纵联差动保护 ppt课件

合集下载

纵联保护第03讲

纵联保护第03讲
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
电流差动的主要问题: • 数据同步 • 传输数据量大,对通道要求高 • 易受互感器饱和的影响
纵联电流相位差动保护在以上几方面具有优势
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
(一)基本原理
仅利用输电线路两端电流相位 在区外短路时相差180°区内短 路时相差为0°,也可以区分区 内、外短路,这就是纵联电流相 位差动保护原理。 此时只需要两端传递各自的相 位信息,即可构成电流相位比 较式纵联差动保护。
.
I m
Rg
.
I n
图4-30 负荷电流对纵联电流差动保护的影响示意图
4.5 纵联电流差动保护
4.5.4 影响纵联电流差动保护的因素及其措施 (三)影响因素之三:负荷电流
解决措施: 故障分量差动保护 差动电流:
制动电流:
M
.
Im
Im In Im In K Im In Im In Im In Im In
当该电流为正(或负)半波时,操作发信机 发出连续的高频电流, 而当该电流为负(或正)半波时,则不发高 频电流。
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
(二)原理框图
收信比较时间t3元件
时间t3 元件对收到的高频电流进行整流并延时t3 后有输出,并展宽t4 时间。 区外短路时高频电流间断的时间短,小于t3 延时, 收信机回路无输出,保护不能跳闸。 区内短路时高频电流间断时间长, t3 延时满足, 收信机回路有输出,保护跳闸。 实际上考虑短路前两侧电势的相角差、分布电 容的影响、高频信号的传输延迟等因素,在区外 短路时收到的高频信号不完全连续,会有一定的 间断时间,同样在区内短路时收到的高频电流间 断时间也会小于半周波,因而对t3 要进行整定。

纵联差动保护

纵联差动保护

6.2 纵联差动保护6.2.1 基本原理6.2.1.1 定义差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。

变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。

6.2.1.2 基本原理变压器纵差保护是按照循环电流原理构成的变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2•'I -2•''I =0,保证纵差保护不动作。

但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

(a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布(图6.4 变压器纵差保护原理接线图)在图6.4(a )双绕组变压器中,变压器两侧电流1•'I 、1•''I 同相位,所以电流互感器TA 1、TA 2二次的电流2•'I 、2•''I 同相位,则2•'I -2•''I =0的条件是2•'I =2•''I ,即 2•'I =2•''I =11i n I •'=21i n I •'' (6.1) 即 12i i n n =11••'''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。

若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为K I •=2•'I -2•''I =0 (6.3)当区内故障时,2•''I 反向流出,则流入差动继电器的电流为K I •=2•'I +2•''I > 0 (6.4) 当K I > 0时,差动继电器动作,驱动变压器两侧断路器分闸,对变压器起到保护作用。

4.电力变压器的纵联差动保护(二)-不平衡电流及相应措施(课件)

4.电力变压器的纵联差动保护(二)-不平衡电流及相应措施(课件)

3
nT
二、纵差动保护的不平衡电流及相应措施
2.由变压器两侧电流相位不同而产生的不平衡电流
(2)消除不平衡电流的措施 2)微机保护平衡系数折算法(通过软件实现) 方法是:在微机中,变压器的差动保护利用软件算法对变压
器各侧的相位和幅值进行校正。最常用的算法TA1、TA2全部接成 星形接线,仿照前面所述的常规接线的处理方法,对变压器星型 侧电流按两相电流差处理方式进行相位补偿。
Y A2
I
Y A2
I
BY2-I
Y C2
I
Y B2
I
D c2
I
D a2
I
D b2
I
D c2
I
D a1
a
I
D b1
b
I
D c1
c
I
D a1
I
D a1
变压器△侧:
I
D b1
I
D b1
I
D c1
图3-12 变压器正常运行时 TA一次侧电流向量图
I
D c1
图3-13 变压器正常差流回路 两侧电流向量图
图3-11 YNd11接线变压器纵差动接线图
二、纵差动保护的不平衡电流及相应措施
2.由变压器两侧电流相位不同而产生的不平衡电流
(2)消除不平衡电流的措施
由于变压器高压侧的TA1是三角形接线,流进差动继电器KD3
的电流为TA1的线电流是TA1相电流的 3 倍,即
ICY2
I
Y A2
3I
Y C2
如果要在正常运行时,流进KD3的差动电流为零,则需满足:
(
I
Y A1
IBY1) / nT
I
D b1

