流体流动现象
第一章 流体流动2..
)
盐城师范学院
---化工原理---
1.4.2 流体在圆管内的速度分布 速度分布:流体在圆管内流动时,管截面上 质点的速度随半径的变化关系。 无论是滞流或湍流,在管道任意截面上,流体质点的速度 沿管径而变化,管壁处速度为零,离开管壁以后速度渐增, 到管中心处速度最大。速度在管道截面上的分布规律因流 型而异。
层流边界层 湍流边界层
u∞
u∞
u∞
δ
A x0
层流内层
平板上的流动边界层
盐城师范学院
转折点:
Re x
u x
---化工原理---
5 105 ~ 2 106
边界层厚度δ随x增加而增加
层流: 4.64 x (Rex )0.5
层流边界层
湍流边界层
x
x
0.5
u∞
u∞
u∞
湍流: 0.376 0.2
(a)
过渡流
(b)
湍流 (Turbulent flow)
(c)
两种稳定的流动状态:层流、湍流。
盐城师范学院
---化工原理---
层流:
* 流体质点做直线运动;
* 流体分层流动,层间不相混合、不碰撞; * 流动阻力来源于层间粘性摩擦力。 湍流: 主体做轴向运动,同时有径向脉动;
特征:流体质点的脉动 。
r2 u umax 1 R 2
盐城师范学院
---化工原理---
r2 dVs umax 2r 1 R 2 dr
积分此式可得
2 r r R Vs 2umax r 0 r 1 R 2 dr R 2 4 r r 2umax 2 R 2u / 2 max 2 4R 0
1.4 流体流动现象
4 边界层的概念
讨论 ⑴边界层分离的必要条件: 流体具有粘性; 流动过程中存在逆压梯度。 ⑵边界层分离的后果: 产生大量旋涡; 造成较大的能量损失。 ⑶流体沿着壁面流过时的阻力称为摩擦阻力。 由于固体表面形状而造成边界层分离所引起的能 量损耗称为形体阻力。 ⑷粘性流体绕过固体表面的阻力为摩擦阻力与形 体阻力之和这两者之和又称为局部阻力。
M L L3 L0 M 0 0 M L
Re ⑶Re准数是一个无因次的数群。
L
第1章 (第4节) 流体流动现象
1 流动类型与雷诺准数
⑷流体的流动类型可用雷诺数Re判断。
Re 2000时为层流
流体质点仅沿着与管轴平行的方向作直线运动,质点无 径向脉动,质点之间互不混合,不碰撞。
1 流动类型与雷诺准数
⑵ 调节阀门开度, 使流量变大,细管 内有色液体成波浪 形。说明流体质点 除沿轴向流动外, 沿径向也运动。相 邻流体层之间混合, 碰撞。 (如动画)
第1章 (第4节) 流体流动现象
1 流动类型与雷诺准数
⑶调节阀门开度,使
流量再变大,细管内 有色液体细线便完全 消失,有色液体出细 管后完全散开,与水 混合在一起。说明流 体质点除沿轴向流动 外,还作不规则杂乱 运动。彼此之间混合, 碰撞。 (如动画)
齐齐哈尔大学
第1章 (第4节) 流体流动现象
1.4 流体流动现象
1 流动类型与雷诺准数
本节 讲授 内容
2 流体在圆形直管内速度分布 3 滞流与湍流的比较
4 边界层的概念
第1章 (第4节) 流体流动现象
化工原理第一章(流体的流动现象)
ρ(
∂v ∂v ∂v ∂v ∂p ∂ ∂v 2 r ∂ ∂v ∂w ∂ ∂u ∂v + u + v + w ) = k y − + µ(2 − ∇v) + µ( + ) + µ( + ) ∂t ∂x ∂y ∂z ∂y ∂y ∂y 3 ∂z ∂z ∂y ∂x ∂y ∂x
2012-4-18
湍 流 的 实 验 现 象
2012-4-18
