中考数学专题练习因式分解分组分解法(含解析)

合集下载

因式分解练习精选100题附详解

因式分解练习精选100题附详解

因式分解精选练习100题(附解答)一、提取公因式法 (1) 323812x y xy z +(2) 2()3()a b c b c +-+(3) 22129abc a b -=(4) 3342242235x y x y x y x y +++(5) 2(3)(3)x x +-+(6) 2()3()x y x y +-+=(7) 221()()n n x a b y b a +-+-=(8) ()()()()x m x m y m m x m y -----=(9) ()()m x y n x y x y +++--=(10) 4325286x y z x y -(11) ()()2612m n n m -+-二、公式法 (12) 249a -(13) 22()()x m x n +-+(14) 24129x x ++(15) 2244a ab b -+-(16) 32x xy -=(17) 227183x x ++(18) 229()4()a x y b y x -+-=(19) 322x x x ---(20) 33416m n mn -(21) ()2222214a b a b +--(22) 66x y -(23) 2244mn mnx mx ++(24) a a -3(25) 3312x x -(26) 224914a b ab --+ (27) ()()22x x y y y x -+-三、分组分解法 (28) 221448x y xy --+(29) 22114x xy y -+- (30) 22a a b b +--(31) 222221x xy y x y ++--+(32) 3222a a b ab a ++-(33) 1xy x y --+(34) 22221a b a b --+(35) 251539a m am abm bm -+-(36) 2221a b ab +--(37) 222221a ab b c c -+---(38) 3254222x x x x x --++-(39) ()()x x z y y z +-+(40) 3322()()ax y b by bx a y +++(41) cd b a d c ab )()(2222---(42) 32acx bcx adx bd +++(43) 222221x y z x z y z --+(44) 2226923ax a xy xy ay -+-(45) 325153x x x --+四、十字相乘法(46) 652++x x(47) 256x x -+(48) 256x x +-(49) 256x x --(50) 672+-x x(51) 24142++x x(52) 36152+-a a (53) 22-+x x(54) 1522--y y(55) 24102--x x(56) 542-+x x(57) 101132+-x x(58) 6752-+x x(59) 2732+-x x(60) 221288b ab a --(61) 2223y xy x +-(62) 2286n mn m +-(63) 22672y xy x +-(64) 224715y xy x -+(65) 317102+-x x(66) 101162++-y y(67) 226b ab a --(68) 8622+-ax x a五、双十字相乘法(69) 2910322-++--y x y xy x(70) 22227376z yz xz y xy x -+---(71) 67222-+--+y x y xy x(72) 613622-++-+y x y xy x(73) 36355622-++-+b a b ab a六、拆、添项法因式分解(74) 22268x y x y -++-(75) 224443x x y y --+-(76) 4322321x x x x ++++(77) 841x x ++(78) 343115x x -+(79) 32256x x x +--(80) 32374x x +-(81) 432433x x x x ++++(82) 4224x x y y ++(83) 422425b b a a ++(84) 44+x七、因式定理 (85) 332x x -+(86) 354x x -+(87) 46423-+-x x x(88) 326116x x x +++(89) 23739234--+-x x x x(90) 3246a a a -++(91) 43233116a a a a +---(92) 3245x x +-(93) 4322744x x x x +++-八、换元法因式分解(94) 2222(48)3(48)2x x x x x x ++++++(95) ()()22353x x x x -----(96) ()()221212x x x x ++++-(97) ()()()()135715x x x x +++++(98) ()()()()461413119x x x x x ----+(99) ()()()()166********x x x x --+-+(100)()()223248390xx x x ++++-因式分解精选练习100题解答一、提取公因式法 (1) 323812x y xy z +)32(422yz x xy +=(2) 2()3()a b c b c +-+)32)((-+=a c b(3) 22129abc a b -=)34(3ab c ab -=(4) 3342242235x y x y x y x y +++)153(2222+++=y x xy y x(5) 2(3)(3)x x +-+)2)(3(++=x x(6) 2()3()x y x y +-+=)3)((-++=y x y x(7) 221()()n n x a b y b a +-+-=)()(2by ay x b a n +--=(8) ()()()()x m x m y m m x m y -----=)()(2m y m x --=(9) ()()m x y n x y x y +++--=)1)((-++=n m y x(10) 4325286x y z x y -)34(2224x yz y x -=(11) ()()2612m n n m -+-)2)((6---=n m n m二、公式法 (12) 249a -)32)(32(-+=a a(13) 22()()x m x n +-+))(2(n m n m x -++=(14) 24129x x ++2)32(+=x(15) 2244a ab b -+-2)2(b a --=(16) 32x xy -=))((y x y x x -+=(17) 227183x x ++2)13(3+=x(18) 229()4()a x y b y x -+-=)23)(23)((b a b a y x -+-=(19) 322x x x ---2)1(+-=x x(20) 33416m n mn -)2)(2(4n m n m mn -+=(21) ()2222214a b a b +--)21)(21(2222ab b a ab b a --++-+= [][]1)(1)(22--⋅-+=b a b a)1)(1)(1)(1(--+--+++=b a b a b a b a(22) 66x y -))((3333y x y x -+=))()()((2222y xy x y x y xy x y x ++-+-+=(23) 2244mn mnx mx ++2)2(n x m +=(24) a a -3)1)(1(-+=a a a(25) 3312x x -)21)(21(3x x x -+=(26) 224914a b ab --+2)7(b a --=(27) ()()22x x y y y x -+-)()(2y x y x +-=三、分组分解法 (28) 221448x y xy --+)2(4122y xy x +--= 2)(41y x --=)221)(221(y x y x +--+=(29) 22114x xy y -+- 1)21(2--=y x )121)(121(--+-=y x y x (30) 22a a b b +-- )()(22b a b a -+-=)())((b a b a b a -+-+= )1)((++-=b a b a(31) 222221x xy y x y ++--+1)(2)(2++-+=y x y x 2)1(-+=y x(32) 3222a a b ab a ++-[]1)(2-+=b a a)1)(1(-+++=b a b a a(33) 1xy x y --+)1()1(---=y y x )1)(1(--=y x(34) 22221a b a b --+)1()1(222---=b b a)1)(1(22--=b a)1)(1)(1)(1(-+-+=b b a a(35) 251539a m am abm bm -+-)3(3)3(5-+-=a bm a am )35)(3(b a a m +-=(36) 2221a b ab +--1)(2--=b a)1)(1(--+-=b a b a(37) 222221a ab b c c -+---22)1()(+--=c b a)1)(1(---++-=c b a c b a(38) 3254222x x x x x --++-)2()2()2(42-+---=x x x x x )1)(2(24-+-=x x x(39) ()()x x z y y z +-+yz xz y x -+-=22))((z y x y x ++-=(40) 3322()()ax y b by bx a y +++222233by a y x b x ab axy +++= )()(223223by a x ab y x b axy +++= )()(2222ay x b ab x b ay xy +++= ))((22y a x b ab xy ++=(41) cd b a d c ab )()(2222---)()(2222cd b abd cd a abc ---=)()(bc ad bd ad bc ac ---= ))((ad bc bd ac -+=(42) 32acx bcx adx bd +++)()(2b ax d b ax cx +++= ))((2b ax d cx ++=(43) 222221x y z x z y z --+)1()1(222---=z y z y z x )1)(1(22--=z y z x(44) 2226923ax a xy xy ay -+-)39()26(222ay xy a xy ax +-+=)3(3)3(2y ax ay y ax x +-+= )3)(32(y ax ay x +-=(45) 325153x x x --+)3()3(52---=x x x )3)(15(2--=x x四、十字相乘法 (46) 652++x x)3)(2(++=x x(47) 256x x -+)3)(2(--=x x(48) 256x x +-)1)(6(-+=x x(49) 256x x --)1)(6(+-=x x(50) 672+-x x)1)(6(--=x x(51) 24142++x x)12)(2(++=x x(52) 36152+-a a)12)(3(--=x x(53) 22-+x x)1)(2(-+=x x(54) 1522--y y)3)(5(+-=y y(55) 24102--x x)12)(2(-+=x x(56) 542-+x x)1)(5(-+=x x(57) 101132+-x x)53)(2(--=x xx 2x 3 x -2 x -3 x 6 x -1 x -6x 1 x -6 x -1 x 2x 12 x -3 x -12 x 2x -1 y -5 y 3 x 2 x -12 x 5x -1(58) 6752-+x x)35)(2(-+=x x(59) 2732+-x x)13)(2(--=x x(60) 221288b ab a --)8)(16(b a b a +-=(61) 2223y xy x +-)2)((y x y x --=(62) 2286n mn m +-)4)(2(n m n m --=(63) 22672y xy x +-)32)(2(y x y x --=(64) 224715y xy x -+)45)(3(y x y x +-=(65) 317102+-x x)15)(32(--=x x(66) 101162++-y y)10116(2---=y y)52)(23(-+-=y y(67) 226b ab a --)2)(3(b a b a +-=(68) 8622+-ax x a )4)(2(--=ax ax五、双十字相乘法(69) 2910322-++--y x y xy x)25)(12(+--+=y x y x(70) 22227376z yz xz y xy x -+---x -23x -5x 25x -3 x -23x -1a -16ba 8bx -yx -2y m -2nm -4nx -2y2x -3y 3x -y5x 4y 2x -35x -1 3y 22y -5 a -3ba 2bax -2ax -4 x 2y -1x -5y 2)23)(32(z y x z y x -++-=(71) 67222-+--+y x y xy x)32)(2(-++-=y x y x(72) 613622-++-+y x y xy x)32)(23(+--+=y x y x(73) 36355622-++-+b a b ab a )92)(43(+--+=b a b a六、拆、添项法因式分解 (74) 22268x y x y -++-)96()12(22+--++=y y x x 22)3()1(--+=y x)4)(2(+--+=y x y x(75) 224443x x y y --+-)44()144(22+--+-=y y x x 22)2()12(---=y x)12)(32(+--+=y x y x(76) 4322321x x x x ++++)12()22(2234+++++=x x x x x 224)1()1(2++++=x x x x22)1(++=x x(77) 841x x ++44812x x x -++= 424)1(x x -+=)1)(1(2424x x x x -+++= )1)(12(24224+--++=x x x x x[])1()1(24222+--+=x x x x )1)(1)(1(2422+-+-++=x x x x x x(78) 343115x x -+343015x x x =--+()()()()()()()()2212115212121521253x x x x x x x x x x =+---=-+-=--+(79) 32256x x x +--()()32256x x x x =++--()()()()()()()()2216116132x x x x x x x x x x =++-+=++-=++-(80) 32374x x +-()()322364x x x =++-()()()()()()()()2232222321232x x x x x x x x x x =++-+=++-=++-(81) 432433x x x x ++++ 4232(3)(3)(3)x x x x x =+++++22(3)(1)x x x =+++(82) 4224x x y y ++4224222x x y y x y =++- ()()2222x y xy =+-()()2222x y xy x y xy =+++-2x -3y z3x y -2z x -y 2x 2y -3 x 3y -2x -2y 3a 3b -4a -2b 9(83) 422425b b a a ++22422492510b a b b a a -++= 2222)3()5(ab b a -+=)53)(53(2222b ab a b ab a +-++=(84) 44+x224444x x x -++= 222)2()2(x x -+= )22)(22(22+++-=x x x x七、因式定理 (85) 332x x -+ 易知0)1(=f于是332x x -+()1x A =-,其中A 为整式利用大除法,可求得A .23232222103232222x x x x x x x x x x x x x x +--+⋅-+----+-+∴()()()()()()()232321211212x x x x x x x x x x -+=-+-=--+=-+)()()()()()()221211212x x x x x x x -+-=--+=-+(86) 354x x -+ 易知0)1(=f原式)4)(1(2-+-=x x x(87) 46423-+-x x x 易知0)2(=f原式)22)(2(2+--=x x x (88) 326116x x x +++易知0)1(=-f原式)65)(1(2+++=x x x)3)(2)(1(+++=x x x(89) 23739234--+-x x x x易知0)31(=-f ,0)32(=f原式)1)(23)(13(2+-+=x x x (90) 3246a a a -++ 易知0)1(=-f原式)65)(1(2+-+=a a a)3)(2)(1(--+=a a a(91) 43233116a a a a +--- 易知0)1(=-f ,0)2(=f 原式)34)(2)(1(2++-+=x x x x)3)(2()1(2+-+=x x x(92) 3245x x +- 易知0)1(=f原式)55)(1(2++-=x x x (93) 4322744x x x x +++-八、易知0)1(=-f ,0)21(=f九、原式)4)(12)(1(2+-+=x x x 十、换元法因式分解(94) 2222(48)3(48)2x x x x x x ++++++ 令248x x u ++=原式2232()(2)u xu x u x u x =++=++ 又∵248u x x =++∴原式22(48)(482)x x x x x x =++++++ 22(58)(68)x x x x =++++2(2)(4)(58)x x x x =++++(95) ()()22353x x x x -----11令24x x y --=,则 原式()()113y y =-+-()()22y y =-+()()2262x x x x =----()()()()1223x x x x =+-+- (96) ()()221212x x x x ++++-令21x x y ++=,则原式()112y y =+-212y y =+- ()()34y y =-+()()2225x x x x =+-++()()()2125x x x x =-+++(97) ()()()()135715x x x x +++++原式()()()()173515x x x x =+++++⎡⎤⎡⎤⎣⎦⎣⎦()()228781515x x x x =+++++设287x x y ++=,则原式()815y y =++()()281535y y y y =++=++()()22810812x x x x =++++()()()226810x x x x =++++(98) ()()()()461413119x x x x x ----+原式()()22467112719x x x x x =-+-++设2671x x t -+=原式()()()222422693971t x t x t x x x =++=+=-+ )()()222422693971t x t x t x x x =++=+=-+(99) ()()()()166********x x x x --+-+()()()()()(226142624425241622416x x x x x x x =--+-+=-+- )()()()()()226142624425241622416825x x x x x x x x =--+-+=-+--+设224162x x t -+=原式()()()2221025524163t t t x x =-+=-=-- )()()2221025524163t t t x x =-+=-=--(100)()()223248390x x x x ++++- 原式()()()()12212390x x x x =++++-()()()()12322190x x x x =++++-⎡⎤⎡⎤⎣⎦⎣⎦()()2225325290x x x x =++++-令2253x x y ++=,则原式()190y y =--290y y =--()()910y y =+-()()222512257x x x x =+++-()()()22512271x x x x =+++-。

