平面向量基础练习题(1)
高中数学平面向量基础提高练习题含答案【选择填空精选50题难度分类】(最新)
高中数学 平面向量 选择填空题精选50道一、选择题(共36题)【基础题】1. 下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功;⑨电流强度;⑩摩擦系数,其中不是向量的有( )A. 4个B. 5个C. 6个D. 7个2. 下列六个命题中正确的是 ( )①两个向量相等,则它们的起点相同,终点相同; ②若丨a 丨=丨b 丨,则a =b ; ③若AB →=DC →,则ABCD 是平行四边形; ④平行四边形ABCD 中,一定有AB →=DC →;⑤若m =n ,n =k ,则m =k ; ⑥若a ∥b ,b ∥c ,则a ∥c. A. ①②③ B. ④⑤ C. ④⑤⑥ D. ⑤⑥3. 以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量4. 已知B 是线段AC 的中点,则下列各式正确的是( ) (A )AB →=-BC → (B )AC →=21BC →(C )BA →=BC → (D )BC →=21AC → 5. 下列四式不能化简为AD →的是()(A )(AB →+CD →)+BC → (B )(AD →+MB →)+(BC →+CM →)(C )MB →+AD →-BM →(D )OC →-OA →+CD →6、已知向量等于则MN ON OM 21),1,5(),2,3(--=-=( ) A .)1,8(B .)1,8(-C .)21,4(-D .)21,4(-7、已知向量),2,1(),1,3(-=-=则23--的坐标是()A .)1,7(B .)1,7(--C .)1,7(-D .)1,7(-8. 与向量a=(-5,4)平行的向量是( )A.(-5k,4k )B.(-k 5,-k4) C.(-10,2) D.(5k,4k)9. 已知),1,(),3,1(-=-=x 且∥b ,则x 等于( ) A .3B .3-C .31D .31-10.已知→a =()1,21,→b =(),2223-,下列各式正确的是( )(A ) 22⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛→→b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行11. 在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是()(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形【中等难度】12、下面给出的关系式中正确的个数是()① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 313. 已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→−BE =( )(A ) →b +→a 21 (B ) →b -→a 21 (C ) →a +→b 21 (D ) →a -→b 2114.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a(B ))(21→→-a b(C ) →a +→b 21 (D ))(21→→+b a15. 设a ,b 为不共线向量, AB →=a +2b , BC →=-4 a -b ,CD →=-5 a -3 b ,则下列关系式中正确的是( )(A )AD →=BC → (B )AD →=2BC → (C )AD →=-BC → (D )AD →=-2BC →16. 设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是()(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数17. 在ABC ∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足-2PA PM =,则()PA PB PC ⋅+等于( ) A.49 B.43 C.43- D. 49-18. 已知a 、b 均为单位向量,它们的夹角为60°,那么丨a +3b 丨=( )A .7B .10C .13D .419.已知| |=4, |b |=3, 与b 的夹角为60°,则| +b |等于()。
高中数学6.3《平面向量基本定理及坐标表示》基础过关练习题
第六章 6.3 6.3.2 6.3.3 6.3.4A 级——基础过关练1.给出下面几种说法: ①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标; ③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点、该点为终点的向量一一对应. 其中正确说法的个数是( ) A .1 B .2 C .3D .4【答案】C 【解析】由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误.2.设i ,j 是平面直角坐标系内分别与x 轴、y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( )A .(1,-2)B .(7,6)C .(5,0)D .(11,8)【答案】D 【解析】因为OA →=(4,2),OB →=(3,4),所以2OA →+OB →=(8,4)+(3,4)=(11,8). 3.(2020年重庆月考)若向量a =(1,-2),b =(3,-1),则与a +b 共线的向量是( ) A .(-1,1) B .(-3,-4) C .(-4,3)D .(2,-3)【答案】C 【解析】向量a =(1,-2),b =(3,-1),则a +b =(4,-3),所以与a +b 共线的向量是λ(4,-3),其中λ∈R .当λ=-1时,共线向量是(-4,3).故选C .4.(2020年宁波月考)已知A (-1,2),B (2,-1),若点C 满足AC →+AB →=0,则点C 坐标为( )A .⎝⎛⎭⎫12,12B .(-3,3)C .(3,-3)D .(-4,5)D 【解析】设C (x ,y ),由A (-1,2),B (2,-1),得AC →=(x +1,y -2),AB →=(3,-3).又AC →+AB →=0,∴AC →=-AB →,即⎩⎪⎨⎪⎧x +1=-3,y -2=3,解得⎩⎪⎨⎪⎧x =-4,y =5.∴点C 坐标为(-4,5).故选D .5.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,且∠AOC =45°,设OC →=λOA →+(1-λ)OB →(λ∈R ),则λ的值为( )A .15B .13C .25D .23【答案】C 【解析】如图所示,因为∠AOC =45°,所以设C (x ,-x ),则OC →=(x ,-x ).又因为A (-3,0),B (0,2),所以λOA →+(1-λ)OB →=(-3λ,2-2λ).所以⎩⎪⎨⎪⎧x =-3λ,-x =2-2λ⇒λ=25.6.(2020年道里区校级期中)我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为《周髀算经》作注时给出的,被后人称作“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成的,若AB →=a ,AD →=b ,E 为BF 的中点,则AE →=( )A .45a +25bB .25a +45bC .43a +23bD .23a +43b【答案】A 【解析】如图所示,建立直角坐标系.设AB =1,BE =x ,则AE =2x .∴x 2+4x 2=1,解得x =55.设∠BAE =θ,则sin θ=55,cos θ=255.∴x E =255cos θ=45,y E =255sin θ=25.设AE →=mAB →+nAD →,则⎝⎛⎭⎫45,25=m (1,0)+n (0,1).∴m =45,n =25.∴AE →=45a +25b .故选A .7.(2020年苏州期末)已知A (2,-3),B (8,3),若AC →=2CB →,则点C 的坐标为________. 【答案】(6,1) 【解析】设C (x ,y ),∵A (2,-3),B (8,3),AC →=2CB →,∴(x -2,y +3)=2(8-x,3-y )=(16-2x,6-2y ).∴⎩⎪⎨⎪⎧x -2=16-2x ,y +3=6-2y ,解得x =6,y =1.∴点C 的坐标为(6,1).8.(2020年广州模拟)已知向量a =(3,-2),b =(m,1).若向量(a -2b )∥b ,则m =________. 【答案】-32 【解析】∵向量a =(3,-2),b =(m,1),∴a -2b =(3-2m ,-4).∵(a -2b )∥b ,∴-4m =3-2m .∴m =-32.9.已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°. (1)求向量OA →的坐标;(2)若B (3,-1),求BA →的坐标.解:(1)设点A (x ,y ),则x =43cos 60°=23,y =43sin 60°=6,即A (23,6),OA →=(23,6).(2)BA →=(23,6)-(3,-1)=(3,7).10.如图,已知点A (4,0),B (4,4),C (2,6),求AC 与OB 的交点P 的坐标.解:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ), 则AP →=OP →-OA →=(4λ-4,4λ).连接OC ,则AC →=OC →-OA →=(-2,6).由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34.所以OP →=34OB →=(3,3).所以点P 的坐标为(3,3).B 级——能力提升练11.已知向量a =(1+λ,2),b =(3,4),若a ∥b ,则实数λ=( ) A .-113B .-52C .12D .53【答案】C 【解析】a ∥b ,∴4(1+λ)=6,即λ=12.12.已知a =(3,1),若将向量-2a 绕坐标原点逆时针旋转120°得到向量b ,则b 的坐标为( )A .(0,4)B .(23,-2)C .(-23,2)D .(2,-23)【答案】B 【解析】∵a =(3,1),∴-2a =(-23,-2).易知向量-2a 与x 轴正半轴的夹角α=150°(如图).向量-2a 绕坐标原点逆时针旋转120°得到向量b ,在第四象限,与x 轴正半轴的夹角β=30°,∴b =(23,-2).故选B .13.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)【答案】D 【解析】由题意,得4a +4b -2c +2(a -c )+d =0,则d =-4a -4b +2c -2(a -c )=-6a -4b +4c =(-2,-6).14.向量a =(sin θ,cos θ),b =(1,2),则|a|=________;若向量a ,b 不能作为一组基底,则tan θ=________.【答案】1 12【解析】∵a =(sin θ,cos θ),∴|a |=sin 2θ+cos 2θ=1.∵向量a ,b 不能作为一组基底,∴a ∥b ,则2sin θ-cos θ=0,得tan θ=12.15.设向量OA →绕点O 逆时针旋转π2得向量OB →,且2OA →+OB →=(7,9),则向量OB →=________.【答案】⎝⎛⎭⎫-115,235 【解析】设OA →=(m ,n ),则OB →=(-n ,m ),所以2OA →+OB →=(2m -n,2n +m )=(7,9),即⎩⎪⎨⎪⎧2m -n =7,m +2n =9,解得⎩⎨⎧m =235,n =115.因此,OB →=⎝⎛⎭⎫-115,235. 16.已知点A (2,3),B (5,4),C (7,10)及AP →=AB →+λAC →(λ∈R ). (1)λ为何值时,点P 在第一、三象限的角平分线上?