含参一元一次方程的解法.doc
《含参数的一元一次方程的解法》教学设计
教学过程
教学环节学生学习活动环节一:引入
我们现在进入了复习阶段,回顾本册书的内容,除了最后一章的几何初步,我们首先学习了数及数的混合运算,之后是式,也就有了字母的参与,自从字母来了之后,我们就不断和字母打交道,你能列举一道有关字母的小例子吗?当然字母的出现使问题更具一般性,同时要求我们具备分类讨论的意识。
再往后学习了方程,具体的方程你会解,但含字母系数的方程,也即含参方程又怎样呢?这就是我们这节课的主要内容。
回顾第13册书的几大块;
列举含字母的小例子
学生能否对一元一次正确理解,从而列出关于字母m 的关系式。
将图形圈视为参数即可
找一学生板演第5题后面向同学讲解,让学生评价他的解法,同学们也可补充其他解法,如方程组、或由方程一解出a,再将a代入第二个方程从而求出x.并比较优略。
老师再将同解改为第一个方程的解是第二个方程解的3倍少2,分别求两个解,再将前3种方法比较优略,从而找到通法。
17的约数有4个,学生能否将两个负值找出。
独立思考之后讨论,对比方程mx=n 的三种解的情况,对“无论k为何值”进行剖析,及如何利用它进行分析。
学生总结归纳本
节课的收获
作业:1、总结本节内容并改错;
2、本节对应练习。
含参一元一次方程的解法
B. 8 9Leabharlann 5 C. 3D.
5 3
2.解方程: 0.1 x 3 0.4 x 1 20 0.2 0.5
a 3x a 1 5x 1 4.已知关于x的方程 3 x 2 x 4 x与 2 12 8 有相同的解,求a的值及方程的解。
题型三 含字母系数的 含字母系数的一元一次方程 元 次方程 巩固练习 5.已知关于x的方程 2a ( x 1) (5 a ) x 3b 无解,那 么a=_____,b=____。
题型四 绝对值方程 巩固练习 7.解方程: 3x 5 4 8
6.如果关于x的方程 求k值 值。
含参一元一次方程的解法 含参 元 次方程的解法
题型一 复杂一元一次方程 巩固练习 1.解方程: 解方程 2x 5 3 x 1 6 4
题型 两个 题型二 两个一元一次方程解的关系问题 元 次方程解的关系问题 巩固练习 3.若方程 3 2 x 2 2 3 x 的解与关于x的方程 6 2k 2 x 3 的解相同,则 , k的值为( )
2( kx 3) 1 5(2 x 3) 有无数个解, 3 2 6
8.方程 x 1 x 4 7的解是_______。
1
一元一次方程的解法-word文档
一元一次方程的解法
小编导语:初一的同学正在学习一元一次方程的课程,出一次接触,想必有很多问题需要了解,小编整理了一元一次方程的解法,希望对同学们的学习有所帮助!
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
4.合并同类项:把方程化成ax=b(a0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
注:以上便是小编整理的关于一元一次方程的解法,要想更加透彻系统的学好一元一次方程,就要求同学们在理解基本概念和知识的基础上,勤加练习和查缺补漏,祝大家学习进步,加油!
初一数学一元一次方程相关链接》》》》
一元一次方程ppt 二元一次方程组教案一元一次方程教案一元一次方程的概念
一元一次方程应用题一元一次方程练习题一
元一次方程练习题及答案一元一次方程应用题归类。
第6讲含参一元一次方程的解法尖子班学生版
第6讲含参一元一次方程的解法尖子班学生版一元一次方程是指只含有一个未知数的一次方程,形式为 ax + b = 0 , 其中 a 和 b 为已知数,a ≠ 0。
解一元一次方程通常有以下几种方法:图解法、代数法和方程变形法。
1.图解法:将方程的左右两边绘制成直线,利用直线的交点求解。
首先,以方程的形式 ax + b = 0 ,可以将其视为 y = ax + b 的特殊形式。
画出 y = ax + b 的图像,此时,直线与 x 轴的交点即为方程的解。
举个例子:假设a=2,b=-3、则方程为2x-3=0。
将其转化为y=2x-3的形式。
首先计算y的值,然后找到x轴与直线的交点,即可确定方程的解。
2.代数法:通过代数运算对方程进行变形,找到解的值。
首先,将方程 ax + b = 0 左右两边同时加上 b,得到 ax = -b。
然后,将方程两边同时乘以 a 的倒数 (1/a),得到 x = -b/a。
将 -b/a 的值代入方程中,可以验证方程的解是否正确。
