浅谈因式分解的几种方法
因式分解法的四种方法
因式分解法的四种方法
因式分解法的四种方法:提公因式法、分组分解法、待定系数法、十字分解法等等。
1、如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为"“1+3"式和"2+2"式。
3、待定系数法是初中数学的一个重要方法。
用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。
4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
因式分解的十二种方法
因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。
在因式分解的过程中,有许多不同的方法可以使用。
下面将介绍因式分解的十二种常见方法。
一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。
它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。
例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。
二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。
通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。
例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。
三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。
例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。
五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。
它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。
根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。
它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。
例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。
因式分解有哪些方法
因式分解有哪些方法在初高中,同学们都会接触到很多因式分解的例子与试题,那有什么因式分解的方法呢,须注意什么。
以下是由编辑为大家整理的“因式分解有哪些方法”,仅供参考,欢迎大家阅读。
因式分解的方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
二、平方差公式1、式子: a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、分解因式,必须分解到每一个多项式因式都不能再分解为止。
五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
因式分解十种方法
因式分解十种方法因式分解是数学中的一种重要方法,它可以将一个多项式表达式分解成更简单的因式形式。
在本文中,我将介绍十种常见的因式分解方法。
一、公因式提取法公因式提取法是最基本的因式分解方法之一。
它适用于多项式中存在公因式的情况。
通过提取多项式中的公因式,可以将其分解为更简单的因式形式。
例如,对于多项式2x+4xy,可以提取出公因式2x,得到2x(1+2y)。
二、配方法配方法是一种常见且常用的因式分解方法。
通过巧妙地选择合适的配方,可以将多项式进行因式分解。
例如,对于多项式x^2+6x+9,可以通过配方(x+3)^2将其分解为(x+3)(x+3)。
三、差平方公式差平方公式是一种常见的因式分解方法,适用于多项式中出现两个平方项和一个常数项的情况。
通过应用差平方公式,可以将多项式进行因式分解。
例如,对于多项式x^2-4,可以应用差平方公式(x+2)(x-2)将其分解为(x+2)(x-2)。
四、和差平方公式和差平方公式是一种常见的因式分解方法,适用于多项式中出现两个平方项的和或差的情况。
通过应用和差平方公式,可以将多项式进行因式分解。
例如,对于多项式x^2-y^2,可以应用和差平方公式(x+y)(x-y)将其分解为(x+y)(x-y)。
五、完全平方公式完全平方公式是一种常见的因式分解方法,适用于多项式中出现平方项和两倍乘积项的情况。
通过应用完全平方公式,可以将多项式进行因式分解。
例如,对于多项式x^2+6x+9,可以应用完全平方公式(x+3)^2将其分解为(x+3)(x+3)。
六、分组分解法分组分解法是一种常见的因式分解方法,适用于多项式中存在多个项的情况。
通过将多项式中的项进行分组,可以将其进行因式分解。
例如,对于多项式x^3+3x^2+2x+6,可以将其进行分组,并分别因式分解为x^2(x+3)+2(x+3),再提取公因式(x+3),最终得到(x^2+2)(x+3)。
七、因式分解公式法因式分解公式法是一种常见的因式分解方法,适用于多项式中存在特定的因式分解公式的情况。
因式分解法的四种方法
因式分解法的四种方法因式分解是代数中常见的一种运算方法,它在解决多项式的因式分解、求解方程等问题中起着重要的作用。
在代数学习中,掌握好因式分解的方法对于提高解题效率和解题能力都是非常有帮助的。