(3)流体内部质点的运动方式(层流与湍流的区别) )流体内部质点的运动方式(层流与湍流的区别) ①流体在管内作层流流动 层流流动时,其质点沿管轴作有规 有规 层流流动 互不碰撞,互不混合 则的平行运动,各质点互不碰撞 互不混合 的平行运动 互不碰撞 互不混合。 ②流体在管内作湍流流动 湍流流动时,其质点作不规则的杂 湍流流动 不规则的杂 乱运动,并互相碰撞混合 互相碰撞混合,产生大大小小的旋涡 旋涡。 乱运动 互相碰撞混合 旋涡 管道截面上某被考察的质点在沿管轴向 轴向运动的同时 轴向 ,还有径向 径向运动(附加的脉动 脉动)。 径向 脉动
du F = µA dy
式中:F——内摩擦力,N; du/dy——法向速度梯度 法向速度梯度,即在与流体流动方向相垂直的 法向速度梯度 y方向流体速度的变化率,1/s; µ——比例系数,称为流体的粘度或动力粘度 粘度或动力粘度,Pa·s。 粘度或动力粘度
2012-4-18
【剪应力 剪应力】 剪应力 【定义 定义】单位面积上的内摩擦力称为剪应力 剪应力,以τ表 定义 剪应力 示,单位为Pa。
ρ(
2012-4-18
著名的“纳维-斯托克斯方程”,把流体的速度、压力、密 度和粘滞性全部联系起来,概括了流体运动的全部规律;只 是由于它比欧拉方程多了一个二阶导数项,因而是非线性的 ,除了在一些特殊条件下的情况外,很难求出方程的精确解 。分析这个方程的性态,“仿佛是在迷宫里行走,而迷宫墙 的隔板随你每走一步而更换位置”。计算机之父冯·诺意曼( Neumann,Joha von 1903~1957)说:“这些方程的特性…… 在所有有关的方面同时变化,既改变它的次,又改变它的阶 。因此数学上的艰辛可想而知了。 有一个传说,量子力学家海森伯在临终前的病榻上向上帝提 有一个传说 了两个问题:上帝啊!你为何赐予我们相对论 相对论?为何赐予我 相对论 们湍流 湍流?海森伯说:“我相信上帝也只能回答第一个问题” 湍流 。
化工原理 第一章 流体的流动现象
/
m3
m0kg0s0
2019/8/3
4、流动形态的判别方法 大量的实验结果表明,流体在直管内流动时:
(1)当Re≤2000时,流动为层流,此区称为层流区; (2)当Re≥4000时,一般出现湍流,此区称为湍流 区; (3)当2000< Re <4000 时,流动可能是层流,也可 能是湍流,与外界干扰有关,该区称为不稳定的过 渡区。
2019/8/3
【例】20℃的水在内径为50mm的管内流动,流速为 2m/s,试分别用SI制和CGS制计算Re数的数值。
注意:在计算Re时,一定要注意各个物理量的单位 必须统一。
【解】(1)用SI制计算:从附录五查得20℃时:
ρ=998.2kg/m3,μ=1.005mPa.s,
已知:管径d=0.05m,流速u=2m/s,
2019/8/3
【剪应力】 【定义】单位面积上的内摩擦力称为剪应力,以τ表 示,单位为Pa。
前式可改变为: du
dy
【结论】 流体层间的内摩擦力或剪应力与法向速度 梯度成正比。
2019/8/3
(6)牛顿型流体非牛顿型流体
【牛顿型流体】剪应力与速度梯度的关系符合牛顿 粘性定律的流体,包括所有气体和大多数液体; 【非牛顿型流体】不符合牛顿粘性定律的流体,如 高分子溶液、胶体溶液及悬浮液等。
2019/8/3
飞机的“隐形杀手”-晴空湍流
1999年10月17日中午一架由昆明飞往香港的南方 航空公司的班机在香港上空突然遇到一股强大气流 ,在5至10秒内飞机急坠2000英尺,导致45人撞向机 舱顶部受伤。导致这场飞行事故的“罪魁祸首” 就 是人称飞机的“隐形杀手”-晴空湍流。
一般来说,飞机在穿越云层或遇到强大气流时, 会出现颠簸。在万里晴空中,有时也会像平静的海 面下藏有汹涌的暗流一样,偶尔会出现强烈的扰动 气流,使飞机产生剧烈颤簸,航空气象专家称这种 来无影去无踪的气流为晴空湍流。
流体的流动现象
[例1-17]在 得无缝钢管中输送燃料油,油得运动粘度为90cSt,试求燃料油坐标滞流流动时得临界速度.
