石灰石化学分析准确性的鉴定

合集下载

石灰石化学分析方法

石灰石化学分析方法

石灰石化学分析方法分析化验联系电话0519886339130找李主任1. 烧失量的测定称取1.0000克试样,至于瓷坩埚中,放在马弗炉内,从低温逐渐升高温度,在900~1000℃下灼烧1h。

2. 二氧化硅的测定称取约0.6g试样,精确至0.0001g ,置于铂坩埚中,将盖斜置于坩埚上,并留有一定缝隙,在900~1000℃下灼烧5min,取出坩埚冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g无水碳酸钠混匀,再将坩埚置于950~1000℃下灼烧10min ,取下冷却至室温。

将烧结块移入瓷蒸发皿中,加少量水润湿,盖上表面皿,从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解安全,用热盐酸(1+1)清洗坩埚数次,洗液合并于蒸发皿中,将蒸发皿置于沸水浴上,皿上放一玻璃三角架,再盖上表面皿,蒸发至糊状后,加入1g氯化氨,充分搅匀,在沸水浴上蒸发至干后继续蒸发10~15min 。

取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶性盐溶解。

用中速滤纸过滤,用胶头檫棒以热水檫洗玻璃棒及蒸发皿,用热水洗涤10~12次。

滤液及洗液保存于250mL容量瓶中。

将沉淀连同滤纸一并移入原铂坩埚中,干燥、灰化后,放入已升温至950~1000℃的马弗炉内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。

向坩埚内加数滴水润湿沉淀,加3滴硫酸(1+4)和5mL氢氟酸,放入通风橱缓慢加热,蒸发至干,升高温度继续加热至三氧化硫白烟完全散尽。

将坩埚放入已升温至950~1000℃内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。

经氢氟酸处理后得到的残渣中加入1g焦硫酸钾,在500~600℃下熔融至透明,熔块用热水和数滴盐酸(1+1)溶解,溶液并入分离二氧化硅后得到的滤液和洗液中,用水稀释至标线,摇匀。

3. 氧化钙的测定吸取25mL于400mL烧杯中,加水稀释约200mL,加5mL三乙醇胺(1+2)及适量的CMP(1.000g钙黄绿素、1.000g甲基百里香酚蓝、0.200g酚酞、50g已在105℃烘干过的硝酸钾)混合指示剂,在搅拌下加入氢氧化钾(200g/L)至出现绿色荧光后再过量5~8mL ,以EDTA(0.015mol/L)滴定至绿色荧光消失并出现红色。

石灰石化学分析方法

石灰石化学分析方法

石灰石化学分析方法总 则a) 本标准适用于工业用石灰石的化学分析b) 分析用的水均指除盐水,所用化学试剂除另有说明外应为分析纯、优级纯。

用于标定的试剂,除另有说明外应为基准试剂。

c) 称取试样时应准确至0.0002克,分析步骤须严格按照本方法规定的分析步骤进行。

d) 凡以百分浓度表示的试剂,均按100毫升溶剂中所加溶质的克数配制,所用之酸或氨水,凡未注明浓度者均为浓酸或浓氨水。

e) 所用分析天平不应低于四级,天平与砝码应定期进行检定,所用滴定管、容量瓶、移液管应进行校正。

容量法测定低含量元素时,应采用10毫升或25毫升滴定管。

f) 分析前,试样应于105—110℃干燥2小时,然后置于干燥器中冷却至室温。

g) 分析时,必须同时作烧失量的测定,其他各项测定应同时进行空白实验,并对所测结果加以校正。

h) 各项分析结果(%)的数值,须修约至小数点后第二位。

采样石灰石样必须具有代表性和均匀性,根据化工用石灰石采样与样品制备方法 GB/T 15057.1―94 的采样方法,汽车车厢按图由5点采取份样。

采样点应离车壁、底部不小于0.3m ,离表面不小于0.2m 。

制样根据建材用石灰石化学分析方法 GB/T 5762―2000的试样制备方法,将采集的石灰石样品,经破碎、制粉等步骤,混匀并用四分法或缩分器缩分。

将试样缩减至25克。

然后放在玛瑙乳钵中研磨至全部通过0.08毫米方孔筛,装入清洁、干燥的磨口试样瓶中,一份供● ● ● ● ●试验分析使用,一份作为原样保存备用。

并注明生产单位名称、采样人员及采样日期。

样品保存期为个月。

一、石灰石试样溶液的制备1、方法提要:试样置于铂金坩埚中以碳酸钾—硼砂混合熔剂熔融,熔融物以硝酸加热浸取。

2、化验试剂:(1)碳酸钾—硼砂(1+1)混合熔剂:将1份重量的碳酸钾与一份重量的无水硼砂混匀研细,贮存于磨口瓶中。

(2)硝酸(1+6):将1体积的硝酸与6体积的水混合。

3、制备步骤:称取约0.5克试样于铂金坩埚中,加2克碳酸钾—硼砂混合熔剂混匀,再以少许熔剂清洗玻璃棒,并铺于试样的表面。

石灰石的测定

石灰石的测定

石灰石的测定1 烧失量的测定1.1 方法提要试样在950~1000℃的马弗炉中灼烧,驱除水分和二氧化碳,同时将存在的易氧化元素氧化。

1.2 分析步骤称取约1g试样,精确至0.0001g,置于已灼烧恒量的瓷坩埚中,将盖斜置于坩埚上,放在马弗炉内从低温开始逐渐升温,在950~1000℃下灼烧40min,取出坩埚置于干燥器中冷却至室温,称量。

反复灼烧,直至恒量。

1.3 结果表示烧失量的质量百分数XLoss按下式计算:m1-m2XLoss= —————× 100m1式中:Xloss———烧失量的质量百分数,%m1———试样的质量,gm2———灼烧后试料的质量,g2 系统化学分析方法2.1 二氧化硅的测定2.1.1氟硅酸钾容量法2.1.1.1 方法提要在有过量的氟、钾离子存在的强酸性溶液中,使硅形成氟硅酸钾(K2SiF6)沉淀,经过滤、洗涤及中和残余酸后,加沸水使氟硅酸钾沉淀水解。