考点15 因式分解-分组分解法(解析版)

考点15 因式分解-分组分解法(解析版)

考点15 因式分解——分组分解法一.选择题(共12小题)1.(2020·重庆月考)已知实数m ,n ,p ,q 满足4m n p q +=+=,4mp nq +=,则()()2222m n pq mn p q +++=( )A .48B .36C .96D .无法计算【答案】A【详解】解:4m n p q +=+=,()()4416m n p q ∴++=⨯=,()()m n p q mp mq np nq ++=+++,16mp mq np nq ∴+++=,4mp nq +=,12mq np ∴+=,()()2222m n pq mn p q ∴+++,2222m pq n pq mnp mnq =+++,mp mq np nq mp np nq mq =⋅+⋅+⋅+⋅,mp mq mp np np nq nq mq =⋅+⋅+⋅+⋅,()()mp mq np nq np mq =+++,()()mp nq np mq =++,412=⨯,48=,故选:A .2.(2020·湖北)已知三角形ABC 的三边长为a ,b ,c ,且满足a 2+b 2+c 2=ab +ac +bc ,则三角形ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形【答案】D∵a 2+b 2+c 2=ab+bc+ac ,∵a 2+b 2+c 2-ab -bc -ac=0,∵2a 2+2b 2+2c 2-2ab -2bc -2ac=0,∵a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2=0,即(a -b )2+(b -c )2+(c -a )2=0,∵a -b=0,b -c=0,c -a=0,∵a=b=c ,∵∵ABC 为等边三角形.故选D .3.(2020·河南)已知3a b -=,4b c -=-,则代数式()2a ac b a c ---的值为( )A .4B .4-C .12-D .3-【答案】D 解:因为3a b -=,4b c -=-,∵1a c -=-()22()()()()a ac ab bc a a b c a b a ac b a b a c a c --=--+=---=---,将3a b -=,1a c -=-代入得:()()3(1)3a b a c --=⨯-=-,故选:D .4.(2020·宁夏月考)多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( )A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1 【答案】C解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .5.(2020·全国)用分组分解2222a b c bc --+的因式,分组正确的是( )A .()()2222a b bbc --- B .()2222a b c bc --+ C .()()2222a b c bc --- D .()2222a b c bc -+- 【答案】DA. ()()2222()()(2)a b bbc a b a b b b c ---=+---,不能分解,本选项不合题意; B. ()2222a b c bc --+,不能分解,本选项不合题意;C. ()()2222()()(2)a b cbc a b a b c c b ---=+---,不能分解,本选项不合题意; D. ()222222()()()a b c bc a b c a b c a b c -+-=--=+--+,本选项符合题意;故选:D6.(2020·山西)把 x 2 - y2- 2 y -1分解因式结果正确的是( ) A .(x + y +1)(x - y -1)B .(x + y -1)(x - y -1)C .(x + y -1)(x + y +1)D .(x - y +1)(x + y +1)【答案】A解:原式=22(21)x y y -++ =22(+1)x y -=1)(1)x y x y ++--( 故选:A .7.(2020·湖北)下列运算不正确的是( )A .1(1)(1)xy x y x y +--=-+B .22221()2x y z xy yz zx x+y+z +++++= C .2233()()x y x xy y x y +-+=+D .33223()33x y x x y xy y -=-+-【答案】B【解析】根据分组分解法因式分解、多项式乘多项式的法则进行计算,判断即可.1(1)(1)(1)(1)xy x y x y y x y +--=+-+=-+,A 正确,不符合题意;2222221()()()2x y z xy yz zx x y x z y z ⎡⎤+++++=+++++⎣⎦,B 错误,符合题意; 2233()()x y x xy y x y +-+=+,C 正确,不符合题意;33223()33x y x x y xy y -=-+-,D 正确,不符合题意;故选B .8.(2020·廉江期中)在实数范围内分解因式2a 3﹣8a 的结果是( )A .2a (a 2﹣4)B .2a (a+2)(a ﹣2)C .2a (a+4)(a ﹣4)D .a (a+2)(a ﹣2) 【答案】B【解析】解:原式()2242(2)(2).a a a a a =-=+-故选:B.9.(2020·山东)设a ,b ,c 是ABC 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】解:∵a 3-b 3=a 2b -ab 2+ac 2-bc 2,∵a3-b3-a2b+ab2-ac2+bc2=0,(a3-a2b)+(ab2-b3)-(ac2-bc2)=0,a2(a-b)+b2(a-b)-c2(a-b)=0,(a-b)(a2+b2-c2)=0,所以a-b=0或a2+b2-c2=0.所以a=b或a2+b2=c2.故选:D.10.(2020·上海月考)下列因式分解错误..的是( )A.3x2–6xy=3x(x–2y)B.x2–9y2=(x–3y)(x+3y)C.4x2+4x+1=(2x+1)2D.x2–y2+2y–1=(x+y+1)(x–y–1)【答案】D【解析】对于A,3x2-6xy=3x(x-2y),分解正确;对于B,x2-9y2=(x-3y)(x+3y),分解正确;对于C,4x2+4x+1=(2x+1)2,分解正确.对于D,x2-y2+2y-1= x2-(y-1)2=(x+y-1)(x-y+1),故分解因式错误;故选D.11.(2020·全国)将多项式x2+2xy+y2﹣2x﹣2y+1分解因式,正确的是()A.(x+y)2B.(x+y﹣1)2C.(x+y+1)2D.(x﹣y﹣1)2【答案】B解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.(2020·全国)分解因式:x 2﹣2xy+y 2+x ﹣y 的结果是( )A .(x ﹣y )(x ﹣y+1)B .(x ﹣y )(x ﹣y ﹣1)C .(x+y )(x ﹣y+1)D .(x+y )(x ﹣y ﹣1)【答案】A【解析】当被分解的式子是四,五项时,应考虑运用分组分解法进行分解.本题中x 2﹣2xy+y 2正好符合完全平方公式,应考虑1,2,3项为一组,x ﹣y 为一组.解:x 2﹣2xy+y 2+x ﹣y=(x 2﹣2xy+y 2)+(x ﹣y )=(x ﹣y )2+(x ﹣y )=(x ﹣y )(x ﹣y+1). 故选A .二.填空题(共6小题)13.(2020·台州月考)分解因式:32a a b a b --+=_________.【答案】()()()11a a a b +--解:32a a b a b --+=()()32a a b a b --- =()()2a b a a b ---=()()21a b a -- =()()()11a a a b +--.故答案为()()()11a a a b +--.14.(2020·四川)已知a =2019x+2016,b =2019x+2017,c =2019x+2018,则多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值为_____.【答案】3解:∵a=2019x+2016,b=2019x+2017,c=2019x+2018,∵a -b=-1,a -c=-2,b -c=-1,∵a 2+b 2+c 2-ab -bc -ac =2222222222a b c ab bc ac ++--- =222()()()2a b a c b c -+-+- =222(1)(2)(1)2-+-+- =3,故答案为:3.15.(2020·河北)已知3a b -=,4b c -=-,则代数式()2a acb ac ---的值是________. 【答案】-3∵3a b -=,4b c -=-,∵a -c=-1,∵()2a acb ac --- =()()a a c b a c ---=()()a c a b --=13-⨯=-3,故答案为:-3.16.(2020·武汉)因式分解24()88a b a b --+的结果是__________.【答案】4()(2)a b a b ---()()()()()()2224()884884842a b a b a b a b a b a b a b a b --+=---=---=--- 故答案为4()(2)a b a b ---. 17.(2020·宁夏)因式分解:22421xy y -+-=________.【答案】(21)(21)x y x y +--+解:22421x y y -+- ()22=421x y y --+()22=41x y -- =(21)(21)x y x y +--+故答案为:(21)(21)x y x y +--+18.(2020·吉林)若x 2+4x +8y +y 2+20=0,则x ﹣y =_____.【答案】4.由x 2+4x+8y+y 2+20=0得(x+2)2+(y+4)2=0,∵x+2=0,y+4=0,解得x =﹣2,y =﹣4,∵x ﹣y =4;故答案为:4.三.解析题(共6小题)19.(2020·华南师范大学中山附属中学期中)分解因式: (1)221632a a -+(2)22414x xy y --+【答案】(1)()224a -;(2)()()2121x y x y -+--. (1)221632a a -+ ,= ()22816a a -+,=()224a -;(2)22414x xy y --+, ()224=41x xy y -+-, ()2=x-2y -1, ()()=x 2121y x y -+--.20.(2020·福建省惠安科山中学期中)阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解:∵22228160m mn n n -+-+=,∵222(2)(816)0m mn n n n -++-+=∵22()(4)0m n n +--=,∵22()0,(4)0m n n -=-=∵4,4m n ==.根据你的观察,探究下面的问题:(1)已知2222440x xy y y ++++=,求xy 的值;(2)已知∵ABC 的三边长a 、b 、c 都是正整数,且满足22108410a b a b +--+=,求∵ABC 边c 的最大值.【答案】(1)-4;(2)8解:(1)∵2222440x xy y y ++++=, ∵2222440x xy y y y +++++=,∵()()2220x y y +++=,∵0x y +=,20y +=,∵2x =,2y =-,∵()224xy =⨯-=-, (2)∵22108410a b a b +--+=,∵2210258160a a b b -+++=-,∵()()22450a b -+=-,∵5a =,4b =,∵,,a b c 是ABC ∆的三边,∵a b c a b -<<+,∵19c <<又∵c 为正整数,∵c 的最大值为8.21.(2020·山西)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。

(专题精选)初中数学因式分解经典测试题附答案解析

(专题精选)初中数学因式分解经典测试题附答案解析

(专题精选)初中数学因式分解经典测试题附答案解析一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .4.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误;D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.6.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.7.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .8.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.9.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.10.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.11.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】 解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.13.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

专题04 因式分解篇(解析版)

专题04 因式分解篇(解析版)

专题04 因式分解考点一:因式分解1. 因式分解的概念:把一个多项式写成几个整式的乘法的形式,这种变形叫做因式分解。

2. 因式分解的方法:①提公因式法:()cbamcmbmam++=++公因式的确定:公因式=各项系数的最小公倍数×相同字母(式子)的最低次幂。

若多项式首项是负的,则公因式为负。

用各项除以公因式得到另一个式子。

②公式法:平方差公式:()()bababa-+=-22。

完全平方公式:()2222bababa±=+±③十字相乘法:利用十字交叉线将二次三项式进行因式分解的方法叫做十字相乘法。

对于一个二次三项式cbxax++2,若满足21aaa⋅=,21ccc⋅=,且bcaca=+1221,那么二次三项式cbxax++2可以分解为:()()22112cxacxacbxax++=++。