因此,本文将介绍因式分解法的四种方法,希望能够帮助大家更好地理解和掌握这一重要的数学知识。
一、公因式提取法。
公因式提取法是因式分解中最基本的一种方法,它适用于多项式中存在公共因子的情况。
具体步骤如下:1. 将多项式中的公因式提取出来;2. 将提取出的公因式与剩下的部分分别相乘得到因式分解的结果。
例如,对于多项式2x+4xy,我们可以将公因式2提取出来,得到2(x+2y),这就是多项式的因式分解结果。
二、配方法。
配方法是因式分解中常用的一种方法,它适用于一些特殊形式的多项式。
具体步骤如下:1. 将多项式中的各项按照特定的方式相加或相减,使得可以进行因式分解;2. 根据配方法的规则,将多项式进行因式分解。
例如,对于多项式x^2+2xy+y^2,我们可以将其写成(x+y)^2的形式,这就是多项式的因式分解结果。
三、分组法。
分组法是因式分解中常用的一种方法,它适用于四项式的因式分解。
具体步骤如下:1. 将四项式中的各项进行分组;2. 对每组进行因式分解;3. 将每组的因式分解结果进行合并,得到最终的因式分解结果。
例如,对于四项式x^2+2xy+2x+4y,我们可以将其进行分组,得到x(x+2y)+2(x+2y),然后再进行因式分解,最终得到(x+2y)(x+2)的因式分解结果。
四、公式法。
公式法是因式分解中常用的一种方法,它适用于一些特定的多项式。
具体步骤如下:1. 根据多项式的特定形式,使用相应的公式进行因式分解;2. 根据公式的规则,将多项式进行因式分解。
例如,对于多项式x^2-4,我们可以使用平方差公式进行因式分解,得到(x+2)(x-2)的结果。
以上就是因式分解法的四种方法,它们分别适用于不同的多项式形式,能够帮助我们更好地进行因式分解运算。
因式分解的十二种方式
因式分解的十二种方式因式分解是数学中的重要概念,它可以帮助我们简化和解决各种数学问题。
本文将介绍因式分解的十二种常用方式。
1. 公因式提取法公因式提取法是用于将多项式中的公因式提取出来。
首先找到多项式中所有项的公因式,然后将公因式提取出来,剩下的部分则是提取后的因式。
例如,对于多项式2x + 6,可以提取公因式2,得到2(x + 3)。
2. 完全平方公式完全平方公式是用于将平方差式因式分解的方法。
根据完全平方公式,平方差可以写成两个平方数的差。
例如,对于平方差a^2 - b^2,可以因式分解为(a + b)(a - b)。
3. 一元二次方程一元二次方程可以通过将其因式分解为两个一元一次方程来求解。
首先将方程设置为等于零,然后根据因式分解的方式将其分解成两个一元一次方程。
例如,对于一元二次方程x^2 - 5x + 6 = 0,可以因式分解为(x - 2)(x - 3) = 0,从而得到x的解为2和3。
4. 分组法分组法是用于将多项式中的项进行分组然后进行因式分解的方法。
通过分组,可以在多项式中找到共同的因式,然后进行提取和化简。
例如,对于多项式3a + 6b + 9c + 18d,可以将其进行分组,得到(3a + 6b) + (9c + 18d),然后提取公因式,得到3(a + 2b) + 9(c +2d)。
5. 十字相乘法十字相乘法是用于将二次三项式进行因式分解的方法。
通过十字相乘法,可以找到二次三项式的两个因式,从而进行因式分解。
例如,对于二次三项式x^2 + 5x + 6,可以使用十字相乘法得到(x + 2)(x + 3)。
6. 定积分法定积分法是用于计算定积分的方法,也可以用于对多项式进行因式分解。
通过计算定积分,可以得到多项式的因式分解形式。
例如,对于多项式x^3 - 1,可以通过计算定积分得到(x -1)(x^2 + x + 1)。
7. 化简法化简法是用于对复杂多项式进行因式分解的方法。
因式分解的常用方法
因式分解的常用方法因式分解是数学中常用的一种方法,它是将一个复杂的表达式或多项式分解成更简单的因子的过程。
因式分解在代数、方程、不等式等数学问题的解题中经常出现。
下面将介绍因式分解的常用方法。
一、公因式提取法公因式提取法是指在多项式中提取出公共的因式,然后将剩余的部分进行因式分解。
例如:1.3x+6y可以提取出公因子3,得到3(x+2y)。
2.4x^2+8x可以提取出公因子4x,得到4x(x+2)。
二、配方法配方法也被称为乘法公式法,它适用于二次型的因式分解。
当二次型为(ax+b)^2形式时,常采用配方法进行分解。
配方法的步骤如下:1. 将二次型展开为(ax+b)^2的形式,即去掉开头的系数和常数项;2. 将二次型写成(a^2x^2+2abx+b^2)的形式;3.因式分解成(a*x+b)^2的形式,即加法的平方。
例如:1.x^2+6x+9可以写成(x+3)^2的形式。
2.4x^2+12x+9可以写成(2x+3)^2的形式。
三、辗转相除法辗转相除法也是因式分解中常用的方法,它适用于多项式的因式分解和整除。
辗转相除法的步骤如下:1.对多项式进行约去常因子;2.将多项式按照次数从高到低进行排列;3.用低次多项式除以高次多项式,得到商和余数;4.如果余数为0,则表示能整除,否则继续用余数进行除法;5.将多项式的因式写成约去的常因子与商的乘积的形式;例如:1.x^2+2x+1可以通过辗转相除法整除(x+1),得到商为x+12.3x^3-2x^2+3x+4可以通过辗转相除法整除(3x-2),得到商为x^2+x+2四、根式分解法根式分解法适用于含有平方根或立方根的表达式因式分解。
根式分解法的步骤如下:1.提取出平方根或立方根;2.将根式进行化简;3.根据提取出的根式与原表达式进行乘法、加法运算;4.将原表达式分解成根式与其他因子的乘积的形式;例如:1.x^2+8x+16可以分解为(x+4)^22. x^3+y^3 可以分解为(x+y)(x^2-xy+y^2)。