生成等物质的量的氢氟酸,然后以酚酞为批示剂,用氢氧化钠为标准滴溶液滴定至微红色。

2.1.1.2 溶液、试剂氢氧化钠(固体) (0.15mol/l)盐酸(浓)、(1+1)、(1+5)硝酸(浓)氯化钾(固体)、(50g/l)氯化钾-乙醇(50g/l)氟化钾(150g/l)酚酞(10g/l)2.1.1.3 分析步骤称取约0.5g试样,精确至0.0001g,置于银坩埚中,加入6~7g氢氧化钠,在650~700℃的高温下熔融30min。

取出冷却,将坩埚放入已盛有100ml近沸腾水的烧杯中,盖上表面皿,于电炉上适当加热。

待熔块完全浸出后,取出坩埚,在搅拌下一次加入25~30ml盐酸,再加入1ml硝酸。

用热盐酸(1+5)洗净坩埚和盖,将溶液加热至沸。

冷却,然后移入250ml容量瓶中,用水稀释至标线,摇匀。

此溶液供测定二氧化硅、三氧化二铁、三氧化二铝、二氧化钛、氧化钙、氧化镁用。

从试样溶液中吸取25.00ml溶液,放入300ml塑料杯中,加入10~15ml硝酸,搅拌,冷却至30℃以下,加入氯化钾,仔细搅拌至饱和并有少量氯化钾析出,再加2g氯化钾及10ml氟化钾溶液(150g/l),仔细搅拌(如氯化钾析出量不多,应再补充加入),放置15~20min,用中速滤纸过滤,用氯化钾溶液(50g/l)洗涤塑料杯及沉淀3次,将滤纸及沉淀取下置于原塑料杯中,沿杯壁加入10ml、30℃以下的氯化钾—乙醇(50g/l)及1ml酚酞批示剂溶液(10g/l),用0.15mol/l氢氧化钠中和未洗净的酸,仔细搅拌滤纸并随之擦洗杯壁,直至酚酞变红(不记读数),然后加入200ml用氢氧化钠中和至酚酞变红的沸水,用0.15mol/l氢氧化钠标准滴定溶液滴定至微红色。

石灰石的化学分析方法

石灰石的化学分析方法

石灰石的化学分析方法⒈1试样的制备试样必须具有代表性和均匀性。

由大样缩分后的试样不得少于100g,试样通过0.08mm 方孔筛时的筛余不应超过15%。

再以四分法或缩分器减至约25g,然后研磨至全部通过孔径为0.008mm方孔筛。

充分混匀后,装入试样瓶中,供分析用。

其余作为原样保存备用。

⒈2烧失量的测定⒈⒉1方法提要试样中所含水分、碳酸盐极其他易挥发性物质,经高温灼烧即分解逸出,灼烧所失去的质量即为烧失量。

⒈⒉2分析步骤称取约1g试样(m),精确至0.0001g,置于已灼烧恒量的瓷坩锅中,将盖斜置于坩锅上,放入马弗炉内,从低温开始逐渐升温,在950~1000℃下灼烧1h,取出坩锅置于干燥器中,冷却至室温,称量。

反复灼烧,直至恒量。

⒈⒉3结果表示烧失量的质量百分数X LOI 按式(1.1)计算:m-m1X LOI =————×100 ......................(1.1)m式中: X LOI—烧失量的质量百分数,%;m—灼烧后试料的质量,g;1m—试料的质量,g。

⒈⒉4允许差同一实验室的允许差为:0.25%;不同实验室的允许差为:0.40%。

⒈3二氧化硅的测定(基准法)⒈⒊1方法提要试样以无水碳酸钠烧结,盐酸溶解,加固体氯化铵于沸水浴中加热蒸发,使硅酸凝聚,灼烧称量。

用氢氟酸处理后,失去的质量即为二氧化硅含量。

⒈⒊2分析步骤称取约0.6g试样(m2 ),精确至0.0001g,置于铂坩锅中,将盖斜置于坩锅上,在950~1000℃下灼烧5min,取出铂坩锅冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g研细无水碳酸钠混匀。

再将坩锅置于950~1000℃下灼烧10min,取出冷却至室温。

将烧结物移入瓷蒸发皿中,加少量水润湿,盖上表面皿。

从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解完全,用热盐酸(1+1)清洗坩锅数次,洗液合并于蒸发皿中。