当1=a时,二次三项式是cbxx++2,此时只需21ccc⋅=,且bcc=+21,则cbxx++2可分解为:()()212cxcxcbxx++=++。

④分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解--分组分解法.即先对题目进行分组,然后再分解因式。

(分组分解法一般针对四项及以上的多项式)3. 因式分解的具体步骤:(1)先观察多项式是否有公因式,若有,则提取公因式。

(2)观察多项式的项数,两项,则考虑平方差公式;三项则考虑完全平方式与十字相乘法。

四项及以上则考虑分组分解。

(3)检查因式分解是否分解完全。

必须分解到不能分解位置。

再无特比说明的情况下,任何因式分解的题目都必须在有理数范围内进行分解。

1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是( )A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x【分析】根据因式分解的定义判断即可.【解答】解:A选项不是因式分解,故不符合题意;B选项计算错误,故不符合题意;C选项是因式分解,故符合题意;D选项不是因式分解,故不符合题意;故选:C.2.(2022•永州)下列因式分解正确的是( )A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)【分析】根据因式分解的定义和因式分解常用的两种方法:提公因式法和公式法判断即可.【解答】解:A选项,ax+ay=a(x+y),故该选项不符合题意;B选项,3a+3b=3(a+b),故该选项符合题意;C选项,a2+4a+4=(a+2)2,故该选项不符合题意;D选项,a2与b没有公因式,故该选项不符合题意;故选:B.3.(2022•湘西州)因式分解:m2+3m= .【分析】直接利用提取公因式法分解因式即可.【解答】解:原式=m(m+3).故答案为:m(m+3).4.(2022•广州)分解因式:3a2﹣21ab= .【分析】直接提取公因式3a,进而分解因式得出答案.【解答】解:3a2﹣21ab=3a(a﹣7b).故答案为:3a(a﹣7b).5.(2022•常州)分解因式:x2y+xy2= .【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).6.(2022•柳州)把多项式a2+2a分解因式得( )A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)【分析】直接提取公因式a,进而分解因式得出答案.【解答】解:a2+2a=a(a+2).故选:A.7.(2022•菏泽)分解因式:x2﹣9y2= .【分析】直接利用平方差公式分解因式得出答案.【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).8.(2022•烟台)把x2﹣4因式分解为 .【分析】利用平方差公式,进行分解即可解答.【解答】解:x2﹣4=(x+2)(x﹣2),故答案为:(x+2)(x﹣2).9.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9= .【分析】将m+n看作整体,利用完全平方公式即可得出答案.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.10.(2022•苏州)已知x+y=4,x﹣y=6,则x2﹣y2= .【分析】直接利用平方差公式将原式变形,代入得出答案.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.11.(2022•衡阳)因式分解:x2+2x+1= .【分析】本题运用完全平方公式进行因式分解即可.【解答】解:x2+2x+1=(x+1)2,故答案为:(x+1)2.12.(2022•济南)因式分解:a2+4a+4= .【分析】利用完全平方公式进行分解即可.【解答】解:原式=(a+2)2,故答案为:(a+2)2.13.(2022•宁波)分解因式:x2﹣2x+1= .【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.14.(2022•河池)多项式x2﹣4x+4因式分解的结果是( )A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)2【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣2)2.故选:D.15.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是( )A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)【分析】把所给公式中的b换成﹣b,进行计算即可解答.【解答】解:∵a3+b3=(a+b)(a2﹣ab+b2),∴a3﹣b3=a3+(﹣b3)=a3+(﹣b)3=[a+(﹣b)][(a2﹣a•(﹣b)+(﹣b)2]=(a﹣b)(a2+ab+b2)故选:A.16.(2022•绵阳)因式分解:3x3﹣12xy2= .【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3x(x2﹣4y2)=3x(x+2y)(x﹣2y).故答案为:3x(x+2y)(x﹣2y).17.(2022•丹东)因式分解:2a2+4a+2= .【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2.故答案为:2(a+1)2.18.(2022•辽宁)分解因式:3x2y﹣3y= .【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:3x2y﹣3y=3y(x2﹣1)=3y(x+1)(x﹣1),故答案为:3y(x+1)(x﹣1).19.(2022•恩施州)因式分解:a3﹣6a2+9a= .【分析】先提公因式a,再利用完全平方公式进行因式分解即可.【解答】解:原式=a(a2﹣6a+9)=a(a﹣3)2,故答案为:a(a﹣3)2.20.(2022•黔东南州)分解因式:2022x2﹣4044x+2022= .【分析】原式提取公因式2022,再利用完全平方公式分解即可.【解答】解:原式=2022(x2﹣2x+1)=2022(x﹣1)2.故答案为:2022(x﹣1)2.21.(2022•常德)分解因式:x3﹣9xy2= .【分析】利用提公因式法和平方差公式进行分解,即可得出答案.【解答】解:x3﹣9xy2=x(x2﹣9y2)=x(x+3y)(x﹣3y),故答案为:x(x+3y)(x﹣3y).22.(2022•怀化)因式分解:x2﹣x4= .【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(1﹣x2)=x2(1+x)(1﹣x).故答案为:x2(1+x)(1﹣x).23.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?( )A.﹣12B.﹣3C.3D.12【分析】根据十字相乘法可以将多项式39x2+5x﹣14分解因式,然后再根据多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),即可得到a、b、c的值,然后计算出a+2c的值即可.【解答】解:∵39x2+5x﹣14=(3x+2)(13x﹣7),多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),∴a=2,b=13,c=﹣7,∴a+2c=2+2×(﹣7)=2+(﹣14)=﹣12,故选:A.24.(2022•内江)分解因式:a4﹣3a2﹣4= .【分析】先利用十字相乘法因式分解,再利用平方差公式进行因式分解.【解答】解:a4﹣3a2﹣4=(a2+1)(a2﹣4)=(a2+1)(a+2)(a﹣2),故答案为:(a2+1)(a+2)(a﹣2).25.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为 .【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a2﹣b2=a﹣b,由此可得原式=a+b+9=10.方法二:将原式分为三部分,即a2﹣(b2﹣2b+1)+10,把前两部分利用平方差进行因式分解,其中得到一因式a+b﹣1=0.从而得出原式的值.【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.26.(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是 .【分析】将a2b+ab2因式分解,然后代入已知条件即可求值.【解答】解:a2b+ab2=ab(a+b),∵ab=2,a+b=3,∴原式=2×3=6.故答案为:6.。

分组法 因式分解专项练习30题(有答案)

分组法 因式分解专项练习30题(有答案)
=(2x2﹣3x)(2x2﹣3x﹣9)=x(2x﹣3)(2x+3)(x﹣3); (2)x4+7x3+14x2+7x+1=x4+4x3+6x2+4x+1+3x3+6x2+3x+2x2=[(x+1)2]2+3x(x+1)2+2x2,
=[(x+1)2+2x][(x+1)2+x]=(x2+4x+1)(x2+3x+1); (3)(x+y)3+2xy(1﹣x﹣y)﹣1=[(x+y)3﹣1]+2xy(1﹣x﹣y)=(x+y﹣1)[(x+y)2+x+y+1]﹣2xy(x+y﹣1)
分组法分解因式---- 2
26.m2﹣2mn+n2﹣am+an. 27.x2﹣2xy+y2+3x﹣3y+2. 28.(1)a2﹣2ab+b2﹣4; (2)x3﹣x2﹣4x+4. 29.a2x2﹣4+a2y2﹣2a2xy 30.(1)x2+9y2+4z2﹣6xy+4xz﹣12yz
(2)(a2+5a+4)(a25a+6)﹣120.
本小题可以稍加变形,直接使用公式,解法如下: 原式=a2+(﹣b)2+c2+2(﹣b)c+2ca+2a(﹣b)=(a﹣b+c)2. (4)原式=(a7﹣a5b2)+(a2b5﹣b7)=a5(a2﹣b2)+b5(a2﹣b2)=(a2﹣b2)(a5+b5)
=(a+b)(a﹣b)(a+b)(a4﹣a3b+a2b2﹣ab3+b4)=(a+b)2(a﹣b)(a4﹣a3b+a2b2﹣ab3+b4) 12.6x2﹣5xy﹣6y2+2x+23y﹣20=6x2﹣x(5y﹣2)﹣(6y2﹣23y+20)=6x2﹣x(5y﹣2)﹣(2y﹣5)(3y﹣4)

运用分组分解法因式分解专题讲解及训练

运用分组分解法因式分解专题讲解及训练

运用分组分解法因式分解专题讲解及训练1.分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.比如:am﹣an﹣bm+bn=(am﹣an)﹣(bm﹣bn)=a(m﹣n)﹣b(m﹣n)=(m﹣n)(a﹣b).2.因式分解一般要遵循的步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对能继续分解的多项式因式按以上步骤反复进行.以上步骤用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.注意:分组分解法分解因式常用的思路有:说明:分组方法的不同,仅仅是因为分解的手段不同,各种手段的目的都是把原多项式进行因式分解。

(1)对于四项式的两两分组,尽管方法不唯一,但是并不是任何两项结组都可达到目的,分组要注意合理性,四项式中的另一种三项,一项分组,这三项的一组中应使其成为完全平方公式,而剩下的一项必须能写成代数式的平方,且又与完全平方公式符号相反,则得到的形式,再用平方差公式分解。

(2)五项式一般采用三项、两项分组;(3)六项式采用三、三分组,或三、二、一分组,或二、二、二分组。

原多项式中带有括号时一般不便于分组时可先将括号去掉,整理后再分组分解。

【例题1】将多项式ax ay bx by +++因式分解【例题2】分解因式:322288x x y y x -+-【例题3】试用两种不同的分组方法把多项式x 2+xy-3x-3y 分解因式.一、选择题1.把多项式4x 2﹣2x ﹣y 2﹣y 用分组分解法分解因式,正确的分组方法应该是()A. (4x 2﹣y )﹣(2x+y 2)B. (4x 2﹣y 2)﹣(2x+y )C. 4x 2﹣(2x+y 2+y )D. (4x 2﹣2x )﹣(y 2+y ) 2.用分组分解法分解多项式时,分组正确的是( ) A. B. C.D.3.用分组分解法把分解因式,分组的方法有( )A. 4种B. 3种C. 2种D. 1种二、填空题1.因式分解=++-ay ax y x 22 ;2.(2021•聊城)因式分解:x (x ﹣2)﹣x+2= .3.分解因式:x 2+3x (x ﹣3)﹣9= .4.因式分解:x (x -3)-x+3=____________.5. 分解因式:a 2b+ab 2-a -b =________.三、解答题1.把ab ﹣a ﹣b+1分解因式。

初中数学《运用分组分解法分解因式》专项练习题(含答案)

初中数学《运用分组分解法分解因式》专项练习题(含答案)