因式分解的十二种方法
因式分解的十二种方法因式分解是一种将一个数或代数式分解成更简单的乘积的方法。
在数学中,有很多种因式分解的方法可以使用,根据不同的情况可以采用不同的方法,下面将介绍十二种常见的因式分解方法。
1.提取公因子法:当一个式子存在公因子时,可以先将公因子提取出来,然后再进行进一步的因式分解。
2. 公式法:利用公式进行因式分解,例如(a+b)^2=a^2+2ab+b^23.分组法:将一个多项式按照不同的组合方式进行分组,然后再分别进行因式分解,最后将得到的结果合并。
4.平方差公式法:对于一个二次型式,可以利用平方差公式进行因式分解,例如a^2-b^2=(a+b)(a-b)。
5. 完全平方公式法:对于一个完全平方式,可以通过完全平方公式进行因式分解,例如a^2+2ab+b^2=(a+b)^26. 二次因式法:对于一个二次多项式,可以通过二次因式法进行因式分解,例如ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为方程ax^2+bx+c=0的根。
7.和差立方公式法:对于一个和差立方的多项式,可以通过和差立方公式进行因式分解。
8. 因式分解的配方法:通过配方法进行因式分解,例如ab+ac=a(b+c)。
9.分解因式法:将一个多项式根据不同的性质进行因式分解,例如差平方分解、和的平方分解等。
10.二次根与一次根相结合法:对于一个多项式,通过将二次根与一次根相结合,得到更简单的因式分解结果。
11. 分组求积法:对于一个多项式,可以通过分组求积法进行因式分解,例如(a+b)(c+d)=ac+ad+bc+bd。
12.全等公式法:利用全等公式进行因式分解。
以上是常见的十二种因式分解方法。
不同的方法适用于不同的情况,需要根据具体的问题选择合适的方法进行因式分解。
因式分解是数学中的一个重要概念,通过因式分解可以简化计算过程,提高解题效率。
因此,掌握不同的因式分解方法对于提高数学能力和解决实际问题都有很大的帮助。
因式分解的14种方法讲解
因式分解的14种方法讲解因式分解是数学中常用的重要方法,它可以将一个多项式表达式分解为一个或多个乘积的形式。
在因式分解过程中,有多种方法可以使用。
下面我将为您介绍14种常见的因式分解方法。
方法一:公因式提取法1.公因式提取法是最基本的一种因式分解方法,适用于多项式中存在公共的因式。
例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。
方法二:配方法2. 配方法适用于二次型多项式的因式分解。
对于ax² + bx + c形式的多项式,可以通过配方法将其分解为两个一次因式相乘的形式。
例如,对于多项式x² + 3x + 2,可以找到两个因数(x + 1)(x + 2)。
方法三:x平方差3.x平方差适用于形如x²-a²的多项式,其中a是一个常数。
这种情况下,可以将其分解为两个因子(x+a)(x-a)。
方法四:因式分解公式4.因式分解公式适用于一些特殊的多项式形式。
例如,x²-y²可以通过公式(x-y)(x+y)分解。
方法五:完全平方公式5. 完全平方公式适用于形如a² ± 2ab + b²的多项式。
这种情况下,可以将其分解为平方项的和或差。
(a ± b)²。
方法六:两个平方差的乘积6.两个平方差的乘积适用于形如(a+b)(a-b)(c+d)(c-d)的多项式。
这种情况下,可以分解为两个平方差相乘。
方法七:立方公式7. 立方公式适用于形如a³ ± b³的多项式。
这种情况下,可以将其分解为立方项的和或差。
(a ± b)(a² ∓ ab + b²)。
方法八:差的立方8. 差的立方适用于形如a³ - b³的多项式。
这种情况下,可以分解为差的立方公式(a - b)(a² + ab + b²)。
方法九:高次幂差的因式分解9.高次幂差的因式分解适用于形如aⁿ-bⁿ的多项式,其中n为正整数。
因式分解的9种方法
1. 提取公因式:这种方法比较常规、简单,必须掌握。
常用的公式:完全平方公式、平方差公式例一:0322=-x x解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程。
总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式,这对我们后面的学习有帮助。
2. 公式法常用的公式:完全平方公式、平方差公式。
注意:使用公式法前,部分题目先提取公因式。
例二:42-x 分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)3. 十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。
注意:它不难。
这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1•a2,把常数项c 分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果例三: 把3722+-x x 分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b ,即a 1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).这种方法要多实验,多做,多练。
因式分解常用的六种方法详解
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
