第二章微波遥感的基本原理
微波遥感
微波遥感技术和应用机械工程学院机械设计制造及其自动化张霁1005040221一、遥感技术的介绍遥感技术是20世纪60年代兴起的一种探测技术,是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集、处理,并最后成像,从而对地面各种景物进行探测和识别的一种综合技术。
目前利用人造卫星每隔18天就可送回一套全球的图像资料。
利用遥感技术,可以高速度、高质量地测绘地图。
它好比孙悟空的一双火眼金睛,能从云朵上看清万物根本面目,从高空感知地下和海底的宝藏。
二、微波遥感的定义运用波长为1~1 000mm的微波电磁波的遥感技术。
包括通过接收地面目标物辐射的微波能量,或接收遥感器本身发射出的电磁波束的回波信号,根据其特征来判别目标物的性质,特征和状态,包括被动遥感和主动遥感技术。
微波遥感对云层、地表植被、松散沙层和冰雪具有一定的穿透能力,可以全天侯工作。
微波遥感是传感器的工作波长在微波波谱区的遥感技术,是利用微波投射于物体表面,由其反射回的微波波长改变及频移确定其大小、形态以及移动速度的技术。
常用的微波波长范围为0. 8~30厘米。
其中又细分为K、Ku、X、G、C、S、Ls、L等波段。
微波遥感的工作方式分主动式(有源)微波遥感和被动式(无源)微波遥感。
前者由传感器发射微波波束再接收由地面物体反射或散射回来的回波,如侧视雷达;后者接收地面物体自身辐射的微波,如微波辐射计、微波散射计等。
三、遥感技术的发展史遥感是以航空摄影技术为基础,在20世纪60年代初发展起来的一门新兴技术。
开始为航空遥感,自1972年美国发射了第一颗陆地卫星后,这就标志着航天遥感时代的开始。
经过几十年的迅速发展,目前遥感技术已广泛应用于资源环境、水文、气象,地质地理等领域,成为一门实用的,先进的空间探测技术。
1、萌芽时期1608年制造了世界第一架望远镜。
1609年伽利略制作了放大三倍的科学望远镜并首次观测月球。
1794年气球首次升空侦察。
《微波遥感》课件
微波遥感与其他遥感的融合技术
微波遥感与其他遥感的融合技术是指将微波遥感与其他类 型的遥感技术(如光学遥感、红外遥感等)进行有机结合 ,充分发挥各自的优势,实现更高效的遥感探测。
总结词:通过将微波遥感与其他遥感技术进行融合,可以 充分发挥各自的优势,提高遥感数据的获取和处理效率, 为各领域的实际应用提供更全面的技术支持。
军事侦察
利用微波遥感的高分辨率特性 ,获取地面目标的位置、类型 等信息,为军事决策提供重要
情报。
微波遥感的发展历程
20世纪50年代
微波遥感的初步探索阶段,主要利用雷达技术进行简单的地表探测。
20世纪70年代
随着卫星技术的发展,微波遥感开始应用于全球环境监测和资源调查 。
20世纪90年代
随着高分辨率雷达卫星的出现,微波遥感在军事侦察和城市规划等领 域得到广泛应用。
传感器类型
02
03
数据处理与传输
卫星微波遥感系统搭载的传感器 类型多样,包括辐射计、散射计 、高度计等。
卫星接收到的微波数据需要经过 预处理、校正、反演等环节,最 终传输至地面接收站。
机载微波遥感系统
飞行平台
01
机载微波遥感系统搭载的飞行平台包括固定翼飞机、直升机等
,具有灵活的飞行能力。
传感器布局
微波的吸收和反射
不同物质对微波的吸收和反射特性不同,这为遥感提 供了丰富的信息。
微波遥感的工作原理
发射信号
微波发射器向目标发射信号 。
接收信号
接收器接收到目标反射或散 射的信号。
处理信号
通过处理接收到的信号,提 取有关目标的信息,如距离 、速度、方向等。
微波遥感的主要技术
雷达遥感
01
微波遥感的成像机理
微波遥感的成像机理微波遥感是一种通过接收地面反射或散射的微波辐射来获取地表信息的技术。
它主要应用于土地覆盖、农业、水文气象、森林和海洋等领域。
微波遥感可以提供高分辨率、全天候和全球性的数据,因此受到了广泛关注。
一、微波遥感成像机理微波遥感成像机理是指微波信号与地表物体相互作用后产生的反射、散射和吸收等现象。
在微波遥感中,主要有两种类型的信号:主动式和被动式。
1. 主动式信号主动式信号是由雷达发射器产生的电磁波,它穿过大气层并与地表物体相互作用后返回雷达接收器。
在这个过程中,电磁波会经历多次反射和散射,最终形成一张反映地表物体特征的图像。
主动式信号可以通过调整雷达发射器的频率和极化方式来实现对不同类型地表物体的探测。
例如,在SAR(合成孔径雷达)中,发射器会以高速旋转方式发出一系列微波脉冲,这些脉冲会穿过大气层并与地表物体相互作用后返回雷达接收器。
通过对这些脉冲进行处理,可以得到高分辨率的地表图像。
2. 被动式信号被动式信号是由地球表面的微波辐射产生的,它可以被接收器直接捕捉到。
在这个过程中,微波辐射会受到大气层、云层和其他干扰因素的影响,因此需要进行校正和处理才能得到准确的地表信息。
被动式微波遥感主要应用于土壤湿度、降雨量、海洋表面温度等领域。
例如,在SMOS(Soil Moisture and Ocean Salinity)卫星中,接收器会捕捉地球表面发出的微波辐射,并通过对其频率和极化方式进行分析来获取土壤湿度和海洋盐度等信息。
二、微波遥感成像技术微波遥感成像技术是指利用主动式或被动式信号来获取地表信息的方法。
根据不同的应用领域和需求,可以选择不同类型的雷达或接收器来实现数据采集和处理。
1. SAR(合成孔径雷达)SAR是一种主动式微波遥感技术,它通过调整雷达发射器的频率和极化方式来实现对不同类型地表物体的探测。
SAR可以提供高分辨率、全天候和全球性的数据,因此在土地覆盖、农业、水文气象、森林和海洋等领域得到广泛应用。
第二章微波遥感的基本原理
或完全抵消的现象。这种现象称为干涉。产生干涉现象的电
磁波称为相干波或相干辐射。电波天线正是利用电磁波的相
干性制成的。如果两个波是非相干的,则叠加后的合成波的
振幅是各个波的振幅的代数和,交叉区域不会出现振动强弱
交替的现象。
如果两个独同时投射到探
测器,其合成波的振幅为
f(t)+g(t),则瞬时功率为
4
西安电子科技大学 理学院
对于灰体
在一定温度下,任何灰体材料的发射率等于它的吸收率。 也表明,一个好的辐射体也一定是一个好的吸收体,反之亦 然。
对于不透明材料
透明材料?