举个例子:假设a=2,b=-3、则方程为2x-3=0。
首先将方程两边同时加上3,得到2x=3、然后将方程两边同时除以2,得到x=3/2,即方程的解为x=1.53.方程变形法:通过对方程进行变形,变成更简单的等价方程,然后通过求解等价方程,得到原方程的解。
举个例子:假设a=2,b=-3、则方程为2x-3=0。
首先将方程两边同时加上3,得到2x=3、然后将方程两边同时除以2,得到x=3/2,即方程的解为x=1.5通过以上方法,可以解决一元一次方程的问题。
同时,通过练习和实践,可以提高解题的速度和准确性。
对于尖子班的学生来说,掌握这些解法是非常重要的。
在学习数学中的其他高阶主题,如二次方程、不等式、方程组等,都需要对一元一次方程的解法有深入的理解和掌握。
在解题过程中,注意细心和逻辑性的思考是非常重要的。
同时,通过多做一些练习题和应用题,可以加强对一元一次方程解法的理解和应用能力。
一元一次方程含参问题
例5、若a,b为定值,关于x的一元一次方 2kx a x bk 1 程 ,无论k为何值 3 6 时,它的解总是x=1,求a,b的值。 解:将x=1代入 2kx a x bk
3 2k a 1 bk 1 3 6 6 1
化简得:(4+b)k=7-2a ① ∵无论ห้องสมุดไป่ตู้为何值时,原方程的解总是x=1 ∴无论k为何值时,①总成立 ∴4+b=0且7-2a=0,解得a=-4,b=3.5
4、整数解问题
例6、已知关于x的方程9x+3=kx+14有整数解, 求整数k。
解:由题意知:(9-k)x=11
11 x 9k
∵x,k均为整数 ∴9-k= ±1, ±11 ∴k=-2,8,10,20
练习: 2 (1)关于x的方程 (n 1) x (m 1) x 3 0 是一元一次方程 ①则m,n应满足的条件为:m ≠1 ,n =1 ; ②若此方程的根为整数,求整数m=-2,0,2,4 。
练习: (1)已知关于x的方程2a(x-1)=(5-a)x+3b有无 数个解,则a= 5 ,b= 10 。
3
2
(2)已知关于x的方程a(2x-1)=3x-2无解,则 a= 3 。 (3)(3a 2b) x ax b 0 是关于x的一元 一次方程,且x有唯一值,则x= 3 。
2
9
2
2
一、含有参数的一元一次方程
2、同解方程
ax 2 0 例2、关于x的方程4x-1=-5与 3
的解相同,求a的值;若解互为倒数,互 为相反数时,求a的值 练习:当m= 4x-2m=3x-1的解是x=2x-3m的解的2倍。
1 4 时,关于x的方程
含参一元一次方程的解法
含参一元一次方程的解法知识回顾1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.2.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按顺序进行,要根据方程的特点灵活运用.3.易错点1:去括号:括号前是负号时,括号里各项均要变号.易错点2:去分母:漏乘不含分母的项.易错点3:移项忘记变号.基础巩固【巩固1】若是关于x的一元一次方程,则.【巩固2】方程去分母正确的是()A.B.C.D.【巩固3】解方程1.1 一元一次方程的巧解 求解一元一次方程的一般步骤是:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.在求解的过程中要要根据方程的特点灵活运用.对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中的应用.具体归纳起来,巧解的方法主要有以下三种:⑴提取公因式;⑵对系数为分数的一元一次方程的系数进行裂项;⑶进行拆项和添项,从而化简原方程.【例1】 ⑴⑵【例2】 解方程:⑴⑵()()1123233211191313x x x -+-+=知识导航经典例题1.2同解方程知识导航若两个一元一次方程的解相同,则称它们是同解方程.同解方程一般有两种解法:⑴只有一个方程含有参数,另外一个方程可以直接求解.此时,直接求得两个方程的公共解,然后代入需要求参数的方程,能够最快的得到答案.⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,可以先分别用参数来表示这两个方程的解,再通过数量关系列等式从而求得参数,这是求解同解方程的最一般方法.注意:⑴两个解的数量关系有很多种,比如相等、互为相反数、多1、2倍等.(2)一元一次方程的公共根看似简单,其实却是一元二次方程公共根问题的前铺和基础.