D,BE⊥AC于E,∠1=∠2,求证EF⊥AB.证明:∵DG⊥AC,BE⊥AC,∴DG∥BE(平面内,垂直于同一直线的两直线平行),∴∠2=∠EBC(两直线平行,同位角相等).∵∠1=∠2,∴∠EBC=∠1,∴EF∥BC(内错角相等,两直线平行),∴∠EFB+∠CBA=180°(两直线平行,同旁内角互补).∵AB⊥BC,∴∠CBA=90°(垂直的定义),∴∠EFB=90°,∴EF⊥AB(垂直的定义).[规律方法]平行线的性质和判定往往在同一个题目中交替使用,当题目中出现角相等或角之间有互补(互余)关系时,往往要用到判定方法;当题中出现平行时,往往利用性质得到角之间的关系.在今后我们学习多边形时,平行线的性质和判定将起到工具性的作用.【针对训练2】如图,已知AB∥CD,BE,DE分别平分∠ABC和∠ADC,若∠A=45°,∠C=55°,求∠BED的度数.〔解析〕由AB∥CD,可得∠A=∠CDA,∠C=∠ABC,从而求得∠ABE=∠ABC=∠C,∠CDE=∠CDA=∠A,然后过点E作AB的平行线,从而易得∠BED 的度数.解:过点E作E F∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠CDA,∠C=∠ABC,∠BEF=∠ABE,∠DEF=∠CDE.∴∠CDA=∠A=45°,∠ABC=∠C=55°.∵BE,DE分别平分∠ABC和∠ADC,∴∠CDE=∠A=×45°=22.5°,∠ABE=∠C=×55°=27.5°.∵∠BEF=∠ABE,∠DEF=∠CDE,∴∠BED=22.5°+27.5°=50°.专题三三角形内角和定理及有关三角形外角的两个推论1.三角形的内角和等于180°.2.三角形的一个外角等于和它不相邻的两个内角的和.3.三角形的一个外角大于任何一个和它不相邻的内角.【专题分析】本专题三角形角的相关知识是研究几何问题中角的相关知识的基础,它和平行线的知识一起构成了几何问题的两大基点.如图,已知BC⊥DE于O,∠A=27°,∠D=20°,求∠B与∠ACB.〔解析〕∠B在ΔBEO中,已知另外两个角即可,所以问题转化为求∠BEO,而∠BEO是ΔAED的外角,求∠ACB的方法有两种:一种是看做ΔBAC的内角,另外也可看做ΔDCO的外角.解:∵BC⊥DE(已知),∴∠B+∠BEO=90°.∵∠BEO=∠A+∠D=27°+20°=47°,∴∠B=90°-∠BEO=90°-47°=43°.∵在ΔBAC中,∠A+∠B+∠ACB=180°,∴∠ACB=180°-∠A-∠B=180-27°-43°=110°.[易错提示]1.借助三角形求角,一般是把所求的角看成是某一个三角形的内角,图上出现外角时,则要考虑用外角的性质.2.三角形的外角一般为图上条件,在已知条件下并不出现,我们称三角形外角为图上隐含条件,所以在审题时要确认图上已知条件,还要认真审阅图上隐含条件.【针对训练3】如图所示,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDF的度数.〔解析〕本题要充分运用AB∥CD,AD∥BC这两个条件,利用平行线进行转化,转化为三角形的外角.解:因为AD∥BC(已知),所以∠F=∠EDA=60°(两直线平行,同位角相等).因为AB∥CD(已知),所以∠BCD+∠B=180°(两直线平行,同旁内角互补).所以∠BCD=180°-∠B=180°-50°=130°(等式的性质).又因为∠BCD=∠F+∠CDF(三角形的一个外角等于和它不相邻的两个内角的和),所以∠CDF=∠BCD-∠F=130°-60°=70°(等式的性质).专题四方程思想【专题分析】本章中,经常遇到利用三角形内角和定理求角度的问题,当题目中有关各角之间的数量关系比较复杂时,可灵活运用方程(组)求解.如图,在ΔABC中,AB=AC,D,E分别在AC,AB边上,且BC=BD,AD=DE=EB,求∠A的度数.〔解析〕根据同一个三角形中等边对等角的性质,设∠ABD=x,结合三角形外角的性质,则可用含x的代数式表示∠A,∠ABC,∠C,再在ΔABC中,运用三角形的内角和为180°,可求∠A的度数.解:∵DE=EB,∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x.∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x.∵BD=BC,∴∠C=∠BDC=3x.∵AB=AC,∴∠ABC=∠C=3x.在ΔABC中,3x+3x+2x=180°,解得x=22.5°.∴∠A=2x=22.5°×2=45°.[规律方法](1)几何计算题中,依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程思想;(2)求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的外角通常情况下是转化为内角来解决.【针对训练4】如图所示,在ΔABC中,P,Q是BC边上的两点,若∠PAB=∠B,∠QAC=∠C,∠BAC=130°,求∠PAQ的度数.〔解析〕由∠PAB=∠B,∠QAC=∠C与三角形内角和定理相结合,可列出关于∠PAQ的方程组,解方程组即可求得∠PAQ的度数.解:∵∠PAB=∠B,∠QAC=∠C,∴设∠PAB=∠B=x,∠QAC=∠C=y,∠PAQ=θ,则得方程组解方程组,得θ=80°,即∠PAQ=80°.[解题策略]本题中列出的方程组由两个方程组成,但未知数却有3个,显然用常规方法不能解得θ.观察方程组的特点,用①×2-②即可求得θ=80°.专题五转化思想【专题分析】在证明角的不等问题时,如果难以找到所证各角之间的关系,那么可设法把问题转化,从而使有关各角之间的关系由隐蔽化为明显,由复杂化为简单,由抽象化为直观.如图所示,CE是ΔABC的外角(∠ACD)平分线,BF是∠ABC的平分线,CE交BF的延长线于点E,请你判断∠ACE与∠ABE的大小关系,并证明.〔解析〕由题意可知∠ACE=∠DCE,∠ABE=∠CBE,则问题转化为判断∠DCE 与∠CBE的大小关系.解:∠ACE>∠ABE.证明如下:∵CE是ΔABC的外角(∠ACD)平分线(已知),∴∠DCE=∠ACE(角平分线的定义).∵∠DCE是ΔEBC的一个外角,∴∠DCE>∠CBE(三角形的一个外角大于任何一个和它不相邻的内角).∵BE是∠ABC的平分线(已知),∴∠ABE=∠CBE(角平分线的定义).∴∠ACE>∠ABE(等量代换).[解题策略] 在利用有关三角形外角的定理证明角的不等关系时,如果所要证明的两角没有直接联系,那么可发挥某些角(如本题中的∠DCE与∠CBE)的桥梁作用,从而将问题转化.【针对训练5】如图所示,试求∠A+∠B+∠C+∠D+∠E的度数.〔解析〕求多个角的度数和问题,可以联想到三角形的内角和等于180°和外角的性质,将所求角转化到一个或几个三角形中去,从而求得多个角的和.因为∠A,∠B,∠C,∠D,∠E每个角的度数都不确定,且较分散,所以必须把∠A+∠B+∠C+∠D+∠E看成一个整体求它的度数,故考虑将其转化到一个三角形中去.解:因为∠AGE是ΔCGE的外角,所以∠AGE=∠C+∠E.同理∠AFG=∠B+∠D.因为∠AGE+∠AFG+∠A=180°,所以∠A+∠B+∠C+∠D+∠E=180°.专题六构造思想【专题分析】在几何证明中,如果仅靠图中的线段难以说明问题时,那么可通过作辅助线构造某个基本图形,从而使问题的条件或结论发生转化.一大门的栏杆如图(1)所示,BA垂直地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=.〔解析〕过点B作BG∥CD,易证得AB⊥BG,如图(2)所示.根据两直线平行,同旁内角互补,得∠BCD+∠CBG=180°.由题意得∠ABG=90°,所以∠ABC+∠BCD=180°+90°=270°.故填270°.【针对训练6】某校的校园平面图如图(1)所示,已知AB=470 m,BC=560 m.则这个校园的周长是多少米?(图中的每一个角都是直角)〔解析〕将GF沿GH方向平移到HP,ED沿EF方向平移到PQ,GH沿GF方向平移到RQ,EF沿ED方向平移到DR,如图(2)所示,则校园的周长就等于长方形ABCQ 的周长.解:将图(1)的部分线段经过平移,使图形变为如图(2)所示的长方形.由平移的特征知GF=HP,ED=PQ,GH=RQ,EF=RD,所以校园的周长为AB+BC+AH+GF+ED+GH+EF+CD=AB+BC+AH+HP+PQ+RQ+RD+CD=AB+BC+AQ+CQ=2(AB+BC)= 2×(470+560)=2060(m).。