石灰石中氧化钙氧化镁含量的分析

石灰石中氧化钙氧化镁含量的分析

石灰石中氧化钙氧化镁含量的分析石灰石是一种含有大量氧化钙(CaO)和氧化镁(MgO)的矿物,在建筑业、冶金行业、化学工业等领域有广泛应用。

准确分析石灰石中氧化钙和氧化镁的含量对于产品质量的控制和质量改进至关重要。

本文将介绍石灰石中氧化钙和氧化镁含量的分析方法,包括化学分析法、光谱分析法和仪器分析法。

一、化学分析法1.酸解法:将样品与稀酸(如盐酸)反应,使氧化钙和氧化镁转化为可溶性的氯化钙和氯化镁。

然后,用比色法或重量法测定氯化钙和氯化镁的含量,从而推算出氧化钙和氧化镁的含量。

2.碳酸化法:将样品与一定量的二氧化碳反应,生成碳酸钙和碳酸镁。

然后,用滴定法测定剩余的二氧化碳的含量,从而计算出氧化钙和氧化镁的含量。

3.碱度法:用稀盛碱溶液滴定石灰石样品,通过溶液酸碱度的变化来推算出氧化钙和氧化镁的含量。

以上三种化学分析法都是传统的分析方法,虽然操作简单,但准确度稍低,需要大量的化学试剂和时间。

为了提高分析结果的准确性和效率,人们逐渐采用光谱分析法和仪器分析法。

二、光谱分析法1.紫外-可见光谱法:石灰石中的氧化镁和氧化钙都能在一定波长范围内吸收光线。

通过测量样品对光线的吸光度,可以推算出氧化钙和氧化镁的含量。

这种方法无需溶解样品,操作简单,且测定速度快。

但是,此方法需要专业仪器,对操作人员的要求较高。

2.傅里叶变换红外光谱法(FTIR):用FTIR仪器测定石灰石中氧化钙和氧化镁的光谱特性,再根据氧化钙和氧化镁的标准光谱图,计算样品中的含量。

这种方法具有准确度高、操作简单、检测速度快等优点。

三、仪器分析法1.X-射线荧光光谱法(XRF):XRF仪器能够测定石灰石中各种元素的含量。

通过测量样品吸收和发射的X射线能谱,可以得到氧化钙和氧化镁的含量。

这种方法适用于测量多种样品和大批量样品,具有高准确度和高安全性。

2.原子吸收光谱法(AAS):AAS仪器通过测量石灰石中氧化钙和氧化镁原子在不同波长下的吸收程度,从而推算出其含量。

01石灰石化学分析作业指导书

01石灰石化学分析作业指导书
一.内控标准:
CaO≥48%,MgO≤3%,合格率≥90%,水分≤1%,入磨粒度≤10mm,合格率≥80%。
二.检验设备:
1.分析天平2.高温炉3.坩埚4、烘箱5.滴定管、容量瓶、移液管
三.检验频次:
开采点(矿山):每半年一次全分析;入磨皮带:每月二次全分析;水分≤1%
四.取样方法与样品制备:
YX/ZD-13《样品采取、制备与保管作业指导书》
4.三氧化二铁的测定
吸取50ml试液于300ml烧杯中,加水至100ml用氨水(1+1)调溶液PH=1.8-2.0(精密试纸检验)将溶液加热至70℃,加10滴10%的磺基水杨酸钠指示剂,用0.015mol/LEDTA标液滴定至亮黄色(溶液终点温度应在60℃左右)。
式中:T 为每毫升EDTA标液相当于氧化铁的质量,mg/ml
式中: 于氧化铁的质量,mg/mL
V—滴定时耗用EDTA标液体积(g)M—试样质量(g)
6.氧化钙的测定
吸25.00ml试液于300ml烧杯中,加入20g/L的氟化钾溶液7ml,搅拌并放置2分钟以上,加水至150ml加入5ml三乙酸氨(1+2),加入少许CMP指示剂,搅拌下加200g/L的氢氧化钾溶液至出现绿色荧光后再过量5-8ml(PH12以上),以0.015mol/LEDTA标液滴定至绿色荧光消失并出现粉红色。
3.二氧化硅的测定
准确采取0.3g试样,置于已盛有2g氢氧化钾的霂坩埚中,再用1g氢氧化钾覆盖在上面,盖上坩埚盖,于500-600℃的高温炉中熔融20分钟后,放出冷,用水提取熔融物于300ml塑料烧杯中,坩埚及盖用少许硝酸(1+20)和水洗净(此时溶液体积在40ml左右)加入10ml15%的氟化钾溶液搅拌,然后一次性加入15ml浓硝酸,冷却后加入固体氯化钾至饱和,并静止15分钟,然后用快速滤纸过滤,塑料杯及沉淀用5%的氯化钾溶液洗涤2-3次,将沉淀连同滤纸一并置于原烧杯中,沿杯壁加入10ml15%的Kcl- 溶液及1ml1%的酚酞指示剂用0.15mol/L的氢氧化钠标液中和未洗净的酸,仔细搅动滤纸并随之擦洗杯壁直至溶液呈微红色,然后加入200ml中和过的沸水,以0.15mol.L氢氧化钠标液滴定至微红色。 试中: 为每毫升氢氧化钠相当于二氧化硅的质量,mg/mL;V为滴定时耗氢氧化钠标液的体积(ml);m为试样质量(g)。

X射线荧光光谱法测定石灰石

X射线荧光光谱法测定石灰石

X射线荧光光谱法测定石灰石采用能量色散X射线荧光光谱法测定石灰石中CaO、MgO、SiO2含量。

将石灰石样品进行磨细处理,采用硼酸镶边衬底,在压片机上制成石灰石样片。

在X射线荧光光谱仪上按照选定的分析条件,以标准样品做工作曲线,根据工作曲线测定样品含量。

通过与国家标准化学法对照,分析结果基本一致。

标签:X射线荧光光谱法;石灰石;粉末压片;石灰石主要成分是碳酸钙(CaCO3),我国石灰石矿蕴藏量十分丰富,分布很广,质量各异。

石灰石经过高温煅烧制成石灰,石灰是生产电石的主要原材料之一,MgO、SiO2等含量对电石生产有一定的负面影响。

因此,快速分析石灰石中CaO、MgO、SiO2等含量很有必要。

目前,石灰石中CaO、MgO、SiO2等含量的分析主要采用化学分析方法,CaO、MgO含量的分析采用国家标准GB/T 3286.1-1998,SiO2含量的分析采用国家标准GB/T 3286.2-1998。

化学分析方法操作难度大,分析流程长,终点指示不明显,人为因素影响较大。

有关X射线荧光光谱法测定石灰石中的组分已有报道,已有文献中样品采用熔融制样【1】,但是较为繁琐。

本文采用X射线荧光光谱法测定石灰石中的CaO、MgO、SiO2,采用低能量X射线管和最新开发的C-Force 偏振光学系统,确保了对样品中元素的最佳激发。

使用Pd准直器,并用XRF软件中提供的经验系数法进行机体校正,其分析结果的精密度和准确度完全可以和化学分析结果聘美,而且操作简便、快捷。

仪器分析原理:X射线管通过产生入射X射线(一次X射线),来激发被测样品。

受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。

探测系统测量这些放射出来的二次X射线的能量及数量。

然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。

元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,根据莫斯莱定律,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下:λ=K(Z? s)?2式中K和S是常数。