解:由于运动粘度 ,则 .滞流时,Re得临界值为2000,即
Re=du/v=2000
式中d=168-5x2=158mm=0.158m
(1—30)
图1-14中b、c、d曲线所代表的流体,其表观粘度凡都只随剪切速率而变,和剪切力作用持续的时间无关,故称为与时间无关的粘性流体,又可分为下面三种。
1)假塑性(Pseudoplastic)流体这种流体的表观粘度随剪切速率的增大而减小,τ对γ的关系为一向下弯的曲线,该曲线可用指数方程来表示:
τ=τ0+η0 (1—32)
式中τ0—屈服应力,Pa;
η0—刚性系数,Pa·s。
二、与时间有关的粘性流体.
在一定剪切速率下,表观粘度随剪切力作用时间的延长而降低或升高的流体,则为与时间有关的粘性流体。它可分为下面两种。
1)触变性(thixotropic)流体这种流体的表观粘度随剪切力作用时间的延长而降低,属于此类流体的如某些高聚物溶液、某些食品和油漆等。
[例1-16]20℃得水在内径为50mm得管内流动,流速为2m/s.试分别用法定单位制和物理单位制计算准数得数值.
解:(1)用法定单位制计算从本教材附录六查得水在20℃时
已知:管径d=0.05m,流速u=2m/s,则
Re=
(2)用物理单位制计算
u=2m/s=200cm/s, d=5cm
所以Re=99320
(1—26a)
式中 —速度梯度,即在与流动方向相垂直的y方向上流体速度的变化率;
—比例系数,其值随流体不同而异,流体的粘性愈大,其值愈大,所以称为粘滞系数或动力粘度,简称为粘度
流体流动现象
8
层流时的阻力损失—压力降∆p (二) 层流时的阻力损失—压力降 f p1- p2 = ∆pf 水平等径直管压力降由阻力损失引起。 水平等径直管压力降由阻力损失引起。 层流: 层流: vmax=2u
d R= 2
p1-p 2 2 ∆pf d 2 2u = v max = R = ( ) 4µl 4µl 2
常用的局部阻力系数的求法 (一)突然扩大
突然扩大时阻力系数 (二)突然缩小
层流时
64 µ 64 λ= = ρ ud Re
层流时λ与 层流时 与 Re 成反比
16
2、量纲分析法 、 流动阻力的影响因素: 流动阻力的影响因素:∆pf=f(d,l,u,ρ,µ,ε) 变量数n= 量纲数r= 变量数 =7 ,量纲数 =3 , 各因素以幂指数形式表示: 各因素以幂指数形式表示: ∆pf=a da lb ucρdµeεf 根据量纲一致原则,进行对比求一系列待定系数、指数。 根据量纲一致原则,进行对比求一系列待定系数、指数。 量纲一致原则
5
四、管内流动的分析
(一)层流时的速度分布
1 2
P1
r
F
v
R
P2
1
2
l
对水平等径管内流体进行受力分析, 对水平等径管内流体进行受力分析, 取圆柱形液体柱半径r、长度 , 取圆柱形液体柱半径 、长度l,
6
层流时轴向受力如下: 层流时轴向受力如下: 面1-1的总压力 P1=πr2p1
dv F = 2π rl µ dr
1 = 2 lg d + 1.14
λ
ε
使用范围广, 使用范围广,需试差
20
2.粗糙管 粗糙管 顾毓珍等公式
λ =0.01227+
5.流体流动现象
叶宏
2012-6-13
1
主要内容
• • • • • • 牛顿粘性定律 流体流动的内摩擦力 流动类型 圆管内的速度分布 边界层与边界层分离 小结
2012-6-13
2
一、 牛顿粘性定律
流体在园管中截面上各 点的流速并不相同,而 是存在流速分布。如右 图所示。
u
影响流体流动时内摩擦大小的因素很多, 属于流体物理性质方面的因素是流体的粘 度。 粘度是衡量流体粘性大小的物理量。
流动的阻力发生 在边界层内
2012-6-13 28
x
边界层理论
二、边界层的形成过程 (一)绕平板流动的边界层 1.绕平板流动的边界层的形成
分界面
u=0.99u0
边界层 的厚度
δ
x
粘性底层
x
2012-6-13
随着x增大,边界层不断增厚
29
边界层理论
1.绕平板流动的边界层的形成
层流边界层 过渡区 湍流边界层 速度梯度减小,粘性力下 降,扰动迅速发展
2 r 1 R
即流体在圆形直管内层流流动时,其速度呈抛物线分布。
管截面上的平均速度
u VS A
R .