经典例题【例3】⑴若方程与有相同的解,求a得值.;⑵若和是关于x的同解方程,求的值.【例4】x的一元一次方程,且它们的解互为相反数,求m,n分别是多少?关于x的方程的解是多少?⑵当x的方程y的方程的解得2倍.1.3含参方程知识导航当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成的形式,方程的解根据的取值范围分类讨论.1.当时,方程有唯一解.2.当时,方程有无数个解,解是任意数.3.当且时,方程无解.经典例题【例5】解关于x的方程【例6】⑴若方程没有解,则a的值为.⑵若方程有无数解,则的值是.⑶当时,关于x的方程是一元一次方程.若该方程的唯一解是,求p得值.⑷已知:关于的方程有无数多组解,试求的值.1.4绝对值方程知识导航解绝对值方程的一般步骤:⑴分类讨论去绝对值;⑵分别求解两个方程;⑶综合两个方程的解;⑷验证.经典例题【例7】解绝对值方程:⑴⑵1.5课后习题【演练1】解方程:【演练2】【演练3】与方程的解相同,则a 的值为 .⑵若关于x 的解互为相反数,则= .⑶若关于x 和a 得值.【演练4】解关于x【演练5】⑴已知关于x.⑵若关于x的方程有唯一解,则题中的参数应满足的条件是.。
一元一次方程含参问题
第⼗讲⼀元⼀次⽅程含参问题⼀解的关系求参数1⼀含参不含参⽅法先解出不含参⽅程的解根据解的关系求出含参⽅程的解再代⼊求参e gl关于x的⽅程2x31和YR k3X有相同的解求k由2x31解得x2代⼊X k3X得2k3X2解得k i92关于x的⽅程恐x in与X122x1的解互为倒数求m由x122X1解得x j则X x⼗号的解为x3代⼊得33in解得m f2两含参⽅法解出两个⽅程的解根据解的关系到等式g关于X的⽅程2x1m-2m2的解⽐⽅程5x11m4X1t m的解⼤2求m的值⽅程2x1m-2m2解得x2⽅程5X11m4X1t m解得x2m9由两⽅程解的关系得2-mz2m9216解得⼏⼆5⼆解的个数求参关于x的⽅程⽐功解的个数①at01为任意实数时x有唯⼀解②a0b0时x有⽆数解③a0bt0时x⽆解e gl关我的⽅程ax1⼆0它的解的个数是多少ax-1①a0时X⽆解②at0时x有唯⼀解eg2关于x的⽅程axt53X1它的解的个数是多少a x3X-1-5a3x-6D a30即a3时X⽆解②a3to即at3时x有唯⼀解eg3关于⼒的⽅程mxt43X n分别求出mn为何值时⽅程有①唯解20元数解30⽆解mx3X n4m3X n4①当m3to即m3⼏为任意实数时ㄨ有唯⼀解②当m30即m3n40即n-4x有⽆数解③当m30即m3n4to即⼏⼗-4x⽆解三整体法求解⽅程的数学形式⼀样则解⼀样egl关于x的⽅程2x12的解是ㄨ2则关刊的⽅程24-12的解是⽕2关于X的⽅程x b C的解是ㄨ2则关刊的⽅程a y b C的解是y25 egz已知关于X的⽅程a X tb C的解是ㄨ5则关于ㄨ的⽅程a2b的解是ㄨ22X5x2593已知关我的⽅程acxtb C的解是x5则关于⼒的⽅程a2ㄨt b1C 的解是X22X153X2994已知关于x的⽅程Ījxt32九⼗⼝的解是ㄨ5则关刊的⽅程i y t332y3t b的解是y2y t35y2四整数解问题⽅法把含参⽅程解出来找分⼦的约数不要漏了负的91关于⼒的⽅程ax7的解是整数求整数ax da-7-1 1.7egz关我的⽅程x7tax的解是整数求整数aX a1-a-7-1.1.7a8 2.0-6eg了已知关我的⽅程2ax13⼗九的解是整数求整数a13X z a12a1-13-1113a-6.0 1.794已知关我的⽅程a x_x4的解是正整数求整魏的值x4a1G1124a23595已知关于ㄨ的⽅程a1x6的解是正整数求正整数a6X a1at1 1.2.3.6a0舍去 1.2.5五错解问题将错就错egl语⽂⽼师在解关于ㄨ的⽅程2a2x5ㄨ时误将等号前⼆2x看作x解出解为⼒-1则a的值是-3原⽅程的解为X⼆千错解⽅程为2a x_x将x-1代⼊得2a-15ㄨ-1解得a-3原⽅程为-6-2x5解得x-67egz英语⽼师在解⽅程i那么去分⺟时⽅程右边-1漏乘了3因⽽求得⽅程的解为X-2请你帮这位⽼师求出的值并且求出原⽅程正确的解错解⽅程为2x1x a1将x-2代⼊得2ㄨ-2-1-2t a1解得a-2原⽅程为i今2-1解得ㄨ-4。
一元一次方程含参问题
一元一次方程含参问题
基本概念
一元一次方程含参问题是指在形如ax + b = c的一元一次方程中,将系数a、b和c中的某个或某些项用参数表示,并研究方程解随参数的变化而变化的问题。