分解因式的四种方法
分解因式的四种方法在代数中,分解因式是指把一个代数式按照其中一种规则,分解成一个或多个较简单的代数式的乘积。
分解因式是解决代数式运算中的重要内容之一、下面将介绍分解因式的四种常用方法。
1.公因式提取法公因式提取法是指找出多个代数式的最大公因式,并将其提取出来。
例如,对于代数式18x+24y,我们可以找到其中的公因式6,然后将公因式提取出来,得到6(3x+4y)。
2.提取公式法提取公式法是指通过将一个代数式拆分为两个代数式的和或差的形式,来进行因式分解。
例如,对于平方差公式x^2-y^2=(x+y)(x-y),我们可以将两个平方项x^2和y^2分别提取出来,并根据平方差公式得到因式分解。
3.完全平方式完全平方式是指将一个二次三项式分解成两个一次三项式的乘积。
例如,对于二次三项式x^2+5x+6,我们可以找到两个一次三项式x+2和x+3,使得它们的乘积等于原始的二次三项式。
因此,我们可以得到因式分解为(x+2)(x+3)。
4.求根法求根法是指将一个二次三项式分解为两个一次三项式的乘积,并找出这两个一次三项式的根。
例如,对于二次三项式x^2+6x+5,我们可以找到两个一次三项式分别为(x+1)和(x+5),它们的根分别为-1和-5、因此,我们可以得到因式分解为(x+1)(x+5)。
上述四种方法是常用的分解因式的方法,它们在解决不同类型的代数式时具有一定的适用性。
通过熟练掌握这些方法,可以有效地分解因式,简化问题求解的过程。
值得注意的是,在实际应用中,还可能会遇到一些特殊的因式分解,例如四项和差平方的因式分解、三次多项式的因式分解等,需要根据具体情况选择合适的方法进行分解。
因式分解的七种常见方法
因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。
在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。
1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。
公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。
它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。
例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。
它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。
例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。
它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。
例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。
这样我们就把原始式子分解成了两个因子的乘积。
3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。
该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。
例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。
因式分解四种方法
因式分解四种方法因式分解是指把一个多项式分解成两个或多个乘积的形式。
在数学中,因式分解是解多项式问题的关键步骤之一,也是求解方程、化简表达式、求最大公因数等问题的基础。
本文将介绍四种常用的因式分解方法,分别是公因式提取法、差平方公式、三项和差的立方公式和换元法。
1.公因式提取法公因式提取法是指先找到多项式中的公因式,然后把公因式提取出来,得到一个因式。
这个方法适用于多项式中含有相同的因式的情况。
例如,要因式分解多项式12x^3+9x^2+6x,我们可以先找到它们的最大公因数3x,然后把3x提取出来,得到3x(4x^2+3x+2)。
2.差平方公式差平方公式是指一个平方减去另一个平方可以通过相加相减来表示。
利用差平方公式可以将一个平方差写成两个因数的乘积形式。
例如,要因式分解多项式x^2-4,我们可以利用差平方公式(x-2)(x+2)将其分解为两个因子的乘积。
3.三项和差的立方公式三项和差的立方公式是指一个立方和或差可以通过相应的和或差来表示。
利用三项和差的立方公式可以将一个立方和或差写成两个因子的乘积形式。
例如,要因式分解多项式x^3+8,我们可以利用三项和差的立方公式(x+2)(x^2-2x+4)将其分解为两个因子的乘积。
4.换元法换元法是指将原多项式中的变量进行替换,通过改变原多项式的形式来进行因式分解。
这个方法适用于多项式中含有复杂变量形式的情况。
例如,要因式分解多项式x^4-1,我们可以令y=x^2,然后得到多项式y^2-1=(y+1)(y-1)。
最后再将y=x^2代回,即可得到多项式(x^2+1)(x^2-1)的因式分解结果。
综上所述,公因式提取法、差平方公式、三项和差的立方公式和换元法是四种常用的因式分解方法。
根据多项式的特点和形式,我们可以选择合适的方法进行因式分解,简化计算和阐明数学问题的本质。
因式分解法的12种方法
因式分解法的12种方法一、公式因式分解法公式因式分解法是一种基于公式的因式分解方法。
通过运用一些常见的代数公式,将多项式进行因式分解。
例如,对于二次多项式a^2 + 2ab + b^2,可以利用平方差公式因式分解为(a + b)^2。