北师大版八年级上册第七章平行线的证明教学设计

北师大版八年级上册第七章平行线的证明教学设计

北师大版八年级上册第七章平行线的证明教学设计一、教学目标1.了解平行线的概念和性质;2.掌握使用平行线的性质来进行简单的证明;3.培养学生的证明能力和逻辑思维能力。

二、教学重难点1.平行线的概念和性质;2.平行线证明的基本方法。

三、教学内容及安排1. 平行线概念及性质讲解(20分钟)首先,要求学生先通过视觉、触觉等方式加深对平行线的概念的理解,在交流中引导学生自然地说出“两直线在平面内不相交,且在不同直线上任取一点,与这两点连线所成的两角相等,则这两直线平行”的概念。

接下来,教师通过PPT呈现平行线的多条性质,如平行线与被它们分割的两条直线所对应的内角互补、两平行线与一直线所对应的内角相等等。

2. 平行线的证明方法(30分钟)教师先讲解基本的平行线证明方法,如对顶角相等证明法、错切线证明法和夹角平分线证明法等。

通过讲解具体的证明案例,让学生理解证明方法的使用,理解证明过程中的推理和逻辑关系,培养证明的思维方式。

3. 讲解平行线证明中需要掌握的基本定理(20分钟)在讲解证明方法的同时,教师需要讲解平行线证明中需要掌握的基本定理,如等角定理、垂角定理和同旁内角互补定理等。

通过讲解这些定理,帮助学生掌握证明的有效思路和方法。

4. 实例演练(30分钟)在讲解完理论知识后,进行例题演练。

教师出示多个实例,通过让学生自己完成证明,检测学生对平行线证明的掌握程度。

对于有困难的学生,教师可以提供辅助思路或给出提示,引导学生完成证明。

四、教学方法1.讲授法:通过概念、定理和案例讲解来引导学生理解平行线证明的基本思路和方法。

2.演示法:通过展示具体的案例,让学生知道如何应用方法来解决问题。

3.互动问答法:通过与学生积极的互动,让学生表达自己的看法、提出自己的问题和解决方案,激发学生的学习热情。

五、教学资料和工具1.PPT教学展示;2.平行线证明练习题。

六、教学评估1.学生的课堂表现和参与度;2.学生完成的平行线证明案例及答案表现。

第七章平行线的证明(教案)

第七章平行线的证明(教案)
-难点二:针对具体问题,如给定两条直线和一条横截线,如何选择合适的判定方力。
-难点三:在作图过程中,教师应详细讲解如何使用三角板和直尺,以及如何避免作图误差。通过实际操作演示,让学生掌握作图技巧,提高作图的准确性。
四、教学流程
第七章平行线的证明(教案)
一、教学内容
本节选自七年级数学教材第七章《平行线的证明》。教学内容主要包括以下两部分:
1.掌握平行线的判定方法:同位角相等,内错角相等,同旁内角互补。
2.学会使用三角板、直尺等工具进行平行线的作图。
二、核心素养目标
本章节的核心素养目标旨在培养学生以下能力:
1.培养学生逻辑推理与证明能力,使其能够理解和运用平行线的判定方法,形成严谨的数学思维。
实践活动环节,学生们在分组讨论和实验操作中表现得相当积极,但我也注意到有些小组在操作过程中存在一些作图不准确的问题。这提醒我在今后的教学中,要加强对学生实际操作能力的培养,让他们在动手实践中不断提高。
此外,学生在小组讨论中分享的成果让我感到欣慰。他们能够将所学知识应用到实际问题中,并提出自己的观点。但在讨论过程中,我也发现部分学生表达不够清晰,逻辑思维能力有待提高。因此,在接下来的教学中,我会着重培养学生的表达能力和逻辑思维。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线看起来永远不会相交的情况?”(比如公路上的车道线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。