解法
解一元一次方程含参问题的基本思路是:
1. 将含参数的方程表示为一元一次方程形式;
2. 根据方程的系数和常数项的变化情况,讨论方程解的取值范围;
3. 根据参数的取值范围,确定方程在不同条件下的解。
例题
1. 已知一元一次方程8x + a = 10,其中参数a的取值范围为[1, 5],求方程的解。
- 当a = 1时,方程化简为8x + 1 = 10,解得x = 1。
- 当a = 5时,方程化简为8x + 5 = 10,解得x = 1/2。
因此,当a取值范围为[1, 5]时,方程的解为x = 1或x = 1/2。
2. 已知一元一次方程2x + 3y = m,其中参数m的取值范围为[1, 10],求方程的解。
- 当m = 1时,方程化简为2x + 3y = 1,解的取值范围较广。
- 当m = 10时,方程化简为2x + 3y = 10,解的取值范围较窄。
因此,当m取值范围为[1, 10]时,方程的解的取值范围也会相
应变化。
总结
一元一次方程含参问题是通过引入参数,使一元一次方程的解与参数的取值相联系的问题。
解决这类问题需要将含参数的方程化简为一元一次方程,然后根据参数的取值范围讨论方程的解的取值范围。
通过掌握一元一次方程含参问题的解法和应用,可以进一步提高数学问题的分析解决能力。
一元一次方程含参问题
k
2、解方程:
2x 1 x 1 X=3 (1)3 17 5 2 x 11 0.2 x 0.1 0.5 x 0.1 ( 2) 1 0.6 0.4 1 1 2 (3) [ x ( x 1)] ( x 1) 11 2 2 3 x
5
1、已知方程解的情况求参数
4、整数解问题
例6、已知关于x的方程9x+3=kx+14有整数解, 求整数k。
解:由题意知:(9-k)x=11
11 x 9k
∵x,k均为整数 ∴9-k= ±1, ±11 ∴k=-2,8,10,20
练习: 2 (1)关于x的方程 (n 1) x (m 1) x 3 0 是一元一次方程 ①则m,n应满足的条件为:m ≠1 ,n =1 ; ②若此方程的根为整数,求整数m=-2,0,2,4 。
2、同解方程
ax 2 0 例2、关于x的方程4x-1=-5与 3
的解相同,求a的值;若解互为倒数,互 为相反数时,求a的值 练习:当m= 4x-2m=3x-1的解是x=2x-3m的解的2倍。
1 4 时,关于x的方程
Hale Waihona Puke 3、含字母系数的一元一次方程 例3、讨论关于x的方程ax=b的解的情况
1已知关于x的方程2ax15ax3b有无数个解则a是关于x的一元一次方程且x有唯一值则x72a0a4b35练习
一元一次方程的含参问题
1、已知方程解的情况求参数 2、两个一元一次方程同解问题 3、一元一次方程解的情况(分类讨论) 4、整数解问题
基础巩固:
1、若 (m 2) x (k 1) x 11 0 是关于x的一 元一次方程,则m= -2 ,k= -1 。
ax 例1、已知方程 3a x 3 的解是x=4, 2 求a的值。
含参一元一次方程组的讲解
含参一元一次方程组的讲解
含参一元一次方程是指方程中的系数或常数项由参数表示的一元一次方程。
解这类方程时,我们需要根据参数的不同取值,对方程的解进行分类讨论。
以下是一些基本的解法:
唯一解:当方程的系数不等于0时,方程有唯一解。
例如,对于方程 ax=b,当 a=0 时,方程有唯一解 x=ab
无数解:当方程的系数和常数项都等于0时,方程有无数解。
例如,对于方程 0x=0,x 可以取任意值。
无解:当方程的系数等于0,但常数项不等于0时,方程无解。
例如,对于方程 0x=4,x 无解
在解含参一元一次方程时,我们需要根据参数的取值,对以上三种情况进行分类讨论。
例如,对于方程 ax+b=0,我们需要分别讨论 a=0,a=0 且 b=0,以及 a=0 且 b=0 这三种情况
此外,还有一些特殊的题型,如同解方程、绝对值方程等,也需要我们掌握。
例如,对于同解方程,我们可以先求出一个方程的解,然后将这个解代入另一个方程,从而求出参数的值。
一元一次方程含参组合问题
一元一次方程含参组合问题问题描述在初中数学中,我们研究了一元一次方程的解法,即求解形如`ax+b=0`的方程。
今天我们来探讨一些稍微复杂一点的一元一次方程,这些方程中含有参数,并需要我们求解参数的范围。
问题分析我们可以把这类问题分为两类:关于参数的条件和关于未知数的条件。
关于参数的条件在这种情况下,我们已知方程的形式是`ax+b=0`,但是未知数`x`的取值范围受到参数的限制。