31
西安电子科技大学 理学院
发射率是遥感研究中地物的重要参数,它给出了辐射体在球 面空间内的发射本领,如与方向无关称为半球发射率。材料 的发射率也可能随测量方向而变,特别是表面磨光的金属或 者光滑平面,此时需要分析材料的定向发射本领。它是与辐 射表面的法线成θ角的小立体角内所测到的发射率。
28
西安电子科技大学 理学院
给定波长上的工程最大值的温度Te,比物理最大值的温度 Tm要高27.6%,相应地,对应于工程最大值的温度下的谱 辐射通量密度也要大11.6%。 四、非黑体辐射
一切能发射电磁辐射能的真实物体统称为非黑体
Me和Me(λ)分别为非黑体的总辐射通量密度(即辐出度)和 辐射通量密度(即单色辐出度);e(λ)为一与波长、物质的性质、 温度等有关的系数,称为谱发射率或谱发射射本领。
10
西安电子科技大学 理学院
△E不同,辐射的光子频率也不同,△E为1-20eV时,可 产生波长为0.2-1.0μm的辐射, △E为为0.05-1.0eV时,可 产生波长为1-25μm的辐射, △E为0.03-0.05eV时,可产生 波长为25-300μm的辐射;能量再低也可辐射少量微波。不同 的物质,其发射、吸收和散射电磁辐射的能力是不同的,电磁 辐射的频率、极化和电磁能量随入射角变化的关系,因不同的 物质而异。这种差异,既与物质表面和其内部的几何结构有关, 又与物质本身的介电常数和温度的空间分布有关。正是基于这 种差异,才有可能达到遥感不同物体的目的。
微波遥感原理和应用
微波遥感原理和应用
微波遥感是利用微波或微波的改变去通过测量这些变化,从而了解下一个特定表面的物理特性的技术。
典型的活动包括回波探测(例如反射、散射和多普勒散射)以及现场探测(吸收率)。
微波遥感最常见的应用是用于从宇航器映射农业、示踪冰盖变化以及测量水文参数,而这也是微波遥感最具开发潜力的领域。
微波遥感的优势在于它能够直接探测到某些表面物理因素,而其它感应器(如光学感应器)需要更多的推断和计算来实现同样的结果。
微波对运动对象的检测也是精确和有效的,因为它们能够非常快速地跨越大量距离。
此外,它还可以在任何时间,任何条件下运行,而光学传感器则受到白天黑夜和气候条件的限制。
因此,微波遥感在日照不足和濛濛雾气的情况下仍然可以正常运行。
另一方面,微波遥感所受到的缺陷将限制它对特定领域的应用,例如视觉表面检测。
在这种情况下,微波的数据处理可能会过于简单(例如进行分类,而不是分析图像),从而无法满足实际应用的要求。
此外,其占存储器的效率也比光学存储低得多,这是由于大小比较大的探测阵列和/或滤波数据处理所导致的。
2.2 微波遥感基础原理
Cτ
2 cosβ λH λR Δ L = βR = = (方位向分辨率) d sinβ d
2012-11-18
30
真实孔径雷达的分辨率 综合两个方向的分辨率,可得分辨单元面积Rr*Ra
2012-11-18
31
真实孔径雷达的分辨率
w
w
2012-11-18
32
真实孔径雷达的分辨率
Δt
2012-11-18 22
距离向分辨率
β cosβ
2012-11-18
23
距离向分辨率
距离向分辨率与飞行器-目标之 间距离无关。同样的地距,同样 的脉冲宽度,俯角越大分辨率越 低,垂直入射角(俯角=90o), 分辨率最差。
β
距离向分辨率与俯角的关系
脉冲宽度越小,俯角越小, 距离分辨率越高,俯角太 小地形影响严重,当俯角 一定时,减小脉冲宽度可 以提高距离分辨率,所以 合成孔径雷达在距离向采 用脉冲压缩技术chirp (距离压缩)
2012-11-18
20
距离向分辨率 脉冲长度(亦称脉冲宽度)τ与雷达波长λ不同 脉冲宽度越大,距离向分辨率越低
在地面可以分辨的两个目标最短距离就是侧视 雷达图像的距离向分辨率
被反射的脉冲
2012-11-18
距离向分辨率
21
距离向分辨率
R ∆r ∆Rr
发射的脉冲
τ
接收的脉冲
Δt 接收的脉冲
最小分辨角:
= 1.22
0
d
d 物镜的有效孔径
“恰能分辨”的两个点光源的两衍射图样中心之间的距离, 应等于艾里斑的半径
2012-11-18 26
方位向分辨率
华北理工微波遥感课件第2章 微波遥感系统
工作原理
天线
转换 开关பைடு நூலகம்
发射 机
定时系 统
接收 机
距离 测量 系统
数据
简化的高度计的方框图
太空船利用一种激光高度测量器(Mars Orbiter Laser Altimeter) 绘制的火星立体图片
时间延迟
海面高度
卫星高度计 海面有效波高
大地水准面 海洋动力地形
海面回波波 形强度
海面风速
海洋地球物理应用
海海 地 海 洋洋 球 洋 测岩 引 潮 深石 力 汐 无圈 场 图结 模 区构 型 测特 改 绘性 善
海洋动力学应用
海洋环境监测
大中 大 全
厄
海
海
尺等 洋 球
尔
浪
冰
度尺 边 海
尼
与
及
海度 界 平
诺
风
极
洋涡 流 面
与
速
区
环流 研 变
南
场
冰
流旋 究 化
方
盖
研研
涛
究究
动
用于“神舟”四号飞船 的多模态微波遥感器由 微波辐射计、雷达高度 计、雷达散射计三种模 态仪器构成。
二、侧视雷达 1、一般结构
发射器 显示器
转换开关 接收机
天线
S 航迹向
S 90o
成像带 距 离 向
雷达波束
二、侧视雷达
雷达:radio detection and ranging,RADAR 侧视雷达:side-looking radar,SLR
S 航高 斜距
图像胶片
X YZ
阴极射线管