继电保护(纵联保护)页PPT文档

继电保护(纵联保护)页PPT文档
容器下端可靠接地。
电力系统继电保护原理
LINYI UNIVERSITY
三、高频信号的利用方式
1、高频通道工作方式 经常无高频电流方式(即故障时发信)☆☆ 经常有高频电流方式(即长期发信) 移频方式(正常与故障发不同频率的信号)
2、传送高频信号的分类 闭锁信号:收不到这种信号是高频保护动作跳闸的必要、 条件。当外部故障时,由一端的保护发出高频闭锁信号将 两端的保护闭锁,而当内部故障时,两端均不发因而也收 不到闭锁信号,保护即可动作于跳闸。
电力系统继电保护原理
LINYI UNIVERSITY
允许信号:收到这种信号是高频保护动作跳闸的必要条件。 当内部故障时,两端保护应同时向对端发出允许信号,使保 护装置能够动作于跳闸,而当外部故障时,则收不到这种信 号,因而保护不能跳闸。
跳闸信号:收到这种信号是高频保护动作跳闸的充要条件。 利用装设在每一端的I段保护,当其保护范围内部故障而动 作 于跳闸的同时,还向对端发出跳闸信号,可以不经过其它控 制元件而直接使对端的断路器跳闸。每端发送跳闸信号保护 的动作范围小于线路的全长,而两端保护动作范围之和应大 于线路的全长。前者是为了保证动作的选择性,后者则是为 了保证全线上任一点故障的快速的动作。
电力系统继电保护原理
LINYI UNIVERSITY
5)高频收、发信机 收信机由继电保护控
制,通常在电力系统发生 故障时,保护部分起动之 后它才发出信号。高频收 信机接收由本端和对端所 发送的高频信号,经过比 较判断之后,再动作于继 电保护,使之跳闸或将它 闭锁。 6)接地刀闸:当检修连接滤波器时,接通接地刀闸,使结合电
处于电压平衡状态(因此得
名),不会起动继电器跳闸
内部故障时: GBm 与GBn之间二次侧有电流, GBm、 GBn的原边有较 大电流,起动继电器跳闸

线路的差动保护-PPT课件

线路的差动保护-PPT课件

相继动作区:对侧保护动作后,由于短路电流重新分布使本侧保护再动 作,叫相继动作。可能发生相继动作的区域叫相继动作区。
电流平衡保护的基本工作原理
电流平衡保护的基本工作原理,KAB是一个双动作的电平衡继电器,当平 行线路正常运行或外部故障时,通过KAB两线圈N1和N2的电流幅值相等, “天平”处在平衡状态,保护不动作。当线路L1故障时(如 k1点故障), , 则I1 > I1 ,KAB的右侧触点闭合,跳开QF1切除L1的故障;当线路L2故障 时,KAB的左侧触点闭合,跳开QF2切除L2的故障。
);判别是哪条
二、名词解释 1、纵联差动保护 2、相继动作 3、相继动作区 三、判断题 1、方向横差保护不仅应用于平行线路上。( ) 2、纵差保护的动作时限与相邻下一线路按阶梯时限原则配合。 ( ) 3、由于纵差动保护必须敷设与被保护线路一样长的辅助导线,所 以纵差动保护应受到一定的限制。( )
4、由于纵差动保护能够尽可能快动作,所以不需后备保护。 ( )
纵差动保护测量线路两侧的电流并进行比较,它的 保护范围是两侧电流互感器之间线路的全长。 在整定值上它不需要与相邻线路的保护配合,这是 比单端测量的电流保护及距离保护优越之点。
IⅠ
× 。 。 IⅠ2
区 外 故 障
IⅠ
× 。 。 IⅠ2
区 内 故 障
IⅡ 。IⅡ2 。 × ×
IⅡ
IⅡ2 。 。 × ×
在线路纵差动保护中可采用速饱和变流器或带制动特性 的差动继电器,减小不平衡电流及其影响。 对纵联差动保护的评价 优点:纵联差动保护是测量两端电气量的保护,能快速切 除被保护线路全线范围内故障,不受过负荷及系统振荡的影 响,灵敏度较高。 缺点:需要装设同被保护线路一样长的辅助导线,增加了 投资。同时为了增强保护装置的可靠性,要装设专门的监视 辅助导线是否完好的装置,以防当辅助导线发生断线或短路 时使纵差动保护误动或拒动。 在输电线路上只有当其他保护不能满足要求,且在长度小 于10km 的线路上才考虑采用纵联差动保护。 纵差动保护在元件(如发电机、变压器等)保护中得到广 泛应用。