(2)四边形ABCP 能成为平行四边形吗?若能,求出相应的λ的值;若不能,请说明理由.解:设点P 的坐标为(x ,y ),则AP →=(x -2,y -3),AB →=(3,1),AC →=(5,7).∵AP →=AB →+λAC →,∴(x -2,y -3)=(3,1)+λ(5,7),即⎩⎪⎨⎪⎧x =5λ+5,y =7λ+4,∴P (5λ+5,7λ+4).(1)当点P 在第一、三象限的角平分线上时,由5λ+5=7λ+4得λ=12.(2)AB →=(3,1),PC →=(2-5λ,6-7λ).若四边形ABCP 为平行四边形,需AB →=PC →,于是⎩⎪⎨⎪⎧2-5λ=3,6-7λ=1.方程组无解,故四边形ABCP 不能成为平行四边形. 17.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →=a ,OB →=b ,OC →=c ,且|a|=2,|b|=1,|c|=3,试用a ,b 表示c.解:如图,以O 为原点,向量OA →所在的直线为x 轴建立平面直角坐标系.因为|a |=2,所以a =(2,0).设b =(x 1,y 1),所以x 1=|b |·cos 150°=1×⎝⎛⎭⎫-32=-32,y 1=|b |sin 150°=1×12=12 .所以b =⎝⎛⎭⎫-32,12 .同理可得c =⎝⎛⎭⎫-32,-332 .设c =λ1a +λ2b (λ1,λ2∈R ),所以⎝⎛⎭⎫-32,-332=λ1(2,0)+λ2⎝⎛⎭⎫-32,12=⎝⎛⎭⎫2λ1-32λ2,12λ2.所以⎩⎨⎧2λ1-32λ2=-32,12λ2=-332,解得⎩⎪⎨⎪⎧λ1=-3,λ2=-3 3.所以c =-3a -33b.C 级——探索创新练18.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点.若A ,B ,C 三点共线,则1a +1b的最小值为________.【答案】32+2 【解析】AB →=OB →-OA →=(2-a ,-2),AC →=OC →-OA →=(b +2,-4).由A ,B ,C 三点共线,得2(2-a )=b +2,即2a +b =2,所以a +b 2=1.所以1a +1b =a +b 2a +a +b 2b =32+b 2a +a b ≥32+212=32+2,当且仅当b 2a =a b ,即a =12,b =22时等号成立,所以最小值为32+ 2. 19.已知向量u =(x ,y )与向量v =(y,2y -x )的对应关系用v =f (u )表示. (1)求证:对任意向量a ,b 及常数m ,n ,恒有f (m a +n b )=mf (a )+nf (b )成立; (2)设a =(1,1),b =(1,0),求向量f (a )及f (b )的坐标; (3)求使f (c )=(p ,q )(p ,q 是常数)的向量c 的坐标. (1)证明:设a =(a 1,a 2),b =(b 1,b 2), 则m a +n b =(ma 1+nb 1,ma 2+nb 2),∴f (m a +n b )=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1),mf (a )+nf (b )=m (a 2,2a 2-a 1)+n (b 2,2b 2-b 1)=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1), ∴f (m a +n b )=mf (a )+nf (b )成立. (2)解:f (a )=(1,2×1-1)=(1,1), f (b )=(0,2×0-1)=(0,-1).(3)解:设c=(x,y),则f(c)=(y,2y-x)=(p,q),∴y=p,2y-x=q,∴x=2p-q,即向量c=(2p-q,p).。
高中数学6.4《平面向量的应用》基础过关练习题
第六章 6.4 6.4.1 6.4.2A 级——基础过关练1.两个大小相等的共点力F 1,F 2,当它们夹角为90°时,合力大小为20 N ,则当它们的夹角为120°时,合力大小为( )A .40 NB .10 2 NC .20 2 ND .10 3 N【答案】B 【解析】|F 1|=|F 2|=|F |cos 45°=102,当θ=120°时,由平行四边形法则知|F 合|=|F 1|=|F 2|=10 2 N.2.(2020年北京期末)已知正方形ABCD 的边长为1,设AB →=a ,BC →=b ,AC →=c ,则|a -b +c|等于( )A .0B .2C .2D .22【答案】C 【解析】如图,a +b =c ,则|a -b +c|=|2a|.又|a|=1,∴|a -b +c|=2.故选C .3.点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点【答案】D 【解析】∵OA →·OB →=OB →·OC →,∴(OA →-OC →)·OB →=0.∴OB →·CA →=0.∴OB ⊥AC .同理OA ⊥BC ,OC ⊥AB ,∴O 为三条高的交点.4.(2020年深圳期中)已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,那么F 2的大小为( )A .5 3 NB .5 NC .10 ND .5 2 N【答案】A 【解析】由题意可知对应向量如图.由于α=60°,∴F 2的大小为|F 合|·sin60°=10×32=5 3 N .故选A .5.已知直角梯形ABCD 中,AB ⊥AD ,AB =2,DC =1,AB ∥DC ,则当AC ⊥BC 时,AD =( )A .1B .2C .3D .4【答案】A 【解析】建立平面直角坐标系,如图所示.设AD =t (t >0),则A (0,0),C (1,t ),B (2,0),则AC →=(1,t ),BC →=(-1,t ).由AC ⊥BC 知AC →·BC →=-1+t 2=0,解得t =1,故AD =1.6.一纤夫用牵绳拉船沿直线方向前进60 m ,若牵绳与行进方向夹角为30°,纤夫的拉力为50 N ,则纤夫对船所做的功为________J.【答案】1 5003 【解析】所做的功W =60×50×cos 30°=1 5003(J).7.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则y 与x 的函数关系式为________.【答案】y =-12x +2 【解析】OP →·OA →=(x ,y )·(1,2)=x +2y =4,∴x +2y -4=0,则y=-12x +2.8.在四边形ABCD 中,已知AB →=(4,-2),AC →=(7,4),AD →=(3,6),则四边形ABCD 的面积是________.【答案】30 【解析】BC →=AC →-AB →=(3,6)=AD →,又因为AB →·BC →=(4,-2)·(3,6)=0,所以四边形ABCD 为矩形.又|AB →|=42+(-2)2=25,|BC →|=32+62=35,所以S =|AB→||BC →|=25×35=30.9.如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长.解:设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b|=a 2-2a·b +b 2=1+4-2a·b =5-2a·b =2,所以5-2a·b =4.所以a·b =12.又|AC →|2=|a +b|2=a 2+2a·b +b 2=1+4+2a·b =6,所以|AC →|=6,即AC = 6.10.质量m =2.0 kg 的木块,在平行于斜面向上的拉力|F|=10 N 的作用下,沿倾斜角θ=30°的光滑斜面向上滑行|s |=2.0 m 的距离(g 取9.8 N/kg).(1)分别求物体所受各力对物体所做的功;(2)在这个过程中,物体所受各力对物体做功的代数和是多少?解:(1)木块受三个力的作用,重力G ,拉力F 和支持力F N ,如图所示.拉力F 与位移s 方向相同,所以拉力对木块所做的功为W F =F·s =|F|·|s |cos 0°=20(J).支持力F N 的方向与位移方向垂直,不做功,所以W N =F N ·s =0.重力G 对物体所做的功为W G =G·s =|G||s |cos(90°+θ)=-19.6(J).(2)物体所受各力对物体做功的代数和为W =W F +W N +W G =0.4(J).B 级——能力提升练11.△ABC 中,若动点D 满足CA →2-CB →2+2AB →·CD →=0,则点D 的轨迹一定通过△ABC 的( )A .外心B .内心C .垂心D .重心【答案】A 【解析】取AB 的中点E ,则CA →2-CB →2+2AB →·CD →=(CA →+CB →)·(CA →-CB →)+2AB →·CD →=2CE →·BA →+2AB →·CD →=2AB →·(CD →-CE →)=2AB →·ED →=0,∴AB ⊥ED ,即点D 在AB 的垂直平分线上.∴点D 的轨迹一定通过△ABC 的外心.12.如图,用两根分别长52米和10米的绳子,将100 N 的物体吊在水平屋顶AB 上,平衡后,G 点距屋顶距离恰好为5米,绳子的重量忽略不计,则A 处所受力的大小为( )A .1202-50 6 NB .1502-50 6 NC .1203-50 2 ND .1503-50 2 N【答案】B 【解析】如图,由已知条件可知AG 与垂直方向成45°角,BG 与垂直方向成60°角.设A 处所受力为F a ,B 处所受力为F b ,物体的重力为G ,∠EGC =60°,∠EGD =45°,则有|F a |·cos 45°+|F b |cos 60°=G =100①,且|F a |·sin 45°=|F b |sin 60°②.由①②解得|F a |=1502-50 6.故选B .13.(2020年太原月考)在△ABC 中,若AD →=13AB →+12AC →,记S 1=S △ABD ,S 2=S △ACD ,S 3=S △BCD ,则下列结论正确的是( )A .S 3S 1=23B .S 2S 3=12C .S 2S 1=23D .S 1+S 2S 3=163【答案】C 【解析】如图,作AE →=13AB →,AF →=12AC →,则AD →=AE →+AF →,∴四边形AEDF是平行四边形.∴S △ADE =S △ADF .设△ABD 的边AB 上的高为h 1,△ACD 的边AC 上的高为h 2,则12|AE →|h 1=12|AF →|h 2,∴13·⎝⎛⎭⎫12|AB →|h 1=12·⎝⎛⎭⎫12|AC →|h 2.∴13S 1=12S 2.∴S 2S 1=1312=23.故选C .14.如图所示,已知点A (4,0),B (4,4),C (2,6),则AC 和OB 的交点P 的坐标为________.(3,3) 【解析】设P (x ,y ),OB →=(4,4),OP →=(x ,y ),由于OB →∥OP →,所以x -y =0.AC →=(-2,6),AP →=(x -4,y ),由于AP →∥AC →,所以6(x -4)+2y =0.可得x =3,y =3,故P 的坐标是(3,3).15.已知P ,Q 为△ABC 内的两点,且AQ →=14AC →+12AB →,AP →=12AC →+14AB →,则△APQ 的面积与△ABC 的面积之比为________.【答案】316 【解析】如图,根据题意,P ,Q 为△ABC 中位线DE ,DF 的中点,PQ =12EF =14BC ,而A 到PQ 的距离是到BC 距离的34,根据三角形的面积公式可知,S △APQ =316S △ABC .16.若a ,b 是两个不共线的非零向量,t ∈R .(1)t 为何值时,共起点的三个向量a ,t b ,13(a +b )的终点在一条直线上?(2)若|a|=|b|且a 与b 的夹角为60°,t 为何值时,|a -t b |最小?解:(1)由题意得a -t b 与a -13(a +b )共线,则设a -t b =m ⎣⎡⎦⎤a -13(a +b ),m ∈R ,化简得⎝⎛⎭⎫23m -1a =⎝⎛⎭⎫m 3-t b .因为a 与b 不共线,所以⎩⎨⎧23m -1=0,m 3-t =0,解得⎩⎨⎧m =32,t =12.