例如,我们要求方程`2ax+3=0`的解,但是在求解之前我们需要考虑参数`a`的值。
关于未知数的条件在这种情况下,我们已知方程的形式是`ax+b=0`,但是未知数`x`的取值受到其他条件的限制。
例如,我们要求方程`2x+3b=1`的解,但是在求解之前我们需要考虑其他条件,比如`x`大于等于0。
求解方法关于参数的条件对于关于参数的条件,我们可以通过列举不同的参数值,然后求解方程来确定参数的范围。
例如,对于方程`2ax+3=0`,我们可以考虑不同的`a`的取值,比如`a=1`、`a=2`和`a=3`,然后分别求解方程。
关于未知数的条件对于关于未知数的条件,我们可以通过代入条件求解方程来确定未知数的取值范围。
例如,对于方程`2x+3b=1`,如果已知条件是`x>=0`,我们可以将这个条件代入方程中,然后求解。
示例关于参数的条件对于方程`2ax+3=0`,我们可以分别考虑`a=1`和`a=2`的情况。
当`a=1`时,方程变为`2x+3=0`,求解可以得到`x=-3/2`。
当`a=2`时,方程变为`4x+3=0`,求解可以得到`x=-3/4`。
所以,当`a=1`时,解为`x=-3/2`;当`a=2`时,解为`x=-3/4`。
关于未知数的条件对于方程`2x+3b=1`,如果已知条件是`x>=0`,我们可以将这个条件代入方程中。
代入条件后,方程变为`2(0)+3b=1`,即`3b=1`,解得`b=1/3`。
所以,在满足条件`x>=0`的情况下,解为`b=1/3`。
第3章一元一次方程的含参问题(教案)
1.理论介绍:首先,我们要了解含参一元一次方程的基本概念。含参的一元一次方程是指方程中包含一个或多个参数,这些参数通常表示未知的常量。它在数学建模和解决实际问题时具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将一个实际速度问题转化为含参的一元一次方程,并通过求解方程来解决问题。
实践活动环节,学生分组讨论和实验操作进行得相对顺利。但我观察到,有些小组在讨论过程中,个别成员参与度不高,这可能影响了整个小组的学习效果。在未来的教学中,我需要考虑如何更好地调动每个学生的积极性,确保每个人都能在小组活动中得到充分的锻炼。
学生小组讨论时,大家对于含参方程在实际生活中的应用提出了很多有趣的观点,这让我感到很欣慰。但在引导讨论时,我发现自己在提问的技巧上还有待提高,有些问题可能不够开放,限制了学生的思考空间。我将在下一次的教学中注意这一点,设计更多具有启发性的问题。
4.培养学生的团队合作意识,通过小组讨论与合作,共同解决复杂问题,提高沟通与协作能力。
三、教学难点与重点
1.教学重点
-理解含参一元一次方程的概念,包括参数的概念和含参方程的特点;
-掌握含参一元一次方程的求解方法,特别是换元法和消元法的应用;
-能够将实际问题抽象为含参一元一次方程模型,并进行求解;
-通过对含参方程求解过程的分析,理解方程解的多样性和参数对解的影响。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程含参问题的基本概念、求解方法和实际应用。同时,我们也通过实践活动和小组讨论加深了对含参问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
含参一元一次方程解法
⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,可以先分别用参数来表示这两个方程的解,再通过数量关系列等式从而求得参数,这是求解同解方程的最一般方法.
3.易错点1:去括号:括号前是负号时,括号里各项均要变号.
易错点2:去分母:漏乘不含分母的项.
易错点3:移项忘记变号.
【巩固1】若 是关于x的一元一次方程,则 .
【巩固2】方程 去分母正确的是()
A. B.
C. D.
【巩固3】解方程
1.1一元一次方程的巧解
求解一元一次方程的一般步骤是: 去分母; 去括号; 移项; 合并同类项; 未知数的系数化为1.在求解的过程中要要根据方程的特点灵活运用.
1.5课后习题
【演练1】解方程:
【演练2】解方程:
【演练3】⑴方程 与方程 的解相同,则a的值为.
⑵若关于x的方程 与 的解互为相反数,则 =.
若关于x的方程 和 ,求a得值.
【演练4】解关于x的方程:
【演练5】⑴已知关于x的方程 无解,那么 ,
.
若关于x的方程 有唯一解,则题中的参数应满足的条件是
【例6】⑴若方程 没有解,则a的值为.