因式分解-分组分解法一、选择题(本大题共4小题)1.下列各式正确的是()A、a﹣(b+c)=a﹣b+cB、x2﹣1=(x﹣1)2C、a2﹣ab+ac﹣bc=(a﹣b)(a+c)D、(﹣x)2÷x3=x(x≠0)2.把多项式ac﹣bc+a2﹣b2分解因式的结果是()A、(a﹣b)(a+b+c)B、(a﹣b)(a+b﹣c)C、(a+b)(a﹣b﹣c)D、(a+b)(a﹣b+c)3.若m>﹣1,则多项式m3﹣m2﹣m+1的值为()A、正数B、负数C、非负数D、非正数4.分解因式:x2﹣2xy+y2+x﹣y的结果是()A、(x﹣y)(x﹣y+1)B、(x﹣y)(x﹣y﹣1)C、(x+y)(x﹣y+1)D、(x+y)(x﹣y﹣1)二、填空题(本大题共2小题)5.解因式(ax+by)2+(bx﹣ay)2= .6.分解因式:x4﹣5x2+4x= .三、解答题(本大题共15小题)7.分解因式:22221--+a b a b8.分解因式:22--+-(1)12a b b b9.分解因式:5544+-+()x y x y xy10.分解因式:ax by bx ay--+11.分解因式:2-+-a m am abm bm5153912.分解因式:222221--+x y z x z y z13.分解因式:22---x x y y9314.因式分解:m2﹣mn+mx﹣nx= .15.分解因式:22+--abx bxy axy y16.分解因式:(1)(2)6---x x x17.分解因式:343-+a a18.已知2246130a b a b+--+=,求a b+的值.19.分解因式:444222222---+++a b c a b b c c a22220.分解因式:22()4a b ab c -+-21.分解因式:3232x x y y +--因式分解-分组分解法答案解析一 、选择题1.C2.A ;ac ﹣bc+a 2﹣b 2=c (a ﹣b )+(a ﹣b )(a+b )=(a ﹣b )(a+b+c ).3.C ;多项式m 3﹣m 2﹣m+1=(m 3﹣m 2)﹣(m ﹣1)=m 2(m ﹣1)﹣(m ﹣1)=(m ﹣1)2(m+1),∵m >﹣1,∴(m ﹣1)2≥0,m+1>0,∴m 3﹣m 2﹣m+1=(m ﹣1)2(m+1)≥0,故选C .4.A ;x 2﹣2xy+y 2+x ﹣y=(x 2﹣2xy+y 2)+(x ﹣y )=(x ﹣y )2+(x ﹣y )=(x ﹣y )(x ﹣y+1).二 、填空题5.(ax+by )2+(bx ﹣ay )2=a 2x 2+b 2y 2+2abxy+b 2x 2+a 2y 2﹣2abxy=a 2x 2+b 2x 2+b 2y 2+a 2y 2, =(a 2+b 2)x 2+(a 2+b 2)y 2=(a 2+b 2)(x 2+y 2).故答案为:(a 2+b 2)(x 2+y 2).6.x 4﹣5x 2+4x=x (x 3﹣x ﹣4x+4)=x[x (x 2﹣1)﹣4(x ﹣1)]=x[x (x ﹣1)(x+1)﹣4(x ﹣1)]=x (x ﹣1)(x 2+x ﹣4).故答案为:x (x ﹣1)(x 2+x ﹣4).三 、解答题 7.2222222221(1)(1)(1)(1)(1)(1)(1)(1)a b a b a b b a b a a b b --+=---=--=+-+- 8.22222(1)12(1)(1)(1)(1)a b b b a b b b a --+-=---=--9.原式44()()x x y y x y =---44()()x y x y =--22()()()()x y x y x y x y =--++222()()()x y x y x y =-++10.ax by bx ay --+()()ax bx ay by =-+-()()x a b y a b =-+-()().x y a b =+- ax by bx ay --+()()a x y b x y =+-+()()x y a b =+-11.原式[]2(51539)5(3)3(3)(3)(53)m a a ab b m a a b a m a a b =-+-=-+-=-+ 12.22222222221(1)(1)(1)(1)x y z x z y z x z y z y z y z x z --+=---=--13.原式=22(9)(3)(3)(3)(3)(3)(31)x y x y x y x y x y x y x y --+=+--+=+--14.m 2﹣mn+mx ﹣nx=(m 2﹣mn )+(mx ﹣nx )=m (m ﹣n )+x (m ﹣n )=(m ﹣n )(m+x ). 15.2222()()()()abx bxy axy y abx axy bxy y ax bx y y bx y bx y ax y +--=-+-=-+-=-+ 16.(1)(2)6x x x ---2(32)6x x x =-+-32326x x x =-+-2(3)2(3)x x x =-+-2(2)(3)x x =+-17.原式3()(33)a a a =---(1)(1)3(1)a a a a =+---2(1)(3)a a a =-+-或原式322()()(33)a a a a a =-+---2(1)(1)3(1)a a a a a =-+---2(1)(3)a a a =-+-.18.∵2246130a b a b +--+=,∴2244690a a b b -++-+=∴()()22230a b -+-=,∴2030a b -=⎧⎨-=⎩,∴23a b =⎧⎨=⎩,∴5a b += 19.444222222222a b c a b b c c a ---+++444222222(222)a b c a b b c c a =-++---44422222222(2224)a b c a b b c c a a b =-+++---22222[()(2)]a b c ab =-+--222222(2)(2)a b c ab a b c ab =-+-++--2222[()][()]a b c a b c =-+---()()()()a b c a b c a b c a b c =-+++--+--()()()()a b c a b c a b c b c a =+++--++-20.22()4a b ab c -+-22224a ab b ab c =-++-222222()a ab b c a b c =++-=+-()()a b c a b c =+-++21.原式3322()()x y x y =-+-22()()()()x y x xy y x y x y =-+++-+22()()x y x xy y x y =-++++。

因式分解之分组分解法

因式分解之分组分解法

因式分解之分组分解法例1.把下列各式分解因式:(1)2ac+3bc+6a+9b (2)2x3+x2-6x-3例2.把下列各式分解因式:(1)4a2-9b2-4a+1;(2)x2+l0xy-70y-49;(3)x5y-x3y+2x2y-xy;例3.分解因式x2-2xy+y2-3x+3y例4.分解因式ab(c2+d2)+cd(a2+b2).例5.3x2-x=1,求6x3+7x2-5x+200的值.例6.证明:对任意正整数n,3n+2-2n+2+3n-2n一定是l0的倍数.例7.将下列各式分解因式(1)x2+5x+4; (2)x2-7x+6;(3)y2-3y-28; (4)m2+3m-28.例8.把下列各式分解因式(1)p4-7p2+6; (2)(a+b)2-4(a+b)-21;(3)x2y2+2xy-15.例9.分解因式a2-4ab+3b2.例10.把下列各式分解因式(1)x4y2-5x2y2-14y2;(2)x2-10xy+25y2+6x-30y+8.例11.分解因式:(x+1)(x+2)(x+3)(x+4)+1例12.已知(m2-2)2-9(m2-2)+14=0,求m的值.答:一、选择题:1.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)2.x2-6x-16分解因式为( )A.(x-2)(x-8) B.(x+2)(x+8)C.(x+2)(x-8) D.(x-2)(x+8)3.x2-13xy-30y2分解因式为( )A.(x-3y)(x-l0y) B.(x+15y)(x-2y)C.(x+l0y)(x+3y) D.(x-15y)(x+2y)4.如果多项式x4-3x3-28x2的其中一个因式是x2,则另外两个因式是( )A.(x-4)(x+7) B.(x-4)(x-7)C.(x+4)(x-7) D.(x+4)(x+7)5.多项式x2+px-q(p>0,pq>0)分解因式的结果足(x+m)(x+n),则下列判断正确的是( ) A.mn<0 B.mn>0C.m>0且n>0 D.m<0且n<06.多项式a6+7a3-8分解因式后含有多少个因式( )A.1 B.2 C.3 D.47.如果x2-px+q=(x+a)(x+b),那么p等于( )A.ab B.a+b C.-ab D.-(a+b)8.若x2+(5+b)x+5b=x2-x-30,则b的值为( )A.5 B.-6 C.-5 D.69.如果多项式x2+ax-6可分解为两个整系数的一次因式的积,那么a可取的整数值为( ) A.4个B.3个C.2个D.1个二、判断题:10.x2+(a+b)x+ab=________;x2-(m-n)x-mn=_______11.3ax2+6axy+3ay2=_______12.已知x2-3x-54=(x+a)(x+b),则a与b的符号______13.已知x2-5xy+4y2=0,则x:y=______14.x2-2x-24能被(x+a)整除,则a=______三、把下列各式分解因式:15.(1)5m2+6n-15m-2mn;(2)ab-3b+7a2-2la;(3)a3-3b2+3ab-a2b;(4)ax2+3x2-4a-12.16.(1)x3 + x2y - x2z - xyz;(2)a2x + a2y - b2x - b2y;(3)m2n2 - x2y2- m2y2+ n2x2;(4)a4b+a3b+ab+b.17.(1)ax2+x2-a-1;(2)x3-4+x-4x2;(3)m3-m-8m2+8;(4)a2b2-a2-b2+1.18.(1)25x2-4a2+12ab-9b2;(2)a2+2ab+b2-ac-bc;(3)a2+2ab+b2-m2+2mn-n2;(4)x3 + x2y - xy2 - y3.19.(1)y(y-2)+4x(x-y+1);(2)3(ab+cd)-(bc+9ad);(3)1-ab(1-ab)-a3b3;(4)a(a-1)(a-2)-6.20.求值(1)已知a+b= ,a-b= ,求a2+ab-3a-3b的值;(2)已知a2+a+1=0,求a3+2a2+2a+3的值;(3)若x2+2x+y2-6y+10=0,求x,y的值;(4)已知a+b=0,求a3-2b3+a2b-2ab2的值.。

因式分解(分组分解法)专项练习100题及答案

因式分解(分组分解法)专项练习100题及答案

因式分解(分组分解法)专项练习100题及答案(1)2236493612672x y x y--+-(2)22163228a b ab bc ca-+-+ (3)2291833155a b ab bc ca++++ (4)227221272129x z xy yz zx---+ (5)40803570xy x y--++(6)2273554426x y xy yz zx++++ (7)226494249x y y-+-(8)28404260mx my nx ny-+-(9)35152812ab a b--+(10)70603530xy x y--++(11)72452415mx my nx ny--+ (12)362095xy x y-+-+(13)315735xy x y+--(14)222415401531x z xy yz zx--++ (15)222428684921a b ab bc ca++++ (16)581524ab a b--+(17)222510351435x y xy yz zx++++ (18)64248030ax ay bx by-+-(19)27361216mx my nx ny-+-(20)568070100xy x y+++(21)221421237a c ab bc ca-+--(22)222581707233m n m n-+++ (23)221681405416m n m n--++ (24)525315mn m n+++(25)22811610828a b a b-+++(26)40563042mn m n-+-(27)2249259870a b a b-+-(28)27632456xy x y+++(29)42212412ab a b-+-(30)203659mn m n+--(31)49282112xy x y-+-+(32)22821101526x z xy yz zx++--(33)22274984219x y xy yz zx++++ (34)22167124258a c ab bc ca++++(35)1860620mn m n+++(36)751410ab a b-+-(37)35561524ax ay bx by+--(38)224815181558a c ab bc ca++--(39)50507070xy x y--++(40)222835243063x z xy yz zx+-+-(41)42546381ax ay bx by--+(42)2228249718a c ab bc ca+--+ (43)7105680xy x y+--(44)36168136mx my nx ny-+-(45)14561456xy x y-++-(46)223630743563x y xy yz zx++--(47)22451035147a c ab bc ca--++ (48)222536307227m n m n-+--(49)228149185615x y x y-++-(50)609069xy x y-++-(51)2272463646a c ab bc ca+--+ (52)3211070xy x y----(53)2271242444a c ab bc ca ++--(54)8010405ab a b +++(55)229153262a b ab bc ca++--(56)22162516305a b a b -+--(57)327327xy x y -+-(58)22322141416x y xy yz zx -+--(59)24304050ax ay bx by--+(60)42302115xy x y +++(61)22949429m n n -+-(62)221664168021m n m n -++-(63)2214214337a b ab bc ca-++-(64)22156128a c ab bc ca-+++(65)2281361267213a b a b --++(66)81727264mn m n +++(67)222728153575a c ab bc ca++--(68)224215121053a c ab bc ca+-+-(69)22862a c ab bc ca--+-(70)222128281637a c ab bc ca-+-+(71)211248414x y xy yz zx++++(72)692030ab a b--+(73)22494701216m n m n-+-+ (74)2249812814460a b a b-++-(75)22512171525x y xy yz zx-+-+ (76)70404928ab a b-+-(77)22164912681x y y-+-(78)223411164x y xy yz zx---+ (79)40501620mn m n+--(81)22644144877m n m n---+ (82)351573ax ay bx by+++(83)228141443617a b a b--+-(84)223851010a c ab bc ca+--+ (85)35204224ab a b+++(86)356359mn m n--+(87)1830610ax ay bx by+++(88)221814322127x y xy yz zx+-+-(89)535407a b ab bc ca++++(90)42491214mx my nx ny+++ (91)222426419a c ab bc ca++--(92)60609090xy x y--+ (93)22254202845x y x y-++-(94)2218184615x z xy yz zx-+--(96)80705649mn m n+++ (97)226324975x z xy yz zx-+-+ (98)35255640xy x y-++-(99)42544254ax ay bx by-+-(100)72635649mx my nx ny+++因式分解(分组分解法)专项练习100题答案(1)(6712)(676)x y x y+--+(2)(8)(23)a b a b c-++(3)(3)(965)a b a b c+++ (4)(97)(833)x z x y z+--(5)5(87)(2)x y--+(6)(7)(756)x y x y z+++ (7)(837)(837)x y x y+--+ (8)2(23)(710)m n x y+-(9)(54)(73)a b--(10)5(21)(76)x y--+ (11)3(3)(85)m n x y--(12)(41)(95)x y-+-(13)(37)(5)x y-+(14)(355)(83)x y z x z-+-(15)(847)(37)a b c a b+++(16)(3)(58)a b--(17)(52)(557)x y x y z+++(18)2(45)(83)a b x y+-(19)(94)(34)m n x y+-(20)2(45)(710)x y++(21)(23)(77)a c ab c-++ (22)(593)(5911)m n m n++-+ (23)(498)(492)m n m n+---(24)(53)(5)m n++(25)(92)(914)a b a b++-+ (26)2(43)(57)m n+-(27)(7514)(75)a b a b++-(28)(98)(37)x y++(29)3(74)(21)a b+-(30)(41)(59)m n-+(31)(73)(74)x y-+-(32)(23)(457)x z x y z-+-(33)(37)(973)x y x y z+++(34)(27)(86)a c ab c+++ (35)2(31)(310)m n++(36)(2)(75)a b+-(37)(73)(58)a b x y-+(38)(833)(65)a b c a c+--(39)10(57)(1)x y--+ (40)(45)(767)x z x y z---(41)3(23)(79)a b x y--(42)(472)(7)a b c a c-++ (43)(8)(710)x y-+(44)(49)(94)m n x y+-(45)14(1)(4)x y---(46)(95)(467)x y x y z++-(47)(975)(52)a b c a c-+-(48)(569)(563)m n m n++--(49)(973)(975)x y x y+--+ (50)3(101)(23)x y---(51)(6)(764)a c ab c+-+ (52)(310)(7)x y-++(53)(6)(742)a c ab c-+-(54)5(21)(81)a b++(55)(952)(3)a b c a b+-+(56)(455)(451)a b a b++--(57)3(1)(9)x y+-(58)(87)(432)x y x y z+--(59)2(35)(45)a b x y--(60)3(21)(75)x y++(61)(373)(373)m n m n+--+(62)(483)(487)m n m n+--+(63)(27)(73)a b c a b+--(64)(32)(543)a c ab c++-(65)(9613)(961)a b a b+---(66)(98)(98)m n++(67)(37)(954)a c ab c-+-(68)(723)(65)a b c a c---(69)(86)()a b c a c-+-(70)(347)(74)a b c a c++-(71)(362)(72)x y z x y+++(72)(310)(23)a b--(73)(728)(722)m n m n++-+(74)(796)(7910)a b a b+--+ (75)(45)(53)x y z x y++-(76)(107)(74)a b+-(77)(479)(479)x y x y+--+ (78)(4)(34)x y x y z-++ (79)2(52)(45)m n-+(80)(3)(94)a b x y+-(81)(827)(8211)m n m n+---(82)(5)(73)a b x y++(83)(9217)(921)a b a b+--+(84)(354)(2)a b c a c-++(85)(56)(74)a b++(86)(71)(59)m n--(87)2(3)(35)a b x y++(88)(223)(97)x y z x y---(89)(55)(7)a b c a b+++ (90)(72)(67)m n x y++(91)(32)(82)a c ab c-+-(92)30(23)(1)x y--(93)(525)(529)x y x y+--+ (94)(926)(23)x y z x z++-(95)6(32)(2)a b x y++ (96)(107)(87)m n++ (97)(972)(7)x y z x z++-(98)(58)(75)x y---(99)6()(79)a b x y+-(100)(97)(87)m n x y++。