u 2 rdr
0
R
2
1 2
u max
2012-6-13
即层流流动时的平均速度为管中 心最大速度的1/2。
24
2. 湍流的速度分布 由于湍流运动十分 复杂,尚未从理论 上导出管内的速度 分布式,一般采用 经验公式。(右图 为书上图1-17)
du dy
流动边界层内特别是层流底层内,集中了绝大部分的传递 阻力。因此,尽管边界层厚度很小,但对于研究流体的流 动阻力、传热速率和传质速率有着非常重要的意义。
化工原理第一章流体流动知识点总结
第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
化工原理之一 流体流动
第一章: 流体流动流体流动是化工厂中最基本的现象。
在化工厂内,不论是待加工的原料或是已制成的产品,常以液态或气态存在。
各种工艺生产过程中,往往需要将液体或气体输送至设备内进行物理处理或化学反应,这就涉及到选用什么型式、多大功率的输送机械,如何确定管道直径及如何控制物料的流量、压强、温度等参数以保证操作或反应能正常进行,这些问题都与流体流动密切相关。
流体是液体和气体的统称。
流体具有流动性,其形状随容器的形状而变化。
液体有一定的液面,气体则否。
液体几乎不具压缩性,受热时体积膨胀的不显著,所以一般将液体视为不可压缩的流体。
与此相反,气体的压缩民很强,受热时体积膨胀很大,所以气体是可压缩的流体。
如果在操作过程中,气体的温度和压强改变很小,气体也可近似地按不可压缩流体来处理。
流体是由大量的不断作不规则运动的分子组成,各个分子之以及分子内部的原子之间均保留着一定的空隙,所以流体内部是不连续而存在空隙的,要从单个分子运动出发来研究整个流体平衡或运动的规律,是很困难而不现实。
所以在流体力学中,不研究个别分子的运动,只研究由大量分子组成的分子集团,设想整个流体由无数个分子集团组成,每个分子集团称为“质点”。
质点的大小与它所处的空间在、相比是微不足道的,但比分子自由程要大得多。
这样可以设想在流体的内部各个质点相互紧挨着,它们之间没有任何空隙而成为连续体。
用这种处理方法就可以不研究分子间的相互作用以及复杂的分子运动,主要研究流体的宏观运动规律,而把流体模化为连续介质,但不是所有情况都是如此的,高真空度下的气体就不能视为连续介质了。
液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小;无固定形状,随容器的状而变化;在外力作用下其内部发生相对运动。
化工生产的原料及产品大多数是流体。
在化工生产中,有以下几个主要方面经常要应用流体流动的基本原理及其流动规律:(1) 管内适宜流速、管径及输送设备的选定;(2) 压强、流速和流量的测量;(3) 传热、传质等过程中适宜的流动条件的确定及设备的强化。
描述流体流动的观点并举例子说明
描述流体流动的观点并举例子说明
流体流动是指流体在受到外力作用下发生的运动。
观点可以从分子运动、连续介质和流线等角度来描述。
1. 分子运动观点:根据动理论,流体中的分子在热运动中相互碰撞,从而产生压强差和速度差,使得流体发生流动。
例如,当我们把热水壶放在火上加热,水中的分子会受热而加速运动,导致水的热量传导和对流现象。
2. 连续介质观点:将流体视为连续均匀介质,对其进行宏观的描述。
根据连续介质力学原理,流体受到外力作用时,其内部各点之间会发生相对位移,从而产生流动。
例如,当我们用手指轻轻在水中划过,水会随即形成涡流和水波。
3. 流线观点:流线是描述流体流动状态的线条,它是流体质点运动轨迹的切线方向。
流体在流动过程中,质点沿着流线运动。
例如,当我们观察河流的流动,可以看到水流以流线的形式从上游向下游流动。
流体流动的观点可以从分子运动、连续介质和流线等角度来描述。
这些观点有助于我们理解和解释流体流动现象,并在实际应用中发挥重要作用,如工程流体力学、气象学等领域。
第三节流体的流动现象
第三节流体的流动现象Fluid-flow Phenomena化工生产中的许多过程都与流体的流动现象密切相关,流动现象是个极为复杂的问题,涉及面广,本节只作简要的介绍。
3-1 牛顿粘性定律与流体的粘度一、牛顿粘性定律流体具有两个特性:(1)流动性:即没有固定形状,在外力作用下其内部产生相对运动。