所以当t =12时,a ,t b ,13(a +b )三个向量的终点在一条直线上.(2)因为|a|=|b|,所以|a -t b |2=(a -t b )2=|a |2+t 2|b |2-2t |a||b |cos 60°=(1+t 2-t )|a |2=⎣⎡⎦⎤⎝⎛⎭⎫t -122+34·|a |2.所以当t =12时,|a -t b |有最小值32|a |.17.某人骑车以每小时a 千米的速度向东行驶,感到风从正北方向吹来;而当速度为每小时2a 千米时,感到风从东北方向吹来,试求实际风速和方向.解:设a 表示此人以每小时a 千米的速度向东行驶的向量,无风时此人感到风速为-a .设实际风速为v ,那么此时人感到风速为v -a ,设OA →=-a ,OB →=-2a ,PO →=v .因为PO →+OA →=P A →,所以P A →=v -a ,这就是感到由正北方向吹来的风速.因为PO →+OB →=PB →,所以PB →=v -2a .于是当此人的速度是原来的2倍时所感受到由东北方向吹来的风速就是PB →.由题意∠PBO =45°,P A ⊥BO ,BA =AO ,从而,△POB 为等腰直角三角形,所以PO =PB =2a ,即|v |=2a .所以实际风速是每小时2a 千米的西北风.C 级——探索创新练18.在△ABC 中,AC =BC =33AB =1,且CE →=xCA →,CF →=yCB →,其中x ,y ∈(0,1),且x +4y =1.若M ,N 分别为线段EF ,AB 中点,则线段MN 的最小值为________.【答案】77【解析】如图,连接CM ,CN ,∵等腰三角形ABC 中,AC =BC =1,AB =3,∴∠ACB =120°.∴CA →·CB →=|CA →|·|CB →|cos 120°=-12.又CM 是△CEF 的中线,∴CM →=12(CE→+CF →)=12(xCA →+yCB →).同理可得CN →=12(CA →+CB →),∴MN →=CN →-CM →=1-x 2CA →+1-y 2CB →.∴MN→2=(1-x )24+(1-x )(1-y )2×⎝⎛⎭⎫-12+(1-y )24.由x +4y =1,得1-x =4y ,代入上式得MN →2=214y 2-32y +14.又x ,y ∈(0,1),∴当y =17时,MN →2取得最小值17,此时|MN →|的最小值为77,即线段MN 的最小值为77.。
平面向量的基本概念及线性运算练习题(基础、经典、好用)
平面向量的基本概念及线性运算一、选择题1.(2013·湛江质检)若a +c 与b 都是非零向量,则“a +b +c =0”是“b ∥(a +c )”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.设P 是△ABC 所在平面内的一点,BC→+BA →=2BP →,则( ) A.P A →+PB→=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB→+PC →=0 3.下列命题中是真命题的是( )①对任意两向量a 、b ,均有:|a |-|b |<|a |+|b |;②对任意两向量a 、b ,a -b 与b -a 是相反向量;③在△ABC 中,AB→+BC →-AC →=0; ④在四边形ABCD 中,(AB→+BC →)-(CD →+DA →)=0. A .①②③ B .②④ C .②③④ D .②③4.已知A 、B 、C 三点共线,点O 在该直线外,若OB →=λOA →+μOC →,则λ+μ的值为( )A .0B .1C .2D .35.(2013·佛山调研)已知e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,则a 与b 共线的条件是( )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=0二、填空题6.如图4-1-2所示,向量a -b =________(用e 1,e 2表示).图4-1-27.(2013·揭阳模拟)已知点O 为△ABC 外接圆的圆心,且OA→+OB →+OC →=0,则△ABC 的内角A 等于________.8.已知向量a ,b 是两个非零向量,则在下列四个条件中,能使a 、b 共线的条件是________(将正确的序号填在横线上).①2a -3b =4e ,且a +2b =-3e ;②存在相异实数λ、μ,使λa +μb =0;③xa +yb =0(实数x ,y 满足x +y =0);④若四边形ABCD 是梯形,则AB→与CD →共线. 三、解答题图4-1-39.(2013·清远调研)如图4-1-3所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,求实数m 的值. 10.设a ,b 是不共线的两个非零向量.(1)若OA→=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线. (2)若AB→=a +b ,BC →=2a -3b ,CD →=2a -kb ,且A 、C 、D 三点共线,求k 的值. 11.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →|AB→|+AC →|AC →|),λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心.解析及答案一、选择题1.【解析】 若a +b +c =0,则b =-(a +c ),∴b ∥(a +c );若b ∥(a +c ),则b =λ(a +c ),当λ≠-1时,a +b +c ≠0,因此“a +b +c =0”是“b ∥(a +c )”的充分不必要条件.【答案】 A2.【解析】 由BC→+BA →=2BP →知,点P 是线段AC 的中点, 则PC →+P A →=0.【答案】 B3.【解析】 ①假命题.∵当b =0时,|a |-|b |=|a |+|b |.∴该命题不成立.②真命题,这是因为(a -b )+(b -a )=0,∴a -b 与b -a 是相反向量.③真命题.∵AB→+BC →-AC →=AC →-AC →=0. ④假命题.∵AB→+BC →=AC →,CD →+DA →=CA →, ∴(AB→+BC →)-(CD →+DA →)=AC →-CA →=AC →+AC →≠0, ∴该命题不成立.【答案】 D4.【解析】 因为A 、B 、C 三点共线,所以AB→=kAC →, ∴OB→-OA →=k (OC →-OA →),所以OB →=OA →+kOC →-kOA →, ∴OB→=(1-k )OA →+kOC →,又因为OB →=λOA →+μOC →,所以λ=1-k ,μ=k ,所以λ+μ=1. 【答案】 B5.【解析】 若e 1与e 2共线,则e 2=λ′e 1,∴a =(1+λλ′)e 1,此时a ∥b ,若e 1与e 2不共线,设a =μb ,则e 1+λe 2=μ·2e 1,∴λ=0,1-2μ=0.【答案】 D二、填空题6.【解析】 由图知,a -b =BA →=e 1+(-3e 2)=e 1-3e 2. 【答案】 e 1-3e 27.【解析】 由OA→+OB →+OC →=0,知点O 为△ABC 重心,又O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.【答案】 60°8.【解析】 由①得10a -b =0,故①对.②对.对于③当x =y =0时,a 与b 不一定共线,故③不对.若AB ∥CD ,则AB→与CD →共线,若AD ∥BC ,则AB →与CD →不共线,故④不对. 【答案】 ①②三、解答题9.【解】 如题图所示,AP→=AB →+BP →, ∵P 为BN 上一点,则BP→=kBN →, ∴AP→=AB →+kBN →=AB →+k (AN →-AB →), 又AN →=13NC →,即AN →=14AC →, 因此AP →=(1-k )AB →+k 4AC →, 所以1-k =m ,且k 4=211,解得k =811.则m =1-k =311.10.【解】 (1)证明 AB →=OB →-OA →=a +2b ,AC→=OC →-OA →=-a -2b . 所以AC→=-AB →,又因为A 为公共点, 所以A 、B 、C 三点共线.(2)AC→=AB →+BC →=(a +b )+(2a -3b )=3a -2b , 因为A 、C 、D 三点共线,所以AC→与CD →共线. 从而存在实数λ使AC →=λCD →,即3a -2b =λ(2a -kb ),解得λ=32,k =43,所以k =43.11.【解】 如图,记AM →=AB →|AB →|,AN →=AC →|AC→|,则AM →,AN →都是单位向量, ∴|AM→|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.。
平面向量加减法(印)
向量概念加减法•基础练习、选择题1若a是任一非零向量,b是单位向量,下列各式①丨a丨>| b |;②a // b ;③丨—* —*■—Fa | > 0:④丨b | =± 1;⑤==b,其中正确的有()aA.①④⑤B.③C.①②③⑤D.②③⑤2. 四边形ABCD中,若向量AB与CD是共线向量,则四边形ABCD()A.是平行四边形B.是梯形C.是平行四边形或梯形D.不是平行四边形,也不是梯形3•把平面上所有单位向量归结到共同的始点,那么这些向量的终点所构成的图形是()A. —条线段B. —个圆面C.圆上的一群弧立点D. —个圆—fe-f—t —1- f f —1-4. 若a ,—ip b是两个不平行的非零向量,并且—¥■—*a // c,b // c,则向量c等于()A.0B. aC. bD.c不存在5. 向量(AB + MB ) + ( BO + BC ) + OM化简后等于()A.BC B . AB C.AC D . AM6.—b-a、b为非零向量,且1―b- —fea + b1 = 1 a | + 1b |则()—tf ―—I-―卜-I-―卜—kA. a // b且a、b方向相同B. a = bC. a =- bD.以上都不对7.化简(AB-CD ) + (BE - DE)的结果是( )一A.CAB. 0 C . AC D. AE&在四边形ABCD中, AC =AB + AD,则() A. ABCD是矩形 B. ABCD是菱形 C. ABCD是正方形D. ABCD是平行四边形9.已知正方形ABCD勺边长为1, AB=a,AC=c, BC =b ,则| a + b+c |为( )9.已知正方形 ABCD 勺边长为1, AB =a ,AC =c , BC =b ,则| a + b +c |为() A. 0 B . 3 C. .. 2D. 2 2 10 .下列四式不能化简为 AD 的是() A. ( AB + CD ) + BCB . ( AD + MB ) + ( BC + CM ) C. MB +AD -BM D. OC - OA + CD11 .设b 是a 的相反向量,则下列说法错误的是() A. a 与b 的长度必相等B . a // bC . a 与b 一定不相等D. a 是b 的相反向量 12 .如果两非零向量a 、b 满足:| a | >| b | ,那么a 与b 反向,则( )―卜 —!■—k ―卜 —F ― A. | a +b | =| a 1 - | b |B. | a -b 1 =| a | - | b |C. | a - b | = | b 1 - | a |D. | a + b 1 =| a | + | b | 、判断题1 . 向量AB 与BA 是两平行向量.( )2 . 若a 是单位向量, b 也是单位向量,则 —fc> —fe ( )3 . 长度为1且方向向东的向量是单位向量, 长度为1 而方 向为北偏东 30° 的向量就不是单 位向量.() 4. 与任一向量都平行的向量为 0向量.( )5. 若AB = DC ,则A B C D 四点构成平行四边形.( )7.设O 是正三角形ABC 的中心,则向量 AB 的长度是OA 长度的3倍.( )9. 在坐标平面上,以坐标原点 O 为起点的单位向量的终点 P 的轨迹是单位圆.( )10. 凡模相等且平行的两向量均相等. ( )三、填空题 1 -1 •已知四边形 ABCD 中,AB=— DC ,且| AD | = | BC | ,则四边形 ABCD 的形状2 是 _______ .2.已知 AB = a , BC = b , CD = c , DE =d , AE = e ,贝U a +b +c + d = . 5. a ="向东走4km" , b ="向南走3km",贝U|3. 已知 OA = a , OB =b ,且 | a | = | b | =4, Z AOB=60 ① 求 | a +b | ,| a - b | ② 求a + b 与a 的夹角,a - b 与a 的夹角. 2.已知△ ABC 试用几何法作出向量: BA + BC , CA +CB . 3•已知向量a 、b 的模分别为3,4,则| a -b I 的取值范围为4. 已知 | OA | =4, | OB | =8, Z AOB=60 ,贝, AB四、解答题1•作图。