提高石灰石质量检验的方法和措施

提高石灰石质量检验的方法和措施

提高石灰石质量检验的方法和措施石灰石是一种常见的建材原料,广泛应用于水泥、钢铁、建筑等行业。

为了确保石灰石的质量,需要进行质量检验。

以下是提高石灰石质量检验的方法和措施。

一、加强取样方法和控制1.合理选择取样点:取样点应避免容易受到外界干扰的地方,如靠近堆料区的边缘,避免混入其它杂质。

2.保证取样点的代表性:取样时应尽量保证取得的样品的代表性,从各个方向随机取样,防止因不均匀质量而引起的抽样误差。

3.避免样品受到外界影响:在取样过程中要注意保持样品的原貌,避免样品受潮、污染等外界因素的影响。

二、优化化学分析方法1.选择合适的化学试剂:优化化学分析方法的首要条件是选择适当的化学试剂。

应结合石灰石的成分特点选择试剂,例如,选用氯化银作为滴定剂进行氯含量测定,选用硝酸铋酸钾作为滴定剂进行氟含量测定。

2.精确称量定量:在化学分析中,精确的称量定量是确保结果准确性的关键。

尤其是微量元素的分析,称量时应注意避免过量或不足。

3.控制煮沸条件:煮沸是一些化学分析方法中常用的操作步骤。

煮沸时间和温度应掌握好,以确保完全反应和有效提取。

三、引入物理检测手段1.粒度分布检测:通过使用粒度分析仪器可以定量测定石灰石的粒度分布情况,包括平均颗粒大小、累积通过率等指标,有助于判断石灰石的颗粒大小是否符合要求。

2.X射线衍射(XRD)分析:XRD技术可以用于石灰石的晶体结构分析和相对含量的定量测定。

通过XRD分析可以判断石灰石中可能存在的杂质、晶体形态以及和其他物质的反应情况。

3.扫描电子显微镜(SEM)观察:利用SEM技术可以观察石灰石的表面形貌和颗粒结构,包括颗粒形状、表面纹理等。

通过SEM观察可以评估石灰石的物理形态。

四、建立全面完善的质量检验体系1.制定合理的检验标准:在制定石灰石质量检验标准时,需考虑其应用领域、产品要求等因素,确保检验结果与实际使用要求相符。

2.合理选择检测方法:根据具体情况,选择合适的检测方法,综合利用化学分析、物理检测等手段进行综合评估。

石灰石中氧化钙含量检测方法的探究

石灰石中氧化钙含量检测方法的探究

石灰石中氧化钙含量检测方法的探究石灰石是一种重要的建筑材料,广泛应用于建筑、冶金、化工等各个领域。

其中的氧化钙含量是石灰石的重要指标之一,它直接影响着石灰石的应用性能和质量。

对石灰石中氧化钙含量进行准确快速的检测具有重要的意义。

本文将对石灰石中氧化钙含量的检测方法进行探究,通过实验和文献综述,总结出一种准确可靠的检测方法。

一、氧化钙含量的检测方法1. 化学分析法化学分析法是通过化学方法将氧化钙从石灰石中提取出来,然后通过滴定或称量方法进行分析,得到氧化钙的含量。

常用的化学分析方法有盛装氧化钙的硫酸滴定法、重量法、铵铅法等。

这些方法都需要对样品进行破碎、烧结等处理,操作步骤较为复杂,且耗时耗力,不适合快速检测。

2. 光谱分析法光谱分析法是利用物质在特定波长的光下产生吸收、发射或散射现象而进行分析的方法。

常用的光谱分析方法有原子吸收光谱法、荧光光谱法、紫外-可见分光光度法等。

这些方法具有快速、高灵敏度的特点,但设备昂贵、操作技术要求较高,对环境和温度要求严格,不适合于现场快速检测。

3. 仪器分析法仪器分析法是利用仪器设备对石灰石中的氧化钙进行分析的方法。

常用的仪器分析设备有X射线荧光光谱仪、红外光谱仪、核磁共振光谱仪等。

这些方法具有自动化、准确、快速的特点,但设备价格昂贵,不适合于一般实验室和生产现场。

二、新型快速检测方法的探究针对传统的氧化钙含量检测方法存在的不足,迫切需要研发出一种快速、准确、可靠的氧化钙含量检测方法。

在大量实验和文献综述的基础上,结合实际情况,探究出了一种新型的快速检测方法。

1. 碱度滴定法碱度滴定法是利用强酸滴定强碱的原理,将氧化钙从石灰石中滴定出来,通过反应所消耗的酸的体积计算出氧化钙的含量。

该方法操作简便,无需昂贵的仪器设备,适用于生产现场和一般实验室。

具体步骤如下:(1)样品制备:将石灰石样品研磨成粉末,经过筛分,取适量样品。

(2)生成氢氧化钙:将样品放入饱和氢氧化钠溶液中,生成氢氧化钙。

石灰石中钙镁含量的测定实验报告

石灰石中钙镁含量的测定实验报告

石灰石中钙镁含量的测定实验报告一、实验目的:本实验旨在通过化学分析方法测定石灰石中钙镁含量。

二、实验原理:石灰石主要由碳酸钙(CaCO3)和少量的碳酸镁(MgCO3)组成。

钙和镁都是碱土金属元素,因此可以采用EDTA配合物滴定法来测定石灰石中钙镁含量。

三、实验步骤:1.取一定量的石灰石样品,粉碎并筛选出粒度在60目以下的颗粒。

2.将粉末样品称取0.2g,加入100ml锥形瓶中,加入10ml0.1mol/L盐酸,加热至完全溶解。

3.在溶液中加入几滴甲基红指示剂,然后用0.1mol/L氢氧化钠溶液滴定至颜色由红变黄。

4.加入10ml NH4Cl/NH4OH缓冲液和10ml 0.01mol/L EDTA溶液,用0.01mol/L MgCl2标准溶液滴定至颜色变化,记录所需的EDTA溶液用量V1。

5.再加入10ml NH4Cl/NH4OH缓冲液和10ml 0.01mol/L EDTA溶液,用0.01mol/L CaCl2标准溶液滴定至颜色变化,记录所需的EDTA 溶液用量V2。

四、实验结果:根据EDTA配合物滴定法的原理,钙和镁的摩尔比为1:1,因此可以计算出石灰石中钙和镁的含量。

计算公式如下:钙含量(%)=(V2-V1)×0.01×40.08×1000/m镁含量(%)=V1×0.01×24.31×1000/m其中,V1为EDTA溶液用量(mL),V2为EDTA溶液用量(mL),m为样品质量(g),40.08和24.31分别为钙和镁的摩尔质量。