(2)粘性:即在运动的状态下,流体还有一种抗拒内在的向前运动的特性,粘性是流动性的反面。
以水在管内流动时为例,管内任一截面上各点的速度并不相同,中心处的速度最大,愈靠近管壁速度愈小,在管壁处水的质点附于管壁上,其速度为零,其他流体在管内流动时也有类似的规律。
所以,流体在圆管内流动时,实际上是被分割成无数极薄的圆筒层,一层套着一层,各层以不同的速度向前运动,如图1-10所示。
由于各层速度不同,层与层之间发生了相对运动,速度快的流体层对与之相邻的速度较慢的流体层发生了一个推动其向前运动方向前进的力,而同时速度慢的流体层对速度快的流体层也作用着一个大小相等,方向相反的力,从而阻碍较快的流体层向前运动。
这种运动着的流体内部相邻两流体层间的相互作用力,称为流体的内摩擦力,是流体粘性的表现,所以又称为粘滞力或粘性摩擦力。
流体在流动时的内摩擦,是流动阻力产生的依据,流体流动时必须克服内摩擦力而作功,从而将流体的一部分机械能转变为热而损失掉。
流体流动时的内摩擦力大小与哪些因素有关?可通过下面情况加以说明。
如图1-11所示,设有上下两块平行放置且面积很大而相距很近的平板,板间充满了某种液体。
若将下板固定,而对上板施加一个恒定的外力,上板就以恒定的速度u沿x方向运动。
图10流体在圆管内分层流动示意图此时,两板间的液体就会分成无数平行的薄层而运动?粘附在上板底面的一薄层液体也以速度u随上板而运动,其下各层液体的速度依次降低,粘附在下板表面的液层速度为零。
实验证明,对于一定的液体,内摩擦力F与两流体层的速度差Δu成正比,与两层之间的垂直距离Δy 成反比;与两层间的接触面积S 成正比,,即:S yu F ∆∆∝ 若把上式写成等式,就需引进—个比例系数μ即:S yu F ∆∆=μ 式中的内摩擦力F 与作用面S 平行。
化工原理第一章 流体流动-学习要点
1.3 流体动力学 ( Fluid dynamics )
1.3.3 伯努利方程 ( Bernoulli equation ) 机械能的形式
位能: 流体在重力场中, 位能: 流体在重力场中,相对于基准水平面所具有的能量 动能: 动能: 流体由于流动所具有的能量 静压能:流体由于克服静压强流动所具有的能量 静压能: 能量损失: 能量损失:流体克服流动阻力损失的机械能 外加功:流体输送机械向流体传递的能量 外加功:
ε r :=
1
2ε 18.7 ) = 1.74 − 2 ⋅ lg( + d Re λ λ
Re :=
−3
0.005 × 10
−3
ε r = 2.857 × 10
1.1 流体性质 ( Properties of fluid )
1.1.2 压强 ( pressure )
表 压=绝对压力-大气压力 绝对压力真空度= 真空度=-表压强 真空度=大气压力真空度=大气压力-绝对压力 压强表:读数为表压强, 压强表:读数为表压强,用于被测体系绝对压强高于环境 大气压 真空表:读数为真空度, 真空表:读数为真空度,用于被测体系绝对压强低于环境 大气压 说明:(1)表压于当地大气压强有关 说明:(1)表压于当地大气压强有关 (2)绝压、表压、真空度, (2)绝压、表压、真空度,一定要标注 绝压 (3)压力相除运算时, (3)压力相除运算时,一定要用绝压 压力相除运算时 压力加减运算时,都可以,但要统一并注明 压力加减运算时,都可以,
1.4 流体流动现象 ( Fluid-flow phenomena )
1.4.1 流动类型 (The types of fluid flow)
Re = duρ
µ
Reynolds number is a dimensionless group .
流体流动2
二、讨论:
1.
2.
则:
u1 d2 2 u2 d1
2
第四节 质量、能量和动量衡算(5)
3-2-2
流体流动时的物料衡算—连续性方程
二、讨论:
结论:(1)液体在沿着管道作定态流动时,
其流速与管道的截面积有关;
第四节 质量、能量和动量衡算(16)
3-2-3
机械能衡算—柏努利方程
3 -3 )
三、求静压力(求p )(p106
第四节 质量、能量和动量衡算(16)
3-2-3
机械能衡算—柏努利方程
例3-4)
四、确定泵的功率(求He ):
例4:(书P107
1.速度的计算 2.功率
第四节 质量、能量和动量衡算(16)
?