二、因式提取法因式提取法是一种通过提取多项式中的公因子来进行因式分解的方法。
通过寻找多项式中的最大公因子并将其提取出来,可以将多项式进行因式分解。
例如,对于多项式2x^2 + 4x,可以提取公因子2x,得到2x(x + 2)。
三、分组法分组法是一种将多项式中的项进行分组,并利用分组后的特点进行因式分解的方法。
通常是将多项式中的项进行适当的分组,然后利用分组后的项之间的关系进行因式分解。
例如,对于多项式x^3 + x^2 + x + 1,可以分组为(x^3 + x^2) + (x + 1),然后利用分组后的特点进行因式分解。
四、平方差公式平方差公式是一种通过平方差的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为两个平方差的形式。
例如,对于二次多项式x^2 - 4,可以利用平方差公式因式分解为(x + 2)(x - 2)。
五、差平方公式差平方公式是一种通过差平方的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为两个差平方的形式。
例如,对于二次多项式x^2 - 9,可以利用差平方公式因式分解为(x + 3)(x - 3)。
六、完全平方公式完全平方公式是一种通过完全平方的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为完全平方的形式。
例如,对于二次多项式x^2 + 6x + 9,可以利用完全平方公式因式分解为(x + 3)^2。
七、三项立方和公式三项立方和公式是一种通过三项立方和的形式进行因式分解的方法。
该方法适用于一些特定的立方多项式,可以将其因式分解为三项立方和的形式。
例如,对于立方多项式x^3 + 3x^2 + 3x + 1,可以利用三项立方和公式因式分解为(x + 1)^3。
因式分解的几种常用方法
因式分解的几种常用方法因式分解是数学中的一个重要概念,常被用于简化复杂的表达式、解方程等。
在进行因式分解时,我们需要找到一个表达式的因式,使其能够被写成几个较小的乘积形式。
以下是几种常用的因式分解方法。
1.提取公因式法提取公因式法是因式分解的最基本方法,适用于多项式中存在公共因子的情况。
该方法的关键在于找到给定多项式中的最大公因子,然后将其提取出来。
例如,对于表达式3x^2+6x,我们可以提取公因式3x,得到3x(x+2)。
2.公式法公式法是利用一些常见的代数公式进行因式分解的方法。
常见的公式包括平方差公式、平方和公式、差的平方等。
根据需要,选择适当的公式进行因式分解。
例如,对于表达式x^2 + 5x + 6,我们可以应用平方和公式(x +a)(x + b) = x^2 + (a + b)x + ab,找到使得a + b = 5,ab = 6的解,得到表达式(x + 2)(x + 3)。
3.分组法分组法是常用的因式分解方法之一,适用于多项式中存在多项式因子的情况。
该方法通过对多项式中的项进行分组,然后进行提取公因式和合并同类项的操作,最终得到因式分解后的表达式。
例如,对于表达式x^3+x^2+2x+2,我们可以将其进行分组为(x^3+x^2)+(2x+2),然后对每个组进行公式法或提取公因式法等方法进行因式分解,得到表达式x^2(x+1)+2(x+1),再次提取公因式(x+1),得到(x+1)(x^2+2)。
4.换元法换元法是一种较为高级的因式分解方法,适用于一些特定的表达式。
该方法通过将表达式中的变量进行换元,将原本复杂的表达式转化成较简单的形式,然后进行因式分解。
例如,对于表达式x^2+4x+4,我们可以通过换元y=x+2,将其转化为y^2,然后得到因式分解后的表达式(x+2)^25.核心变换法核心变换法是一种较为特殊的因式分解方法,适用于一些特殊的表达式。
该方法通过对表达式进行变量变换,使得原本复杂的表达式可以转化为核心部分与一些较简单的额外项的和。
因式分解的7种方法和4种思路
因式分解的7种方法和4种思路因式分解是数学中一个基本且重要的概念,它是将一个多项式或者表达式,通过分解成若干个因子的乘积的形式来表示。
因式分解涉及到多种方法和思路,并且在不同的数学问题中有着不同的应用。
下面将介绍七种常见的因式分解方法和四种思路。
一、七种因式分解方法:1.公因式提取法:该方法适用于多个项有公因子的情况。
例如:2xy + 4x + 6y 可以提取 x,得到 x(2y+4) + 6y,再可以继续提取2,得到2(x(y+2)+3y)2.完全平方差公式:如果一个多项式可以表示成两个平方数之差的形式,那么就可以使用完全平方差公式进行因式分解。
例如:a^2-b^2=(a+b)(a-b)3.公式法:公式法是运用数学中的一些特殊公式进行因式分解的方法。
例如:a^2 ±2ab+b^2 = (a±b)^2a^3 ± b^3 = (a±b)(a^2∓ab+b^2)4.分组法:分组法适用于多项式中存在一些特殊的关系。
例如:ab + ac + bd + cd,我们可以通过分组成 (ab+ac) + (bd+cd),然后再提取公因式,变成a(b+c) + d(b+c),最后变成 (a+d)(b+c)。
5.提取平方根法:如果一个多项式的各项是可以开平方的,那么就可以使用提取平方根的方法进行因式分解。
例如:a^2 + 2ab + b^2 = (a+b)^26.分解差的平方:如果一个多项式是两个平方之差的形式,那么可以使用分解差的平方的方法。
例如:a^4-b^4=(a^2+b^2)(a^2-b^2)7.组合法:组合法是将一个多项式中的项进行组合,寻找其中的特殊关系,然后进行因式分解。