高中数学必修二6.1《平面向量的概念》高频考点练习题目含答案解析
第六章平面向量及其应用6.1 平面向量的概念课后篇巩固提升必备知识基础练1.有下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥功.其中,不是向量的个数是( )A.1B.2C.3D.4,又有方向,所以它们是向量;而质量、路程和功只有大小,没有方向,所以它们不是向量,故不是向量的个数是3.2.在同一平面上,把向量所在直线平行于某一直线的一切向量的起点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一条直线C.圆上一群孤立的点D.一个半径为1的圆,而向量所在直线平行于同一直线,所以随着向量模的变化,向量的终点构成的是一条直线.3.如图所示,在正三角形ABC 中,P ,Q ,R 分别是AB ,BC ,AC 的中点,则与向量PQ⃗⃗⃗⃗⃗ 相等的向量是( )A.PR ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗B.AR ⃗⃗⃗⃗⃗ 与RC⃗⃗⃗⃗⃗ C.RA ⃗⃗⃗⃗⃗ 与CR ⃗⃗⃗⃗⃗ D.PA ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗,方向相同,因此AR ⃗⃗⃗⃗⃗ 与RC ⃗⃗⃗⃗⃗ 都是和PQ ⃗⃗⃗⃗⃗ 相等的向量. 4.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 的形状为 ( )A.正方形B.矩形C.菱形D.等腰梯形BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ 知,AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形.5.(多选题)(2021福建福清期中)下列说法正确的是( )A.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 是菱形B.在平行四边形ABCD 中,一定有AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗C.若a =b ,b =c ,则a =cD.若a ∥b ,b ∥c ,则a ∥cA,由BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,知AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形,又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形,故A 正确;对于B,在平行四边形ABCD 中,对边平行且相等,AB ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的方向相同,所以AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,故B 正确;对于C,由向量相等的定义知,当a =b ,b =c 时,有a =c ,故C 正确;对于D,当b =0时不成立,故D 错误.故选ABC .6.(多选题)设点O 是正方形ABCD 的中心,则下列结论正确的是( ) A.AO ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ B.BO ⃗⃗⃗⃗⃗ ∥DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线 D.AO ⃗⃗⃗⃗⃗ =BO⃗⃗⃗⃗⃗图,∵AO ⃗⃗⃗⃗⃗ 与OC⃗⃗⃗⃗⃗ 方向相同,长度相等,∴选项A 正确; ∵BO ⃗⃗⃗⃗⃗ 与DB ⃗⃗⃗⃗⃗⃗ 的方向相反, ∴BO ⃗⃗⃗⃗⃗ ∥DB ⃗⃗⃗⃗⃗⃗ ,选项B 正确; ∵AB ∥CD ,∴AB⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线, ∴选项C 正确; ∵AO ⃗⃗⃗⃗⃗ 与BO ⃗⃗⃗⃗⃗ 方向不同,∴AO ⃗⃗⃗⃗⃗ ≠BO⃗⃗⃗⃗⃗ ,∴选项D 错误. 7.如图,四边形ABCD ,CEFG ,CGHD 都是全等的菱形,HE 与CG 相交于点M ,则下列关系不一定成立的是( )A.|AB ⃗⃗⃗⃗⃗ |=|EF ⃗⃗⃗⃗⃗ |B.AB ⃗⃗⃗⃗⃗ 与FH ⃗⃗⃗⃗⃗ 共线C.BD ⃗⃗⃗⃗⃗⃗ 与EH ⃗⃗⃗⃗⃗⃗ 共线D.DC ⃗⃗⃗⃗⃗ 与EC⃗⃗⃗⃗⃗ 共线,直线BD 与EH 不一定平行,因此BD ⃗⃗⃗⃗⃗⃗ 不一定与EH ⃗⃗⃗⃗⃗⃗ 共线,C 项错误. 8.如图所示,4×3的矩形(每个小方格的边长均为1),在起点和终点都在小方格的顶点处的向量中,试问: (1)与AB⃗⃗⃗⃗⃗ 相等的向量共有几个? (2)与AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有几个? (3)与AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有几个?与向量AB⃗⃗⃗⃗⃗ 相等的向量共有5个(不包括AB ⃗⃗⃗⃗⃗ 本身). (2)与向量AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有24个. (3)与向量AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有2个. 关键能力提升练9.已知a 为单位向量,下列说法正确的是( ) A.a 的长度为一个单位长度 B.a 与0不平行C.与a 共线的单位向量只有一个(不包括a 本身)D.a 与0不是平行向量已知a 为单位向量,∴a 的长度为一个单位长度,故A 正确;a 与0平行,故B 错误;与a 共线的单位向量有无数个,故C 错误;零向量与任何向量都是平行向量,故D 错误. 10.(多选题)如图,在菱形ABCD 中,∠DAB=120°,则以下说法正确的是( )A.与AB⃗⃗⃗⃗⃗ 相等的向量只有一个(不包括AB ⃗⃗⃗⃗⃗ 本身) B.与AB⃗⃗⃗⃗⃗ 的模相等的向量有9个(不包括AB ⃗⃗⃗⃗⃗ 本身) C.BD ⃗⃗⃗⃗⃗⃗ 的模为DA ⃗⃗⃗⃗⃗ 模的√3倍 D.CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 不共线项,由相等向量的定义知,与AB⃗⃗⃗⃗⃗ 相等的向量只有DC ⃗⃗⃗⃗⃗ ,故A 正确;B 项,因为AB=BC=CD=DA=AC ,所以与AB ⃗⃗⃗⃗⃗ 的模相等的向量除AB ⃗⃗⃗⃗⃗ 外有9个,故B 正确;C 项,在Rt △ADO 中,∠DAO=60°,则DO=√32DA ,所以BD=√3DA ,故C 正确;D 项,因为四边形ABCD 是菱形,所以CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 共线,故D 错误.11.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是 .(填序号)a =b ,则a 与b 大小相等且方向相同,所以a ∥b ;若|a |=|b |,则a 与b 的大小相等,而方向不确定,因此不一定有a ∥b ;方向相同或相反的向量都是平行向量,因此若a 与b 方向相反,则有a ∥b ;零向量与任意向量平行,所以若|a |=0或|b |=0,则a ∥b .12.如图,四边形ABCD 和ABDE 都是边长为1的菱形,已知下列说法: ①AE ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ 都是单位向量; ②AB ⃗⃗⃗⃗⃗ ∥DE ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ ∥DC ⃗⃗⃗⃗⃗ ; ③与AB⃗⃗⃗⃗⃗ 相等的向量有3个(不包括AB ⃗⃗⃗⃗⃗ 本身); ④与AE ⃗⃗⃗⃗⃗ 共线的向量有3个(不包括AE⃗⃗⃗⃗⃗ 本身); ⑤与向量DC⃗⃗⃗⃗⃗ 大小相等、方向相反的向量为DE ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ . 其中正确的是 .(填序号)由两菱形的边长都为1,故①正确;②正确;③与AB ⃗⃗⃗⃗⃗ 相等的向量是ED ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,故③错误;④与AE ⃗⃗⃗⃗⃗ 共线的向量是EA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,DB⃗⃗⃗⃗⃗⃗ ,故④正确;⑤正确.13.已知在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,tan D=√3,判断四边形ABCD 的形状.在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ , ∴AB DC ,∴四边形ABCD 是平行四边形. ∵tan D=√3,∴∠B=∠D=60°.又|AB⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,∴△ABC 是等边三角形. ∴AB=BC ,故四边形ABCD 是菱形.学科素养创新练14.如图所示的方格纸由若干个边长为1的小正方形组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC⃗⃗⃗⃗⃗ |=√5.(1)画出所有的向量AC⃗⃗⃗⃗⃗ ;⃗⃗⃗⃗⃗ |的最大值与最小值.(2)求|BC⃗⃗⃗⃗⃗ 如图所示.(2)由(1)所画的图知,⃗⃗⃗⃗⃗ |取得最小值√12+22=√5;①当点C位于点C1或C2时,|BC⃗⃗⃗⃗⃗ |取得最大值√42+52=√41.②当点C位于点C5或C6时,|BC⃗⃗⃗⃗⃗ |的最大值为√41,最小值为√5.∴|BC。
初中数学平面向量基础专项练习题(含答案)
A.0 个 B.1 个 C.2 个 D.无数个
10.如图所示,已知点 G 是△ABC 的重心,过点 G 作直线与 AB,AC 两边分别交于 M,N 两
1
点,且
AM
xAB,
AN
yAC
,则
xy x y
的值为(
)
A...3. B...13. . C...2. D...12..
11.设 a , b 是两个非零向量,下列命题正确的是( ) A.若 a b a b ,则 a b B.若 a b ,则 a b a b
28.已知 e1 , e2 为不共线的单位向量,
m
1 4
,n
ke1 e2 (k R)
,若
mn
1 4
恒成
立,则 e1 , e2 的夹角的最小值为_________
29.(本小题满分 12 分)已知△ABC 在平面直角坐标系 xOy 中,其顶点 A,B,C 坐标分别
为 A(2,3) , B(1,6) , C(2 cos ,2sin ) .
可以唯一地表示成 c a b ( , 为实数),则实数 m 的取值范围是( )
A.(-∞,2)
B.
6 5
,
C.(-∞,-2)∪(-2,+∞)
D.
,
6 5
6 5
,
7.已知 RtABC ,点 D 为斜边 BC 的中点, AB 6
2,
AC 6 ,
AE
1
ED
,则
2
AE EB 等于 A. -14
∴ ( + )=2
故选 D.