第二章 微波遥感系统
一、非成像微波传感器 二、成像微波传感器 三、天线、雷达方程和灰度方程 四、空间微波遥感系统 五、辐射测量原理
微波遥感原理
微波遥感原理微波遥感是一种利用微波进行遥感探测的技术,它可以获取地球表面的信息,包括地形、植被、土壤、水文等。
微波遥感具有天气无关性和全天候性的优点,因此在农业、环境监测、气象预测、国防安全等领域有着广泛的应用。
微波遥感的原理是利用微波与地物之间的相互作用来获取地物的信息。
微波在穿过大气层和与地物相互作用时会发生散射、反射、吸收等现象,不同地物对微波的响应也不同,因此可以通过分析微波与地物之间的相互作用来识别和提取地物信息。
微波遥感的基本原理可以用雷达技术来解释。
雷达是一种利用电磁波进行探测和测距的技术,它发射的微波脉冲被地物反射后再接收,通过测量微波的传播时间和频率的变化来获取地物的位置、形状、运动状态等信息。
在微波遥感中,利用雷达技术可以获取地表的高程、形态、粗糙度等信息。
除了雷达技术,微波遥感还可以利用 passiv 微波遥感技术。
在 passiv 微波遥感中,利用地物自身发射的微波辐射来获取地物的信息。
地物的微波辐射受地物的温度、湿度、盐度等因素影响,因此可以通过分析地物的微波辐射来获取地物的温度、湿度、盐度等信息。
微波遥感技术在农业领域有着广泛的应用。
通过微波遥感可以获取作物的生长状态、土壤湿度、地表温度等信息,帮助农民进行精准农业管理,提高农作物的产量和质量。
同时,微波遥感还可以监测农田的水分状况,帮助农民进行灌溉调度,提高水资源利用效率。
在环境监测领域,微波遥感可以用来监测湖泊、河流、海洋等水体的水质、水温、水位等信息,帮助保护水资源、预防水灾。
此外,微波遥感还可以监测森林、草原、湿地等生态系统的变化,帮助保护生态环境、预防自然灾害。
总的来说,微波遥感技术具有广泛的应用前景,可以为农业、环境监测、气象预测、国防安全等领域提供重要的数据支持。
随着技术的不断发展,微波遥感技术将会发挥越来越重要的作用,为人类社会的可持续发展做出更大的贡献。
航天微波遥感课件
接收系统
接收和处理反射回来的电磁波信号,包括接收天线和接收机。
数据处理系统
对接收到的数据进行处理、分析和解译,生成遥感图像。
微波遥感信号处理
信号放大与滤波
对接收到的微弱信号进行放大和滤波,以提高信 噪比。
信号解调与解包
将调制的微波信号解调为原始数据信号。
数据校正与融合
网络化与实时化
通过建立遥感数据传输网络,实现遥感数据的实时传输和 处理,提高数据处理的速度和效率。
未来展望
拓展应用领域
随着技术的不断发展,航天微波遥感技术的应用领域将进一步拓展 ,如气象预报、环境监测、农业估产、军事侦察等。
提高数据共享程度
通过建立数据共享平台和标准,促进遥感数据的共享和交流,提高 数据利用效率和遥感应用水平。
地球资源卫星应用案例
பைடு நூலகம்
总结词
地球资源卫星利用微波遥感技术对地球资源 进行探测,为资源调查、环境保护、城市规 划等领域提供数据支持。
详细描述
地球资源卫星搭载的微波遥感器能够探测地 下矿产、水资源、森林覆盖等信息。这些数 据被广泛应用于资源调查、环境保护、城市 规划等领域,为人类合理利用地球资源提供 科学依据。
加强国际合作
加强国际合作和交流,共同推进航天微波遥感技术的发展和应用。
05
案例分析
气象卫星应用案例
总结词
气象卫星利用微波遥感技术获取全球气象信息,为天气预报、气候变化研究等 领域提供数据支持。
详细描述
气象卫星搭载的微波遥感器能够穿透云层,获取地球表面和大气层中的温湿度 、风速、降水等信息。这些数据被广泛应用于天气预报、气候变化研究、自然 灾害监测等领域,为人类生活和经济发展提供保障。
微波遥感和成像侧视雷达工作基本原理
微波遥感和成像侧视雷达工作基本原理概述微波遥感和成像侧视雷达是两种常用的遥感技术,它们通过利用微波的特性来获取地球表面信息。
本文将介绍微波遥感和成像侧视雷达的工作基本原理。
一、微波遥感的工作原理微波遥感是利用微波信号对地球物体和环境进行探测和测量的一种技术。
微波遥感系统由微波源、发射器、接收器和数据处理系统等组成。
1. 微波源微波源是产生微波信号的装置,常见的有微波发射机、毫米波源等。
微波源将电能转化为微波能量,并通过天线辐射出去。
2. 发射器发射器是将微波信号传输到目标物体的装置。
它可以调节微波信号的频率、幅度和极化等参数,并将微波信号辐射出去。
3. 接收器接收器是接收由目标物体反射回来的微波信号的装置。
它可以接收微波信号的幅度、相位和极化等信息。
4. 数据处理系统数据处理系统对接收到的微波信号进行处理和分析,从中提取出地球物体的特征信息。
常见的处理方法有滤波、解调、调幅和解调等。
二、成像侧视雷达的工作原理成像侧视雷达(InSAR)是一种利用雷达波束和合成孔径雷达(SAR)数据生成地表高程和表面形变等信息的技术。
1. SAR数据采集SAR是一种全天候、全时序、全天时的遥感技术。
它通过发射和接收脉冲雷达波束,测量地表物体的反射回波。
2. SAR数据处理SAR数据处理主要包括预处理、图像生成和解译等步骤。
预处理用于去除图像中的噪声和干扰,图像生成则是从原始数据中合成出高质量的成像结果。
3. 多幅SAR图像融合成像侧视雷达通过将多幅SAR图像进行融合,可以获取地表高程和形变等信息。
这是通过计算不同时间和角度下的雷达干涉图生成的。
4. 数据解译融合后的数据可以利用地表参考点进行几何校正和高程校正,进而得到具体的地表高程和形变等信息。