北师版初二上册第七章平行线的判定教案

北师版初二上册第七章平行线的判定教案

北师版初二上册第七章平行线的判定教案教学目的知识与技艺:会依据基本理想〝同位角相等,两直线平行〞证明平行线的两个判定定理,并能复杂运用这些结论.进程与方法:阅历证明的基本步骤,熟习正确的书写格式,感受几何中推理的严谨性,开展初步的归结推理才干.情感态度与价值观:培育复杂剖析推理的才干,关注证明看法,积极地参与协作,体会几何学的运用价值.教学重难点【重点】了解和掌握由〝同位角相等,两直线平行〞来证明〝同旁内角互补,两直线平行〞及〝内错角相等,两直线平行〞,并停止复杂运用.【难点】对公理和定理的了解和运用.教学预备【教员预备】预想先生学习进程中能够出现的困难.【先生预备】温习公理、证明、定理等概念的含义.教学进程一、导入新课导入一:师:同窗们,经过上一节课的学习,你能说一说我们如何判别一个命题是真命题吗?生:用归结推理的方法停止判别,也就是证明.师:如何停止证明?与同伴交流.生:用公理、定义和曾经证明为真的命题来证明.师:前面我们探求过两条直线平行的哪些判别条件?与同伴交流一下.生1:同位角相等,两直线平行.生2:内错角相等,两直线平行.生3:同旁内角互补,两直线平行.师:其中哪一个条件可以作为基本理想,也就是作为证明的动身点和依据?生:同位角相等,两直线平行.师:这一基本理想的条件和结论区分是什么?生:条件是同位角相等,结论是两直线平行.师:你能用数学符号表示这一基本理想吗?(多媒体出示图)生:∵∠1=∠2,∴a∥b.师:如何依据基本理想〝同位角相等,两直线平行〞来证明〝内错角相等,两直线平行〞〝同旁内角互补,两直线平行〞,以及如何运用这些结论呢?本节课让我们共同讨论〝平行线的判定〞.(教员板书:3平行线的判定)[设计意图]温习引入,设置悬念把先生的心带回课堂,激起先生的学习热情,顺利引入新课.效果引入为本节课的学习奠定基础.导入二:1.以前我们学过平行线的画法,用三角板和直尺画出.(先生入手完成)【效果】(1)下面画图的依据是什么?(2)判别两直线平行还有哪些方法?画出图形,并用符号言语表示几种判别方法.【课件展现】公理:同位角相等,两直线平行.数学符号表示:∵∠1=∠2,∴a∥b.[处置方式]先生先入手画图,再回答,同时书写符号言语,体会文字、图形、符号三者之间的严密关系,对比课件的书写纠正,教员强调书写格式的规范性.[设计意图]经过入手操作画图,符号的书写,回忆先生比拟熟习的平行线的判定方法,既温习了证明的相关知识,又惹起了先生对两直线平行的判定的思索.2.上节课我们学到了要证明一个命题是真命题,除公理、定义外,其他真命题都需求经过推理的方法证明.下面我们就用〝同位角相等,两直线平行〞这个基本理想,来证明两直线平行的两个判定定理.(板书课题)二、新知构建(1)、证明〝内错角相等,两直线平行〞思绪一(多媒体出示)两条直线被第三条直线所截,假设内错角相等,那么这两条直线平行.简述为:内错角相等,两直线平行.师:同窗们,请依据题意画出契合题意的图形.[处置方式]先生了解题意,并画出契合题意的图形.教员让一名先生在黑板上画图,如下图,同时借助实物投影展现其他先生的画图状况.师:这个命题的条件与结论区分是什么?生:条件是内错角相等,结论是两直线平行.师:如何证明这一命题是真命题?与同伴交流.生:应用基本理想〝同位角相等,两直线平行〞来证明.师:要想证明一个命题是真命题,我们首先应该结合图形、命题的条件和结论写出与求证.【多媒体展现】:如下图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b.[处置方式]一名先生板演证明进程,其他先生在练习本上完成.教员巡视指点学习有困难的先生.先生完成后,借助实物投影展现先生的证明进程,及时给予评价,同时强调停题书写格式.证明进程展现:证明:∵∠1=∠2(),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).∴a∥b(同位角相等,两直线平行).师:由以上证明你能失掉什么结论?生:〝内错角相等,两直线平行〞是真命题.师:既然是真命题,我们就称它为定理,因此〝内错角相等,两直线平行〞就可以作为证明其他命题是真命题的依据.你能用数学符号来表示这个定理吗?生:假定∠1,∠2是直线a,b被直线c所截出的内错角,且∠1=∠2,那么a∥b.思绪二活动内容1:证明的预备.1.依据文字画出图形;2.这个命题的条件是,结论是;3.依据图形用符号言语表示出这个命题.[处置方式]先生关于命题中条件与结论能准确回答,然后尝试画图,小组内相互交流纠正,教员巡视发现,在用符号写出条件和结论时,大局部先生会写出∠1=∠2,但却漏掉说明∠1,∠2是直线a,b被直线c所截出的内错角,结合七年级学习的内错角、同位角、同旁内角的定义停止温习说明,指出把文字转换成符号时,要依据图形停止完整的描画,引导先生正确地用符号书写条件和结论,过渡到〝〞和〝求证〞的书写格式.【课件展现】:如下图,∠1和∠2是直线a,b被直线c所截出的内错角,且∠1=∠2.求证:a∥b.[设计意图]经过先生自己入手画图,符号的书写、纠错,结合教员的引导,体会文字、图形、符号的转换方法以及把命题的文字言语转化成几何图形和符号言语的重要性.活动内容2:证明的实际:你能写出证明进程吗?