五、实验结论:通过本实验,成功测定了石灰石中钙镁含量。

实验结果表明,该石灰石样品中钙含量为XX%,镁含量为XX%。

石灰石分析操作规程

石灰石分析操作规程

黄石成美建材有限公司部门标准石灰石分析操作规程E0Q/CM-J11.20-2009 1 目的为保证石灰石分析的准确性和规范性。

2 范围用于生产中石灰石的检验。

3 引用标准3.1 GB/T5762-2000 《建材用石灰石化学分析方法》3.2 Q/CMJ11.30-2009 《熟料分析操作规程》3.3 Q/CMJ11.29-2009 《生料分析操作规程》4 主要内容4.1 烧失量的测定准确称取1g试样,精确至0.0001g放入到已灼烧恒量的瓷坩埚中,将盖斜置于坩埚上,置于马弗炉内,从低温升起,在950-1000℃的高温下灼烧60min。

取出坩埚置于干燥器中冷却至室温,称量。

如此反复灼烧,直至恒量。

试样中烧失量的质量百分数按下式计算:m-m1烧失量= ────× 100m式中: m──灼烧前试料的质量,g;m1──灼烧后试料的质量,g。

4.2 二氧化硅的测定(代用法)称取约0.3g试样精确至0.0001g,置于银坩埚中,加入4g氢氧化钾,于电炉上熔融20min,取下坩埚稍冷后,用热水浸取熔块,放入300ml塑料杯中,用热水冲洗坩埚和盖。

然后加入15-20ml硝酸,搅拌,冷却至30℃以下。

再加入10ml150g/l氟化钾溶液,再加入氯化钾至饱和,并过量1-2g氯化钾,放置15-20min。

用中速滤纸过滤,用氯化钾溶液洗涤塑料杯及沉淀3次。

将滤纸连同沉淀取下,置于原塑料杯中,沿杯壁加入10ml温度为30℃共4页第1页部门负责人2009-09-01批准2009-09-10实施以下的氯化钾-乙醇(50g/L)及1ml酚酞(10g/l)指示剂溶液,用浓度为0.15mol/L氢氧化钠滴定溶液中和未洗尽的酸,仔细搅动滤纸并随之擦洗杯壁直至溶液呈红色,向杯中加入200ml沸水(蒸馏水煮沸并用氢氧化钠溶液中和至酚酞呈微红色),用0.15mol/L的氢氧化钠标准溶液滴定至微红色。

二氧化硅的百分含量用下式计算:T SiO2×VSiO2= × 100m×1000式中:T SiO2---每毫升氢氧化钠标准溶液相当于二氧化硅的毫克数;V---滴定时消耗氢氧化钠标准溶液的体积ml;m---试样的质量,g。

石灰石的测定

石灰石的测定

石灰石的测定1 烧失量的测定方法提要试样在950~1000℃的马弗炉中灼烧,驱除水分和二氧化碳,同时将存在的易氧化元素氧化。

分析步骤称取约1g试样,精确至0.0001g,置于已灼烧恒量的瓷坩埚中,将盖斜置于坩埚上,放在马弗炉内从低温开始逐渐升温,在950~1000℃下灼烧40min,取出坩埚置于干燥器中冷却至室温,称量。

反复灼烧,直至恒量。

结果表示烧失量的质量百分数X Loss按下式计算:m1-m2X Loss= —————×100m1式中:X loss———烧失量的质量百分数,%m1———试样的质量,gm2———灼烧后试料的质量,g2 系统化学分析方法二氧化硅的测定2.1.1氟硅酸钾容量法2.1.1.1 方法提要在有过量的氟、钾离子存在的强酸性溶液中,使硅形成氟硅酸钾(K2SiF6)沉淀,经过滤、洗涤及中和残余酸后,加沸水使氟硅酸钾沉淀水解。

生成等物质的量的氢氟酸,然后以酚酞为批示剂,用氢氧化钠为标准滴溶液滴定至微红色。

2.1.1.2 溶液、试剂氢氧化钠(固体) (l)盐酸(浓)、(1+1)、(1+5)硝酸(浓)氯化钾(固体)、(50g/l)氯化钾-乙醇(50g/l)氟化钾(150g/l)酚酞(10g/l)2.1.1.3 分析步骤称取约0.5g试样,精确至0.0001g,置于银坩埚中,加入6~7g 氢氧化钠,在650~700℃的高温下熔融30min。

取出冷却,将坩埚放入已盛有100ml近沸腾水的烧杯中,盖上表面皿,于电炉上适当加热。

待熔块完全浸出后,取出坩埚,在搅拌下一次加入25~30ml 盐酸,再加入1ml硝酸。

用热盐酸(1+5)洗净坩埚和盖,将溶液加热至沸。

冷却,然后移入250ml容量瓶中,用水稀释至标线,摇匀。

此溶液供测定二氧化硅、三氧化二铁、三氧化二铝、二氧化钛、氧化钙、氧化镁用。

从试样溶液中吸取溶液,放入300ml塑料杯中,加入10~15ml 硝酸,搅拌,冷却至30℃以下,加入氯化钾,仔细搅拌至饱和并有少量氯化钾析出,再加2g氯化钾及10ml氟化钾溶液(150g/l),仔细搅拌(如氯化钾析出量不多,应再补充加入),放置15~20min,用中速滤纸过滤,用氯化钾溶液(50g/l)洗涤塑料杯及沉淀3次,将滤纸及沉淀取下置于原塑料杯中,沿杯壁加入10ml、30℃以下的氯化钾—乙醇(50g/l)及1ml酚酞批示剂溶液(10g/l),用l氢氧化钠中和未洗净的酸,仔细搅拌滤纸并随之擦洗杯壁,直至酚酞变红(不记读数),然后加入200ml用氢氧化钠中和至酚酞变红的沸水,用l氢氧化钠标准滴定溶液滴定至微红色。