19. 1
20.120° 由条件知|a|= 5 ,|b|=2 5 ,a+b=(-1,-2),∴|a+b|= 5 ,∵(a+b)·c= 5 ,
平行向量基本定理题型练习-高一下学期数学人教A版(2019)必修第二册
第六章 6.3.1 平行向量基本定理【基础篇】题型1 平面向量基本定理的理解1.已知{e 1,e 2}是平面内所有向量的一个基底,则下列四组向量中,不能..作为基底的一组是( )A .2e 1-e 2和2e 2-4e 1B .e 1+e 2和e 1-2e 2C .e 1-2e 2和e 1D .e 1+e 2和2e 2+e 12.(多选)如果e 1,e 2是平面α内两个不共线的向量,那么在下列叙述中正确的有( ) A .λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量B .对于平面α内的任一向量a ,使a =λe 1+μe 2的实数λ,μ有无数多对C .若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2)D .若存在实数λ,μ使λe 1+μe 2=0,则λ=μ=03.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅰ,Ⅰ,Ⅰ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅰ部分,则实数a ,b 满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0题型2 向量相等4. 如图所示,平行四边形ABCD 的对角线相交于点O ,E 为AO 的中点.若DE →=λ2AB →+2μAD→(λ,μ∈R ),则λ+μ等于( )A .1B .-1C .14D .185.设E 为△ABC 的边AC 的中点,BE →=mAB →+nAC →,则m +n =________.题型3 平面向量的分解6.如图所示,在正六边形ABCDEF 中,设AB →=a ,AF →=b ,则AC →=( )A .a +2bB .2a +3bC .2a +bD .32a +b7.如图,在△ABC 中,点D 是线段AB 上靠近A 的三等分点,点E 是线段CD 的中点,则( )A .AE →=16AB →+12AC →B.AE →=13AB →+12AC →C.AE →=16AB →-12AC →D.AE →=13AB →-12AC →8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,用向量a 和b 表示c ,则c =________.9.在平行四边形ABCD 中,E ,F 分别是AD ,DC 边的中点,BE ,BF 分别与AC 交于R ,T 两点,ET →=xAB →+yAD →(x ,y ∈R ),则x +y =( ) A .16B .13C .23D .56【提升篇】1.如果{a ,b }是一个基底,那么下列不能作为基底的是( ) A .a +b 与a -bB .a +2b 与2a +bC .a +b 与-a -bD .a 与-b2.在△ABC 中,点D 在边AB 上,CD 平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( ) A .13a +23b B .23a +13b C .35a +45bD .45a +35b3.(多选)[浙江宁波九校2022高一期末]在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是AB ,CD 的中点,AC 与BD 交于M .设AB →=a ,AD →=b ,则下列结论正确的有( ) A .AC →=12a +bB .BC →=-12a +bC .BM →=-13a +23bD .EF →=-14a +b4.如图,在△ABC 中,D ,E 分别在边BC ,AC 上,且BC →=3BD →,EC →=λAE →,F 是AD ,BE 的交点.若AF →=35AD →,则λ=( )A .2B .3C .6D .75.某中学八角形校徽由两个正方形叠加组合而成,体现“方方正正做人”之意,又体现南开人“面向四面八方,胸怀博大,广纳新知,锐意进取”之精神.如图的多边形,由一个正方形与以该正方形中心为中心逆时针旋转45°后的正方形组合而成.已知向量n ,k ,则向量a =( )A .3k +2nB .3k +(2+2)nC .(2+2)k +(2+2)nD .(2+2)k +(1+2)n6.(多选)[湖北孝感2022高一期末]已知△ABC 中,O 是BC 边上靠近B 的三等分点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N .设AB →=mAM →,AC →=nAN →,其中m >0,n >0,则下列结论正确的是( ) A .AO →=23AB →+13AC →B.AO →=13AB →+23AC →C .2m +n =3D .m +2n =37.在等腰梯形ABCD 中,DC →=2AB →,E 为BC 的中点,F 为DE 的中点,记DA →=a ,DC →=b .若用a ,b 表示DF →,则DF →=________.8.在△ABC 中,AD →=12AB →,BE →=23BC →.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.9.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.10.如图,在正△ABC 中,点G 为边BC 的中点,边AB ,AC 上的动点D ,E 分别满足AD →=λAB →,AE →=(1-2λ)AC →,λ∈R .设DE 的中点为F ,记|FG →||BC →|=R(λ),则R(λ)的取值范围为________.11.如图,在平行四边形ABCD 中,E 是AB 的中点,F ,G 分别是AD ,BC 的四等分点⎝⎛⎭⎫AF =14AD ,BG =14BC .设AB →=a ,AD →=b . (1)用a ,b 表示EF →,EG →.(2)如果|b |=2|a |,EF ,EG 有什么位置关系?用向量的方法证明你的结论.12.如图所示,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M .过点M 的直线l与OA ,OB 分别交于点E ,F . (1)试用OA →,OB →表示向量OM →;(2)设OE →=λOA →,OF →=μOB →,求证:1λ+3μ是定值.13.如图,在直角梯形OABC 中,OA ∥CB ,OA ⊥OC ,OA =2BC =2OC ,M 为AB 上靠近B的三等分点,OM 交AC 于点D ,P 为线段BC 上的动点. (1)用OA →和OC →表示OM →; (2)求OD DM;(3)设OB →=λCA →+μOP →,求λμ的取值范围.答案及解析【详解】对于A 选项,因为2e 2-4e 1=-2(2e 1-e 2),所以2e 1-e 2和2e 2-4e 1共线,A 选项不满足条件;对于B 选项,设e 1+e 2=λ(e 1-2e 2)=λe 1-2λe 2,则⎩⎪⎨⎪⎧λ=1,-2λ=1,无解,故e 1+e 2和e 1-2e 2不共线,B 选项能作为基底;同理可知e 1-2e 2和e 1不共线,e 1+e 2和2e 2+e 1也不共线,C ,D 选项均能作为基底.故选A.2.【答案】AD【详解】由平面向量基本定理可知,A ,D 正确.对于B ,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于C ,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,λ有无数个.故选AD.3.【答案】B【详解】取第Ⅰ部分内一点画图易得a >0,b <0.4.【答案】D【详解】因为E 为AO 的中点,所以AE →=14AC →=14(AB →+AD →),所以DE →=AE →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →.又因为DE →=λ2AB →+2μAD →,所以⎩⎨⎧λ2=14,2μ=-34,解得⎩⎨⎧λ=12,μ=-38,所以λ+μ=18,故选D.5.【答案】-12【详解】因为BE →=BA →+AE →=-AB →+12AC →=mAB →+nAC →,所以m =-1,n =12,所以m +n =-12.6.【答案】C【详解】在正六边形ABCDEF 中,连接FC ,则FC ∥AB ,FC =2AB ,所以AC →=AF →+FC →=AF →+2AB →=2a +b .故选C.【详解】由题图知AE →=12AD →+12AC →=16AB →+12AC →.故选A.8.【答案】a -2b【详解】因为a ,b 不共线,设c =xa +yb (x ,y ∈R),则xa +yb =x (3e 1-2e 2)+y (-2e 1+e 2)=(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2.又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.【答案】D 【详解】如图所示,设CT →=μCA →=2μCF →+μCB →(μ∈R).因为F ,T ,B 共线,所以3μ=1,解得μ=13.所以AT →=23AC →,所以ET →=AT →-AE →=23AC →-AE →=23AB →+16AD →.又ET →=xAB →+yAD →,所以x =23,y =16,所以x +y =56.故选D.【详解】由题意知,a 与b 不共线,根据平行四边形法则,可知A ,B ,D 选项中的两个向量都可以作为基底,而a +b 与-a -b 共线,不能作为基底.2.【答案】B【详解】∵CD 平分∠ACB ,∴|CA →||CB →|=|AD →||DB →|=2.∴AD →=2DB →=23AB →=23(CB →-CA →)=23(a -b ).∴CD→=CA →+AD →=b +23(a -b )=23a +13b .3.【答案】ABD【详解】由题意得,AC →=AD →+DC →=b +12a ,故A 正确;BC →=BA →+AC →=-a +b +12a =b -12a ,故B 正确;由△CMD ∽△AMB ,且CD =12AB 得AM →=23AC →,则BM →=BA →+AM →=-a +23AC →=-a +23b +13a =23b -23a ,故C 错误;EF →=EA →+AD →+DF →=-12a +b +14a =b -14a ,故D 正确.故选ABD.4.【答案】A【详解】由题意得AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为B ,E ,F 三点共线,所以AF →=kAB →+(1-k )AE →=kAB →+1-k λ+1AC →.因为AF →=35AD →,所以kAB →+1-k λ+1AC →=35⎝⎛⎭⎫23AB →+13AC →,则⎩⎨⎧k =25,1-k λ+1=15.解得λ=2,故选A.5.【答案】D【详解】根据题意可得|n |=|k |,已知该图形是由以正方形中心为中心逆时针旋转45°后的正方形与原正方形组合而成,如图,由对称性可得|AB |=|BC |=|CD |=|DE |=|EQ |=|QF |,|CE |=|EF |=|FG |=2|AB |=2|n |. 由图可知点B ,C ,E ,Q 共线,点Q ,F ,G 共线,所以BQ →=BC →+CE →+EQ →=(2+2)k , QG →=QF →+FG →=(1+2)n ,所以a =BG →=BQ →+QG →=(2+2)k +(1+2)n .故选D.6.【答案】AC【详解】AO →=AB →+BO →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →,A 正确,B 错误.因为AB →=mAM →,AC →=nAN →,所以AO →=23AB →+13AC →=2m 3AM →+n 3AN →.又因为M ,O ,N 三点共线,所以2m 3+n3=1,故2m +n =3,C 正确,D 错误.故选AC.7.【答案】14a +38b【详解】DE →=12DB →+12DC →=12(DA →+AB →)+12DC →=34DC →+12DA →,∴DF →=12DE →=38DC →+14DA →,即DF →=14a +38b .8.【答案】12【详解】DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,又DE →=λ1AB →+λ2AC →,所以λ1+λ2=12.9.【答案】78【详解】∵E ,F 是AD 的两个三等分点,D 是BC 的中点,∴BF →=BD →+DF →,CF →=CD →+DF →=DF →-BD →,BA →=BD →+DA →=BD →+3DF →,CA →=CD →+DA →=3DF →-BD →.∴BA →·CA →=9|DF →|2-|BD →|2=4, BF →·CF →=|DF →|2-|BD →|2=-1, 解得|DF →|2=58,|BD →|2=138.又∵BE →=BD →+DE →=BD →+2DF →,CE →=CD +DE →=2DF →-BD →,∴BE →·CE →=4|DF →|2-|BD →|2=208-138=78.10.【答案】⎣⎡⎦⎤12,74 【解析】设正△ABC 的边长为2,则AB →·AC →=2×2×cos π3=2,|BC →|=2. FG →=AG →-AF →=12(AB →+AC →)-12(AD →+AE →)=12(1-λ)AB →+λAC →,所以|FG →|= (1-λ)2+4λ2+2λ(1-λ)=3λ2+1.又0≤1-2λ≤1,0≤λ≤1,所以0≤λ≤12,因此|FG →|=3λ2+1∈⎣⎡⎦⎤1,72,R(λ)=3λ2+12∈⎣⎡⎦⎤12,74.11.【答案】(1)由已知,得AE →=EB →=12a ,AF →=BG →=14b , 所以EF →=EA →+AF →=14b -12a , EG →=EB →+BG →=14b +12a . (2)EF 与EG 互相垂直.证明如下:EF →·EG →=⎝⎛⎭⎫14b +12a ·(14b -12a )=116b 2-14a 2, 因为|b |=2|a |,所以EF →·EG →=0,即EF ⊥EG ,所以EF 与EG 互相垂直.12.【答案】(1)【解】由A ,M ,D 三点共线可得存在实数m ,使得OM →=mOA →+(1-m )OD →,又OD →=12OB →,故OM →=mOA →+1-m 2OB →. 由C ,M ,B 三点共线可得存在实数n ,使得OM →=nOC →+(1-n )OB →,又OC →=14OA →,故OM →=n 4OA →+(1-n )OB →. 由题意知OA →,OB →不共线,则⎩⎨⎧m =14n ,1-m 2=1-n ,解得⎩⎨⎧m =17,n =47,故OM →=17OA →+37OB →. (2)【证明】由E ,M ,F 三点共线,可设OM →=kOE →+(1-k )OF →(k ∈R),由OE →=λOA →,OF →=μOB →,得OM →=kλOA →+(1-k )μOB →.由(1)知OM →=17OA →+37OB →, 则⎩⎨⎧kλ=17,(1-k )μ=37,即⎩⎨⎧λ=17k ,3μ=7-7k ,所以1λ+3μ=7,故1λ+3μ是定值. 13.【答案】(1)依题意CB →=12OA →,AM →=23AB →, ∴AM →=23(OB →-OA →)=23(OC →+CB →)-23OA →=23OC →-13OA →, ∴OM →=OA →+AM →=OA →+⎝⎛⎭⎫23OC →-13OA →=23OA →+23OC →.(2)设OD →=tOM →(t ∈R).由(1)可知OD →=23tOA →+23tOC →. 又A ,C ,D 三点共线,∴23t +23t =1,解得t =34,故OD DM =3. (3)由题意得OB →=OC →+CB →=OC →+12OA →, 已知P 是线段BC 上的动点,设CP →=xOA →⎝⎛⎭⎫0≤x ≤12. ∵OB →=λCA →+μOP →=λ(OA →-OC →)+μ(OC →+CP →)=(λ+μx )OA →+(μ-λ)OC →,又OC →,OA →不共线,∴⎩⎪⎨⎪⎧μ-λ=1,λ+μx =12,解得⎩⎪⎨⎪⎧λ=μ-1,μ=32+2x. 又0≤x ≤12,∴1≤x +1≤32,∴1≤μ≤32. 可知λμ=μ(μ-1)=⎝⎛⎭⎫μ-122-14在区间⎣⎡⎦⎤1,32上单调递增, 当μ=1时,(λμ)min =0,当μ=32时,(λμ)max =34, 故λμ的取值范围是⎣⎡⎦⎤0,34.。