发电机纵联差动保护

发电机纵联差动保护
图4发电机差动出口逻辑:循环闭锁方式
此时若仅一相差动动作而无负序电压时即认为TA断线。
负序电压长时间存在而同时无差流时,为TV断线。
动作逻辑方式Ⅱ:单相差动方式
原理:任一相差动保护即出口跳闸。这种方式另外配有TA断线检测功能。在TA断线时瞬时闭锁差动保护,且延时发TA断线信号。保护的逻辑图如下:
图5发电机差动出口逻辑:单差动方式
两侧电流定义:
对于发电机差动、励磁机差动,其中 、 分别为机端、中性点侧电流;
对于裂相横差,其中 、 分别为中性点侧两分支组电流;
比例制动系数定义:
为比例差动制动系数, 为比率差动制动系数增量;
为起始比率差动斜率,定值范围为0~0.10,一般取0.05;
为最大比率差动斜率,定值范围为0.30~0.70,一般取0.5;
(5)负序电压定值(仅出口方式Ⅰ有效)
即:
=(0.06~0.12)
(7)TA断线延时定值(仅出口方式Ⅱ有效)
无配合要求,一般取0.5秒。
3.3南自院
3.3.1比率差动原理
3.3.1.1
比率差动动作特性入图7。
图7比率差动保护的动作特性
比例差动保护的动作方程如下:
式中 为差动电流, 为制动电流, 为差动电流起始值, 为发电机额定电流。
2.IEEE导则中的相关内容
2.0概述
通常配置某种动作特性的差动保护来反应发电机定子绕组相间短路,包括三相对称短路、两相短路和两相接地短路。对发电机中性点某些接地方式,差动保护还能反应定子绕组单相接地故障。
对中性点经高阻(配电变压器或消弧线圈)接地的发电机,差动保护不能反应定子接地故障,因为单相接地故障电流小于差动保护的灵敏度。
2.1变比率差动保护