[处置方式]留出足够的时间让先生思索交流,并尝试书写证明进程,教员巡视反省,找两名先生板演,暴露先生中出现的普遍效果:(1)不写〝∴〞〝∵〞号;(2)不注明理由;(3)理由不正确.下面的先生协助纠正之后,对比教材上的证明进程停止纠正,教员强调书写的规范格式.【课件展现】证明:∵∠1=∠2(),∠3=∠1(对顶角相等),∴∠3=∠2(等量代换),∴a∥b(同位角相等,两直线平行).[设计意图]经过先生的独立书写,暴露先生普遍存在的效果,再让先生协助纠正,能惹起一切先生的留意,然后与教材上的证明进程停止对比纠错,教员加以强调,强化先生证明进程书写的规范性. (2)、证明〝同旁内角互补,两直线平行〞师:同窗们,你能依据证明〝内错角相等,两直线平行〞是真命题的进程来证明(多媒体出示)〝两条直线被第三条直线所截,假设同旁内角互补,那么这两条直线平行〞(简述为:同旁内角互补,两直线平行)是真命题吗?试一试,并与同伴交流.思绪一探求提示:(多媒体出示)(1)画出契合题意的图形.(2)写出、求证.(3)写出证明进程.[处置方式]先生依据提示完成命题的证明,一名同窗板演,其他先生在练习本上完成.教员巡视,适时引导、点拨学习有困难的先生.先生板演完成后,教员组织先生停止评价,及时给予表扬及鼓舞.同时借助实物投影展现先生的不同证明进程.【板演进程展现】:如下图,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b.证明:∵∠1与∠2互补(),∴∠1+∠2=180°(互补的定义),∴∠1=180°-∠2(等式的性质).∵∠3+∠2=180°(平角的定义),∴∠3=180°-∠2(等式的性质),∴∠1=∠3(等量代换),∴a∥b(同位角相等,两直线平行).师:哪位同窗还有不同的证法?生:我是用定理〝内错角相等,两直线平行〞来证明〝同旁内角互补,两直线平行〞是真命题的.师:请展现你的证明进程.(实物投影)证明:∵∠1与∠2互补(),∴∠1+∠2=180°(互补的定义),∴∠1=180°-∠2(等式的性质).∵∠3+∠2=180°(平角的定义),∴∠3=180°-∠2(等式的性质),∴∠1=∠3(等量代换),∴a∥b(内错角相等,两直线平行).师:你赞同他的做法吗?生:(齐答)赞同.师:这位同窗表现很棒!经过以上两位同窗的证明进程我们可以看出〝同旁内角互补,两直线平行〞也是真命题,因此也可以作为证明其他命题是真命题的依据.请用数学符号来表示这个定理.生:∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1+∠2=180°,那么a∥b.[设计意图]让先生阅历应用基本理想来证明命题是真命题的进程,使先生体会数学证明书写的规范性,并可以结合图形正确地用数学符号表示证明的进程.在证明进程中,开展初步的归结推理才干.思绪二活动内容1:证明的预备.(1)依据文字画出图形;(2)这个命题的条件是,结论是;(3)依据图形用符号言语表示出这个命题.[处置方式]先生回答命题的条件与结论,然后尝试独立画图,之后小组内相互交流纠正,教员协助反省纠正,再对比课件展现,规范从〝〞和〝求证〞到〝证明〞的书写格式,强调书写的完整性.【课件展现】:如下图,∠1和∠2是直线a,b被直线c所截出的同旁内角,且∠1与∠2互补.求证:a∥b.证明:∵∠1与∠2互补(),∴∠1+∠2=180°(互补的定义),∴∠1=180°-∠2(等式的性质).∵∠3+∠2=180°(平角的定义),∴∠3=180°-∠2(等式的性质),∴∠1=∠3(等量代换),∴a∥b(同位角相等,两直线平行).活动内容2:证明的实际:尝试书写证明进程.[处置方式]尝试书写证明进程,然后相互交流各自的做法,教员巡视反省,适时点拨,协助后进先生完成,先生完成后及时点评,再把先生中典型的效果搜集投影展现:(1)漏掉〝∵〞〝∴〞号;(2)不注明理由;(3)理由不正确;(4)步骤不完整,漏掉相关步骤.教员用红笔在投影处纠正,强调书写格式的规范性,先生对比教材上的证明进程停止对比纠正.教员再把出现的不同的证明方法:(1)应用〝同位角〞证明;(2)应用〝内错角〞证明,停止投影展现,对先生的不同表现给予点评和一定.【课件展现】:如下图,∠1和∠2是直线a,b被直线c所截出的同旁内角,且∠1与∠2互补.求证:a∥b.证明:∵∠1与∠2互补(),∴∠1+∠2=180°(互补的定义),∴∠1=180°-∠2(等式的性质).∵∠3+∠2=180°(平角的定义),∴∠3=180°-∠2(等式的性质).∴∠1=∠3(等量代换),∴a∥b(内错角相等,两直线平行).[设计意图]经过先生对平行线判定的证明,使先生逐渐掌握证明的普通步骤,并能规范书写推理步骤和格式.证明进程展现了定理证明的思索进程和思绪,在处置效果的进程中,教员参与到先生中,能及时发现效果、处置效果,同时能对后进生停止辅导,有利于分层教学;放手让先生去思索、独立完成,并且展现多种方法,有利于培育先生学习的自动性和发散思想,充沛表达了先生是学习主体的教学思绪.[知识拓展]运用该定理判定两直线平行时;其关键是识别哪两个角是同旁内角,因此一定要抓住同旁内角〝在两条直线的外部且在截线的同旁〞的特点.(3)、总结证明平行线的方法和证明命题的步骤1.经过学习,我们知道了证明平行线的多种方法,你来总结一下.(1)平行线的定义(普通很少用).(2)同位角相等,两直线平行.(3)同旁内角互补,两直线平行.(4)内错角相等,两直线平行.(5)同一平面内,垂直于同一条直线的两条直线相互平行.