1.流动过程中为什么会消耗能量,
产生阻力 h ?
f
2.流体在管内如何运动?
3.
hf
如何计算?
粘度(书
hf
3-1-5)
阻力
摩擦
粘性
所以:产生阻力的原因:粘性
粘度(书
1.举例:
3-1-5)
一、牛顿粘性定律与流体的粘度
(1)倒水与倒油的感觉 (2)木棒插入空气、水、甘油中的感觉
结论:倒水比倒由快;气体比液体快
3-3
流体压力和流量的测量
3.3.1 压力的测量(p108-109)
3.3.2 流量的测量(p109-110)
3-4
管内流体流动的阻力
3.4.1 管、管件和阀门(p113-115)
第三节
3-4-2
流体流动现象
2. 湍流分布
r⎞ ⎛ 由实验得到: uz = umax ⎜ 1 − ⎟ R⎠ ⎝
1 n
其中:
n~Re n=6 n=7 n=10
图1-25 湍流时的速度分布
4×104<Re<1.1×105 1.1×105<Re<3.2×106 Re>3.2×106
umax
u'
对于化工过程流体流动,通常取 n=7 即:
⎡ τ ⎤ N m2 N ⋅ s [μ ] = ⎢ ⎥ = m s = m 2 = Pa ⋅ s ⎣ du dy ⎦ m
1 Pa ⋅ s = 10 P = 1000cP
1 P = 100cP
获取方法:属物性之一,
由实验测定、查有关手册或资料、用经验公式计算。
影响因素: 主要有体系、温度、浓度
T ↑, μ L ↓, μ G ↑
qv = 2πumax ∫
R
0
⎛ r2 ⎞ r ⎜ 1 − 2 ⎟dr ⎜ R ⎟ ⎝ ⎠
1 qv = 2 πR2umax
1 u = umax 2
(2) 湍流流动
r⎞ ⎛ uz = umax ⎜ 1 − ⎟ R⎠ ⎝
1 n
qv = ∫ 2πruz dr
R 0
图1-25 湍流时的速度分布
qv = 2π umax ∫
( )
τr =ε
d ρ ux dy
( )
τ r:涡流应力或涡流动量通量,N/m2。
ε:涡流运动黏度或涡流动量扩散系数,m2/s。 涡流动量通量=涡流动量扩散系数×时均动量浓度梯度 总动量:
τ t = τ + τ r = (ν + ε )
d ρ ux dy
( )
化工原理 第一章 流体流动
化工原理第一章流体流动第一章 流体流动一、流体流动的数学描述在化工生产中,经常遇到流体通过管道流动这一最基本的流体流动现象。
当流体在管内作稳定流动时,遵循两个基本衡算关系式,即质量衡算方程式和机械能衡算方程式。
质量衡算方程式在稳定的流动系统中,对某一划定体积而言,进入该体积的流体的质量流量等于流出该体积的质量流量。
如图1—1所示,若取截面1—1′、2—2′及两截面间管壁所围成的体积为划定体积,则ρρρuA A u A u ==222111 (1-1a)对不可压缩、均质流体(密度ρ=常数)的圆管内流动,上式简化为2221211ud d u d u == (1-1b)机械能衡算方程式在没有外加功的情况下,流动系统中的流体总是从机械能较高处流向机械能较低处,两处机械能之差为流体克服流动阻力做功而消耗的机械能,以下简称为阻力损失。
如图1—1所示,截面1—1′与2—2′间单位质量流体的机械能衡算式为f 21w Et Et += (1-2)式中 221111u p gz Et ++=ρ,截面1—1′处单位质量流体的机械能,J /kg ;222222u p gz Et ++=ρ,截面2—2′处单位质量流体的机械能,J /kg ;∑⎥⎦⎤⎢⎣⎡∑+∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑+=2)(222f u d l l u d l w e λζλ,单位质量流体在划定体积内流动时的总阻力损失,J /kg 。
其中,λ为雷诺数Re 和相对粗糙度ε / d 的函数,即⎪⎪⎭⎫ ⎝⎛=d du εμρφλ,。