总结微波遥感和成像侧视雷达是两种常用的遥感技术,它们利用微波信号对地球物体和环境进行探测和测量。
微波遥感通过微波源、发射器、接收器和数据处理系统等装置,获得地球物体的特征信息。
微波遥感
微波遥感一、微波遥感概述1、微波微波是指波长1mm——1m(即频率300MHz——300GHz)的电磁波,包括毫米波、厘米波、分米波,它比可见光-红外(0.38——15μm)波长要大的多。
最长的微波波长可以是最短的光学波长的250万倍。
常用的微波波长范围为0. 8~30厘米。
其中又细分为K、Ku、X、G、C、S、Ls、L等波段。
微波遥感用的是无线电技术。
微波遥感:是传感器的工作波长在微波波谱区的遥感技术,是利用某种传感器接受地理各种地物发射或者反射的微波信号,藉以识别、分析地物,提取地物所需的信息。
微波遥感系统有主动和被动之分。
所谓主动微波遥感系统,指遥感器自身发射能源。
“雷达”是一种主动微波遥感仪器。
雷达是用无线电波探测物体并测定物体距离的,这一过程中需要它主动发射某一频率的微波信号,再接收这些信号与地面相互作用后的回波反射信号,并对这两种信号的探测频率和极化位移等进行比较,生成地表的数字图像或者模拟图像。
微波辐射计是一种被动微波遥感仪器,记录的是在自然状况下,地面发射、反射的微弱的微波能量。
2、微波遥感的历史微波遥感的发展可以追溯到20世纪50年代早期,由于军事侦察的需求,美国军方发展了侧视机载雷达。
之后,侧视机载雷达SLAR 逐步用于非军事领域,成为获取自然资源与环境数据的有力工具。
1978年美国发射的Seasat海洋卫星以及随后发射的航天飞机成像雷达计划、苏联发射的Cosmos1870,标志着航天雷达遥感的开始。
20世纪90年代以来各国相继发射了一系列的星载雷达,单波段单极化雷达遥感得到了很大的发展。
进入21世纪以来另有一系列先进的雷达遥感计划得以实施,使得多波段多极化雷达遥感得到了很大的发展。
这一系列计划的实施大大地推动了极化雷达和干涉雷达等新型雷达的发展,使卫星雷达遥感进入了一个新时代。
我国的微波遥感事业起步于上世纪70年代。
在国家历次科技攻关中,遥感技术都作为重要项目列入。
经过若干阶段的发展,近年来已取得了技术、理论及应用研究的全面发展。
2.1 微波遥感基础原理
2 微波遥感基础原理本章要点本章从电磁波传播的基本概念到SAR 的基本原理对于雷达遥感的基本知识作了概要的介绍,包括相干成像和合成孔径的概念、重要的参数、SAR影像的基本特征等。
主要内容§2.1 微波遥感物理基础§2.2 真实孔径雷达基本原理§2.3 SAR系统基本原理§2.4 SAR影像的主要特性2.1 微波遥感物理基础作业:目标的散射特性与哪些因素有关?在真空或介质中通过传播电磁场的振动而传输电磁能量的波。
E为电场矢量方向,M为磁场矢量方向,C为传播方向。
• 电磁波是时间和空间的函数• 电场矢量和磁场矢量相互垂直,而且又都垂直于传播方向• 电磁波具有波动性和粒子性• 波长、相干性、叠加性和极化等都是电磁波的重要特性+幅度和相位• 如果某电磁波的电场矢量和磁场矢量均在垂直于传播方向的平面上,并且幅度为常数,则称为平面波在均匀介质中电磁波随时间作正弦变化,波长或频率是描述电磁波重要的参量。
微波偏振与极化Polarization电磁波遇到“狭缝”的障碍物时,能够通过狭缝的振动分量,称为电磁破的偏振非偏振光,偏振光,部分偏振EHZE 线极化H ZE 椭圆极化H ZE 圆极化H Z极化即电场振动方向的变化趋势,线极化是电场矢量方向Polarization of Microwave水平极化是指电场矢量与入射面垂直 垂直极化是指电场矢量与入射面平行EHZ 垂直极化同极化HH,VV交叉极化HV,VH目标入射平面衍射衍射:波在传播过程中经过障碍物边缘或孔隙时所发生的传播方向弯曲现象。
远场衍射,也称夫琅和费衍射,若光源或观察屏离开衍射孔或缝为无限远,这种衍射现象称远场衍射。
衍射现象是波的特有现象,一切波都会发生衍射现象;孔隙越小,波长越大,这种现象就越显著。
衍射对微波遥感的两个意义:天线;感兴趣的地表目标的大小与微波传感器的波长是相当的(毫米-米),土壤粗糙度、树枝、麦秆、水波和海浪等。
微波遥感基础
微波遥感基础微波遥感基础微波遥感基础 (1)⼀、微波遥感物理基础 (2)⼆、微波遥感技术的简介 (4)2.1 微波遥感 (4)2.2 微波遥感器 (5)2.2.1 雷达散射计 (5)2.2.2 微波辐射计 (5)2.2.3 雷达⾼度计 (6)2.3 微波遥感技术的特点 (7)2.4 微波遥感的优越性 (7)2.5 微波遥感的不⾜ (7)2.6 微波微波拥有强⼤⽣命⼒的根源 (7)2.7 我国微波遥感的差距 (8)三、雷达概念、分类 (8)3.1 成像雷达 (8)3.2 ⾮成像雷达 (8)3.3 真实孔径雷达 (9)3.4 合成孔径雷达 (9)3.5 极化雷达 (10)3.6 ⼲涉雷达 (11)3.7 激光雷达 (11)3.8 侧视雷达 (11)四、微波遥感图像 (11)4.1雷达图像 (11)4.1.1雷达图像 (11)4.1.2 雷达图像显⽰ (12)4.1.3 雷达图像分辨率 (12)4.1.4 雷达图像的处理 (12)4.2 侧视雷达图像 (13)4.3 雷达图像校准 (14)4.4 雷达图像定标 (14)4.5 雷达图像模拟 (14)五、微波遥感定标 (15)六、微波遥感概念、理论和技术的突破 (15)七、我国微波遥感的差距 (16)⼋、微波相关技术介绍 (17)8.1 偏振探测技术的特点 (17)8.2 微波散射特性 (18)九、微波遥感有待进⼀步研究的问题 (19)⼗、微波遥感的应⽤ (20)10.1 空间对地观测 (20)⼀、微波遥感物理基础电磁波具有波长(或频率)、传播⽅向、振幅和极化⾯(亦称偏振⾯)四个基本物理量。