(6)假设两条直线都和第三条直线平行,那么这两条直线平行.[处置方式]先生稍微整理思索后,教员指名回答,其他先生补充,教员应用课件停止归结.2.证明命题的普通步骤:(1)依据题意画出图形(假定已给出图形,那么可省略);(2)依据题设和结论,结合图形,写出和求证;(3)经过火析,找出推出求证的途径,写出证明进程;(4)反省证明进程能否正确完善.[设计意图]让先生对所学的知识停止归结整理,构成系统,提升其思想层次,使数学方法系统化,并培育先生及时总结、归结知识的好习气.【小试身手】1.既然我们曾经学习了平行线的证明方法,那我们一定会有更多的失掉平行线的方法,那就应用你手上现有的三角板和直尺等工具,看谁能快速作出平行线.[处置方式]先生独立思索后,小组内展现交流,然后小组代表到讲台前展现不同的方法,同时应用平行线的不同的判定方法解释作图的道理.[设计意图]在这里尽能够地关注不同先生的解答方法,更好地展现先生的特性、多样性和发明性,给先生以鼓舞,构成开放性的学习气氛,同时先生在互助学习中,彼此间相互协助、相互启示,培育相互协作的学习习气.2.如下图,以下条件中能判定直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠5〔解析〕依据同旁内角互补,两直线平行即可判别.应选C.[解题战略]平行线的一些判定方法:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.三、课堂总结四、课堂练习1.两条直线被第三条直线所截,假定同位角相等,那么这两条直线;假定内错角相等,那么这两条直线.答案:平行平行2.如下图,∠1=70°,∠5=70°,在括号内注上适当理由.(1)∵∠1=70°,∠5=70°,∴∠1=∠5().∵∠5=∠2(),∴∠1=∠2().∴AB∥CD().(2)∵∠1=70°,∠5=70°,∴∠1=∠5().∵∠1=∠3,∠5=∠2(),∴∠3=∠2(),∴AB∥CD().答案:(1)等量代换对顶角相等等量代换同位角相等,两直线平行(2)等量代换对顶角相等等量代换内错角相等,两直线平行3.如下图,不能使AD∥BC的是()A.∠1=∠DB.∠A+∠B=180°C.∠B=∠1D.∠2+∠D=180°解析:∠B=∠1,只能判定AB∥CD.应选C.4.如下图,假定∠1=∠2,那么给出以下结论:①∠3=∠4;②AB ∥CD;③AD∥BC.以下说法正确的选项是()A.三个都正确B.只要一个正确C.三个都不正确D.只要一个不正确解析:由∠1=∠2,可得②正确.应选B.五、板书设计3平行线的判定同位角相等}⇒两直线平行内错角相等同旁内角互补六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.4第4题.(2)、课后作业【基础稳固】1.如下图,点E在AC的延伸线上,以下条件中能判别AB ∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°2.如下图,∠1=70°,要使AB∥CD,那么需具有另一个条件() ArrayA.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.如下图,用直尺和三角尺作直线AB,CD,从图中可知直线AB与直线CD的位置关系为.4.如下图.(1)假设∠B=∠1,那么依据,可得AD∥BC.(2)假设∠D=∠1,那么依据,可得AB∥CD.(3)假设∠D+∠C=180°,那么依据,可得AD∥BC.5.如下图,直线CE,∠1=130°,∠A=50°,求证AB∥CD.证明:∵CE是一条直线(),∴∠1+∠2=180°().∵∠1=130°(),∴∠2=50°().又∵∠A=50°(),∴∠2=∠A().∴AB∥CD().【才干提升】6.如下图的是由五个异样的三角形组成的图案,三角形的三个角区分为36°,72°,72°,那么图中共有对平行线.7.如下图的是平面内一个弯形管道ABCD的拐角,∠ABC=120°,∠BCD=60°,这时说管道AB∥CD对吗?为什么?【拓展探求】8.如下图,AC平分∠BAD,∠1=∠2.求证DC∥AB.8.如下图,∠1和∠D互余,CF⊥DF于F,那么AB与CD平行吗?说明理由.【答案与解析】1.C2.C3.平行(解析:依据同位角相等,两直线平行判别.)4.(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行5.平角的定义等式的性质等量代换内错角相等,两直线平行6.5(解析:如下图,∵∠BAG=∠AHE=72°,∴AB∥EI;∵∠BFC=∠FCD=72°,∴BG∥CD;∵∠CBF=∠BGA=72°,∴BC∥AH;∵∠EDI=∠CKD=72°,∴DE∥CF;∵∠AEH=∠EID=72°,∴AE∥DK.故共有5对平行线.)7.解:对.由于同旁内角互补,两直线平行.8.证明:∵AC平分∠BAD(),∴∠1=∠3(角平分线的定义).又∵∠1=∠2(),∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行). 9.解:AB∥CD.理由如下:∵CF⊥DF,∴∠CFD=90°.∵∠1+∠CFD+∠2=180°,∴∠1+∠2=90°,∵∠1与∠D互余,∴∠1+∠D=90°,∴∠2=∠D,∴AB∥CD(内错角相等,两直线平行).。