平面向量练习题(附答案)
平面向量练习题一.填空题。
1. BA CD DB AC +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则||的值等于________.7.将点A (2,4)按向量a =(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2AB +AC 的模; (2)试求向量AB 与AC 的夹角;(3)试求与垂直的单位向量的坐标.2.已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==OB OA ,向量垂直于向量,向量 平行于,试求OD OC OA OD ,时=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=若存在不同时为零的实数k 和t,使 .,,)3(2y x b t a k y b t a x ⊥+-=-+=且(1)试求函数关系式k =f (t )(2)求使f (t )>0的t 的取值范围.参考答案1.2.(-3,-4)3.74.90°(21,321).6.73.7.(-3,2).8.-29.1210.31-11.012. 90°13.2-14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),=(2-1,5-0)=(1,5). ∴ 2+=2(-1,1)+(1,5)=(-1,7).∴ |2+|=227)1(+-=50.(2)∵ ||=221)1(+-=2.||=2251+=26,·=(-1)×1+1×5=4. ∴ cos θ =||||AC AB ⋅=2624⋅=13132. (3)设所求向量为=(x ,y ),则x 2+y 2=1. ①又 BC =(2-0,5-1)=(2,4),由BC ⊥m ,得2 x +4 y =0. ② 由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线 ∴ 33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -=∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )18.解:设020),,(=-=⋅∴⊥=x y y x Θ ① 又0)1()2(3)2,1(,//=+---+=x y y x BC OA BC Θ 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴OA OC OD OC 于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立, 得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2),由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y 241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即Θ ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即Θ (2)由f (t )>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。
高中数学6.2.2《平面向量的运算》基础过关练习题(含答案)
第六章 6.2 6.2.2A 级——基础过关练1.(多选)如图,在平行四边形ABCD 中,下列结论正确的是( )A .AB →=DC → B .AD →+AB →=AC → C .AB →-AD →=BD → D .AD →+CB →=0【答案】ABD 【解析】A 项显然正确;由平行四边形法则知B 正确;C 项中AB →-AD →=DB →,故C 错误;D 项中AD →+CB →=AD →+DA →=0.故选ABD .2.化简以下各式:①AB →+BC →+CA →;②AB →-AC →+BD →-CD →;③OA →-OD →+AD →;④NQ →+QP →+MN →-MP →.结果为零向量的个数是( )A .1B .2C .3D .4【答案】D 【解析】①AB →+BC →+CA →=AC →+CA →=AC →-AC →=0; ②AB →-AC →+BD →-CD →=(AB →+BD →)-(AC →+CD →)=AD →-AD →=0; ③OA →-OD →+AD →=(OA →+AD →)-OD →=OD →-OD →=0; ④NQ →+QP →+MN →-MP →=NP →+PM →+MN →=NM →-NM →=0. 3.(2020年北京期末)如图,向量a -b 等于( )A .3e 1-e 2B .e 1-3e 2C .-3e 1+e 2D .-e 1+3e 2【答案】B 【解析】如图,设a -b =AB →=e 1-3e 2,∴a -b =e 1-3e 2.故选B .4.对于菱形ABCD ,给出下列各式:①AB →=BC →;②|AB →|=|BC →|;③|AB →-CD →|=|AD →+BC →|;④|AD →+CD →|=|CD →-CB →|. 其中正确的个数为( ) A .1 B .2 C .3D .4【答案】C 【解析】由菱形的图形,可知向量AB →与BC →的方向是不同的,但它们的模是相等的,所以②正确,①错误;因为|AB →-CD →|=|AB →+DC →|=2|AB →|,|AD →+BC →|=2|BC →|,且|AB →|=|BC →|,所以|AB →-CD →|=|AD →+BC →|,即③正确;因为|AD →+CD →|=|BC →+CD →|=|BD →|,|CD →-CB →|=|CD →+BC →|=|BD →|,所以④正确.综上所述,正确的个数为3.故选C .5.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13]D .(3,13)【答案】C 【解析】由于BC →=AC →-AB →,则有|AB →|-|AC →|≤|BC →|≤|AB →|+|AC →|,即3≤|BC →|≤13.6.若非零向量a 与b 互为相反向量,给出下列结论:①a ∥b ;②a ≠b ;③|a|≠|b|;④b =-a.其中所有正确命题的序号为________.【答案】①②④ 【解析】非零向量a ,b 互为相反向量时,模一定相等,因此③不正确.7.若a ,b 为相反向量,且|a|=1,|b|=1,则|a +b|=________,|a -b|=________. 【答案】0 2 【解析】若a ,b 为相反向量,则a +b =0,所以|a +b|=0.又a =-b ,所以|a|=|-b|=1.因为a 与-b 共线,所以|a -b|=2.8.如图,已知向量a 和向量b ,用三角形法则作出a -b +a .解:如图所示,作向量OA →=a ,向量OB →=b ,则向量BA →=a -b ;作向量AC →=a ,则BC →=a -b +a .9.如图,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OF →=f ,试用a ,b ,c ,d ,f 表示以下向量:AC →,AD →,AD →-AB →,AB →+CF →,BF →-BD →. 解:AC →=OC →-OA →=c -a . AD →=AO →+OD →=OD →-OA →=d -a . AD →-AB →=BD →=OD →-OB →=d -b .AB →+CF →=OB →-OA →+OF →-OC →=b -a +f -c . BF →-BD →=OF →-OB →-(OD →-OB →)=OF →-OD →=f -d .10.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12,求|DC →+BC →|与|CD →+BC →|.解:∵OA →+OC →=OB →+OD →=0, ∴OA →=CO →,OB →=DO →.∴四边形ABCD 为平行四边形.又|AB →|=|AD →|=1,∴▱ABCD 为菱形. ∵cos ∠DAB =12,∠DAB ∈(0,π),∴∠DAB =π3,∴△ABD 为正三角形.∴|DC →+BC →|=|AB →+BC →|=|AC →|=2|AO →|=3,|CD →+BC →|=|BD →|=|AB →|=1.B 级——能力提升练11.在平面上有A ,B ,C 三点,设m =AB →+BC →,n =AB →-BC →,若m 与n 的长度恰好相等,则有( )A .A ,B ,C 三点必在一条直线上 B .△ABC 必为等腰三角形且∠B 为顶角 C .△ABC 必为直角三角形且∠B 为直角D .△ABC 必为等腰直角三角形【答案】C 【解析】以BA →,BC →为邻边作平行四边形ABCD ,则m =AB →+BC →=AC →,n =AB →-BC →=AB →-AD →=DB →,由m ,n 的长度相等可知,两对角线相等,因此平行四边形一定是矩形.故选C .12.平面内有四边形ABCD 和点O ,若OA →+OC →=OB →+OD →,则四边形ABCD 的形状是( )A .梯形B .平行四边形C .矩形D .菱形【答案】B 【解析】因为OA →+OC →=OB →+OD →,所以OA →-OB →=OD →-OC →,即BA →=CD →.所以AB CD .故四边形ABCD 是平行四边形.13.平面上有一个△ABC 和一点O ,设OA →=a ,OB →=b ,OC →=c .又OA →,BC →的中点分别为D ,E ,则向量DE →等于( )A .12(a +b +c )B .12(-a +b +c )C .12(a -b +c )D .12(a +b -c )【答案】B 【解析】DE →=DO →+OE →=-12a +12(b +c )=12(-a +b +c ).14.如图,在正六边形ABCDEF 中,与OA →-OC →+CD →相等的向量有________.①CF →;②AD →;③DA →;④BE →;⑤CE →+BC →;⑥CA →-CD →;⑦AB →+AE →.【答案】① 【解析】OA →-OC →+CD →=CA →+CD →=CF →;CE →+BC →=BC →+CE →=BE →≠CF →;CA →-CD →=DA →≠CF →;AB →+AE →=AD →≠CF →.15.已知|a|=7,|b|=2,且a ∥b ,则|a -b|的值为________.【答案】5或9 【解析】当a 与b 方向相同时,|a -b|=||a|-|b||=7-2=5;当a 与b 方向相反时,|a -b|=|a|+|b|=7+2=9.16.如图所示,点O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a ,b ,c ,d 的方向(用箭头表示),使a +b =BA →,c -d =DC →,并画出b -c 和a +d .解:因为a +b =BA →,c -d =DC →,所以a =OA →,b =BO →,c =OC →,d =OD →.如图所示,作平行四边形OBEC ,平行四边形ODF A .根据平行四边形法则可得,b -c =EO →,a +d =OF →.17.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,若AB →=a ,DA →=b ,OC →=c ,试证明:b +c -a =OA →.证明:(方法一)因为b +c =DA →+OC →=OC →+CB →=OB →,OA →+a =OA →+AB →=OB →,所以b +c =OA →+a ,即b +c -a =OA →.(方法二)OA →=OC →+CA →=OC →+CB →+CD →=c +DA →+BA →=b +c -AB →=b +c -a .(方法三)因为c -a =OC →-AB →=OC →-DC →=OC →+CD →=OD →=OA →+AD →=OA →-DA →=OA →-b ,所以b +c -a =OA →.C 级——探索创新练18.已知|a |=8,|b |=15. (1)求|a -b |的取值范围;(2)若|a -b |=17,则表示a ,b 的有向线段所在的直线所成的角是多少? 解:(1)由向量三角不等式||a |-|b ||≤|a -b |≤|a |+|b |,得7≤|a -b |≤23. 当a ,b 同向时,不等式左边取等号, 当a ,b 反向时,不等式右边取等号. (2)易知|a |2+|b |2=82+152=172=|a -b |2. 作OA →=a ,OB →=b ,则|BA →|=|a -b |=17, 所以△OAB 是直角三角形,其中∠AOB =90°. 所以表示a ,b 的有向线段所在的直线成90°角.。
平面向量及其应用全章综合测试卷(基础篇)(教师版)
D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2
)
C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =
高中数学6.4.3 《平面向量余弦定理的应用》基础过关练习题
第六章 6.4 6.4.3 第1课时A 级——基础过关练1.(2019年合肥调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C =60°,a =4b ,c =13,则b =( )A .1B .2C .3D .13【答案】A 【解析】由余弦定理知(13)2=a 2+b 2-2ab cos 60°,因为a =4b ,所以13=16b 2+b 2-2×4b ×b ×12,解得b =1.故选A .2.(2020年重庆月考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且(a +b )2-c 2=ab ,则角C =( )A .30°B .60°C .120°D .150°【答案】C 【解析】∵(a +b )2-c 2=ab ,∴a 2+b 2-c 2=-ab ,则由余弦定理可得cos C =a 2+b 2-c 22ab =-12.又∵0<C <180°,∴C =120°.故选C .3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形【答案】C 【解析】由c 2-a 2-b 22ab >0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.4.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A .43B .8-43C .1D .23【答案】A 【解析】由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4.由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,则ab +2ab =4,∴ab =43.5.锐角△ABC 中,b =1,c =2,则a 的取值范围是( ) A .1<a <3 B .1<a <5 C .3<a <5D .不确定【答案】C 【解析】若a 为最大边,则b 2+c 2-a 2>0,即a 2<5,∴a < 5.若c 为最大边,则a 2+b 2>c 2,即a 2>3,∴a > 3.故3<a < 5.6.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________.【答案】0 【解析】∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120°=a 2+c 2+ac ,∴a 2+c 2+ac -b 2=0.7.(2020年上海月考)在△ABC 中,边a ,b ,c 满足a +b =6,∠C =120°,则边c 的最小值为________.【答案】33 【解析】a +b =6,∠C =120°,∴ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b 时取等号.