极化⾯是是指电场振动⽅向所在的平⾯。
电磁波谱有时把波长在mm到km很宽的幅度内通称为⽆线电波区间,在这⼀区间按照波长由短到长⼜可以划分为亚毫⽶波、毫⽶波、厘⽶波、分⽶波、超短波、短波中波和长波。
其中的毫⽶波,厘⽶波和分⽶波三个区间称为微波波段,因此有时⼜更明确地吧这⼀区间分为微波波段和⽆线电波段。
微波遥感成像原理
微波遥感成像原理1.发射:微波遥感系统通过天线向地面发射一定频率和功率的微波信号。
发射的微波信号可以有不同的极化方式,如水平极化、垂直极化、圆极化等。
水平和垂直极化信号的能量传播性质与地面特性有关,可以用来探测地面物体的水平和垂直方向的散射特性。
圆极化信号包含水平和垂直极化的成分,可以综合反映地物的散射特性。
2.传播:发射的微波信号在大气中传播,受大气吸收、散射、折射等影响。
大气吸收主要是由于水汽分子、氧气分子和二氧化碳分子对微波的吸收作用。
大气散射主要是由于大气中的悬浮粒子对微波的散射作用。
大气折射是指微波信号在大气中传播会发生折射现象,使得地物观测位置发生偏移。
这些大气影响需要通过大气校正算法进行修正,以减小其对地物观测的干扰。
3.接收:接收器接收散射回来的微波信号,并将其转换为电信号。
接收信号的强度和极化状态受到地物的散射特性、地形高度的变化、大气吸收和散射等多种因素的影响。
接收器通常具有多通道的接收系统,用来接收不同频率的微波信号,以获取不同的地物信息。
4.信号处理:接收到的电信号经过增益调节、滤波、干扰抑制等处理后,通过信号处理技术获得地物的信息。
主要的信号处理技术包括功率谱分析、多普勒处理、图像重建等。
功率谱分析用于分析接收信号的频谱特征,以获得地物反射的频谱分布情况。
多普勒处理可以提取出目标物体的运动速度和方向等相关信息。
图像重建技术则通过合理的算法和模型将接收到的微波信号转换为图像,以实现对地物的成像。
综上所述,微波遥感成像原理是通过发射微波信号、大气传播、接收反射信号和信号处理等过程,获取地物的散射特性并进行成像分析。
这种技术在农业、环境监测、地质勘探等领域具有广泛的应用前景。
微波遥感
微波遥感一、微波遥感概述1、微波微波是指波长1mm——1m(即频率300MHz——300GHz)的电磁波,包括毫米波、厘米波、分米波,它比可见光-红外(0.38——15μm)波长要大的多。
最长的微波波长可以是最短的光学波长的250万倍。
常用的微波波长范围为0. 8~30厘米。
其中又细分为K、Ku、X、G、C、S、Ls、L等波段。
微波遥感用的是无线电技术。
微波遥感:是传感器的工作波长在微波波谱区的遥感技术,是利用某种传感器接受地理各种地物发射或者反射的微波信号,藉以识别、分析地物,提取地物所需的信息。
微波遥感系统有主动和被动之分。
所谓主动微波遥感系统,指遥感器自身发射能源。
“雷达”是一种主动微波遥感仪器。
雷达是用无线电波探测物体并测定物体距离的,这一过程中需要它主动发射某一频率的微波信号,再接收这些信号与地面相互作用后的回波反射信号,并对这两种信号的探测频率和极化位移等进行比较,生成地表的数字图像或者模拟图像。
微波辐射计是一种被动微波遥感仪器,记录的是在自然状况下,地面发射、反射的微弱的微波能量。
2、微波遥感的历史微波遥感的发展可以追溯到20世纪50年代早期,由于军事侦察的需求,美国军方发展了侧视机载雷达。
之后,侧视机载雷达SLAR 逐步用于非军事领域,成为获取自然资源与环境数据的有力工具。
1978年美国发射的Seasat海洋卫星以及随后发射的航天飞机成像雷达计划、苏联发射的Cosmos1870,标志着航天雷达遥感的开始。
20世纪90年代以来各国相继发射了一系列的星载雷达,单波段单极化雷达遥感得到了很大的发展。
进入21世纪以来另有一系列先进的雷达遥感计划得以实施,使得多波段多极化雷达遥感得到了很大的发展。
这一系列计划的实施大大地推动了极化雷达和干涉雷达等新型雷达的发展,使卫星雷达遥感进入了一个新时代。
我国的微波遥感事业起步于上世纪70年代。
在国家历次科技攻关中,遥感技术都作为重要项目列入。
经过若干阶段的发展,近年来已取得了技术、理论及应用研究的全面发展。
简述遥感的基本原理
简述遥感的基本原理
遥感是一种通过探测和记录地球表面的电磁辐射来获取地球信息的技术。
它利用遥感卫星、飞机等载体,通过接收地球表面反射的电磁波或地球自身辐射的电磁波,来获取地球表面的信息。
遥感的基本原理是利用电磁波与地物之间的相互作用来获取地球表面的信息。
电磁波是一种由电场和磁场相互作用而产生的能量传播现象,它在空间中以波的形式传播。
电磁波包括可见光、红外线、微波等不同波长的波段,而不同波段的电磁波与地物之间的相互作用也不同。
例如,可见光主要与地表物体的颜色和纹理有关,红外线则与地表物体的温度有关,微波则可以穿透云层和植被,获取地表物体的内部信息。
遥感技术通过感知和记录电磁波在地球上的分布和变化,来获取地球表面的信息。
遥感卫星或飞机上搭载的传感器可以接收到地球表面反射的电磁波或地球自身辐射的电磁波,并将其转化为数字信号。
接收到的数字信号经过处理和解译,可以得到地球表面的各种信息,如地表反射率、温度、湿度、植被覆盖程度等。