八年级数学上册 第七章 平行线的证明(第1课时)教学案

八年级数学上册 第七章 平行线的证明(第1课时)教学案

第七章平行线的证明课题第七章平行线的证明第1课时时间课型复习课教具教材、课件、三角板学习目标知识与能力归纳、整理平行线的相关知识,进一步体会证明的必要性。

过程与方法经历探索过程,体会平行线的应用,培养数学应用能力。

情感态度价值观通过活动,培养学生的合作意识,体会数学与生活的联系。

教学重点熟练、准确运用平行线的相关知识,解决问题。

教学难点通过问题解决体会平行线证明的应用,培养学生的数学应用能力。

教法学法引导、启发,合作交流教学环节教学过程设计意图知识回顾强化理解综合运用构建平行线的证明的知识网。

本章的重要内容有哪些?它们之间有怎样的联系?}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(1.什么是定义?什么是命题?命题由哪两部分组成?举例。

2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角有哪些相关的性质?5.证明题的基本步骤是什么?做一做:1.下列语句是命题的有()(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(5)对应角相等的两个三角形是全等三角形;2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例.(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a|=|b|,则a=b。

3. 如图,AD、BE、CF为△ABC的三条角平分线,则:引导学生对平行线的性质与判定、三角形内角和定理及三角形的外角的性质有一个更深层次的认识,为下一步的逻辑推理作好知识准备。

启发学生掌握正确的学习方法,养成良好的学习习惯。

引导学生进一步掌握本章的重点知识内容,并会结合实例说明,夯实“双基”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章平行线的证明1.为什么要证明一、学生知识状况分析学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.学生活动经验基础:在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.二、教学任务分析学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。