⑵若方程 有无数解,则 的值是.
当 时,关于x的方程 是一元一次方程.若该方程的唯一解是 ,求p得值.
已知:关于 的方程 有无数多组解,试求 的值.
1.4绝对值方程
解绝对值方程的一般步骤: 分类讨论去绝对值; 分别求解两个方程; 综合两个方程的解; 验证.
【例7】解绝对值方程:
.
含参一元一次方程的解法
含参一元一次方程的解法
含参一元一次方程的解法1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.2.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按顺序进行,要根据方程的特点灵活运用.3.易错点1:去括号:括号前是负号时,括号里各项均要变号.易错点2:去分母:漏乘不含分母的项.易错点3:移项忘记变号.【巩固1是关于x的一元一次方程,则.【巩固2】方程去分母正确的是()AB.CD【巩固3知识回顾基础巩固1.1一元一次方程的巧解求解一元一次方程的一般步骤是:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.在求解的过程中要要根据方程的特点灵活运用.对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,的应用.具体归纳起来,巧解的方法主要有以下三种:⑴提取公因式;⑵对系数为分数的一元一次方程的系数进行裂项;⑶进行拆项和添项,从而化简原方程.【例1】⑴【例2】解方程:⑴⑵()()1123233211191313x x x-+-+=知识导航经典例题1.2 同解方程若两个一元一次方程的解相同,则称它们是同解方程.同解方程一般有两种解法: ⑴只有一个方程含有参数,另外一个方程可以直接求解.此时,直接求得两个方程的公共解,然后代入需要求参数的方程,能够最快的得到答案.⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,可以先分别用参数来表示这两个方程的解,再通过数量关系列等式从而求得参数,这是求解同解方程的最一般方法.注意:⑴两个解的数量关系有很多种,比如相等、互为相反数、多1、2倍等.(2)一元一次方程的公共根看似简单,其实却是一元二次方程公共根问题的前铺和基础.【例3】与有相同的解,求a 得值. ;⑵若是关于x 的同解方程,求的值.【例4】x 的一元一次方知识导航经典例题程,且它们的解互为相反数,求m,n分别是多少?关于x的方程的解是多少?⑵当x的方程y的方程的解得2倍.1.3含参方程当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成的解根据的取值范围分类讨论.1.当时,方程有唯一解.2. 当时,方程有无数个解,解是任意数. 3.当时,方程无解.【例5】 解关于x的方程【例6】⑴若方程没有解,则a 的值为 .⑵若方程有无数解,则的值是 .时,关于x是一元一次方程.若该方程的唯p 得值.⑷已知:关于的方程的值.1.4 绝对值方程经典例题解绝对值方程的一般步骤:⑴分类讨论去绝对值;⑵分别求解两个方程;⑶综合两个方程的解;⑷验证.【例7】 解绝对值方程:⑴⑵1.5 课后习题【演练1】【演练2】经典例题【演练3】与方程的解相同,则a的值为.⑵若关于x则= .⑶若关于x和a得值.【演练4】解关于x【演练5】⑴已知关于x无解,那么,.⑵若关于x的方程有唯一解,则题中的参数应满足的条件是.。
(完整版)含参一元一次方程解法
易错点2:去分母:漏乘不含分母的项.
易错点3:移项忘记变号.
【巩固1】若 是关于x的一元一次方程,则 .
【巩固2】方程 去分母正确的是()
A. B.
C. D.
【巩固3】解方程
1.1一元一次方程的巧解
求解一元一次方程的一般步骤是: 去分母; 去括号; 移项; 合并同类项; 未知数的系数化为1.在求解的过程中要要根据方程的特点灵活运用.
含参一元一次方程的解法
1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.
2.解一元一次方程的一般步骤: 去分母; 去括号; 移项; 合并同类项; 未知数的系数化为1.
这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按顺序进行,要根据方程的特点灵活运用.
注意:⑴两个解的数量关系有很多种,比如相等、互为相反数、多1、2倍等.
(2)一元一次方程的公共根看似简单,其实却是一元二次方程公共根问题的前铺和基础.
【例4】⑴若方程 与 有相同的解,求a得值.;
⑵若 和 是关于x的同解方程,求 的值.
【例5】⑴已知: 与 都是关于x的一元一次方程,ቤተ መጻሕፍቲ ባይዱ它们的解互为相反数,求m,n分别是多少?关于x的方程 的解是多少?
⑴只有一个方程含有参数,另外一个方程可以直接求解.此时,直接求得两个方程的公共解,然后代入需要求参数的方程,能够最快的得到答案.
⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,可以先分别用参数来表示这两个方程的解,再通过数量关系列等式从而求得参数,这是求解同解方程的最一般方法.
(完整版)含参数的一元一次方程
初一部分知识点拓展◆含参数的一元一次方程复习:解方程:(1)215123x x (2))4(x 40%+60%x =2(3)14.01.05.06.01.02.0x x (4))1(3212121x x x)(一、含参数的一元一次方程解法(分类讨论)1、讨论关于x 的方程b ax 的解的情况.2、已知a 是有理数,有下面5个命题:(1)方程0ax 的解是0x;(2)方程1xa ax 的解是;(3)方程axax11的解是;(4)方程a xa 的解是1x(5)方程1)1(a x a 的解是1x中,结论正确的个数是()A.0B.1C.2D.3 二、含参数的一元一次方程中参数的确定①根据方程解的具体数值来确定例:已知关于x 的方程323ax xa的解为4x变式训练:1、已知方程)1(422x ax 的解为3x,则a;2、已知关于x 的方程)(22x mmx 的解满足方程021x,则m;3、如果方程20)1(3)1(2a x x 的解为,求方程:a a x x 3)(3)3(22的解.②根据方程解的个数情况来确定例:关于x 的方程n x mx 34,分别求n m ,为何值时,原方程:(1)有唯一解;(2)有无数多解;(3)无解.变式训练:1、已知关于x 的方程b xa x a 3)5()1(2有无数多个解,那么a ,b .2、若关于x 的方程512)2(x b x a 有无穷多个解,求b a ,值.3、已知关于x 的方程)12(6123x x mx 有无数多个解,试求m 的值.4、已知关于x 的方程5)12()2(3x b xa 有无数多个解,求a 与b 的值.5、x bax x b a 是关于0)23(2的一元一次方程,且x 有唯一解,求x 的值.③根据方程定解的情况来确定例:若b a ,为定值,关于x 的一元一次方程2632bx x ka ,无论k 为何值时,它的解总是1x ,求b a 和的值.变式训练:1、如果b a 、为定值,关于x 的方程6232bk x akx ,无论k 为何值,它的解总是1,求b a 和的值.④根据方程公共解的情况来确定例:若方程325328)1(3xkx x x 与方程的解相同,求k 的值.变式训练:1、若关于x 的方程03ax 的解与方程042x 的解相同,求a 的值.2、已知关于x 的方程18511234)2(23x a x x a xx和方程有相同的解,求出方程的解.⑤根据方程整数解的情况来确定例:m 为整数,关于x 的方程mx x6的解为正整数,求m 的值.变式训练:1、若关于x 的方程kx x 179的解为正整数,则k 的值为;2、已知关于x 的方程1439kx x 有整数解,那么满足条件的所有整数k;3、已知a 是不为0的整数,并且关于x 的方程453223a a a ax 有整数解,则a 的值共有()A.1个B.6个 C.6个 D.9个◆含绝对值的方程:一、利用绝对值的非负性求解例题1:已知n m ,为整数,n m nm m ,求02的值.练习:1、已知n m ,为整数,n m nm m ,求12的值.2、已知)421(410)124(2323124bb aaab ba ,求.二、形如)0(a c b ax 型的绝对值方程解法:1、当0c 时,根据绝对值的非负性,可知此方程无解;2、当0c 时,原方程变为0b ax ,即ab xbax ,解得0;3、当0c时,原方程变为c bax c bax 或,解得ab c xa bc x或例题2:解方程532x .练习:(1)01263x (2)0545x 三、形如)0(ac d cx b ax 型的绝对值方程的解法:1、根据绝对值的非负性可知,0dcx 求出x 的取值范围;2、根据绝对值的定义将原方程化为两个方程)(d cx bax d cx bax 和;3、分别解方程)(b cx bax b cx bax 和;4、将求得的解代入0dcx 检验,舍去不合条件的解. 例题3:解方程525xx 练习:(1)9234x x (2)43234xx 例题4:如果044a a ,那么a 的取值范围是多少.变型题:已知022x x,求(1)2x 的最大值;(2)x 6的最小值.练习:1、解关于x 的方程02552xx .2、已知关于x 的方程06363x x ,求25x 的最大值. 四、形如)(b a c b x a x 型的绝对值方程的解法:1、根据绝对值的几何意义可知b a bx ax ;2、当b a c时,此时方程无解;当b a c 时,此时方程的解为b xa;当b a c 时,分两种情况:①当a x 时,原方程的解为2cb ax;②当b x时,原方程的解为2cba x.例题5:解关于x 的方程213x x变型题:解关于x 的方程21443x x练习:解关于x 的方程(1)752x x (2)75222x x 例题6:求方程421x x 的解.练习:解关于x 的方程(1)723x x (2)62152xx 例题7:求满足关系式413x x 的x 的取值范围.