关于电力电缆故障分析与诊断技术探讨 费利定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于电力电缆故障分析与诊断技术探讨费利定

发表时间:2018-11-14T20:13:48.483Z 来源:《基层建设》2018年第28期作者:曾维炎费利定[导读] 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。

浙江省送变电工程有限公司浙江杭州 310016 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。因此,在配网电力电缆的使用与运行的过程之中如何快速、准确地定位故障的类型以及故障点就显得非常的重要,因此需要加强对配网电力电缆故障监测的研究。

关键词:电力电缆;故障;诊断技术随着我国社会经济发展进步,电力行业迅猛发展,人们在用电方面的需求不断增大,对于电力系统的要求也越来越高。当前电力已经逐渐发展成为人们生活、生产过程中一项主要动力来源,电力电缆属于电力传输的主要介质。很多企业在电力电缆敷设方面以埋地电缆方式为主,这种电力输送方式能够将电缆与外界环境有效隔绝,避免电缆与环境之间相互作用,使电缆的运行和维护得到简化,供电安全性和可靠性有显著提高。

1 常见的电力电缆故障分析 1.1 高阻故障

如果故障区域电缆绝缘电阻值超过电缆本身电阻值,则属于高阻故障,具体可分为三种不同类型,分别是断路故障、闪络性故障、高阻泄露故障,其中闪络性故障主要是指试验电压升高时引起电流表值突然升高,试验电压下降情况下电流值回归正常,但是电缆绝缘阻值仍比较大,在故障点未有电阻通道出现,只在闪络性表面故障;高阻泄露故障,这种故障主要指在高压绝缘测试时,随着试验电压的增加,泄露电流值也会有明显升高,试验电压在上升至额定值时,泄露电流会超过最大允许值。

1.2 机械损伤

导致机械损伤的原因有三种,其一是受到外力的破坏,比如在施工过程或者运输过程中发生意外损伤,对电缆造成影响,其二是敷设造成损坏,尤其是过大拉力作用下,绝缘材料出现损伤,或者保护层发生损坏,其三是自然力的作用,在受到自然压力下两端的接头会出现膨胀电缆,护套开裂,并且还会受到气候变化的影响,产生自然缩涨。

1.3 因绝缘层破损引发的故障

绝缘层的老化、破损对输电电路的损害是不可估量的,而造成绝缘层老化、破损的原因有很多,除上述几种原因外,还要其他几种常见的原因。(1)腐蚀影响,由于一些电力电缆铺设环境存在腐蚀性较强的物质,在长期腐蚀侵蚀下,电力电缆的绝缘层遭到损坏引发故障问题。(2)摩擦损伤,在电力电缆与金属结构重合的地方,电缆与金属结构长期摩擦造成绝缘层破损,也会导致电力电缆受潮引发故障。(3)动物啃咬,电力电缆容易受到老鼠、白蚁等动物的啃咬造成绝缘层破损,导致电力电缆受潮,进而引发短路问题。

2 电力电缆故障的类型

电力电缆故障类型呈现出多样性,第一是因为低电阻接地或者短路导致故障的发生,简而言之便是电缆线路一相或者多相导体对地,绝缘电阻比正常的阻值要低,且导体具有连续性,常见的类型有单相接地、两相接地等。第二是因为电阻接地或者短路所导致的故障,该故障类型同第一点相似,但仍旧存在差别,主要是接地或短路电阻具有良好的芯线连接,较为常见的类型包括单相接地、两相接地等;第三种是开路故障电缆的各相导体均符合相应的绝缘电阻,但是针对导体进行的连续性实验结果却存在不连续的一项或者数项导体,虽然没有发生断开,但是却无法将电压及时传送给电缆终端,这种情况下则会导致故障的发生,较为常见的便是单相与两相、三相断线。

3 电力电缆故障的诊断技术 3.1 动态监测电缆负荷

电缆超负荷运行情况下会严重缩短绝缘层使用寿命,电力电缆运行中需要注意避免电缆的超负荷运行,结合电网分布以及电缆特性做好载流量的合理分配,降低电缆负荷控制在合理范围,及时更换无法满足电力输送要求电缆,使电缆运行安全稳定性得到保证。另外,还需要采取针对性技术措施做好电缆载流量的动态监测,当有超负荷情况出现时,及时采取处理措施,最大限度降低电缆故障发生率。

3.2 电桥检测法

所谓的电桥检测法主要是指在电缆中要利用双臂电桥测量出流经新线的电流阻值,然后对电缆的长度进行测量,严格按照电阻与电缆长度之间所存在的关系,对电缆之中所存在的故障点加以计算,其中在应用电桥检测法对故障进行诊断的时候,需要多角度分析,尤其要对短路点接触加以诊断,对小于一欧姆的电缆芯线间的短路接触阻值进行计算,要将故障的误差保持在三米以下,其中需要注意的是对于超过一欧姆故障连接处阻值的故障,则需要应用高电压烧穿技术,将其电阻下降到标准数值以下,然后继续利用电桥检测法进行测量。从本质上分析,利用电桥检测法对电力电缆故障进行诊断,可以提高精度测量,减少电桥连接线。

3.3 万用表法

在配网电力电缆的故障监测过程中,在万用表法之中短接了电缆内的金属屏蔽层以及电缆芯,也就是配网电力电缆的终端,而始端测量短接的电阻值,如果测得的电阻值读数为无穷大,那么就代表配网电力电缆系统之中存在有开路故障,如果电阻值的读数比线芯的两倍还要高,那么就代表系统之内出现了似断非断的故障。如果配网电力电缆采用的是三芯电缆结构,接入了金属屏蔽层,那么就需要考虑中终端位置,对屏蔽层进行短接,然后使用万用表接入开始位置,对三相间的实际电阻值进行直接测量,对绝缘层的电阻值进行掌握。而对于没有金属屏蔽层的情况,只需要检测相间电阻就可以,以对配网电力电缆的性能以及质量进行判断。

3.4 声音测量法

声音测量法主要是指检测诊断电缆故障的时候需要根据放电过程中所释放的声音进行判断,高压电缆的线芯对绝缘层闪络的放电比较适用于声音测量方法,需要应用直流耐压试验机对电力电缆故障加以诊断。其中,当电容器达到固定电压值的时候,要根据电缆故障新线放电,这个时候放电会发出滋滋的声音,可以靠听觉查出故障所在的位置,对于敷设在地下电缆如发生故障,首先需要对电缆的走向加以确定,并且在最大放电声音区域内放大设备,查找故障的发生位置,主要的方法是利用低音器缓慢地在电缆的走向处进行移动,在放电声最大的区域仔细检测。

相关文档
最新文档