这些信息可以用于地质勘探、环境监测、农业生产、城市规划等领域。
遥感技术的基本原理是通过探测和记录地球表面的电磁辐射来获取地球信息。
它利用电磁波与地物之间的相互作用,通过感知和记录电磁波在地球上的分布和变化,来获取地球表面的各种信息。
这种
技术可以广泛应用于各个领域,为人们提供了更多的地球信息,促进了人类社会的发展。
微波遥感
微波遥感一、微波遥感概述1、微波微波是指波长1mm——1m(即频率300MHz——300GHz)的电磁波,包括毫米波、厘米波、分米波,它比可见光-红外(0.38——15μm)波长要大的多。
最长的微波波长可以是最短的光学波长的250万倍。
常用的微波波长范围为0. 8~30厘米。
其中又细分为K、Ku、X、G、C、S、Ls、L等波段。
微波遥感用的是无线电技术。
微波遥感:是传感器的工作波长在微波波谱区的遥感技术,是利用某种传感器接受地理各种地物发射或者反射的微波信号,藉以识别、分析地物,提取地物所需的信息。
微波遥感系统有主动和被动之分。
所谓主动微波遥感系统,指遥感器自身发射能源。
“雷达”是一种主动微波遥感仪器。
雷达是用无线电波探测物体并测定物体距离的,这一过程中需要它主动发射某一频率的微波信号,再接收这些信号与地面相互作用后的回波反射信号,并对这两种信号的探测频率和极化位移等进行比较,生成地表的数字图像或者模拟图像。
微波辐射计是一种被动微波遥感仪器,记录的是在自然状况下,地面发射、反射的微弱的微波能量。
2、微波遥感的历史微波遥感的发展可以追溯到20世纪50年代早期,由于军事侦察的需求,美国军方发展了侧视机载雷达。
之后,侧视机载雷达SLAR 逐步用于非军事领域,成为获取自然资源与环境数据的有力工具。
1978年美国发射的Seasat海洋卫星以及随后发射的航天飞机成像雷达计划、苏联发射的Cosmos1870,标志着航天雷达遥感的开始。
20世纪90年代以来各国相继发射了一系列的星载雷达,单波段单极化雷达遥感得到了很大的发展。
进入21世纪以来另有一系列先进的雷达遥感计划得以实施,使得多波段多极化雷达遥感得到了很大的发展。
这一系列计划的实施大大地推动了极化雷达和干涉雷达等新型雷达的发展,使卫星雷达遥感进入了一个新时代。
我国的微波遥感事业起步于上世纪70年代。
在国家历次科技攻关中,遥感技术都作为重要项目列入。
经过若干阶段的发展,近年来已取得了技术、理论及应用研究的全面发展。
2.3 微波遥感基础原理
2§2.1 微波遥感物理基础§2.2 真实孔径雷达基本原理§2.3 SAR系统基本原理§2.4 SAR影像的主要特性真实孔径雷达的分辨率C τC τΔR r = ΔR g = (斜距分辨率) 2(地距分辨率) 2 cos βΔL = βR = λR d (方位向分辨率)=λH d sin β<==波束之脉冲时间 τ 越小,距离向分辨率越高,但 τ 太小则发射功率下降,降低后向散射的信噪比脉冲压缩技术理论上增加孔径 d 就可以提高方位向分辨率,但实际上难以实现,因为孔径的大小决定了天线几何尺寸的大小合成孔径技术<==1 SAR工作原理2 SAR分辨率3 聚焦补偿4 脉冲压缩原理5 多普勒频移与方位压缩6 SAR图像的成像SAR的出发点• SAR通过飞行平台的向前运动实现合成孔径。
利用天线的移动,可以将小孔径的天线虚拟成一个大孔径的天线,可以获得类似大孔径天线的探测效果• 地物对雷达发射的信号散射后会返回包含有地物信息(反射特性等)的信号• 如果雷达天线是固定不动的,则只能接受到一小部分从地物返回(后向散射)的信号• 如果雷达是快速移动的,就有可能收集到从地物后向散射到各个方向的信号,获得的信息量大为增加用一个小天线沿一直线方向不断移动,在移动中每一个位置发射一个信号,接收相应发射位置的回波信号,同时存储相位和振幅。
天线移动了一段距离L之后,存储的信号和长度为L的天线阵列所接收的信号非常相似SAR在不同位置接收同一地物的回波信号,真实孔径雷达则在一个位置上接收目标的回波SAR工作过程SAR在每一个位置都记录回波信号,针对同一地物,目标和飞行器间距离不同、相位不同、强度不同,此外还要产生多普勒效应,频率也会发生变化处理器针对不同的相位进行相移补偿(聚焦补偿,补偿不同位置之间的相位差异),再将每个位置接收的信号叠加起来,就形成了最终的合成孔径雷达信号两种天线接收信号的相似性34 1 2 SAR 多次成像分解示意图Through the moving of antenna along a line, image a scene for a number of times.通过沿着一条直线移动天线,对同一地物多次成像Synthesize the multiple imaging data of a scene to one image.把同一地物的多次成像合成为一幅图像Equivalent to “enlarge” the antenna, forming a very long antenna and thus improving the azimuth resolution.