由余弦定理可得,c 2=a 2+b 2-2ab cos 120°=(a +b )2-ab =36-ab ≥36-9=27,∴c ≥33,则边c 的最小值为3 3.8.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.【答案】4 【解析】因为b +c =7,所以c =7-b .由余弦定理得b 2=a 2+c 2-2ac cos B ,即b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14,解得b =4. 9.在△ABC 中,已知BC =7,AC =8,AB =9,试求AC 边上的中线长.解:由余弦定理的推论得cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23.设所求的中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49,则x =7.所以所求中线长为7.10.在△ABC 中,b cos A =a cos B ,试判断△ABC 的形状. 解:因为b cos A =a cos B , 所以b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac .所以b 2+c 2-a 2=a 2+c 2-b 2.所以a 2=b 2,即a =b .所以△ABC 为等腰三角形.B 级——能力提升练11.(多选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列结论正确的是( ) A .a 2=b 2+c 2-2bc cos A B .cos B =a 2+c 2-b 22acC .a =b cos C +c cos BD .a cos B +b cos A =sin C【答案】ABC 【解析】在A 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,故A 正确;在B 中,由余弦定理的推论得cos B =a 2+c 2-b 22ac ,故B 正确;在C 中,a =b cos C +c cos B ⇔a=b ×a 2+b 2-c 22ab +c ×a 2+c 2-b 22ac ⇔2a 2=2a 2,故C 正确;在D 中,a cos B +b cos A =a ×a 2+c 2-b 22ac +b ×b 2+c 2-a 22bc=c ≠sin C ,故D 错误.故选ABC .12.在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b =3,c =4,则实数a 的取值范围是( )A .(1,7)B .(1,5)C .(7,5)D .(3,5)【答案】C 【解析】∵b =3,c =4,且△ABC 是锐角三角形,∴cos A =b 2+c 2-a 22bc >0,且cos C =a 2+b 2-c 22ab>0.∴7<a 2<25,∴7<a <5.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .不能确定【答案】A 【解析】在△ABC 中,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .因为c =2a ,所以2a 2=a 2+b 2+ab .所以a 2-b 2=ab >0.所以a 2>b 2,所以a >b .14.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =3,且b 2+c 2=3+bc ,则角A 的大小为________.【答案】60° 【解析】∵a =3,且b 2+c 2=3+bc .∴b 2+c 2=a 2+bc .∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12.∵0°<A <180°,∴A =60°.15.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C =________.【答案】2π3 【解析】因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以C >π2.又因为sinC =32,所以C =2π3. 16.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =1,2cos C +c =2b ,则角A =________,△ABC 的周长的取值范围是________.【答案】π3 (2,3] 【解析】a =1,2cos C +c =2b ,∴2×1+b 2-c 22b +c =2b ,整理可得,b 2+c 2-1=bc ,即b 2+c 2-a 2=bc ,则cos A =b 2+c 2-a 22bc =12.∵A ∈(0,π),∴A =π3.∵b 2+c 2-1=bc ,∴(b +c )2=3bc +1≤3×⎝ ⎛⎭⎪⎫b +c 22+1.∴b +c ≤2.∵b +c >a =1,∴2<a +b +c ≤3,即周长范围为(2,3].17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A -3sin A )cos B =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解:(1)由已知得-cos(A +B )+cos A cos B -3sin A ·cos B =0,即有sin A sin B -3sin A cos B =0.因为sin A ≠0,所以sin B -3cos B =0.又cos B ≠0,所以tan B = 3.又0<B <π,所以B =π3.(2)由余弦定理,有b 2=a 2+c 2-2ac cos B .因为a +c =1,cos B =12,所以b 2=3⎝⎛⎭⎫a -122+14.又0<a <1,于是有14≤b 2<1,即有12≤b <1. 18.如图,在扇形AOB 中,∠AOB =120°,CD ∥AO ,OD =100,CD =150,求该扇形的半径.解:连接OC ,易知∠ODC =180°-∠AOB =60°,因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC ,即OC 2=1002+1502-2×100×150×12,解得OC =507.所以该扇形的半径为507.C 级——探索创新练19.如图,角A ,B ,C ,D 为平面四边形ABCD 的四个内角. (1)求证:tan A 2=1-cos Asin A;(2)若A +C =π,AB =6,AD =5,CD =4,BC =3,求tan A 2+tan C2的值.(1)证明:tan A2=sinA 2cos A 2=sin A 2sin A 2cos A 2sin A 2=2sin 2A2sin A =1-cos A sin A.(2)解:连接BD ,在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD cos A =61-60cos A .在△BCD 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =25-24cos C . ∵A +C =π,∴cos A =-cos C ,sin A =sin C . ∴61-60cos A =25+24cos A ,解得cos A =37.∴sin A =1-cos 2A =2107. 由(1)结论可知tan A 2+tan C 2=1-cos A sin A +1-cos C sin C =2sin A =71010.。
平面向量及其应用基础练习题
一、多选题1.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=2.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是4 3.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是4.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C6.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+7.在ABC 中,AB =1AC =,6B π=,则角A 的可能取值为( )A .6πB .3π C .23π D .2π 8.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C9.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )A .B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解C .B =60°,c =4,b =3,有一解D .B =60°,c =4,b =2,无解10.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 11.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++ D .AB AC BD CD -+- 12.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形13.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-14.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=15.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =二、平面向量及其应用选择题16.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1B .2C .3D .417.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能18.在ABC ∆中,a、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( ) A .2B .4CD .19.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒20.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG =D .0GA GB GC ++=21.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形22.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +23.在ABC ∆中,6013ABC A b S ∆∠=︒==,,,则2sin 2sin sin a b cA B C-+-+的值等于( )A .239B .2633C .833D .2324.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD -26.题目文件丢失!27.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形28.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .529.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-430.在ABC ∆中,60A ∠=︒,1b =,3ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A 239B 263C 83D .2331.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .433.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形 D .不确定 34.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形35.在矩形ABCD 中,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( )A .0B C .-4 D .4【参考答案】***试卷处理标记,请不要删除一、多选题 1.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B.1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD , 故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.2.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin 2C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc ==因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =,由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.3.ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得3R =,所以ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()23B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.4.ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误;D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.5.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 6.AC【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.7.AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅,即2132BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD 【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.8.ACD 【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.ABC 【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解. 【详解】对于,因为为锐角且,所以三角解析:ABC 【分析】根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解. 【详解】对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;对于B ,因为B 为锐角且sin 4 3.92c B b c =⨯==<,所以三角形ABC 有两解,故B 错误;对于C ,因为B 为锐角且 sin 43c B b ==>=,所以三角形ABC 无解,故C 错误;对于D ,因为B 为锐角且sin 42c B b ==>=,所以三角形ABC 无解,故D 正确. 故选:ABC. 【点睛】本题考查了判断三角形解的个数的方法,属于基础题.10.AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】解:因为不能构成该平面的基底,所以,又有公共【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC . 【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.11.BD 【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】对于选项:,选项不正确; 对于选项: ,选项正确; 对于选项:,选项不正确; 对于选项: 选项正确. 