2020年中考复习 因式分解 专项练习 (含答案)

2020年中考复习 因式分解  专项练习 (含答案)

因式分解 专项练习第一部分 知识梳理因式分解:一、定义:把一个多项式分解成几个整式积的形式二、方法:1、提取公因式法:提取的是最大公因式,最大公因式的确定方法:①系数: ②相同因式或字母的 ③当首项系数是负数时,则连同 。

2、公式法(1)平方差式 a 2-b 2= 特点: ①项数: ②符号: ,结果(2)完全平方式 a 2±2ab+b 2= 特点: ①项数: ②符号:平方项 ,中间项 且是它们积的 ,结果(3)十字相乘 对于二次项系数为1的二次三项式q px x ++2,①当q>0时,分解成两个同号因数a ,b 的积,且a 、b 的符号与p 的符号相同,同时满足a +b=p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++ 分解因式.②当q<0时,分解成两个异号因数a ,b 的积,且绝对值较大的符号与p 的符号相同,同时满足a +b=p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++ 分解因式.(4)利用一元二次方程的根分解如果一元二次方程ax 2+bx+c=0的两根是x 1,x 2 那么二次三项式 ax 2+bx+c=a(x-x 1)(x-x 2) 其中ax 2+bx+c=0的两根是x 1,x 23、分组分解①分组可以提取公因式 :ma+na+mb+nb=(m+n)a+(m+n)b=(m+n)(a+b)②分组可以用公式: a 2-b 2+2bc-c 2=a 2-(b 2-2bc+c 2)=a 2-(b-c)2=(a+b-c)(a-b+c)三、多项式因式分解的一般步骤:首先提取公因式, ma +mb+mc=m(a+b+c)然后考虑用公式;二项考虑平方差, a 2-b 2=(a+b )(a-b)立方和差用一用; a 3±b 3= (a ±b )(a 2-+ab+b 2)三项考虑全平方, a 2±2ab+b 2=(a+b )2十字相乘试一试; x 2+px+q=x 2+(a+b)x+ab=(x+a)(x+b)四项分解用分组,分组提取公因式; ma+na+mb+nb=(m+n)a+(m+n)b=(m+n)(a+b)分组或者用公式。