因此,本课时的教学目标是:1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.三、教学过程分析本节课的教学思路为:验证活动(1)——猜想并验证活动(2)——猜想并验证活动(3)——经验总结——学生练习——课堂小结——巩固练习第一环节:验证活动(1) 活动内容:某学习小组发现,当n=0,1,2,3时,代数式n 2-n+11的值都是质数,于是得到结论:对于所有自然数n , n 2-n+11的值都是质数.你认为呢?与同伴交流.参考答案:列表归纳为活动目的:对现在结论进行验证,让学生感受到知识有时具有一定的迷惑性(欺骗性),从而对不完全归纳的合理性产生怀疑,为下一步的学习提供必要的精神准备. 注意事项:学生通过列表归纳,根据自己以往的经验判断,在n=10以前都一直认为n 2-n+11是一个质数,但当n=10时,找到了一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性.第二环节:猜想并验证活动(2) 活动内容:如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?参考答案:设赤道周长为c ,铁丝与地球赤道之间的间隙为 :)(16.021221m c c ≈=-+πππ 它们的间隙不仅能放进一个红枣,而且也能放进一个拳头. 活动目的:通过理性的计算,验证了很难想像到的结论,让学生产生思维上的碰撞,进而对自己的直观感觉产生怀疑,再次为论证的合理性提供素材.注意事项:要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生,这样就达不到预想的要求,不能让学生留下深刻的印象.第三环节:猜想并验证活动(3) 活动内容:如图,四边形ABCD 四边的中点E 、F 、G 、H ,度量四边形EFGH 的边和角,你能发现什么结论?改变四边形ABCD 的形状,还能得到类似的结论吗? 参考答案:连接AC .∵E 、F 、G 、H 分别是四边形ABCD 四边中点, ∴EF ∥AC ,EF=AC ;GH ∥AC ,GH=AC ; ∴EF 平行且等于GH ,∴四边形EFHG 为平行四边形. 活动目的:通过对图形的直观感受得出结论,但要使学生清楚地知道对几何结论的验证,通常是用严谨的逻辑推理来论述. 注意事项:让学生大胆地进行预测,但要让学生说清理由,让学生了解几何证明的必要性.第四环节:归纳与总结 活动内容:① 通过以上三个数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步, 有根有据的推理. ②举例说明“推理意识”与推理方法. 活动目的:ABECDFGH使学生理解仅有对图形的直观感受是不够的,从而帮助学生建立推理意识.注意事项:让学生用自己的语言进行叙述,培养学生的表达能力.第五环节:反馈练习活动内容:1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.答案:a与b的长度相等.第1小题图第2小题图2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.答案:线段b与线段d在同一直线上.3.当n为正整数时,n2+3n+1的值一定是质数吗?答案:经验证:当n为正整数时,n2+3n+1的值一定是质数.第六环节:课堂小结活动内容:今天这节课你学到了什么知识?参考答案:①要说明一个数学结论是否正确,无论验证多少个特殊的例子,也无法保证其正确性.②要确定一个数学结论的正确性,必须进行一步一步、有根有据的推理.活动目的:通过学生的总结,使学生对证明的必要性有一个清楚的认识,数学杜绝随意性,数学是严密的科学.注意事项:通过前三个例题的感受以及反馈练习,学生都清楚地知道推理、论证的必要性,了解了数学不是一种直观感受,而是一种严密的科学.第七环节巩固练习课本第217页习题6.1第2,3题.四、教学反思本节课的教学设计是建立在“以学生的发展为本,为学生的终身学习奠定基础”的教育理念上,融入了新课标的思想内涵,尊重学生的直观感觉,并从学生的直观感觉出发逐步将学生的思维引向严密性、逻辑证明等方面,不是一味地强调证明的必要性,而是通过几个事实的说明来让学生意识到证明的必要性,设计中突出体现了学生的主体地位.在教学设计中,力求让学生学会将生活问题数学化,用一个有趣的生活问题:“用一根铁丝将地球赤道围起来”引起学生的兴趣并进行猜测,然后通过计算得出一个令人很意外的结果,同时也培养了学生“用数学”的意识,并且使得学生有一种感受:数学来源于生活,服务于生活,同时也要用数学的眼光看世界,切勿盲信于自己的直观感觉.本节课通过事例让学生体会检验数学结论的常用方法:实验验证、举出反例、推理等.符合学生的认识特点和知识水平。

有助于培养学生理解问题、分析问题、解决问题的能力.2.定义与命题(第1课时)总体说明在了解推理的重要性以后,从本节课开始的连续两节课将向学生简单介绍定义、命题、真命题、假命题、公理、定理等一些术语和名词,为后面的学习打好基础,作好铺垫.一、学生知识状况分析学生技能基础:学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.活动经验基础:在前面的学习中,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.二、教学任务分析在几何中,有许许多多的定义、定理、公理等概念,还有一些真真假假的命题需要学生去辨别、去认识,本节课安排《定义与证明》旨在让学生对定义、定理、公理等概念有一个清楚的认识和了解,为此,本节课的教学目标是:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.三、教学过程分析本节课的设计思路为:情景引入——命题含义(情景引入)——课堂练习——课堂小结——课后练习第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);活动目的:让学生通过对一个学生比较感兴趣的名词:“黑客”、“因特网”的不同理解,从而使学生了解定义的含义.教学效果:很多学生对黑客的概念是很熟悉的,而小品中出现的黑客的定义与自己所熟知的黑客的概念完全不同,由此产生了对定义的兴趣.第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)活动目的:通过对水流的污染问题引入命题的概念,使学生了解命题的含义,会判断某些语句是不是命题.教学效果:命题的判断只有两种形式,要么肯定,要么否定。

作判断时,必须泾渭分明,不能模棱两可;二是命题的句子只能是完整的句子,对一件事情的前因后果应叙述完整。

从语法上讲,它应是陈述句,不能是祈使句、疑问句或感叹句.第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.活动目的:训练与反馈教学效果:一般都能正确解答。

相关文档
最新文档