例如:a^3 + 3a^2b + 3ab^2 + b^3,可以将其分组为(a^3 + b^3) + 3ab(a + b),再使用公式法进行因式分解。
二、四种因式分解思路:1.提取公因子的思路:当一个多项式中的几个项具有公因子时,可以使用公因子提取法将公因子提取出来,从而进行因式分解。
因式分解的几种方法
因式分解的几种方法1.提取公因式这个是最基本的.就是有公因式就提出来,这个大家都会,就不多说了2.完全平方2a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按上面的公式进行.3.平方差公式a2-b2=(a+b)(a-b)这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.4.十字相乘法x2+(a+b)x+ab=(x+a)(x+b)这个很实用,但用起来不容易.在无法用以上的方法进行分解时,可以用下十字相乘法.例子:x2+5x+6首先观察,有二次项,一次项和常数项,可以采用十字相乘法.一次项系数为1.所以可以写成1*1常数项为6.可以写成1*6,2*3,-1*-6,-2*-3(小数不提倡)然后这样排列1 - 21 - 3(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)再写几个式子,大家再自己琢磨下吧.x2-x-2=(x-2)(x+1)2x2+5x-12=(2x-3)(x+4)其实最重要的是自己去运用,以上方法其实可以联合起来一起用,实践永远比别人教要好.顺便告诉你.若一个式子的b2-4ac小于0的话,这个式子是无论如何也不能分解了(在实数范围内,b为一次项系数,a为二次项系数,c为常数项)这些方法一般在最高次为二次时适用!三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinACosACos2A = Cos2A--Sin2A=2Cos2A—1=1—2sin2A三倍角公式sin3A = 3sinA-4(sinA)3;cos3A = 4(cosA)3-3cosAtan3a = tan a tan(π/3+a) tan(π/3-a) 半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]2}cos(a) = {1-[tan(a/2)]2} / {1+[tan(a/2)]2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]2}其它公式asin(a)+bcos(a) = [√(a2+b2)]*sin(a+c) [其中,tan(c)=b/a] asin(a)-bcos(a) = [√(a2+b2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]2;1-sin(a) = [sin(a/2)-cos(a/2)]2;;其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαtan(3π/2-α)= cotαcot(3π/2-α)= tanα。
因式分解的七种常见方法
因式分解的七种常见方法
引言
因式分解是数学中的一项重要内容,它可以将复杂的形式转换为简单易懂的形式,常见的方法有七种:
一、因式分解法
这是最常用的分解因式的方法。
根据因式的相关性质,将一个因式分解成两个或更多的因式。
例如:12=2*2*3,3x^2-5x-2=(3x-2)*(x+1)。
二、特殊展开法
当一个多项式的形式特殊,可以将它展开成多个更简单的形式时,就可以使用特殊展开法来分解因式。
例如:
(x+2)^2=x^2+4x+4,(3x+2)^3=27x^3+54x^2+36x+8
三、求解等式法
求解等式法是一种因式分解的特殊方法,可以将一个复杂的多项式分解为两个更简单的因式形式,例如:当x+2y=3时,x=3-2y,x=3-2y可以写成x+(2y-3)=0的形式,即(x+2y-3)(x+2y-3)=0,即因式分解等式为:(x+2y-3)(x+2y-3)=0。
四、逻辑分解法
逻辑分解法是根据因式的形式,利用逻辑推理的方法,将一个多项式分解为两个或更多的因式。
例如:X-Y=2,根据X-Y的形式,我们可以将此式分解为:(X-2)(Y-2)=0,即:X-2=0,Y-2=0。
五、因式组合法
因式组合法是一种特殊的因式分解法,可以将一个多项式分解为一系列的因式,从而更加清楚地表达出表达式的具体形式。
例如:将
2x+2y+3z+4,可以这样分解:2(x+y)+3z+4,即:2(x+y)+3(z+1)=0。
因式分解的12种方法的详细解析
因式分解的12种方法的详细解析因式分解是将一个多项式写成几个较简单的乘积的形式。
在数学中,因式分解是一项重要的基础技能,常用于求解方程、化简表达式和研究多项式的性质等方面。
以下是因式分解的12种常见方法的详细解析。
1.提取公因式法:当多项式的各项中存在公共因子时,可以提取出这个公因式,例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。
这种方法常用于求解关系式和化简分式等问题。
2.公式法:利用一些常用的公式进行因式分解。
例如,二次平方差公式(x^2-y^2)=(x+y)(x-y),互补公式a^2-b^2=(a+b)(a-b)等。
这种方法常用于解决关于二次方程、三角函数等问题。
3.配方法:对于二次型的多项式,可以利用配方法进行因式分解。
例如,对于多项式x^2+3x+2,可以进行配方法得到(x+1)(x+2)。