纵联差动保护

纵联差动保护
取R1=R3=Ra,R2=R4=Rb(Ra、Rb皆为选定的参数),Kl=K2=K,则上述三式可改写为:
可选择保护的动作判据为:
对于给定的Ra、Rb、RX、K2及K,当上式等号成立时,RX便为检测到的最大接地电阻Rx.max,若K2取固定值,则改变K可以调整灵敏性。K2值可根据灵敏性要求,由式(7.64)取等号求出,即
具有比率制动特性的差动保护
保护的动作电流Iop随着外部故障的短路电流而产生的Iunb的增大而按比例的线性增大,且比Iunb增大的更快,使在任何情况下的外部故障时,保护不会误动作。这是把外部故障的短路电流作为制动电流Ibrk,而把流入差动回路的电流作为动作电流Iop。比较这两个量的大小,只要IOP≥Ibrk,保护动作;反之,保护不动作。其比率制动特性折线如图7.2所示。
由电桥平衡原理构成的励磁回路两点接地保护有两个缺点:
①由于两点接地保护只能在转子绕组一点接地后投人,所以,对于发生两点同时接地,或者第一点接地后紧接着发生第二点接地的故障,保护装置均不能反映。
②若第一个接地点发生在转子绕组的正极或负极端,则因电桥失去作用,不论第二点接地发生在何处,保护装置将拒动。
电桥原理转子两点接地继电器电路原理接线及方框图
装置动作时对应的RX为
对于给定的Ra、Rb、RX、K2及K,当上式等号成立时,RX便为检测到的最大接地电阻Rx.max,若K2取固定值,则改变K可以调整灵敏性。K2值可根据灵敏性要求,由式(7.64)取等号求出,即
发电机励磁回路两点接地保护
当转子绕组发生两点接地故障,由于故障点流过相当大的短路电流,因而会烧伤转子;
,总有一定量值的电流流入KD,此电流称为不平衡电流,用Iunb表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA的误差增大,再加上短路电流中非周期分量的影响,Iunb增大,一般外部短路电流越大,Iunb就可能越大,其最大值可达:

电力系统继电保护 第四章输电线路的纵联保护 ppt课件

电力系统继电保护 第四章输电线路的纵联保护  ppt课件

ppt课件
13
纵联保护的分类:
A. 按通信通道分:
(1) 导引线通道 需要沿线铺设导引线电缆传送电气量信息,其 投资随线路的长度而增加。此外,导引线越长, 其自身安全性越低。用于短线路。
(2) 电力线载波通道
利用输电线路本身作为通信通道,不需专门架 设通信通道,应用广泛。
注意:线路发生故障时通道可能遭到破坏。
ppt课件
12
纵联保护按通道类型分类
纵联保护信号传输方式: (1)以导引线作为通信通道:纵联差
动保护 (2)电力线载波:高频保护(方向高
频保护,相差高频保护),其中方向高 频保护又包括高频闭锁方向保护,高频 闭锁负序方向保护,高频闭锁距离保护; (3)微波:微波保护,长线路,需要 中继站;
将线路两端的电流相位(或功率方向)信息 转变为高频信号,经过高频耦合设备将高频信 号加载到输电线路上,输电线路本身作为高频 信号的通道将高频载波信号传输到对侧,对端 再经过高频耦合设备将高频信号接收,以实现 各端电流相位(或功率方向)的比较,称为高 频保护。
ppt课件
20
根据通道的构成,输电线路载波通信分为: “相-相”式 连接在两相导线之间 “相-地”式 连接在输电线一相导线和大地之间
ppt课件
18
1 导引线通信
利用铺设在输电线路两端变电站之间的二次电 缆传递被保护线路各侧信息的通信方式称之为 导引线通信,以导引线为通道的纵联保护称为 导引线纵联保护。
优点:不受系统振荡的影响,不受非全相的影响, 简单可靠 缺点:导引线不能太长
保护原理:电流差动原理
ppt课件
适用于短线路
19
2 电力线载波通道(高频)
4

3.电力变压器的纵联差动保护(一)-工作原理(课件)

3.电力变压器的纵联差动保护(一)-工作原理(课件)

