高考复习点拨:二项分布与超几何分布辨析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项分布与超几何分布辨析

二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.

例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:

(1)有放回抽样时,取到黑球的个数X的分布列;

(2)不放回抽样时,取到黑球的个数Y的分布列.

解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到

黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫ ⎪⎝⎭

,. 03

31464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴; 12

131448(1)55125

P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 212

31412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 30

3

3141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为

2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:

03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15

C C P

Y C ===.

因此,Y 的分布列为

辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.

相关文档
最新文档