等效于增大天线,形成一根很长的天线,从而改善分辨率合成孔径大小要求实际波束宽度:实际分辨率:(合成孔径长度)合成波束宽度: 合成分辨率:dλβ=s LR L ==∆βdR L s s 22⋅==λβ2d R L s s ==∆βSAR方位向分辨率距离向分辨率与真实孔径雷达相同方位向分辨率只与真实孔径大小有关βτcos2c Rr=2d Rs=Antenna length : L=10 m Typical range : 计算合成孔径、距离向/方位向分辨率 km 85323cos /== sat H R m 25)23sin(1055.152103sin 268=⨯⨯⨯== θR r B c R Ground range resolution: km 510/056.0853000≈⨯==DR R λβAzimuth resolution:D Example: ERS-1/-2 SAR Resolution Synthetic antenna:For ERS-1/2, a 10m antenna is used to synthesize a nearly 5 km antenna.About 1000 radar images are used to get one SAR image.RAR Vs SARReal Aperture Radar Synthetic Aperture Radar (Crimea, Ukraine)5x14 km pixels 4x20 m pixelsSAR工程应用问题聚焦补偿随着平台的前进,平台和目标之间的相对位置关系会,…,X N各个位置接受到从P点回发生变化,X1,…,Xi来的信号的延迟或相位不同,需要进行补偿(聚焦处理)聚焦天线距离变化聚焦标准相干求和问题:波束的脉冲时间τ越小,距离向分辨率越高,但τ太小则发射功率下降,降低后向散射的信噪比解决方法:采用功率大的宽脉冲进行线性调频调制(啁啾, chirp)后发射,对接收的微波用具有相反频率特性的匹配滤波器(matched filter)滤波,用假设的窄脉冲宽度得到大输出即:使接收的低频微波在滤波器上有较大的延迟,使高频微波有较小的延迟,从而把接收的微波信号作为脉冲宽度很小的被压缩信号提取出来脉冲压缩(pulse compression),解线性调频调制(de-chirping)在脉冲宽度τ的时间内,通过脉冲压缩和频率∆f 调制,振幅为原来的(τ∆f )1/2倍,脉冲宽度为原来的1/(τ∆f )倍,因此,随着∆f 的提高,距离分辨率和信噪比也提高 脉冲压缩原理 距离压缩来自两个相邻目标的回波可能重叠,但重叠区中两个回波在某一时刻的频率不同,也能被分开在返回的脉冲上还会产生由多普勒效应引起的频率偏移(Doppler Shift),这种偏移等效于线性调频调制,利用这个特性,在接受端设置具有逆特性的匹配滤波器,就可以改善方位向的分辨率。
2.4 微波遥感基础原理
2012-11-21 31
侧视SAR阴影 侧视雷达成像在距离向会产生雷达阴影。起伏地形 的后坡雷达波束不能到达,没有回波信号,在图像 相应位置出现暗区 有三种情况:
1,地形后坡坡度小于雷达俯角:不会产生阴影 2,地形后坡坡度等于雷达俯角:视后坡粗糙度如何 3,地形后坡坡度大于雷达俯角:产生阴影
2 微波遥感基础原理
2012-11-21
章节内容
§ 2.1 微波遥感物理基础
§ 2.2 真实孔径雷达基本原理 § 2.3 SAR系统基本原理
§ 2.4 SAR影像的主要特性
2012-11-21
2
SAR的分辨率 ?
距离向分辨率
Rr
方位向分辨率
c
2 cos
D Rs 2
2012-11-21
Fp (1 sin ) 100%
2012-11-21 37
侧视SAR叠掩
侧视雷达为距离成像,最早返回的信号记录在近距端, 后返回的记录在远距端 在起伏地形成像,当坡度与雷达俯角之和大于90度时 (即当地入射角为负时),山顶部分的回波比来自山 脚部分的回波更早被雷达接收记录,从而使山顶影像 “叠置”在山脚影像之前
10
穿透性
rough low reflectivity 穿 透 性 (3) penetration
2012-11-21
smooth high reflectivity no penetration
11
穿透性
Balbina Reservoir from JERS-1 SAR imagery (Oct. 1993)
23
多视处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面微波天线却很容易做成单一极化方向,所以观测和分析 微波的极化和极化的变化会增加微波遥感所获得的信息量, 可以作为鉴别目标的一种重要手段。例如,用微波辐射计测 量极1化.现41象G是H横z、波8所.3特6G有H的z、。1所9.谓34电G磁H波z三的个极频化率,上是的指海场面强亮随 时度间温变度化时的发方现式,。当一入般射用角E为的5矢5端度在时空,间海描面出风来速的对轨垂迹直来极表化示。 按的此亮轨度迹温为度直没线有、贡圆献、,椭而圆水而平分极别化称的为亮线度极温化度、却圆随极风化速和增椭加圆 极面化增。加。在19.34GHz,风速每增加1m/s,水平极化的亮 度湿度增加约1.1K。
第四章
ቤተ መጻሕፍቲ ባይዱ
微波遥感的应 2
用
3
陆地、海洋、大气微波遥感应用及其技术手段。
第五章
课程及大作业 评议、讨论
1
纵横分析、资料分析、学习方法升华,作业及课堂情 况考核。
1
西安电子科技大学 理学院
第2章 微波遥感的基本原理
※ 电磁辐射及其性质 ※ 微波与物质物质相互作用的机理 ※ 微波遥感的技术基础
用真心和激情去演绎人生,用真情去拥抱生 活,认认真真在“探索与学习”中走过人生中 的每一步,在“探索与学习”中不断发现自我、 改变自我、超越自我!