这种方法需要将多项式转化为二次型形式,然后利用配方法进行分解。
4.求因子法:当多项式为多个因子的乘积时,可以用求因子的方法进行因式分解。
例如,对于多项式x^3-8,可以将8进行因式分解为2^3,然后利用立方差公式进行因式分解,即x^3-8=(x-2)(x^2+2x+4)。
5.幂的分解法:当多项式中有幂函数时,可以利用幂的分解法进行因式分解。
例如,对于多项式x^3-y^3,可以利用立方差公式进行因式分解,即x^3-y^3=(x-y)(x^2+xy+y^2)。
6.多项式整除法:当多项式可以被另一个多项式整除时,可以利用多项式整除法进行因式分解。
例如,对于多项式x^3-1,可以利用x-1整除得到(x-1)(x^2+x+1)。
7.韦达定理:韦达定理是将多项式表示为二次型的形式,然后利用二次型进行因式分解。
例如,对于多项式x^3+y^3+z^3-3xyz,可以将其表示为(x+y+z)(x^2+y^2+z^2-xy-xz-yz)。
8.根的关系法:利用多项式的根的关系进行因式分解。
例如,对于一元二次多项式ax^2+bx+c,可以利用二次方程求根公式进行因式分解,即ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为多项式的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解常用的几种方法十字相乘法。
双十字相乘法运用很巧妙,可以将一个很复杂的数据简单地呈现,我们一起来学习一下吧!!双十字相乘法属于因式分解的一类,类似于十字相乘法。
双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+fx、y为未知数,其余都是常数用一道例题来说明如何使用。
例:分解因式:x^2+5xy+6y^2+8x+18y+12.分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。
解:图如下,把所有的数字交叉相连即可x 2y 2① ② ③x 3y 6∴原式=(x+2y+2)(x+3y+6).双十字相乘法其步骤为:①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y);②先依一个字母(如y)的一次系数分数常数项。
如十字相乘图②中6y²+18y+12=(2y+2)(3y+6);③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。
纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。
下面,就来看看因式分解的题目了,你们想必也会乐在其中。
1.△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c^2+a^2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0.∴(a-c)(a+2b+c)=0.∵a、b、c是△ABC的三条边,∴a+2b+c>0.∴a-c=0,即a=c,△ABC为等腰三角形。
3证明:对于任何数x,y,下式的值都不会为33x^5+3x^4y-5x^3y^2+4xy^4+12y^5解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)=(x+3y)(x^4-5x^2y^2+4y^4)=(x+3y)(x^2-4y^2)(x^2-y^2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y)如果从运算角度上考虑,也就是把一个和在保持大小不变的条件下,写成一个乘积的形式,而有些运算积比和算起来要简单,因此因式分解在解决实际问题中有着重要应用.例1有一天,小明和爸爸去公园里散步,看到公园有一块长为51.2m的正方形绿地,为了便于游人通行,决定修两条互相垂直的小路,其中小路宽1.2m,然后小明就问爸爸:“剩余绿地的面积是多少?”爸爸笑了笑,便轻易的回答说:“剩余绿地的面积为2500m2你知道其中的奥秘么?在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.。
分析:用整块绿地的面积减去小路的面积就是剩余绿地的面积解:51.22-(2×1.2×51.2-1.22)=51.22-2×1.2×51.2+1.22=(51.2-1.2)2=502=2500所以剩余绿地的面积为2500m 2应用公式法,常用的公式有:(1)222)(2b a b ab a ±=+± (2)))((22b a b a b a -+=-(3)))((2233b ab a b a b a +±=±(4)33223)(33b a b ab b a a ±=±+±(5)2222)(222c b a ac bc ab c b a ++=+++++(6)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++公式(5)证明如下:ac bc ab c b a 222222+++++222)22()2(c bc ac b ab a +++++=22)(2)(c c b a b a ++++=2)(c b a ++=公式(6)证明如下:abc c b a 3333-++abc ab b a c b ab b a a 333332233223---++++=)333(])[(2233abc ab b a c b a ++-++=)(3])())[((22c b a ab c c b a b a c b a ++-++-+++=]3)())[((22ab c c b a b a c b a -++-+++=))((222ca bc ab c b a c b a ---++++=在特殊情况下,当c b a ++=0时,就有abc c b a 3333-++=0, 于是,(7)abc c b a 3333=++这就是说,如果三个整式的和为零,那么这三个整式的立方和等于这三个整式乘积的三倍.我们把被分解的多项式分成若干组分别按分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合来再从总体上按“基本方法”继续进行分解,直到分解出最后结果这种分解因式的方法叫做分组分解法。