上述方程式中,若将Et 1、Et 2、w f 、λ视为中间变量,则有z 1、z 2、p 1、p 2、u 1、u 2、d 1、d 2、d 、u 、l 、∑ζ(或∑l e )、ε、ρ、μ等15个变量,而独立方程仅有式(1-1)(含两个独立方程)、式(1-2)三个。
因此,当被输送流体的物性(ρ,μ)已知时,为使方程组有唯一解,还需确定另外的10个变量,其余3个变量才能确定。
流体流动现象
A→C:流道截面积逐渐减
小,流速逐渐增加,压力
逐渐减小,d P 0(顺压梯 dx
度);
C→S:流道截面积逐渐增
加,流速逐渐减小,压力
逐渐增加,d P 0 (逆压梯
度)
dx
B
A
S
S点:物体表面的流体质点在逆 压梯度和粘性剪应力的作用下, 速度降为0。
SS’以下:边界层脱离固体壁面,而后倒流回来,形成涡流, 出现边界层分离。
1)圆管内层流流动的速度分布
dr
p1
r
p2 R
τr
l
微元体受力分析:
作用于流体单元左端的总压力为:P1 r2p1
2021/3/16
作用于流体单元右端的总压力为: P2 r2p2
作用于流体单元四周的黏滞力为: Fr2rl
r
dur dr
F 2rl dur
dr
r2p 1r2p 22 rld d u rr0
2021/3/16
讲授内容
2021/3/16
1.1 流体静止的基本方程 1.2 流体流动的基本方程 1.3 流体流动现象 1.4 流体在管内的流动阻力 1.5 管路计算 1.6 流速和流量测量
1.3 流体流动现象
1 牛顿黏性定律与流体的黏度
本节 讲授 内容
2 流动类型与雷诺准数 3 滞流与湍流的比较
dr
R
r
l
流体通过微圆环体积流量为:
dVs 2rudr
滞流时,管截面上速度分布为:
u
umax
1
r2 R2
2021/3/16
dV sumax2r1R r22dr
积分此式可得:
Vs 2umax
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 流体的这一规律与固体表面的摩擦力规律不同。
1 .2 牛顿粘性定律
(3)剪应力与动量传递
• τ实际上反映了动量传递。
[
]
N m2
=
Kg m/s2 m2
=
Kg m/s m2 s
=
动量 m2 s
• 注意:理想流体不存在内摩擦力,τ=0,
•
=0,μ=0。引进理想流体的概念,对解决工程实
际问题具有重要意义
• 1.2 • (1)动力粘度(简称粘度) • (a)定义式 •
粘度的物理意义是促使流体流动产生单位速度梯 度的剪应力。粘度总是与速度梯相联系,只有在运动时 才显现出来。
(b)单位 • 在SI中, 粘度的为单位:
• •
(b)单位
•
在物理单位制中,粘度的单位为:
•
当流体的粘度较小时,单位常用cP(厘泊)表示。
本书只研究牛顿型流体。
3 流动类型与雷诺准数
• 3.1 流体流动类型—— 层流与湍流 (Laminar • and Turbulent Flow)
流体流动形态有两种截然不同的类型,一种是滞流(或 层流);另一种为湍流(或紊流)。两种流型在内部质点的 运动方式,流动速度分布规律和流动阻力产生的原因都有所 不同,但其根本的区别还在于质点运动方式的不同。
流体流动现象
• * 本节内容提要 • 简要分析在微观尺度上流体流动的内部结构,为流
动阻力的计算奠定理论基础。以滞流和湍流两种基本流 型的本质区别为主线展开讨论, • * 本节重点 • (1)牛顿粘性定律的表达式、适用条件;粘度的物 理意义及不同单位之间的换算。 • (2) 两种流型的判据及本质区别;Re的意义及特点。 • (3) 流动边界层概念
方向上流体速度的变化率;
1 .2 牛顿粘性定律
μ── 比例系数,其值随流体的不同而异,流体的粘性愈大,其
值愈大,所以称为粘滞系数或动力粘度,简称为粘度。
•
式(1-24)或(1-24a)所显示的关系,称为
(2)物理意义
•
牛顿粘性定律说明流体在流动过程中流体层间所产生的剪应力与
法向速度梯度成正比,与压力无关。
1.1 流体的粘性和内摩擦力