故选:解析:BD 【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确; 对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确; 对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=故选:BD 【点睛】本题主要考查了向量的线性运算,属于基础题.12.ABCD 【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,22A B =或22A B π+=. 即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°13.BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量与的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误; 因为,,且, 所以,即C 结论正确; 因为,解析:BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD 【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.14.ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知成立, 故也成立;由向量加法的三角形法则,知成立,不成立. 故选:ABD 【点睛】 本题主要考查解析:ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知a b c +=成立,故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立. 故选:ABD 【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.15.ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等,解析:ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确. 故选:ABD 【点睛】本小题主要考查向量数乘运算,属于基础题.二、平面向量及其应用选择题16.D 【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案. 【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC=-b -12a ,故①正确. ②BE =BC +CE =BC +12CA =a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF =-(DC +CA )+BE +CF=-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D. 【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量. 17.C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。
平面向量基础练习题1
平面向量基础练习1)两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a 和b ,那么下列命题中错误的一个是A 、a 与b 为平行向量B 、a 与b 为模相等的向量C 、a 与b 为共线向量D 、a 与b 为相等的向量2)在四边形ABCD 中,若AC AB AD =+,则四边形ABCD 的形状一定是 ( )(A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形3)如果a ,b 是两个单位向量,则下列结论中正确的是 ( )(A) a =b (B) 1⋅a b = (C) 22≠a b (D) =a b4)AB BC AD +-=A 、ADB 、CDC 、DBD 、DC5)已知正方形ABCD 的边长为1,AB =a ,BC =b ,AC =c , 则++a b c 等于 ( )(A) 0 (B) 3 (D) 6)下列各组的两个向量,平行的是A 、(2,3)a =-,(4,6)b =B 、(1,2)a =-,(7,14)b =C 、(2,3)a =,(3,2)b =D 、(3,2)a =-,(6,4)b =-7)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不可能是( )(A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)8)点),0(m A )0(≠m ,按向量a 平移后的对应点的坐标是)0,(m ,则 向量a 是A 、),(m m -B 、),(m m -C 、),(m m --D 、),(m m9)已知(6,0)a =,(5,5)b =-,则a 与b 的夹角为A 、045B 、060C 、0135D 、0120 10)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。
11)设O 是平行四边形ABCD 的两条对角线的交点,下列向量组:(1)AD 与AB ;(2)DA 与BC ;(3)CA 与DC ;(4)OD 与OB ,其中可作为这个平行四边形所在平面表示它的所有向量的基底的向量组可以是________________。
必修4--平面向量基础练习题
必修4--平面向量基础练习题1.下列向量中,与向量c=(2,3)共线的一个向量p是(3,2)。
2.已知正六边形ABCDEF,在下列表达式①BC+CD+EC;②2BC+DC;③FE+ED;④2ED-FA中,与AC等价有2个。
4.若向量BA=(2,3),CA=(4,7),则BC=(-2,-4)。
5.已知a、b是两个单位向量,下列四个命题中正确的是C.a·b=1.6.如图,正方形ABCD中,点E是DC的中点,.7.设M是平行四边形ABCD的对角线的交点,O为任意一点,则OA+OB+OC+OD=4OM。
8.在矩形ABCD中,O是对角线的交点,若BC=5e1,DC=3e2,则OC=(5e1+3e2)/2.9.对于菱形ABCD,给出下列各式:①BC=AB;②|BC|=|AB|;③|AB-CD|=|AD+BC|;④|AC|2+|BD|2=4|AB|2.其中正确的有3个。
10.在ABCD中,设AB=a,AD=b,AC=c,BD=d,则下列等式中不正确的是B.a-b=d。
11.已知向量a与b反向,下列等式中成立的是D.|a|+|b|=|a+b|。
12.与向量d=(12,5)平行的单位向量为(12/13,5/13)。
13.已知向量a=(1,2),b=(3,1),则b-a=(2,-1)。
14.已知向量$a=(x+3,x^2-3x-4)$与向量$AB$相等,其中$A(1,2),B(3,2)$,则$x=2$。
15.设$a=(1-t,1-t,t),b=(2,t,t)$,则$b-a$的最小值是$1$。
16.在菱形$ABCD$中,$\angle DAB=120^\circ$,则以下说法错误的是:B.与$AB$的模相等的向量有$9$个(不含$AB$)。
17.已知向量$a=(3,1),b=(1,3),c=(k,7)$,若$a-c\parallel b$,则$k=5$。
18.给出下列结论:①若$a\neq 0,a\cdot b=0$,则$b\perp a$;②若$a\cdot b=b\cdot c$,则$a=c$;③$a\times b\cdot c=a\cdotb\times c$;④$a\times (b\times c)=(a\cdot c)b-(a\cdot b)c$;⑤若$a+b=a-b$,则$a\perp b$。
平面向量练习题大全及答案
平面向量练习题大全及答案平面向量练习题大全及答案平面向量是数学中的重要概念,广泛应用于几何、物理等领域。
通过练习平面向量的题目,可以帮助我们巩固和深化对平面向量的理解。
本文将为大家提供一些平面向量的练习题,并给出详细的答案解析。
一、基础练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的和。
解析:向量的和等于对应分量相加,所以a + b = (2 + (-1), 3 + 4) = (1, 7)。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的差。
解析:向量的差等于对应分量相减,所以a - b = (3 - 5, -2 - 1) = (-2, -3)。
3. 已知向量a = (4, 5),求向量a的模长。
解析:向量的模长等于各分量平方和的平方根,所以|a| = √(4^2 + 5^2) =√(16 + 25) = √41。
4. 已知向量a = (3, -2),求向量a的单位向量。
解析:向量的单位向量等于将向量除以其模长,所以a的单位向量为a/|a| = (3/√41, -2/√41)。
二、综合练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的数量积。
解析:向量的数量积等于对应分量相乘再相加,所以a·b = 2*(-1) + 3*4 = -2 + 12 = 10。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的向量积。
解析:向量的向量积等于两个向量的模长乘以它们夹角的正弦值,所以a×b =|a|*|b|*sinθ,其中θ为a和b的夹角。
首先计算|a|和|b|:|a| = √(3^2 + (-2)^2) = √(9 + 4) = √13,|b| = √(5^2 +1^2) = √(25 + 1) = √26。
然后计算夹角θ的正弦值:sinθ = |a×b|/(|a|*|b|),其中|a×b|为向量a×b的模长。
向量基础练习题(含答案)
,
所以 ,故选A。
点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算。
13.
【解析】
因 ,故由 可得 ,故 ,应选答案 。
14.
【解析】
【分析】
所以图中三角形为等边三角形所以点睛本题考查向量加法的三角形法则数形结合可快速得出结果是基础题解析分析bddcuuuvuuuv结合向量的线性运算用abuuuvaduuuv表示出bcuuu结合题中条件即可求出结果详解bddcuvuuuvbcbdadabuuuvuuuvuuuvuuuvbcxabyaduuuvuuuvuuuv点睛本题考查平面向量的线性运算结合平面向量的基本定理即可求出结果属于基础题型解析分析acuuuvuuuv写成abaduuuruuur的线性和的形式解方程组求得abuuur的表达式详解画出图像如下图所示由图可知adabuuuruuuruuuracadabuuuruuuruuur点睛本小题主要考查平面向量的加法和减法运算考查向量在几何图形中的应用属于基础题解析分析由两向量共线可求的值再利用向量的模长公式即可
若 , 平行或者共线,则 。
24.
【解析】
【分析】
利用向量的数乘和向量相等即可得出.
【详解】
解: , , , ,
, , , ,
又 ,
, , ,
,
解得
.
故答案为:
【点睛】
熟练掌握向量的数乘和向量相等是解题的关键.
25.
【解析】
, , , , .
26.
【解析】
【分析】
由 等价于 ,再结合向量数量积的坐标运算即可得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uuur uuur uuur 1)在四边形 ABCD 中,若 AC AB AD ,则四边形 ABCD 的形状一定是 ( )
(A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果 a , b 是两个单位向量,则下列结论中正确的是 ( )
(A) a b (B) a b = 1
10)已知向量 a (1, 5) , b ( 3, 2) ,则向量 a 在 b 方向上的投影为
.
r 11)已知 a
r 3, b
rr 4 , a 与 b 的夹角为
3
,
r (3a
rr b) (a
r 2b) =__________.
4
10)已知向量 a (1, 5) , b ( 3, 2) ,则向量 a 在 b 方向上的投影为
实数 k 的值为
.
(A) 0
(B) 3
(C) 2
(D) 2 2
5)下列各组的两个向量,平行的是
r
r
A 、 a ( 2,3) , b (4,6)
r
r
C、 a (2,3) , b (3, 2)
r
r
B、 a (1, 2) , b (7,14)
r
r
D、 a ( 3,2) , b (6, 4)
6)若平行四边形的 3 个顶点分别是( 4,2),( 5, 7),( 3,4),则第 4 个顶点的坐标不 可能是( )
(C) a 2 b2
(D) a b
uuur uuur uuur 3) AB BC AD ( )
uuur A 、 AD
uuru B、 CD
uuur C、 DB
uuur D、 DC
uuur
uuur
பைடு நூலகம்
uuur
4)已知正方形 ABCD 的边长为 1, AB a , BC b , AC c , 则 a b c 等于 ( )
(A) (12,5) (B) ( -2 ,9) (C) (3,7) (D) ( -4 ,-1 )7)点 A(0, m) (m
r
r
按向量 a 平移后的对应点的坐标是 (m,0) ,则向量 a 是( )
0) ,
A 、 ( m, m) B、 (m, m)
C、 ( m, m)
r
r
rr
8)已知 a (6,0) , b ( 5,5) ,则 a 与 b 的夹角为
(C) a 2 b 2
(D) a b
uuur uuur uuur 3) AB BC AD ( )
uuur A 、 AD
uuru B、 CD
uuur C、 DB
uuur D、 DC
uuur
uuur
uuur
4)已知正方形 ABCD 的边长为 1, AB a , BC b , AC c , 则 a b c 等于 ( )
r
r
按向量 a 平移后的对应点的坐标是 ( m,0) ,则向量 a 是( )
0) ,
A 、 ( m, m)
B、 ( m, m)
C、 ( m, m)
r
r
rr
8)已知 a (6,0) , b ( 5,5) ,则 a 与 b 的夹角为
D、 (m, m)
A 、 45 0 B、 60 0 C、 135 0 D、 120 0 9)已知 M (3, 2) , N ( 1,0) ,则线段 MN 的中点 P 的坐标是 ________。
D、 (m, m)
A 、 45 0 B、 60 0 C、 135 0 D、 120 0 9)已知 M (3, 2) , N ( 1,0) ,则线段 MN 的中点 P 的坐标是 ________。
(A) 0
(B) 3
(C) 2
(D) 2 2
5)下列各组的两个向量,平行的是
r
r
A、 a ( 2,3) , b (4,6)
.
r 11)已知 a
r 3, b
rr 4, a 与 b 的夹角为
3
r , (3a
rr b) ( a
r 2b) =__________.
4
12)已知 a 3 , b 4 ,且向量 a , b 不共线,若向量 a k b 与向量 a k b 互相垂直,则
实数 k 的值为
.
12) 已知 a 3 , b 4 ,且向量 a , b 不共线,若向量 a k b 与向量 a k b 互相垂直,则
r
r
C、 a (2,3) , b (3,2)
r
r
B、 a (1, 2) , b (7,14)
r
r
D、 a ( 3, 2) , b (6, 4)
6)若平行四边形的 3 个顶点分别是( 4,2),(5,7),( 3,4),则第 4 个顶点的坐标不 可能是( )
(A) ( 12,5) (B) (-2 ,9) (C) (3,7) (D) (-4 ,-1 )7)点 A(0, m) (m
平面向量基础练习
uuur uuur uuur 1)在四边形 ABCD 中,若 AC AB AD ,则四边形 ABCD 的形状一定是 ( )
(A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果 a , b 是两个单位向量,则下列结论中正确的是 ( )
(A) a b (B) a b = 1