一、纵联差动保护的基本原理
1.变压器正常运行或者外部故障时差动电流分析
差动电流: Id
I1'
I2' =
I1 nTA1
I2 nTA2
这个电流在变压器正常运行或外部故障时不一定为零。
I1'
I
2' ,即I
' d
=
0
一、纵联差动保护的基本原理
如何选择合适的电流互感器变比,使正常运行或变压器外 部故障时差动电流为零?
二、纵差动保护的不平衡电流及相应措施
1.变压器的励磁涌流
(1)励磁涌流对差动保护的影响 由变压器的原理可知,变压器的励磁电流只流过变压器其 中的一侧。因此通过TA反映到差动回路中不能被平衡。但在 变压器正常工作情况下,励磁电流很小,反映到差动回路可以 忽略不计。
二、纵差动保护的不平衡电流及相应措施
二、纵差动保护的不平衡电流及相应措施
1.变压器的励磁涌流
(2)励磁涌流产生的原因
如果考虑剩磁Φr,这样经过半个周期后铁芯中的磁通将达到 幅值2Φm+Φr。因此:
铁芯中的磁通达到最大值—>变压器严重饱和—>励磁阻抗降 低—>对应的励磁电流很大—>类似于“涌动的潮流”,故简称 “励磁涌流”。
二、纵差动保护的不平衡电流及相应措施
1.变压器的励磁涌流
(1)励磁涌流对差动保护的影响 但是当变压器空载合闸或外部故障切除后电压恢复过程中,
由于变压器铁芯中的磁通急剧增大,使变压器铁芯瞬时饱和, 出现数值很大的励磁电流(称为:励磁涌流)。
励磁涌流可达变压器额定电流的 6~8 倍,如不采取措施, 变压器纵差保护将会误动。
二、纵差动保护的不平衡电流及相应措施

5.电力变压器的纵联差动保护(三)-比率制动差动保护(课件)

5.电力变压器的纵联差动保护(三)-比率制动差动保护(课件)

变压器每相绕组励磁涌流中含有较大的二次谐波分量,含
量大小与铁芯饱和磁通甚至大小及电压突变出现角度等因素直
接相关。 判据:
I
2
I
K
1
I2——电流中的二次谐波有效值 I1——电流中的基波有效值 K——给定的整定值,一般取0.15~0.2
五保护
同时,理论研究及实践均发现,变压器三相励磁涌流中, 二次谐波并非同时达到此整定值,故一般采用或门制动的方式, 即三相中有一相2次谐波含量超过这个定值就闭锁变压器纵联 差动保护。
四、比率制动式差动保护
1.工作原理
图3-14 变压器差动保护原理接线图
若以流入变压器的电流方向为正,则差动电流为:Id = Ih Il
为了使区外故障时获得最大制动作用,区内故障时制动作用
最小甚至为0,制动量为:Ires = Ih - Il / 2
四、比率制动式差动保护
图中可以看出,区外故障时 Ih = Il,制动电流Ires达到最大
六、变压器的差动速断保护
Id
比率差动 动作区
Ist.0 A B 0G I res.0
C
I unb.max
SD
F
E
I res
Ires.max
图3-19 变压器差动速断动作区
差动速断保护的整定值, 按照躲过变压器最大励磁涌流 和外部短路最大不平衡电流的 整定,只反应差流中工频分类 的大小,不考虑谐波及波形畸 变的影响,其值达4~10倍的额 定电流。
六、变压器的差动速断保护
在变压器差动保护中,常常配有二次谐波等制动元件,以 防止励磁涌流引起保护误动。但是,在纵差保护区内发生严重 短路故障时,如果电流互感器出现饱和而使其二次侧电流波形 发生畸变,则二次电流中含有大量谐波分量,从而使涌流判别 元件误判为励磁涌流,致使差动保护拒动或延迟动作严重损坏 变压器。

变压器纵差动保护ppt课件

变压器纵差动保护ppt课件

3
.
6.2.1 变压器纵差动保护的基本原理与接线方式
4.三绕组变压器的纵联电流差保护
I&1
I&1'
I& 3
I& 3'
Id
电力系统常常采用三绕组变
压器。三绕组变压器的纵联
I& 2
差动保护原理与双绕组变压
I
&
' 2
器是一样的。如图所示的变
压器为Yyd11接线方式。
思考:如何构造差动电流?如何选择CT变比?
nT I1 nTA2
nT I1 nTA2
I r nTn I 1 TAI 22(1nn Tn TTAA )2n 1IT 1A 1
选择CT变 比的原则
若选择: nTA2 nT A1
nT
则: (1nTnT A)1 I 1 0 nT A2 nT A1
正常运行或区外短路时:
Ir
nTI1 I2 0 nT A2
.
6.2 变压器纵差动保护
——基本原理和接线方式 ——减小不平衡电流影响的方法 ——整定计算的基本原则 ——具有制动特性的差动继电器
.
6.2.1 变压器纵差动保护的基本原理与接线方式
电流差动保护不但能够正确区分区内外故障,而且不需 要与其他元件的保护配合,可以无延时的切除区内故障, 具有独特的优点,因而被广泛的应用于变压器的主保护。 下面具体分析变压器电流差动保护。
.
6.2.1 变压器纵差动保护的基本原理与接线方式
1.正常工作时理想变压器的一、二次侧的电流关系
I1
+
U1
-
I2
+
U2
-
nT
U1 U2