初中数学因式分解专题训练及答案解析

初中数学因式分解专题训练及答案解析

七年级下数学因式分解专题训练一.选择题(共13小题)1.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2 C.x2+xy=x(x+y)D.x2+y2=(x+y)22.把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A.2B.3C.﹣2 D.﹣33.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1) B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)4.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x5.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+xy+y2D.x2﹣4x+46.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)27.下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y28.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)9.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)(x+y)C.x2﹣xy+xz﹣yz=(x﹣y)(x+z)D.x2﹣3x﹣10=(x+2)(x﹣5)10.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形11.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.412.(﹣8)2006+(﹣8)2005能被下列数整除的是()A.3B.5C.7D.913.如果x2+x﹣1=0,那么代数式x3+2x2﹣7的值为()A.6B.8C.﹣6 D.﹣8二.填空题(共12小题)14.若x2+4x+4=(x+2)(x+n),则n=_________.15.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是_________.16.因式分解:ax2y+axy2=_________.17.计算:9xy•(﹣x2y)=_________;分解因式:2x(a﹣2)+3y(2﹣a)=_________.18.若|m﹣4|+(﹣5)2=0,将mx2﹣ny2分解因式为_________.19.因式分解:(2x+1)2﹣x2=_________.20.分解因式:a3﹣ab2=_________.21.分解因式:a3﹣10a2+25a=_________.22.因式分解:9x2﹣y2﹣4y﹣4=_________.23.在实数范围内分解因式:x2+x﹣1=_________.24.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为_________.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:_________(写出一个即可).三.解答题(共5小题)26.化简:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2)27.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).28.在实数范围内分解因式:.29.计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3]30.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.七年级下数学因式分解专题训练参考答案与试题解析一.选择题(共13小题)1.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2 C.x2+xy=x(x+y)D.x2+y2=(x+y)2考点:因式分解的意义.分析:根据公式特点判断,然后利用排除法求解.解答:解:A、是平方差公式,正确;B、是完全平方公式,正确;C、是提公因式法,正确;D、两平方项同号,因而不能分解,错误;故选D.点评:本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.2.把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A.2B.3C.﹣2 D.﹣3考点:因式分解的意义.分析:根据因式分解与整式的乘法互为逆运算,把(x+1)(x+2)利用乘法公式展开即可求解.解答:解:∵(x+1)(x+2)=x2+2x+x+2=x2+3x+2,∴c=2.故选A.点评:本题主要考查了因式分解与整式的乘法互为逆运算.是中考中的常见题型.3.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1) B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)考点:因式分解的意义.分析:要找出“做得不够完整的一题”,实质是选出分解因式不正确的一题,只有选项A:x3﹣x=x(x2﹣1)没有分解完.解答:解:A、分解不彻底还可以继续分解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),B、C、D正确.故选A.点评:因式分解要彻底,直至分解到不能再分解为止.4.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式乘法,错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,错误;C、提公因式法,正确;D、右边不是积的形式,错误;故选C.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.5.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+xy+y2D.x2﹣4x+4考点:因式分解的意义.分析:根据多项式特点结合公式特征判断.解答:解:A、不能提公因式也不能运用公式,故本选项错误;B、同号不能运用平方差公式,故本选项错误;C、不符合完全平方公式,应该是x2+2xy+y2,故本选项错误;D、符合完全平方公式,正确;故选D.点评:本题主要考查了公式法分解因式的公式结构特点的记忆,熟记公式是解题的关键.6.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.7.下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y2考点:因式分解-运用公式法.分析:能用平方差公式进行因式分解的式子的特点是:两个平方项,符号相反;能用完全平方公式法进行因式分解的式子的特点是:两个平方项的符号相同,另一项是两底数积的2倍.解答:解:A、x2﹣xy只能提公因式分解因式,故选项错误;B、x2+xy只能提公因式分解因式,故选项错误;C、x2﹣y2能用平方差公式进行因式分解,故选项正确;D、x2+y2不能继续分解因式,故选项错误.故选C.点评:本题考查用公式法进行因式分解.能用公式法进行因式分解的式子的特点需识记.8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式分解即可.解答:解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选A.点评:本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.9.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)(x+y)C.x2﹣xy+xz﹣yz=(x﹣y)(x+z)D.x2﹣3x﹣10=(x+2)(x﹣5)考点:因式分解-十字相乘法等;因式分解的意义;因式分解-分组分解法.分析:根据公式法分解因式特点判断,然后利用排除法求解.解答:解:A、x2﹣y2=(x+y)(x﹣y),是平方差公式,正确;B、x2+y2,两平方项同号,不能运用平方差公式,错误;C、x2﹣xy+xz﹣yz=(x﹣y)(x+z),是分组分解法,正确;D、x2﹣3x﹣10=(x+2)(x﹣5),是十字相乘法,正确.故选B.点评:本题考查了公式法、分组分解法、十字相乘法分解因式,熟练掌握分解因式各种方法的特点对分解因式十分重要.10.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形考点:因式分解的应用.专题:因式分解.分析:把所给的等式a3+ab2+bc2=b3+a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.解答:解:∵a3+ab2+bc2=b3+a2b+ac2,∴a3﹣b3﹣a2b+ab2﹣ac2+bc2=0,(a3﹣a2b)+(ab2﹣b3)﹣(ac2﹣bc2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,所以a﹣b=0或a2+b2﹣c2=0.所以a=b或a2+b2=c2.故△ABC的形状是等腰三角形或直角三角形.故选C.点评:本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.11.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4考点:因式分解的应用.专题:新定义.分析:把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.解答:解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的.∴正确的有(1),(4).故选B.点评:本题考查题目信息获取能力,解决本题的关键是理解此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).12.(﹣8)2006+(﹣8)2005能被下列数整除的是()A.3B.5C.7D.9考点:因式分解的应用.分析:根据乘方的性质,提取公因式(﹣8)2005,整理即可得到是7的倍数,所以能被7整除.解答:解:(﹣8)2006+(﹣8)2005,=(﹣8)(﹣8)2005+(﹣8)2005,=(﹣8+1)(﹣8)2005,=﹣7×(﹣8)2005=7×82005.所以能被7整除.故选C.点评:本题考查提公因式法分解因式,关键在于提取公因式,然后再对所剩的因数进行计算.13.如果x2+x﹣1=0,那么代数式x3+2x2﹣7的值为()A.6B.8C.﹣6 D.﹣8考点:因式分解的应用.专题:整体思想.分析:由x2+x﹣1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可.解答:解:由x2+x﹣1=0得x2+x=1,∴x3+2x2﹣7=x3+x2+x2﹣7,=x(x2+x)+x2﹣7,=x+x2﹣7,=1﹣7,=﹣6.故选C.点评:本题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+x的值,然后利用“整体代入法”求代数式的值.二.填空题(共12小题)14.若x2+4x+4=(x+2)(x+n),则n=2.考点:因式分解的意义.专题:计算题.分析:根据因式分解与整式的乘法是互逆运算,把等式右边展开后根据对应项系数相等列式求解即可.解答:解:∵(x+2)(x+n)=x2+(n+2)x+2n,∴n+2=4,2n=4,解得n=2.点评:本题主要利用因式分解与整式的乘法是互逆运算.15.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.考点:公因式.分析:分别将多项式ax2﹣4a与多项式x2﹣4x+4进行因式分解,再寻找他们的公因式.解答:解:∵ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2),x2﹣4x+4=(x﹣2)2,∴多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.点评:本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.16.因式分解:ax2y+axy2=axy(x+y).考点:因式分解-提公因式法.分析:确定公因式为axy,然后提取公因式即可.解答:解:ax2y+axy2=axy(x+y).点评:本题考查了提公因式法分解因式,准确找出公因式是解题的关键.17.计算:9xy•(﹣x2y)=﹣3x3y2;分解因式:2x(a﹣2)+3y(2﹣a)=(a﹣2)(2x﹣3y).考点:因式分解-提公因式法;单项式乘多项式.专题:因式分解.分析:(1)根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,计算即可.(2)直接提取公因式(a﹣2)即可.解答:解:9xy•(﹣x2y)=﹣×9•x2•x•y•y=﹣3x3y2,2x(a﹣2)+3y(2﹣a)=(a﹣2)(2x﹣3y),故答案分别为:﹣3x3y2,(a﹣2)(2x﹣3y).点评:(1)本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.(2)本题考查了提公因式法分解因式,解答此题的关键把(a﹣y)看作一个整体,利用整体思想进行因式分解.18.若|m﹣4|+(﹣5)2=0,将mx2﹣ny2分解因式为(2x+5y)(2x﹣5y).考点:因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:偶次方.分析:先根据绝对值非负数,平方数非负数的性质列式求出m、n的值分别是4和25,然后代入多项式,再利用平方差公式进行因式分解即可.解答:解:|m﹣4|+(﹣5)2=0∴m﹣4=0,﹣5=0,解得:m=4,n=25,∴mx2﹣ny2,=4x2﹣25y2,=(2x+5y)(2x﹣5y).点评:本题主要考查利用平方差公式分解因式,根据非负数的性质求出m、n的值是解题的关键.19.因式分解:(2x+1)2﹣x2=(3x+1)(x+1).考点:因式分解-运用公式法.分析:直接运用平方差公式分解因式,两项平方的差等于这两项的和与这两项的差的积.解答:解:(2x+1)2﹣x2,=(2x+1+x)(2x+1﹣x),=(3x+1)(x+1).点评:本题主要考查平方差公式分解因式,熟记公式结构是解题的关键,本题难点在于把(2x+1)看作一个整体.20.分解因式:a3﹣ab2=a(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.解答:解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).点评:本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).21.分解因式:a3﹣10a2+25a=a(a﹣5)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续分解.解答:解:a3﹣10a2+25a,=a(a2﹣10a+25),(提取公因式)=a(a﹣5)2.(完全平方公式)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后可以利用完全平方公式继续进行二次分解,分解因式一定要彻底.22.因式分解:9x2﹣y2﹣4y﹣4=(3x+y+2)(3x﹣y﹣2).考点:因式分解-分组分解法.分析:此题可用分组分解法进行分解,可以将后三项分为一组,即可写成平方差的形式,利用平方差公式分解因式.解答:解:9x2﹣y2﹣4y﹣4,=9x2﹣(y2+4y+4),=9x2﹣(y+2)2,=(3x+y+2)(3x﹣y﹣2).点评:本题考查了分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.23.在实数范围内分解因式:x2+x﹣1=(x++)(x+).考点:实数范围内分解因式;因式分解-运用公式法.分析:本题考查对一个多项式进行因式分解的能力,当要求在实数范围内进行分解时,分解的结果一般要分到出现无理数为止,而且对于不能直接看出采用什么方法进行因式分解的多项式,则需进行变形整理,一般可以在保证式子不变的前提下添加一些项,如本题,因为有x2+x,所以可考虑配成完全平方式,再继续分解.解答:解:x2+x+﹣1=(x+)2﹣=(x+)2﹣()2=[(x+)+][(x+)﹣]=(x++)(x+).点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.同时还要结合式子特点进行适当的变形,以便能够分解.24.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为2.考点:因式分解的应用.分析:先根据题意把P=3xy﹣8x+1,Q=x﹣2xy﹣2分别代入3P﹣2Q=7中,再合并同类项,然后提取公因式,即可求出y的值.解答:解:∵P=3xy﹣8x+1,Q=x﹣2xy﹣2,∴3P﹣2Q=3(3xy﹣8x+1)﹣2(x﹣2xy﹣2)=7恒成立,∴9xy﹣24x+3﹣2x+4xy+4=7,13xy﹣26x=0,13x(y﹣2)=0,∵x≠0,∴y﹣2=0,∴y=2;故答案为:2.点评:此题考查了因式分解的应用,解题的关键是把要求的式子进行整理,然后提取公因式,是一道基础题.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:101030或103010或301010(写出一个即可).考点:因式分解的应用.专题:开放型.分析:把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.解答:解:4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10;2x+y=30;2x﹣y=10,用上述方法产生的密码是:101030或103010或301010.点评:本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三.解答题(共5小题)26.化简:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2)考点:因式分解-提公因式法.分析:先对前两项提取公因式(a﹣b)(a+b),整理后又可以继续提取公因式2b,然后整理即可.解答:解:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2),=(a﹣b)(a+b)(a+b﹣a+b)+2b(a2+b2),=2b(a2﹣b2)+2b(a2+b2),=2b(a2﹣b2+a2﹣b2),=4a2b.点评:本题考查了平方差公式,提公因式法分解因式,对部分项提取公因式后再次出现公因式是解题的关键,运用因式分解法求解比利用整式的混合运算求解更加简便.27.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).考点:提公因式法与公式法的综合运用.分析:先提取公因式(y2﹣1),再对余下的多项式利用完全平方公式继续分解,对公因式利用平方差公式分解因式.解答:解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1),=(y2﹣1)(x2+2x+1),=(y2﹣1)(x+1)2,=(y+1)(y﹣1)(x+1)2.点评:本题考查了提公因式法,公式法分解因式,难点在于提取公因式后需要对公因式和剩余项进行二次因式分解,分解因式一定要彻底.28.在实数范围内分解因式:.考点:实数范围内分解因式.分析:将原式化为(x2﹣2)+(x+)进行分解即可,前半部分可用平方差公式.解答:解:原式=(x2﹣2)+(x+)=(x+)(x﹣)+(x+)=(x+)(x﹣+1).点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.29.计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3]考点:因式分解的应用.专题:规律型.分析:本题要根据规律进行求解,我们发现式子的前两项可写成(1﹣a),那么(1﹣a)﹣a (1﹣a)用提取公因式法可得出(1﹣a)(1﹣a)=(1﹣a)2,再和下一项进行计算就是(1﹣a)2﹣a(1﹣a)2=(1﹣a)3,根据此规律,我们可得出原式=(1﹣a)2001﹣[(1﹣a)2001﹣3]=3.解答:解:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3],=(1﹣a)2000﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3],=(1﹣a)2001﹣[(1﹣a)2001﹣3],=3.点评:本题考查了提公因式法的应用,解题的关键是运用提取公因式法来找出式子的规律,从而求出答案.30.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.考点:因式分解的应用;列代数式.专题:规律型.分析:(1)第2所民办学校得到的奖金为:(总资金﹣第一所学校得到的奖金)÷n;第3所民办学校得到的奖金为:(总资金﹣第一所学校得到的奖金﹣第2所民办学校得到的奖金)÷n;(2)由(1)得k所民办学校所得到的奖金为a k=总资金÷n×(1﹣)n;(3)用a k表示出a k+1进行比较即可.解答:解:(1)因为第1所学校得奖金a1=,所以第2所学校得奖金a2=(b﹣)=(1﹣)所以第3所学校得奖金a3===(2)由上可归纳得到a k=(3)因为a k=,a k+1=,所以a k+1=(1﹣)a k<a k结果说明完成业绩好的学校,获得的奖金就多.点评:这是一道渗透新课程理念的好题.它以奖金发放为背景,以列代数式、因式分解、代数式的大小比较等相关知识为载体,考查了学生数感、符号感、数学建模能力、观察分析、归纳推理等能力.本题得分率较低,究其原因主要有:一是部份学生不能将文字语言转换成符号语言,二是部份学生不能在代数式的整理变形过程中总结发现规律.解决本题的关键一是充分理解题意,二要表示第k所民办学校所得到的奖金,就要在第2所、第3所民办学校得到的奖金(代数式)上发现规律,三要提高对代数式变形的技能.。

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案(1)1027014ax ay bx by+--(2)224981981848x y x y--++ (3)22285132535a b ab bc ca--+-(4)222712272015x y xy yz zx--+-(5)60106010mn m n+--(6)801006480xy x y-+-+(7)22872124x y xy yz zx-++-(8)22283251520a b ab bc ca+-+-(9)20282535xy x y----(10)222141939x y xy yz zx++--(11)1070428xy x y-++-(12)221510313521x y xy yz zx+--+ (13)2220358103a c ab bc ca-+-+ (14)60501815xy x y----(15)22365452511a c ab bc ca---+ (16)226123417x z xy yz zx+-+-(17)754935ab a b-+-(18)16884xy x y-++-(19)945945mx my nx ny--+ (20)22201839a c ca++(21)22672824a b ab bc ca-+--(22)2235121220a b ab bc ca--+-(23)9327ax ay bx by+--(24)8016204mx my nx ny+++ (25)2231024x z xy yz zx---+(26)15502480xy x y----(27)221535464935x y xy yz zx++++ (28)222035154928a b ab bc ca--+-(29)632412mx my nx ny+--(30)49214218xy x y+++(31)4085ax ay bx by+--(32)16364090xy x y-++-(33)2220619624x y xy yz zx-+-+ (34)368368mn m n--+(35)45633549ax ay bx by-+-(36)2244363217a b a b--++ (37)25304554mn m n-+-(38)104156xy x y+++(39)2221126432x z xy yz zx++--(40)24286070ab a b--+(41)2249281840a b a b-+++ (42)223625652016a b ab bc ca+-+-(43)226464489m n m---(44)223664369m n m---(45)224936568433a b a b-++-(46)22331039a b ab bc ca+-+-(47)226513510a b ab bc ca+-+-(48)2294937x z xy yz zx++--(49)754935mn m n-+-(50)2291018447a c ab bc ca+--+ (51)227221272129x z xy yz zx---+ (52)530636mx my nx ny+--(53)2249241827a b a b -+-+(54)312624xy x y --++(55)225625529x z xy yz zx-++-(56)242065xy x y +++(57)2282836x y xy yz zx++--(58)2216202548a c ab bc ca++++(59)22925204x y y ---(60)2230736637a c ab bc ca--++(61)221412461035x y xy yz zx+-+-(62)2245425733x z xy yz zx-+--(63)486486mn m n +++(64)2210530627a c ab bc ca+-+-(65)205164xy x y --++(66)2272524331x z xy yz zx----(67)2293021353a c ab bc ca-++-(68)848040ab a b +++(69)81451810ab a b -+-(70)223014354952x z xy yz zx+-+-(71)22123574a b ab bc ca -+--(72)222020mx my nx ny -+-(73)153357ab a b -+-(74)18126342mn m n +--(75)99010ax ay bx by+--(76)24241616mn m n -+-(77)16144035xy x y -+-(78)728455mx my nx ny-+-(79)5401080mx my nx ny+++(80)2254221212x y xy yz zx++++(81)20503280xy x y --+(82)552020ax ay bx by+--(83)22124236x y xy yz zx----(84)18244864mn m n -+-(85)9020276ax ay bx by+--(86)222418391232a b ab bc ca----(87)2292142866x z xy yz zx+-+-(88)222581101a b a ---(89)24361624ax ay bx by--+ (90)20104020mn m n-+-(91)229961x y y---(92)226416647265x y x y----(93)229424209m n m n----(94)2245220813a c ab bc ca--+-(95)22449325648m n m n--++ (96)22481412648x y x y-++-(97)22634276103x z xy yz zx+--+ (98)223030202461x z xy yz zx++--(99)221012352126a c ab bc ca+--+ (100)24275663ax ay bx by--+初中数学因式分解(分组分解法)练习100题答案(1)2(7)(5)a b x y-+(2)(798)(796)x y x y+---(3)(75)(45)a b a b c-+-(4)(935)(34)x y z x y+--(5)10(1)(61)m n-+(6)4(54)(45)x y-+-(7)(87)(3)x y x y z-+-(8)(75)(43)a b c a b---(9)(45)(57)x y-++ (10)(3)(743)x y x y z++-(11)2(52)(7)x y---(12)(527)(35)x y z x y-+-(13)(45)(527)a c ab c-++ (14)(103)(65)x y-++(15)(95)(45)a c ab c+--(16)(34)(23)x z x y z---(17)(7)(75)a b+-(18)4(21)(21)x y---(19)9()(5)m n x y--(20)(56)(43)a c a c++(21)(4)(67)a b c a b--+(22)(53)(744)a b a b c-+-(23)(3)(9)a b x y-+(24)4(4)(5)m n x y++ (25)(325)(2)x y z x z--+ (26)(58)(310)x y-++ (27)(357)(57)x y z x y+++(28)(557)(47)a b c a b+--(29)3(4)(2)m n x y-+ (30)(76)(73)x y++(31)(8)(5)a b x y-+(32)2(25)(49)x y---(33)(4)(566)x y x y z-++ (34)4(1)(92)m n--(35)(97)(57)a b x y+-(36)(2217)(221)a b a b+---(37)(59)(56)m n+-(38)(23)(52)x y++(39)(32)(726)x z x y z-+-(40)2(25)(67)a b--(41)(234)(2310)a b a b++-+(42)(45)(954)a b a b c---(43)(883)(883)m n m n+---(44)(683)(683)m n m n+---(45)(763)(7611)a b a b+--+(46)(3)(33)a b a b c---(47)(355)(2)a b c a b---(48)(9)(4)x z x y z-+-(49)(7)(75)m n+-(50)(92)(25)a c ab c+-+ (51)(97)(833)x z x y z+--(52)(56)(6)m n x y-+(53)(239)(233)a b a b++-+ (54)3(2)(4)x y--+(55)(5)(56)x z x y z++-(56)(41)(65)x y++(57)(423)(2)x y z x y+-+(58)(84)(25)a b c a c+++ (59)(352)(352)x y x y++--(60)(6)(567)a c ab c--+ (61)(72)(265)x y x y z---(62)(57)(96)x z x y z-++ (63)6(1)(81)m n++(64)(265)(5)a b c a c---(65)(54)(41)x y--+ (66)(935)(8)x y z x z--+(67)(35)(376)a c ab c++-(68)4(10)(21)a b++(69)(92)(95)a b+-(70)(672)(57)x y z x z---(71)(35)(47)a b c a b--+ (72)2(10)()m n x y+-(73)(37)(51)a b+-(74)3(27)(32)m n-+(75)(10)(9)a b x y-+ (76)8(32)(1)m n+-(77)(25)(87)x y+-(78)(85)(9)m n x y+-(79)5(2)(8)m n x y++ (80)(922)(6)x y z x y+++ (81)2(58)(25)x y--(82)5(4)()a b x y-+(83)(643)(2)x y z x y--+ (84)2(38)(34)m n+-(85)(103)(92)a b x y-+(86)(83)(364)a b a b c+--(87)(7)(943)x z x y z---(88)(591)(591)a b a b+---(89)4(32)(23)a b x y--(90)10(2)(21)m n+-(91)(331)(331)x y x y++--(92)(845)(8413)x y x y++--(93)(321)(329)m n m n++--(94)(94)(52)a b c a c-+-(95)(2712)(274)m n m n+---(96)(296)(298)x y x y+--+ (97)(76)(97)x z x y z+-+ (98)(645)(56)x y z x z+--(99)(53)(274)a c ab c+-+ (100)(37)(89)a b x y--。