或完全抵消的现象。这种现象称为干涉。产生干涉现象的电
磁波称为相干波或相干辐射。电波天线正是利用电磁波的相
干性制成的。如果两个波是非相干的,则叠加后的合成波的
振幅是各个波的振幅的代数和,交叉区域不会出现振动强弱
交替的现象。
如果两个独同时投射到探
测器,其合成波的振幅为
f(t)+g(t),则瞬时功率为
4
西安电子科技大学 理学院
2
西安电子科技大学 理学院
§2.1 电磁辐射及其性质
一、电磁波基本特征 电磁波遥感器是利用电磁波探测和识别远距离目标的测量装
置(微波波段遥感器为微波遥感),在探测和传播电磁辐射过 程中,电磁能量和性质的变化是电磁波与物质相互作用的主要 特征,也是人们识别目标的基本依据。
1、叠加原理 在大多数常见的介质中传播时,只要电磁波振幅的大小不足
5
西安电子科技大学 理学院
一般来说,凡是单色波都是相干的。微波雷达发射的电磁波 和激光器产生的激光,从远处两个靠得较近的物体反射回来的 波是高度相干的;因而用这类电磁波的遥感器进行成象时,获 取的影象上有的地方可能没有接收到任何功率,有的地方功率 为平均反射功率的4倍。正因为波的相干性,微波雷达图象的象 片上会出现颗粒状或斑点状的特征,这是一般非相干的可见光 象片上所没有的,也是对解译很有意义的信息。
3、衍射
遥感器所接收的电磁辐射通量的方向、数量、性质成为远离 遥感器的目标存在的根据(与通信中差别的地方)。测量目标辐 射通量的方向和性质时,必须考虑电磁彼衍射效应的影响,当 电磁波到达遥感天线孔径被切割或截获时要发生衍射。
6
西安电子科技大学 理学院
4、极化
垂直参考面为水平极化 参考平面内为垂直极化
当构成物质的原于或分子受到光和热等作用时,电子能级、振 动能级或转功能级的跃迁、物质的这种内部状态的变化会发射 很宽频带内的各种电磁辐射,也能吸收和散射照射在它上面的 电磁辐射。
9
西安电子科技大学 理学院
当没有外界能量刺激时,物质内部微现粒子的运动主要表 现为三种形式,即电子绕核运动、原子核在平衡位置上振动和 分子以其质量中心为的的转动,而这些运动状态是稳定的,具 有一定的能量hμ(h为普朗克常数,μ为频率),并且该能量并 不因电子、原子、分子不停地运动有所衰减。当有外来刺激, 如与其他粒子碰撞或在电磁辐射场中被照射而吸收足够外来能 量时,它就会改变原来的运动状态而从低能级的基态轨道跃迁 列更高能级的激发状态轨道上去并具有能量为nhμ 。处于激发 态的粒子是十分不稳定的,一般在10-8秒内就要基态转化, 或者与另一个粒子碰撞,将能量传递给它而不产生电磁辐射, 或者向下跃迁到一个较低的能级,以光子的形式释放出多余的 能量△E=hμ’,向外发射电磁辐射。
10
西安电子科技大学 理学院
△E不同,辐射的光子频率也不同,△E为1-20eV时,可 产生波长为0.2-1.0μm的辐射, △E为为0.05-1.0eV时,可 产生波长为1-25μm的辐射, △E为0.03-0.05eV时,可产生 波长为25-300μm的辐射;能量再低也可辐射少量微波。不同 的物质,其发射、吸收和散射电磁辐射的能力是不同的,电磁 辐射的频率、极化和电磁能量随入射角变化的关系,因不同的 物质而异。这种差异,既与物质表面和其内部的几何结构有关, 又与物质本身的介电常数和温度的空间分布有关。正是基于这 种差异,才有可能达到遥感不同物体的目的。
7
西安电子科技大学 理学院
5、多普勒效应
微波遥感中可以利用多普勒效应信息判断目标运动状态和 运动速度。(随机介质中的波传播139页)
8
西安电子科技大学 理学院
二、物质的电磁辐射(基本物理过程) 电磁辐射源一般有人工电磁射源和天然辐射源两种。雷达
发射机就是一种人工电磁辐射源。太阳和地球是天然辐射源, 它们是遥感情息的重要提供者。地面物体反射的电磁波主要 来自太阳。地面物体自身发射的电磁波也与太阳有关。地球 的电磁辐射与其所具有的热能有关,是一种热辐射。地球的 热源:表层主要吸收太阳能量,平均温度大约300K,常温层 以下主要由地热补给,受地热层温级控制。地一面切物体都 能是电磁波辐射源,但与其本身的电磁性质有关。
西安电子科技大学 理学院
章序
讲授题目
学 时
主要内容
第一章
绪论
4
方法分享、遥感的基本概念概念、研究内容、微波 遥感的优越性及其应用等。
第二章
微波遥感的基 本原理
6
电磁辐射及其性质、微波与物质相互作用的机理、 微波遥感的技术基础。
第三章
微波遥感器
1 2
微波遥感器(微波辐射计、雷达(高度计)、微波散 射计、俯视雷达、微波全息雷达简介)介绍、了解及 微波遥感器的发展方向。
以改变介质的性质,仍然遵守波的叠加原理。叠加原理适用 于遥感中所使用的各种电磁波(当然包括微波遥感)。
3
西安电子科技大学 理学院
2、相干性和非相干性
由两个(或两个以上)频率相同、振动方向相同、相位差恒定
的电磁波在空间叠加时,合成振幅为各个波的振幅的矢量和,
因此,会出现交叠区某些地方振动加强、某些地方掘动减弱