石灰石粉检测报告

石灰石粉检测报告

石灰石粉检测报告引言石灰石粉是一种常见的矿石,广泛应用于建筑、冶金和化工等领域。

在使用石灰石粉之前,需要对其进行质量检测,以确保其符合相关标准。

本文将介绍一种常用的石灰石粉检测方法。

步骤一:样本采集首先,需要从待检测的石灰石粉样品中采集一小部分样本。

可以使用专门的工具,如锤子和锤子台,将样本从石灰石粉堆中获取出来。

为了保证采集到的样本具有代表性,应该在不同位置和深度进行采集。

步骤二:样品准备采集到的样本需要进行样品准备,以便于后续的实验分析。

首先,将样本进行研磨,以确保其颗粒大小均匀。

可以使用研磨仪或者手工研磨的方式进行。

然后,将研磨后的样本放入干燥器中进行干燥,以去除其中的水分。

步骤三:化学分析在样品准备完成后,可以进行化学分析。

常用的方法是使用酸溶解法。

首先,将干燥后的样品称取一定重量,然后加入适量的酸溶液,如盐酸或硫酸。

随后,将溶液进行加热,以促进酸和样品的反应。

在一定时间后,停止加热,并使用适当的方法将样品中的杂质进行分离或沉淀。

最后,测定溶液中所含的特定元素的含量,可以使用光谱仪器或化学分析仪器进行测量。

步骤四:数据分析得到化学分析的结果后,可以进行数据分析。

根据分析结果,可以判断石灰石粉样品中特定元素的含量是否符合相关标准。

如果含量超出了规定的范围,说明石灰石粉的质量不合格,需要进一步处理或选择其他供应商提供的石灰石粉。

结论通过以上步骤,我们可以得到石灰石粉的检测报告。

该方法基于化学分析,可以准确地测定石灰石粉中特定元素的含量,从而评估其质量是否符合标准。

这对于建筑、冶金和化工等领域的生产和工程项目具有重要意义。

参考文献[1] 张三, 李四, 王五. 石灰石粉检测方法及其应用研究. 化工科学, 2010, 37(3): 123-135. [2] Smith, J., & Johnson, A. Lime powder analysis and quality control. Journal of Minerals, 2015, 45(2), 67-78.注意:本文所述的石灰石粉检测方法仅供参考,具体操作应根据实际需求和实验室条件进行调整。

石灰石检测标准

石灰石检测标准

有关石灰石检测标准石灰石主要成分是碳酸钙(CaCO3)。

石灰和石灰石大量用做建筑材料,也是许多工业的重要原料。

石灰石可直接加工成石料和烧制成生石灰。

石灰有生石灰和熟石灰,生石灰的主要成分是CaO;一般呈块状,纯的为白色,含有杂质时为淡灰色或淡黄色。

生石灰吸潮或加水就成为消石灰,消石灰也叫熟石灰,它的主要成分是Ca(OH)2。

熟石灰经调配成石灰浆、石灰膏等,用作涂装材料和砖瓦粘合剂。

(14.10.15)(001)检测标准:GB/T3286.5-1998石灰石、白云石化学分析方法氧化锰量的测定GB/T3286.6-1998石灰石、白云石化学分析方法磷量的测定GB/T3286.7-1998石灰石、白云石化学分析方法硫量的测定GB/T3286.8-1998石灰石、白云石化学分析方法灼烧减量的测定GB/T3286.9-1998石灰石、白云石化学分析方法二氧化碳量的测定GB50955-2013石灰石矿山工程勘察技术规范GB/T5762-2012建材用石灰石、生石灰和熟石灰化学分析方法HG/T2226-2010普通工业沉淀碳酸钙HG/T2504-1993化工用石灰石HG/T2776-2010工业微细沉淀碳酸钙和工业微细活性沉淀碳酸钙HJ/T179-2005火电厂烟气脱硫工程技术规范石灰石/石灰-石膏法JB/T10731-2007脱硫用湿式石灰石球磨机JB/T10984-2010湿法烟气脱硫装置专用设备石灰石/石膏旋流器JB/T11180-2011冲天炉配加料系统用双向带式输送机JB/T11650-2013循环流化床锅炉石灰石粉一级输送系统JB/T3766-2008石灰石用锤式破碎机JC/T600-2010石灰石硅酸盐水泥JC/T865-2000平板玻璃用石灰石JGJ/T318-2014石灰石粉在混凝土中应用技术规程Q/CNPC86-2003钻井液用石灰石粉SJ/T10087.4-1991彩色显像管玻璃主要原材料的化学分析方法石灰石的化学分析方法SN/T3321.1-2012石灰石、白云石第1部分:镁、硅、铝、铁、锰和磷含量的测定电感耦合等离子体原子发射光谱法SN/T3321.2-2013石灰石、白云石第2部分:碳、硫含量的测定高频燃烧红外吸收法SY/T0067-1999管道防腐层耐冲击性试验方法(石灰石落下法)SY/T5061-1993钻井液用石灰石粉性质特点:密度:2.93g∕cm3熔点:825°C水溶性:微溶于水,在含有铵盐或三氧化二铁的水中溶解,不溶于醇。

石灰石化学分析方法

石灰石化学分析方法

石灰石化学分析方法石灰石的化学成分大致含量范围如下:SiO 2:0.2~10% Al 2O 3:0.2~2.5% Fe 2O 3:0.1~2%CaO :45~55% MgO :0.1~2.5% 烧失量:36~43%一般要求石灰石的SiO 2含量<2%,CaO 含量>53.5%(CaCO 3含量>95%)。

一、试样的制备试样必须具有代表性和均匀性,取样按GB/T 2007.1进行。

由大样缩分后的试样不得少于100 g ,然后用鄂式破碎机破碎至颗粒小于13mm ,再以四分法或缩分器将试样缩减至约25g ,然后通过密封式制样机研磨至全部通过孔径为0.08mm 方孔筛。

充分混匀后,装入试样瓶中,供分析用。

其余作为原样保存备用。

二、二氧化硅的测定:准确称取1.0g 试样(精确至0.0001g),臵于100ml 蒸发皿中,加入5~6gNH 4Cl ,用平头玻璃棒混匀,盖上表面皿,沿皿口滴加10ml (1+1)HCl 及8~10滴HNO 3,搅拌均匀,使试料充分分解。

把蒸发皿臵于沸水浴上,皿上放一玻璃三角架,再盖上表面皿加热,期间搅拌2次,待蒸发至干后再继续蒸发10~15min 。

取下蒸发皿,加20ml (3+97)热HCl ,搅拌,使可溶性盐类溶解,以中速定量滤纸过滤,用胶头扫棒以(3+97)热HCl 擦洗玻璃棒及蒸发皿,并洗涤沉淀10~12次,滤液及洗液承接于500ml 容量瓶中,定容至标线。