中考数学专项练习因式分解分组分解法

中考数学专项练习因式分解分组分解法

中考数学专项练习因式分解分组分解法(含解析)(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学专项练习因式分解分组分解法(含解析)【一】单项选择题1.把ab﹣a﹣b+1分解因式的结果为〔〕A. 〔a+1〕〔b+1〕B. 〔a+1〕〔b﹣1〕C. 〔a﹣1〕〔b﹣1〕D. 〔a﹣1〕〔b+1〕2.把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是〔〕A. 〔4x2﹣y〕﹣〔2x+y2〕B. 〔4x2﹣y2〕﹣〔2x+y〕C. 4x2﹣〔2x+y2+y〕D. 〔4x2﹣2x〕﹣〔y2+y〕3.分解因式4﹣x2+2x3﹣x4 ,分组合理的是〔〕A. 〔4﹣x2〕+〔2x3﹣x4〕B. 〔4﹣x2﹣x4〕+ 2x3C. 〔4﹣x4〕+〔﹣x2+2x3〕D. 〔4﹣x2+2x3〕﹣x44.以下分解因式错误的选项是〔〕A. 15a2+5a=5a〔3a+1〕B. ﹣x2+y2=〔y+x〕〔y﹣x〕C. ax+x+ay+y=〔a+1〕〔x+y〕D. ﹣a2﹣4ax+4x2=﹣a〔a+4x〕+4x25.把多项式a3+2a2b+ab2﹣a分解因式正确的选项是〔〕A. 〔a2+ab+a〕〔a+b+1〕B. a〔a+b+1〕〔a+ b﹣1〕C. a〔a2+2ab+b2﹣1〕D. 〔a2+ab+a〕〔a 2+ab﹣a〕6.能分解成〔x+2〕〔y﹣3〕的多项式是〔〕A. xy﹣2x+3y﹣6B. xy﹣3y+2x﹣yC. ﹣6+2y﹣3x+x yD. ﹣6+2x﹣3y+xy7.把多项式ac-bc+a2-b2分解因式的结果是〔〕A. 〔a-b〕〔a+b+c〕B. 〔a-b〕〔a+b-c〕C. 〔a+b〕〔a-b-c〕D. 〔a+b〕〔a-b+c〕8.假设m>﹣1,那么多项式m3﹣m2﹣m+1的值为〔〕A. 正数B. 负数C. 非负数 D. 非正数9.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是〔〕A. 〔x+y+3〕〔x﹣y﹣1〕B. 〔x+y﹣1〕〔x﹣y+3〕C. 〔x+y﹣3〕〔x﹣y+1〕D. 〔x+y+1〕〔x﹣y﹣3〕10.分解因式:x2+y2+2xy-1=( )A. 〔x+y+1〕(x+y-1)B. 〔x+y-1〕(x-y -1)C. 〔x+y-1〕(x-y+1)D. 〔x-y+1〕(x+y +1)11.把多项式ab﹣1+a﹣b因式分解的结果是〔〕A. 〔a+1〕〔b+1〕B. 〔a﹣1〕〔b﹣1〕C. 〔a+1〕〔b﹣1〕D. 〔a﹣1〕〔b+1〕12.把多项式a2-2ab+b2-1分解因式,结果是( )A. B.C. D.13.以下因式分解错误的选项是〔〕A. x2﹣y2=〔x+y〕〔x﹣y〕B. x2+y2=〔x+y〕〔x+y〕C. x2﹣xy+xz﹣yz=〔x﹣y〕〔x+z〕D. x2﹣3x﹣10=〔x+ 2〕〔x﹣5〕14.以下四个等式中错误的选项是〔〕A. 1﹣a﹣b+ab=〔1﹣a〕〔1﹣b〕B. 1+a+b+ab=〔1+ a〕〔1+b〕C. 1﹣a+b+ab=〔1﹣a〕〔1+b〕D. 1+a﹣b﹣ab=〔1 +a〕〔1﹣b〕【二】填空题15.假设x2﹣y2﹣x+y=〔x﹣y〕•A,那么A=________.16.分解因式:x2﹣y2=________.ab﹣a﹣b+1=________.17.分解因式:a2﹣6a+9﹣b2=________.18.分解因式:x2+3x〔x﹣3〕﹣9=________.19.分解因式:xy﹣x﹣y+1=________.20.分解因式:=________21.分解因式x2﹣2xy+y2﹣4x+4y+3=________.22.分解因式:x2﹣y2﹣3x﹣3y=________【三】计算题23.因式分解:〔1〕x2﹣xy﹣12y2;〔2〕a2﹣6a+9﹣b224.假设|m﹣4|与n2﹣8n+16互为相反数,把多项式a2+4b2﹣mab﹣n因式分解.25.因式分解〔1〕3ax+6ay〔2〕25m2﹣4n2〔3〕3a2+a﹣10〔4〕ax2+2a2x+a3〔5〕x3+8y3〔6〕b2+c2﹣2bc﹣a2〔7〕〔a2﹣4ab+4b2〕﹣〔2a﹣4b〕+1〔8〕〔x2﹣x〕〔x2﹣x﹣8〕+12.【四】解答题26.先阅读以下材料,然后解答问题.分解因式mx+nxmy+ny=〔mx+ nx〕+〔my+ny〕=x〔m+n〕+y〔m+n〕=〔m+n〕〔x+y〕;也可以mx +nxmy+ny=〔mx+my〕+〔 nx+ny〕=m〔x+y〕+n〔x+y〕=〔m+n〕〔x +y〕.以上分解因式的方法称为分组分解法.请用分组分解法分解因式:a3﹣b3+a2b﹣ab2 .,b,c是△ABC的三边长,且满足,试判断△ABC 的形状。

分组法因式分解精彩试题练习(含问题详解)

分组法因式分解精彩试题练习(含问题详解)