电路及磁路纵联差动保护PPT课件

电路及磁路纵联差动保护PPT课件
17
2019/9/23
18
(2)电压形成回路及动作判据
参考书P214图8-15分析其工作情况
比率制动部分:


动作电压U1 | I1 I2 |;比率制动电压U4 | I1 I2 |
二次正谐常波运制行动及部区分外短:路:U1小, U4大,所以保护不动

二次谐波制动电压U2 | I1 I2 |2
TM
I2 TA2
I1
K2 I I KD IK I2
K1
图2-1 区内外故障时的工作情况 12
2、变压器纵联保护特殊问题——引起不平衡电流 增大的因素
(1)变压器高、低压两侧电流的大小和相位不同 (2)变压器空载投入的励磁涌流 (3)带负荷调压的变压器运行中改变分接头
(4)电流互感器计算变比与标准变比不同 (5)两侧电流互感器型号不同
流可达额定电流的6~8倍,这称为励磁涌流,可 引起差动保护误动作。
16
3、二次谐波制动的变压器纵联差动保护
(1)比率制动式差动继电器的组成及各部分作用
比率制动部分是用于防止外部短路时,由于不平 衡电流影响而造成误动作; 二次谐波制动部分的作用,是防止变压器空载 投入时出现励磁涌流而造成保护误动作; 差动电流速断部分作用,防止变压器内部发生 严重故障时,差动继电器拒动和加快切除故障;
8
3、测量元件动作电流整定原则 保证外部短路保护不动作。 (动作电流按照大于外部短路流过保护
的最大不平衡电流整定。)
返回
9
二、变压器的纵联保护
1、构成、基本原理 2、变压器纵联保护特殊问题
——引起不平衡电流增大的因素 3、二次谐波制动的变压器纵联差动保护
10
二、变压器纵联保护
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I s e t 的整定有两个方面 :
1)躲过外部短路时的最大不平衡电流
2)躲过最大负荷电流
取以上两者的最大值作为整定值。
动作区
I set
非动作区
I res
(2)带制动特性的差动继电器
Ir


带制动特性的差动继电器动作方程为:I m I n KresIres
其中:K r e s为制动系数,I r e s 为制动电流。
考虑实际在正常运行或外部故障时,由于两端TA不可能完全相同,以及两端 TA饱和情况不一致等因数,流入KD的电流通常不为零(不平衡电流),因而在设 计差动继电器的动作判据时需考虑其影响。
2.电流纵差保护的动作方程及特性
(1)不带制动特性的差动继电器
Ir


不带制动特性的差动继电器动作方程为:I m I n I set
I set
I r e s 取值又可分为两种形式:


Ires | I m - I n |


Ires | Im | | In |
动作区
非动作区
ห้องสมุดไป่ตู้I res
纵联电流差动保护
1. 电流纵差保护的一般原理
M

IM
..

Im
KD为差动继电器,其中:
K1
KD

Ir

. I N N K2 .•
In



Ir ImIn


K2故障(或正常运行)时: I m I n
Ir 0
K1故障(内部短路)时:

I
m
,

I
n 接近同相
Ir 0
具有很大量值
因此利用差动电流的幅值大小可以区分区外和区内短路。
相关文档
最新文档