此即为试验溶液,用于测定CaO 、MgO 、Fe 2O 3、Al 2O 3用。

滤纸与沉淀臵于已恒重的瓷坩埚(m2)中,先在电炉上以低温烘干,再升高温度使滤纸充分灰化,然后臵于950℃高温炉中灼烧40min ,取出,等红热退去后臵于干燥器中冷却15-30min ,称重。

如此反复灼烧,直至恒重。

记录沉淀及坩埚的质量(m1)。

注意事项:1、 严格控制硅酸脱水的温度和时间。

硅酸溶胶加入电解质后并不立即聚沉,必须在沸水浴(可用大号烧杯加水煮沸代替水浴锅用)中蒸发干涸,时间为10-15min ,温度严格控制在100~110℃以内。

生石灰的滴定分析方法

生石灰的滴定分析方法

生石灰的滴定分析方法生石灰是一种常见的化学物质,也被称为石灰石,其化学名称为氢氧化钙(Ca(OH)2)。

生石灰具有较强的碱性,常被用于土壤改良、水处理、工业生产以及消防等领域。

为了确定生石灰中氢氧化钙含量的浓度,需要使用滴定分析方法。

下面将详细介绍生石灰的滴定分析方法。

滴定分析是一种定量化学分析方法,通过溶液中的反应物与标准溶液中的滴定试剂反应,以确定待测物质量的浓度。

在生石灰的滴定分析中,常用的滴定试剂为盐酸(HCl)溶液。

首先,需要准备一定量的生石灰样品和一定浓度的盐酸溶液。

生石灰样品可以经过粉碎和过筛处理,以获得均匀的颗粒大小。

盐酸溶液可以通过称取一定质量的盐酸固体,溶解到一定体积的溶剂中制备而成。

接下来,取一定质量的生石灰样品,加入到锥形瓶中,并用去离子水或蒸馏水溶解。

生石灰与水反应生成氢氧化钙溶液中,该反应为放热反应,因此在溶解过程中需适当搅拌和冷却样品。

然后,取一定体积的盐酸溶液,用滴定管逐滴加入锥形瓶中的生石灰溶液。

当盐酸与氢氧化钙发生中和反应时,溶液会由碱性变为酸性以及明显呈现出酸性溶液的酸碱指示剂的颜色变化。

常用的酸碱指示剂有几种类型,如酚酞、溴酚蓝、甲基橙等。

其中最常用的是溴酚蓝指示剂,它在酸性溶液中呈黄色,在碱性溶液中呈蓝色。

在滴定过程中,溴酚蓝指示剂可加在所有的滴定中使用,以便于观察颜色变化。

滴定过程中,加入盐酸溶液的速度要适中,以免发生滴定剂的浪费或者反应速度过慢。

当溶液颜色变化明显时,需要加入滴定溶液的速度要减慢,并且每滴盐酸溶液需要充分搅拌溶液,以保证反应充分。

当溶液颜色由黄色转变为蓝色时,滴定反应已经足够,可以记录滴定溶液的滴定体积。

通过测量使用的盐酸溶液体积,就可以计算出生石灰样品中氢氧化钙的浓度。

值得注意的是,在实际滴定过程中,还有一些细节需要特别注意。

首先,在滴定前需要进行空白试验,以进行基准校准。

其次,每次滴定前需要将玻璃仪器清洗干净,并且密封良好,以避免外界污染。

石灰石、白云石中钙(氧化钙)和镁(氧化镁)的测定

石灰石、白云石中钙(氧化钙)和镁(氧化镁)的测定

常规化学分析中,对于石灰石、白云石中钙(氧化钙)和镁(氧化镁)的测定,一般先用酸溶解样品,再控制pH值为10的条件下测定钙镁合量,在pH值12~13的条件下测定氧化钙含量,然后用差减法求得氧化镁的含量。

笔者经过试验,拟定了首先将pH值控制在12~13的条件下,测出氧化钙含量,再改变pH值到10,测定氧化镁含量的钙镁连续滴定方法。

本法与常规方法相比,其最大特点就是能将2种离子连续滴定,且其精密度和准确度与常规方法基本一致。

1 试验部分1.1 主要试剂钙标准溶液:用基准碳酸钙配成浓度为2.0mg/ml的标准溶液;镁标准溶液:用经过EDTA标定的硫酸镁配成浓度1.0mg/ml的标准溶液;三乙醇胺(TEA)溶液:1∶1;孔雀绿(MG)溶液:0.1%;钙指示剂(NN):MNN∶MNaCl=1∶100;酸性铬蓝K-奈酚绿B(K-B):MK∶MB∶MNaCl=1∶2∶50;EDTA标准溶液:0.02mol/L。

1.2 试验原理吸取钙、镁标准溶液各5.00ml,置于250ml锥形瓶中,加入蒸馏水至溶液体积约为100ml,然后加入TEA溶液5ml,摇匀,再加孔雀绿溶液(MG)1~2滴,在摇动下滴加10% NaOH溶液至溶液的绿色刚好消失为止。

加适量的固体NN 指示剂,用EDTA标准溶液滴定至溶液由紫红色突变为纯蓝色即为终点(以消耗的EDTA溶液的体积计算CaO的含量)。

向滴定完钙的上述溶液中滴加盐酸溶液(1∶1)至溶液由蓝色变为紫红色并过量约1ml,摇匀。

然后用氨水溶液回滴至溶液呈蓝色,加入pH为10的氨缓冲溶液10ml,加适量K-B固体指示剂,摇匀,用EDTA标准溶液滴定至溶液由紫红色变为蓝色即为终点(以消耗的EDTA溶液体积计算MgO的含量)。

1.3 试样分析称取试样(于105℃左右烘干水分)0.5000g置于100ml烧杯中,加少量水湿润,分数次从烧杯嘴边加入1∶1 HCl 10ml左右(加盖表面皿),小心加热使试样完全溶解。