分组法因式分解精彩试题练习(含问题详解)分组法因式分解试题练习一、单选题1.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A. (a2﹣c2)+(﹣2ab+b2)B. (a2﹣2ab+b2)﹣c2C. a2+(﹣2ab+b2﹣c2)D. (a2+b2)+(﹣2ab﹣c2)2.把多项式ab﹣1+a﹣b因式分解的结果是()A. (a+1)(b+1)B. (a﹣1)(b﹣1)C. (a+1)(b﹣1)D. (a﹣1)(b+1)3.把ab﹣a﹣b+1分解因式的结果为()A. (a+1)(b+1)B. (a+1)(b﹣1)C. (a﹣1)(b﹣1)D. (a﹣1)(b+1)4.把ab+a﹣b﹣1分解因式的结果为()A. (a+b)(b+1)B. (a﹣1)(b﹣1)C. (a+1)(b﹣1)D. (a﹣1)(b+1)5.把多项式a2﹣b2+2a+1分解因式得()A. (a+b)(a﹣b)+(2a+1)B. (a﹣b+1)(a+b﹣1)C. (a﹣b+1)(a+b+1)D. (a﹣b﹣1)(a+b+1)6.将多项式a2﹣9b2+2a﹣6b分解因式为()A. (a+2)(3b+2)(a﹣3b)B. (a﹣9b)(a+9b)C. (a﹣9b)(a+9b+2)D. (a﹣3b)(a+3b+2)7.分解因式:x2﹣2xy+y2+x﹣y的结果是()A. (x﹣y)(x﹣y+1)B. (x﹣y)(x﹣y﹣1)C. (x+y)(x﹣y+1)D. (x+y)(x﹣y﹣1)8.分解因式a2﹣b2+4bc﹣4c2的结果是()A. (a﹣2b+c)(a﹣2b﹣c)B. (a+2b﹣c)(a﹣2b+c)C. (a+b﹣2c)(a﹣b+2c)D. (a+b+2c)(a﹣b+2c)9.把x2﹣y2+2y﹣1分解因式结果正确的是()A. (x+y+1)(x﹣y﹣1)B. (x+y﹣1)(x﹣y+1)C. (x+y﹣1)(x+y+1)D. (x﹣y+1)(x+y+1)10.分解因式a2﹣2a+1﹣b2正确的是()A. (a﹣1)2﹣b2B. a(a﹣2)﹣(b+1)(b﹣1)C. (a+b﹣1)(a﹣b﹣1)D. (a+b)(a﹣b)﹣2a+1二、填空题11.分解因式:________.12.分解因式:x2﹣2x﹣2y2+4y﹣xy=________.13.分解因式:b2﹣ab+a﹣b=________.14.分解因式a2﹣2ab+b2﹣c2=________.15.因式分解:________16.因式分解:b2-ab+a-b=________.17.分解因式x2﹣2xy+y2﹣4x+4y+3=________.18.分解因式:x2﹣y2﹣3x﹣3y=________三、计算题19.因式分解.(1)a2-4a+4-b2;(2)a2-b2+a-b.20.把下列各式因式分解(1)(2)(3)21.分解因式(1)x3﹣2x2+3x﹣2(2)2x3+x2﹣5x﹣4(3)x3﹣x2+2x﹣8.22.把下列各式分解因式:(1)x2(a-1)+y2(1-a);(2)18(m+n)2-8(m-n)2;(3)x2-y2-z2+2yz.23.因式分解:24.分解因式(1)81m3-54m2+9m;(2)a2(x-y)+b2(y-x);(3)a2-b2-2b-1四、综合题25.因式分解:(1)﹣2ax2+8ay2;(2)4m2﹣n2+6n﹣9.答案解析部分一、单选题【解析】【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故答案为:B.【分析】根据完全平方公式的特点,这个多项式含有-2ab,因此将a2、﹣2ab、b2这三项分为一组,即(a2﹣2ab+b2)﹣c2即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019中考数学专题练习-因式分解分组分解法(含解析)一、单选题1.把ab﹣a﹣b+1分解因式的结果为()A. (a+1)(b+1)B. (a+1)(b﹣1)C. (a﹣1)(b﹣1)D. (a﹣1)(b+1)2.把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A. (4x2﹣y)﹣(2x+y2)B. (4x2﹣y2)﹣(2x+y)C. 4x2﹣(2x+y2+y)D. (4x2﹣2x)﹣(y2+y)3.分解因式4﹣x2+2x3﹣x4 ,分组合理的是()A. (4﹣x2)+(2x3﹣x4)B. (4﹣x2﹣x4)+2x3C. (4﹣x4)+(﹣x2+2x3)D. (4﹣x2+2x3)﹣x44.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y) D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x25.把多项式a3+2a2b+ab2﹣a分解因式正确的是()A. (a2+ab+a)(a+b+1)B. a(a+b+1)(a+b﹣1)C. a(a2+2ab+b2﹣1)D. (a2+ab+a)(a2+ab﹣a)6.能分解成(x+2)(y﹣3)的多项式是()A. xy﹣2x+3y﹣6B. xy﹣3y+2x﹣y C. ﹣6+2y﹣3x+xy D. ﹣6+2x﹣3y+xy7.把多项式ac-bc+a2-b2分解因式的结果是()A. (a-b)(a+b+c)B. (a-b)(a+b-c)C. (a+b)(a-b-c)D. (a+b)(a-b+c)8.若m>﹣1,则多项式m3﹣m2﹣m+1的值为()A. 正数B. 负数C. 非负数D. 非正数9.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A. (x+y+3)(x﹣y﹣1)B. (x+y﹣1)(x﹣y+3)C. (x+y﹣3)(x﹣y+1)D. (x+y+1)(x﹣y﹣3)10.分解因式:x2+y2+2xy-1=( )A. (x+y+1)(x+y-1)B. (x+y-1)(x-y-1)C. (x+y-1)(x-y+1)D. (x-y+1)(x+y+1)11.把多项式ab﹣1+a﹣b因式分解的结果是()A. (a+1)(b+1)B. (a﹣1)(b﹣1)C. (a+1)(b﹣1)D. (a﹣1)(b+1)12.把多项式a2-2ab+b2-1分解因式,结果是( )A.B.C.D.13.下列因式分解错误的是()A. x2﹣y2=(x+y)(x﹣y)B. x2+y2=(x+y)(x+y)C. x2﹣xy+xz﹣yz=(x﹣y)(x+z) D. x2﹣3x﹣10=(x+2)(x﹣5)14.下列四个等式中错误的是()A. 1﹣a﹣b+ab=(1﹣a)(1﹣b) B. 1+a+b+ab=(1+a)(1+b)C. 1﹣a+b+ab=(1﹣a)(1+b) D. 1+a﹣b﹣ab=(1+a)(1﹣b)二、填空题15.若x2﹣y2﹣x+y=(x﹣y)•A,则A=________.16.分解因式:x2﹣y2=________.ab﹣a﹣b+1=________.17.分解因式:a2﹣6a+9﹣b2=________.18.分解因式:x2+3x(x﹣3)﹣9=________.19.分解因式:xy﹣x﹣y+1=________.20.分解因式:=________21.分解因式x2﹣2xy+y2﹣4x+4y+3=________.22.分解因式:x2﹣y2﹣3x﹣3y=________三、计算题23.因式分解:(1)x2﹣xy﹣12y2;(2)a2﹣6a+9﹣b224.若|m﹣4|与n2﹣8n+16互为相反数,把多项式a2+4b2﹣mab﹣n因式分解.25.因式分解(1)3ax+6ay(2)25m2﹣4n2(3)3a2+a﹣10(4)ax2+2a2x+a3(5)x3+8y3(6)b2+c2﹣2bc﹣a2(7)(a2﹣4ab+4b2)﹣(2a﹣4b)+1(8)(x2﹣x)(x2﹣x﹣8)+12.四、解答题26.先阅读以下材料,然后解答问题.分解因式mx+nxmy+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y);也可以mx+nxmy+ny=(mx+my)+( nx+ny)=m(x+y)+n(x+y)=(m+n)(x+y).以上分解因式的方法称为分组分解法.请用分组分解法分解因式:a3﹣b3+a2b ﹣ab2 .27.已知a,b,c是△ABC的三边长,且满足,试判断△ABC 的形状。

28.分解因式:.五、综合题29.分解因式:(1)3x﹣12x3(2)a2﹣4a+4﹣b2 .30.把下列各式分解因式:(1)﹣9x2+24x﹣16(2)x2y2﹣x2(3)x2﹣2x﹣15(4)a2﹣b2﹣6a+6b.答案解析部分一、单选题1.把ab﹣a﹣b+1分解因式的结果为()A. (a+1)(b+1)B. (a+1)(b﹣1)C. (a﹣1)(b﹣1)D. (a﹣1)(b+1)【答案】C【考点】因式分解-分组分解法【解析】【解答】解:ab﹣a﹣b+1,=(ab﹣a)﹣(b﹣1),=a(b﹣1)﹣(b﹣1),=(b﹣1)(a﹣1).故选C.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题可采用两两分组的方法,一、三,二、四或一、二,三、四分组均可,然后再用提取公因式法进行二次分解2.把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A. (4x2﹣y)﹣(2x+y2)B. (4x2﹣y2)﹣(2x+y)C. 4x2﹣(2x+y2+y)D. (4x2﹣2x)﹣(y2+y)【答案】B【考点】因式分解-分组分解法【解析】【解答】解:原式=4x2﹣2x﹣y2﹣y,=(4x2﹣y2)﹣(2x+y),=(2x﹣y)(2x+y)﹣(2x+y),=(2x+y)(2x﹣y﹣1).故选B.【分析】把第一、三项为一组,利用平方差公式分解因式,二四项为一组,整理后再利用提公因式法分解因式即可.3.分解因式4﹣x2+2x3﹣x4 ,分组合理的是()A. (4﹣x2)+(2x3﹣x4)B. (4﹣x2﹣x4)+2x3C. (4﹣x4)+(﹣x2+2x3)D. (4﹣x2+2x3)﹣x4【答案】A【考点】因式分解-分组分解法【解析】【解答】解:4﹣x2+2x3﹣x4=(4﹣x2)+(2x3﹣x4)=(2+x)(2﹣x)+x3(2﹣x)=(2﹣x)(2+x+x3)=﹣(x﹣2)(x3+x+2).故选A.【分析】把4﹣x2+2x3﹣x4的前两项分为一组,后两项分为一组,这样每组有公因式(2﹣x),然后利用提公因式法分解.4.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y) D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x2【答案】D【考点】因式分解-分组分解法【解析】【解答】解:A、15a2+5a=5a(3a+1),正确;B、﹣x2+y2=(y+x)(y﹣x),正确;C、ax+x+ay+y=(ax+ay)+(x+y)=(a+1)(x+y),正确;D、﹣a2﹣4ax+4x2=﹣a(a+4x)+4x2结果不是积的形式,故本选项错误.故选D.【分析】根据提公因式法,平方差公式,分组分解法,完全平方公式,对各选项分解因式后利用排除法求解.5.把多项式a3+2a2b+ab2﹣a分解因式正确的是()A. (a2+ab+a)(a+b+1)B. a(a+b+1)(a+b﹣1)C. a(a2+2ab+b2﹣1)D. (a2+ab+a)(a2+ab﹣a)【答案】B【考点】因式分解-提公因式法,因式分解-分组分解法【解析】【分析】首先提取公因式a,然后前三项一组利用完全平方公式分解因式,再利用平方差公式分解即可.【解答】a3+2a2b+ab2﹣a,=a(a2+2ab+b2﹣1),=a[(a2+2ab+b2)﹣1)],=a[(a+b)2﹣1)],=a(a+b+1)(a+b﹣1).故选B.【点评】此题考查的是因式分解,首先提取公因式,然后利用分组分解法即可解决问题,其中分组后利用了完全平方公式和平方差公式.6.能分解成(x+2)(y﹣3)的多项式是()A. xy﹣2x+3y﹣6B. xy﹣3y+2x﹣y C. ﹣6+2y﹣3x+xy D. ﹣6+2x﹣3y+xy【答案】C【考点】因式分解-分组分解法【解析】【解答】解:(x+2)(y﹣3)=xy﹣3x+2y﹣6.故选:C.【分析】直接利用多项式乘法去括号得出答案.7.把多项式ac-bc+a2-b2分解因式的结果是()A. (a-b)(a+b+c)B. (a-b)(a+b-c)C. (a+b)(a-b-c)D. (a+b)(a-b+c)【答案】A【考点】因式分解-分组分解法【解析】【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2-b2正好符合平方差公式,应考虑为一组,ac-bc可提公因式,为一组.【解答】ac-bc+a2-b2 ,=c(a-b)+(a-b)(a+b),=(a-b)(a+b+c).故选A.【点评】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题中a2-b2正好符合平方差公式,应考虑为一组,ac-bc可提公因式,为一组.8.若m>﹣1,则多项式m3﹣m2﹣m+1的值为()A. 正数B. 负数C. 非负数D. 非正数【答案】C【考点】因式分解的应用,因式分解-分组分解法【解析】【解答】解:多项式m3﹣m2﹣m+1,=(m3﹣m2)﹣(m﹣1),=m2(m﹣1)﹣(m﹣1),=(m﹣1)(m2﹣1)=(m﹣1)2(m+1),∵m>﹣1,∴(m﹣1)2≥0,m+1>0,∴m3﹣m2﹣m+1=(m﹣1)2(m+1)≥0,故选C.【分析】解此题时可把多项式m3﹣m2﹣m+1分解因式,根据分解的结果即可判断.9.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A. (x+y+3)(x﹣y﹣1)B. (x+y﹣1)(x﹣y+3)C. (x+y﹣3)(x﹣y+1)D. (x+y+1)(x﹣y﹣3)【答案】D【考点】因式分解-分组分解法【解析】【解答】解:x2﹣y2﹣2x﹣4y﹣3=(x2﹣2x+1)﹣(y2+4y+4)=(x﹣1)2﹣(y+2)2=[(x﹣1)+(y+2)][(x﹣1)﹣(y+2)]=(x+y+1)(x﹣y﹣3).故选D.【分析】先把x2﹣y2﹣2x﹣4y﹣3转化为(x2﹣2x+1)﹣(y2+4y+4),因为前三项、后三项符合完全平方公式,然后根据平方差公式进一步分解.10.分解因式:x2+y2+2xy-1=( )A. (x+y+1)(x+y-1)B. (x+y-1)(x-y-1)C. (x+y-1)(x-y+1)D. (x-y+1)(x+y+1)【答案】A【考点】因式分解-分组分解法【解析】【分析】根据前三项是一个完全平方式,后一个1可化成平方数形式,因此可利用分组分解法来进行因式分解.【解答】x2+y2+2xy-1,=(x+y)2-1,=(x+y+1)(x+y-1).故选:A【点评】本题考查了分组分解法分解因式,分组后组与组之间可以继续进行因式分解是分组的关键.11.把多项式ab﹣1+a﹣b因式分解的结果是()A. (a+1)(b+1)B. (a﹣1)(b﹣1)C. (a+1)(b﹣1)D. (a﹣1)(b+1)【答案】D【考点】提公因式法因式分解,分组分解法因式分解【解析】【解答】解:ab﹣1+a﹣b=(ab﹣b)+(a﹣1)=b(a﹣1)+(a﹣1)=(a﹣1)(b+1);ab﹣1+a﹣b=(ab+a)﹣(b+1)=a(b+1)﹣(b+1)=(a﹣1)(b+1).故答案为:D.【分析】先利用分组分解法,第一组利用提公因式法分解,然后两组之间利用提公因式法分解到每一个因式都不能再分解为止。

相关文档
最新文档