练习:解关于x 的方程(1)321x x (2)752x x7升8数学金牌班课后练习1、已知012x x,代数式200823x x的值是;2、已知关于x 的方程323x xa 的解是4,则aa 2)(2;3、已知2x x ,那么2731999xx 的值为;4、321xx ,则x 的取值范围是;5、088x x ,则x 的取值范围是 .6、已知关于x 的一次方程07)23(xb a 无解,则ab 是();A 正数 B.非正数 C.负数 D.非负数7、方程011x x 的解有();A.1个B.2个C.3个 D.无数个8、使方程0223x 成立的未知数x 的值是();A.-2B.0C.32 D.不存在9、若关于x 的方程只有一个解,无解,043032nx mx 054kx 有两个解,则k n m 、、的大小关系是();A.k n mB.m k nC.n mkD.nkm10、解下列关于x 的方程(1)01078x (2)428xx (3)963x x (4)451x x (5)9234x x (6)612x x (7)43212x x (8)75345x x (9)2004112x 11、若0)3(2y yx,求y x 32的值.※12、已知y y x x 15911,求y x 的最大值与最小值.◆含参的二元一次方程组类型一、基本含参的二元一次方程组例题1:已知方程组ky x k y x 321143的解y x ,满足方程35yx,求k 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识回顾
1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0 的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次
数.
2.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.
这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按顺序
进行,要根据方程的特点灵活运用.
3.易错点 1:去括号:括号前是负号时,括号里各项均要变号.
易错点 2:去分母:漏乘不含分母的项.
易错点 3:移项忘记变号.
基础巩固
【巩固 1】若是关于x的一元一次方程,则.
【巩固2】方程去分母正确的是()
A.C.B.
D .
【巩固3】解方程
一元一次方程的巧解
知识导航
求解一元一次方程的一般步骤是:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知
数的系数化为1.在求解的过程中要要根据方程的特点灵活运用.
对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中的应用.
具体归纳起来,巧解的方法主要有以下三种:⑴提取公因式;⑵对系数为分数的一元一次方程
的系数进行裂项;⑶进行拆项和添项,从而化简原方程.
经典例题
【例1】 ⑴
⑵
【例 2】 解方程:
⑴
⑵
1 1
2
3 11
2 x 3
3 2x
x
19
13
13
同解方程
知识导航
若两个一元一次方程的解相同,则称它们是同解方程.同解方程一般有两种解法:
⑴只有一个方程含有参数, 另外一个方程可以直接求解. 此时,直接求得两个方程的公共解,
然后代入需要求参数的方程,能够最快的得到答案 . ⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,
可以先分别用参数来表示这两个方程的解, 再通过数量关系列等式从而求得参数, 同解方程的最一般方法.
注意 : ⑴两个解的数量关系有很多种,比如相等、互为相反数、多 1、 2 倍等.
这是求解
(2) 一元一次方程的公共根看似简单,其实却是一元二次方程公共根问题的前铺和基础.
经典例题
【例 3】⑴若方程与有相同的解,求 a 得值.;
⑵若和是关于x的同解方程,求的值.
【例 4】⑴已知:与都是关于x 的一元一次方程,且它们的解互为相反数,求m,n 分别是多少关于x 的方程的解
是多少
⑵当时,关于 x 的方程的解是关于y 的方程
的解得 2 倍.
含参方程
知识导航
当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成的形式,方程的解根据的取值范围分类讨论.
1.当时,方程有唯一解.
2.当时,方程有无数个解,解是任意数.
3.当且时,方程无解.
经典例题
【例 5】解关于x的方程
【例 6】⑴若方程没有解,则 a 的值为.
⑵若方程有无数解,则的值是.
⑶当时,关于x 的方程是一元一次方程.若该方程的唯一解是,求p 得值.
⑷已知:关于的方程有无数多组解,试求的值.
绝对值方程
知识导航
解绝对值方程的一般步骤:⑴分类讨论去绝对值;⑵分别求解两个方程;⑶综合两个方程的解;
⑷验证.
经典例题
【例 7】解绝对值方程:
⑴⑵
课后习题
【演练 1】解方程:
【演练 2】解方程:
【演练3】⑴方程与方程的解相同,则 a 的值为.
⑵若关于
⑶若关于x 的方程
x 的方程
与
和
的解互为相反数,则
,求 a 得值.
= .
【演练 4】解关于x的方程:
【演练5】⑴已知关于x 的方程
无解,那么,
.
⑵若关于 x 的方程有唯一解,则题中的参数应满足的条件是
.。