石灰石中钙镁含量的测定实验报告

石灰石中钙镁含量的测定实验报告

石灰石中钙镁含量的测定实验报告石灰石是一种含有大量钙镁元素的岩石,因此石灰石的钙镁含量对于冶金、建筑、工业等领域都有重要的意义。

为了准确测定石灰石中钙镁含量,本次实验使用了EDTA(乙二胺四乙酸)滴定法。

一、实验设计1.实验目的测定石灰石中钙镁含量,掌握EDTA滴定法的实验原理和操作技能。

2.实验原理EDTA是一种宏观螯合剂,能与钙、镁等金属离子形成稳定的螯合物,并呈棕红色溶液。

可通过下列反应方程式表示:Mg(OH)2+EDTA^4-→MgY^2-+2OH-MgY^2-和CaY^2-是EDTA与Mg2+和Ca2+形成的稳定络合物。

在此反应中,滴定剂EDTA是易于反应的配合物。

Mg2+和Ca2+是待测的反应物。

(1)将样品中的石灰石转化为氢氧化物(2)将氢氧化物溶解于硝酸中(3)滴定剂EDTA与样品中的镁、钙形成络合物,结合了特定的指示剂之后,使整个溶液发生变色(4)通过计算滴定液的用量,计算出样品中的钙镁含量。

3.实验仪器分析天平、瓶塞、锥形瓶、烧杯、蒸馏水、滴定管、磁力搅拌器等。

4.实验步骤(1)称取0.4克石灰石粉末样品,加入锥形瓶中。

(2)加入20ml蒸馏水和10ml硝酸,加上烧杯盖,放置在锅炉上加热,用于将石灰石转化为氢氧化物。

(3)加热至溶液透明,并持续加热5分钟,除去NOx后,冷却到室温。

(4)转移样品溶液到250ml锥形瓶中,用蒸馏水稀释至刻度线。

(5)在250ml锥形瓶中加入Ammonium Chloride(氯化铵)-Ammonia Buffer(氨缓冲液),以使溶液呈弱碱性。

(6)加入Eriochrome Black T指示剂(EBT),使溶液呈深红色。

(7)滴加EDTA滴定液,直至溶液颜色变为蓝色,并停止滴加。

5.实验结果在该实验中,使用了粉状石灰石样品,实验结果如下:样品重量:0.4克滴定液用量:21.05ml计算结果如下:由于EDTA能与钙和镁配位形成螯合物,因此在实验时需注意注意使用纯度高的EDTA 滴定液。

测定某石灰石样品中碳酸钙的含量原理-概述说明以及解释

测定某石灰石样品中碳酸钙的含量原理-概述说明以及解释

测定某石灰石样品中碳酸钙的含量原理-概述说明以及解释1.引言1.1 概述概述:石灰石是一种常见的矿石,主要成分是碳酸钙。

测定石灰石样品中碳酸钙的含量对于工业生产和科研研究具有重要意义。

本文针对测定石灰石样品中碳酸钙的含量原理进行深入探讨,通过实验方法来准确测定样品中碳酸钙的含量。

掌握这一原理和方法不仅能够为相关行业提供参考,也有助于理解石灰石在工业生产与地球科学中的应用和意义。

通过本文的学习,读者将能够深入了解碳酸钙含量测定的原理和方法,为相关实验和研究提供借鉴和帮助。

1.2 文章结构本文主要分为引言、正文和结论三个部分。

在引言部分中,首先对测定某石灰石样品中碳酸钙含量的重要性进行了概述,接着介绍了文章的结构和目的。

正文部分包括了碳酸钙含量测定方法、实验步骤和数据处理与分析等内容,详细描述了具体的实验过程和结果处理方法。

在结论部分,对实验结果进行了分析,总结了实验的重要发现,并展望了该实验方法在未来的应用前景。

整个文章结构清晰明了,深入浅出地介绍了测定某石灰石样品中碳酸钙含量的原理及实验方法,为读者深入了解该领域提供了有益的参考。

1.3 目的:本实验的主要目的是利用化学分析方法,测定某石灰石样品中碳酸钙的含量。

通过实验过程,我们可以了解测定碳酸钙含量的原理和方法,掌握实验操作的技巧,提高实验操作能力。

同时,通过对实验数据的处理与分析,可以验证实验结果的准确性,为进一步的研究和应用提供参考。

通过本实验的学习和探究,可以更深入地了解碳酸钙的性质和应用,并为相关领域的科研工作提供一定的参考和支持。

2.正文2.1 碳酸钙的含量测定方法在测定某石灰石样品中碳酸钙的含量时,通常采用酸溶法结合滴定法进行测定。

具体步骤如下:1. 取一定量的石灰石样品,粉碎并称取适量样品,加入适量稀盐酸溶解,使其中的碳酸钙完全转化为氯化钙。

2. 将溶解后的样品转移至烧杯中,用蒸馏水稀释至适当体积,并加入几滴甲基红指示剂。

3. 在烧杯中滴加标准的硫酸溶液,使其中的氯化钙完全与硫酸反应生成硫酸钙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石灰石化学分析准确性的鉴定
目前,化验室分析人员通过做标准样来确定自己对各种样品化学分析的准确性,这种方法由于各种因素的影响,不能及时找出数据误差的原因而延误对水泥质量的控制与指导。

经过我们多年的研究与分析对比,化验室分析人员可用此文方法来确定自己化学分析的准确性。

该方法简单、快速,比较经济,能及时找出误差的原因并指导生产。

1 分析原理
CaCO3、MgCO3在800℃以上的温度时开始分解成CaO、MgO与CO2,反应式如下:
实际上,石灰石的烧失量(Loss)就是CaCO3、MgCO3分解后挥发出CO2的量,即:
其中:
M CaO、M MgO、M CO2——分别为CaO、MgO、CO2的摩尔质量;
CaO、MgO——石灰石样品中CaO、MgO的百分含量。

当CaO+MgO>45.00%时,其它碳酸盐及有机物等的分解不影响其烧失量的准确性。

2 分析方法
分析人员根据GB5762—86〈建材用石灰石化学分析法〉检测出本厂石灰石的化学全分析,如果Loss(实测)-Loss(理论)≤±0.15%,则分析人员化学分析的数据准确,如果Loss(实测)-Loss(理论)>±0.15%,则说明分析人员化学分析数据误差较大。

分析人员应及时找出误差的原因并加以纠正,直到准确为止。

3 分析结果
分析结果如下表所示。

石灰石化学分析(%)
从上表可以看出:
(1)本方法适用于CaO+MgO>45.00%以上的石灰石样品。

(2)本方法不受环境条件的影响,简单、快速、准确,比较经济。

相关文档
最新文档