如果一个多项式适当分组,使分组后各组之间的多项式有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y(2)a2-b2+4a-4b(3)4x2-9y2-24yz-16z2(4)x3-x2-x+1分析(1):解①,首先注意到前两项的公因式(2x)和后两项的公因式(-3),分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解。
解②,此题也可以考虑含有y的项分在一组。
如下面解2的解法。
解①: 2x2+2xy-3x-3y=(2x2+2xy)-(3x+3y)=2x(x+y)-3(x+y)=(x+y)(2x-3)解②: 2x2+2xy-3x-3y=(2x2-3x)+(2xy-3y)=x(2x-3)+y(2x-3)=(2x-3)(x+y)说明:解①和解②虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
分析(2):若将此题按上题中解②的方法分组将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即-b2-4b=-b(b+4),那a(a+4)与-b(b+4)再没有公因式可提,不可再分解下去。
可先将a2-b2一组应用平方差公式,再提出因式。
解: a2-b2+4a-4b=(a2-b2)+(4a-4b)=(a+b)(a-b)+4(a-b)=(a-b)(a+b+4)分析(3):若应用解②的方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,则分组失败。
观察(3)题中的特点,后三项符合完全平方公式,将此题4x2和-9y2-24yz-16z2分组,先用完全平方公式,再用平方差公式完成分解。
解:4x2-9y2-24yz-16z2=4x2-(9y2+24yz+16z2)=(2x)2-(3y+4z)2=(2x+3y+4z)(2x-3y-4z)分析(4):(4)题按照系数比可以分为1或者为-1,可以有不同的分组方法。
解③:x3-x2-x+1=(x3-x2)-(x-1)=x2(x-1)-(x-1)=(x-1)(x2-1)=(x-1)(x+1)(x-1)=(x+1)(x-1)2解④:原式=(x3-x)-(x2-1)=x(x2-1)-(x2-1)=(x2-1)(x-1)=(x+1)(x-1)(x-1)=(x+1)(x-1)2说明:分组时,不仅要注意各项的系数,还要注意到各项系数间的关系,这样可以启示我们对下一步分解的预测,如下一步是提公因式还是应用公式等。
总结:一般对于四项式的多项式的分解,若分组后可直接提取公因式,一般将四项式两项两项分成两组,并在各组提公因式后,它们的另一个因式恰好相同,在组与组之间仍有公因式可提,如(1)题的两种解法。
两项两项分组后也可各自用平方差公式,再提取组之间的公因式,如(2)题、(4)题。
若分组后可应用公式还可将四项式中进行三项和一项分组先用完全平方公式再应用平方差公式,如(3)题。
例2、分解因式:m2+n2-2mn+n-m分析:此题是一个五项式,其中m2-2mn+n2是完全平方公式,且与-m+n=-(m-n)之间有公因式可提取,因而可采用前三项、后二项分组。
解:m2+n2-2mn+n-m=(m2-2mn+n2)-(m-n)=(m-n)2-(m-n)=(m-n)(m-n-1)例3.分解因式(1)x2-y2-z2-2yz+1-2x(2)x2-6xy+9y2-10x+30y+25(3)a2-a2b+ab2-a+b-b2分析(1):此题是一个六项式,经过分析可采用三项、三项分组,x2-2x+1一组,-y2-2yz-z2一组,分别用完全平方公式后再用平方差公式分解。
解:x2-y2-z2-2yz+1-2x=(x2-2x+1)-(y2+2yz+z2)=(x-1)2-(y+z)2=(x-1+y+z)(x-1-y-z)分析(2):此题也是六项式,前三项是(x-3y)2,而最后一项是52,中间两项恰巧能分解成-2·5(x-3y),所以可以用完全平方公式来分解。
解:x2-6xy+9y2-10x+30y+25=(x2-6xy+9y2)-10x+30y+52=(x-3y)2-2·(x-3y)·5+52=(x-3y-5)2分析(3):此题还是六项式,但都不具备上述两题的特征,可将这六项式二项、二项、二项分成三组,各自提取公因式,再提取三组间的公因式。
解:a2-a2b+ab2-a+b-b2=(a2-b2)-(a2b-ab2)-(a-b)=(a+b)(a-b)-ab(a-b)-(a-b)=(a-b)(a+b-ab-1)=(a-b)[(b-1)-a(b-1)]=(a-b)(b-1)(1-a)说明:此题分解到(a-b)(a+b-ab-1)时要用观察提取公因式的剩余因式(a+b-ab-1)是否能再分解因式。