• • 各层速度不同,速度快的流体层对与之相邻的速度较 慢的流体层发生了一个推动其向运动方向前进的力,而 同时速度慢的流体层对速度 快的流体层也作用着一个大 小相等、方向相反的力,即 流体的内摩力。 • 流体在流动时的内摩擦, 是流动阻力产生的依据,流 体动时必须克服内摩擦力而 作功,从而将流体的一部分 机械能转变为热而损失掉。
• 运动粘度γ为粘度μ与密度ρ的比值
(1-27) • • (b)单位 • SI中的运动粘度单位为m2/s;在物理制中的单位为cm2/s,
称为斯托克斯,简称为沲,以St表示。
1St=100 cSt(厘沲) =10 m2/s
2 牛顿型流体与非牛顿型流体
根据流变特性,流体分为牛顿型与非牛顿型两类。
• (1)牛顿型流体
图1-12 流体在圆管内 分层流动示意图
1 .2 牛顿粘性定律
流体流动时的内摩擦力大小与哪些因素有关
(1)表达式
实验证明,对于一定的液体,内摩擦 力F与两流体层的速度差Δu成正比;与两 层之间的垂直 距离Δy成反比,与两层间的接触面积S(F 与S平行)成正比,即:
图1-13平板间液体速度分布图
图1-15 流体的流变图
( 2)非牛顿型流体
• 有相当多流体不遵循这一规律,称为非牛顿型流体,用表观粘度描述。
在牛顿型流体中加入少量 (ppm级)高分子物质,流体就可能成为粘弹性 流体,使流动的阻力大幅度降低,产生所谓地减阻现象。
如在水中加入减阻剂可降低消防水龙带中的流体流动阻力,从而增加喷水 距离;石油工业中用长距离管道输送油品,若添加适当的减阻剂,则可减少输 送费用。
• 理想流体(实际不存在) ,流体无粘性μ=0
• (d)数据获取
• 粘度是流体物理性质之一,其值由实验测定;
• 某些常用流体的粘度,可以从本教材附录或有关手 册中查得。
• 对混合物的粘度,如缺乏实验数据时,可选用适当
的经验公式进行估算。 对分子不缔合的液体混合物
的粘度μm,可采用下式进行计算,即:
不同单位之间的换算关系为: 1Pa·s=100P=1000cP
• (c) 影响因素
•
液体:μ=f(t),与压强p无关,温度t↑, μ ↓。
水(20℃), μ =1.005cP;油的粘度可达几十、到几
百Cp。
• 气体:压强变化时,液体的粘度基本不变;气体的粘 度随压强增加而增加得很少,在一般工程计算中可予以 忽略,只有在极高或极低的压强下, 才需考虑压强对气 体粘度的影响。 p<40atm时μ=f(t)与p无关,温度t↑, μ↑
1.2 牛顿粘性定律
单位面积上的内摩擦力称为内摩擦应力或剪应力, 以τ表示,于是上式可写成:
(1-24)
式(1-24)只适用于u与y成直线关系的场合。
当流体在管内流动时,径向速度的变化并不是直 线关系,而是的曲线关系。则式(1-24)应改写成:
• (1-24a)
• 式中
── 速度梯度,即在与流动方向相垂直的y
• 服从牛顿粘性定律的流体称为牛顿型流体。其流变方程式为
•
(1-24b)
•
• 牛顿型流体的关系曲线
为通过原点的直线。
•
实验表明,对气体及大多数低摩尔质量液体,属于牛顿型流
体。
•
2 牛顿型流体与非牛顿型流体
( 2)非牛顿型流体 • 凡不遵循牛顿粘性定律的流体,称为非牛顿型
流体。如血液、牙膏
•
图部结构,以便为阻力损失计算打下 基础。
1 流体的粘性与牛顿粘性定律
1.1 流体的粘性和内摩擦力 • 流体的粘性 流体在运动的状态下,有一种抗拒内
在的向前运动的特性。粘性是流动性的反面。 • 流体的内摩擦力 运动着的流体内部相邻两流体层
间的相互作用力。是流体粘性的表现, 又称为粘滞力或 粘性摩擦力。 • 由于粘性存在,流体在管内流动时,管内任一截面 上各点的速度并不相同,如图1-12所示。
• (1-25)
• 式中 x ── 液体混合物中组分i
μ── 与液体混合物同温下组分i
•
对于常压气体混合物的粘度μm,可采用下式即:
•
(1-26)
式中 y ── 气体混合物中组分i的摩尔分率; μ── 与气体混合物同温下组分i的粘度; M ── 气体混合物中组分的分子量。
1.2
(2)运动粘度γ
• (a)定义