电磁干扰及抑制技术
电磁干扰的抑制方法
电磁干扰的抑制方法电磁干扰是指无线电频率或电磁场与其他电子设备或传输系统之间发生的干扰现象。
这种干扰可能会导致通信中断、误码率增加,甚至损坏电子设备。
因此,为了保证电子设备和通信系统的正常运行,需要采取措施来抑制电磁干扰。
抑制电磁干扰的方法主要包括以下几个方面:1. 信号过滤和屏蔽信号过滤是通过滤波器将不需要的频率成分从信号中剔除,以减少干扰。
常见的滤波器包括低通滤波器、高通滤波器和带通滤波器。
屏蔽措施主要包括使用金属屏蔽盒、抗干扰屏蔽材料等,将电磁波的辐射范围限制在一个小范围内,减少对周围设备的干扰。
2. 地线与接地地线的正确使用可以有效地抑制电磁干扰。
将设备的金属外壳与地线连接可以使电磁波通过地线排到大地中,减少对周围设备的干扰。
同时,正确接地可以减少设备自身产生的干扰,并提高系统的抗干扰能力。
3. 选择合适的工作频率对于无线通信系统来说,选择合适的工作频率可以有效地避免与其他设备产生冲突,减少干扰。
此外,合理规划频谱资源,避免频率重叠也是减少互相干扰的重要手段。
4. 电磁屏蔽技术电磁屏蔽技术是指通过使用电磁屏蔽材料或结构来减少电磁干扰的传导和辐射。
常见的电磁屏蔽材料包括铁氧体、磁性材料、导电材料等。
通过在设备周围建立电磁屏蔽结构,可以将电磁干扰源与受干扰设备隔离,从而减少干扰。
5. 路由规划与隔离对于有线通信系统来说,良好的路由规划和隔离设计可以减少电磁干扰的传播。
通过合理规划线缆的布置,避免线缆之间的交叉和平行,减少互相的电磁干扰。
此外,还可以采用互锁技术,将干扰源和受干扰设备分开进行布置,减少干扰的传播。
6. 信号调制技术对于无线通信系统来说,采用合适的信号调制技术可以提高系统对干扰的抗性。
常见的调制技术包括频率调制、相位调制、频分复用、码分复用等。
通过调制技术的应用,可以使信号在传输过程中发生一定程度的扩散,减少对干扰信号的敏感度,提高系统的抗干扰能力。
7. 合理的系统设计在电子设备的设计过程中,需要充分考虑抗干扰的要求。
电磁干扰差模共模干扰抑制措施
电磁干扰差模共模干扰抑制措施电磁干扰(EMI)是指在电磁环境中,由于电磁波的辐射、传导或耦合而引起的潜在问题。
在电子设备中,差模共模干扰是最常见和容易发生的电磁干扰形式之一、差模干扰是指在信号的正负两根导线上引入的干扰信号。
共模干扰是指在信号和地线之间或信号和屏蔽之间引入的干扰信号。
为了保证电子设备的正常工作,需要采取一系列抑制措施来抑制差模共模干扰。
1.使用差分信号传输:差模干扰是指在信号的正负两根导线上引入的干扰信号,而差分信号传输采用了两根互补的信号线,其中一根是信号线,另一根是信号线的反相线。
这样设计可以使得差模信号在两根导线上被平衡地引入,从而减小差模干扰的影响。
2.使用屏蔽线缆:差分信号传输可以减小差模干扰,但无法完全消除。
将信号线包裹在屏蔽层中可以进一步减小差模干扰的影响。
屏蔽线缆使用了金属屏蔽层,可以有效地吸收和屏蔽外部的电磁干扰,从而减小差模干扰。
3.采用均衡电路:在接收信号的端口,使用均衡电路可以进一步减小差模干扰的影响。
均衡电路可以将差模信号进行抵消,从而降低差模干扰对信号的影响。
4.使用差模输入输出接口:差模输入输出接口可以限制差模干扰信号的传播路径。
通过选择合适的差模输入输出接口,可以减小差模干扰信号的传播,从而减小对设备的影响。
1.接地:良好的接地可以减小共模干扰的影响。
在设计电子设备时,需要合理设置接地点,确保设备的各个部分都能够得到正确的接地。
2.屏蔽:在信号传输过程中,可以采用屏蔽层将信号线和地线之间隔离,从而减小共模干扰的影响。
屏蔽层采用金属材料制成,可以有效地吸收和屏蔽外部的电磁干扰。
3.使用滤波器:在信号线上安装共模滤波器可以减小共模干扰的影响。
共模滤波器可以选择合适的频率范围,将共模干扰信号滤除,从而保证信号的质量。
4.绕线方式:在布线时,可以通过适当的绕线方式来减小共模干扰的影响。
例如,采用环形绕线、交叉绕线等方法,可以使得信号线和地线之间的耦合减小,从而减小共模干扰。
电力电子器件的电磁干扰抑制技术
电力电子器件的电磁干扰抑制技术随着现代社会的快速发展,电力电子器件在各个领域的应用也越来越广泛。
然而,电力电子器件所产生的电磁干扰问题也逐渐引起人们的关注。
本文将介绍一些电力电子器件的电磁干扰抑制技术,旨在提供一些解决方案来减少电磁干扰对其他电子设备和系统的影响。
首先,要了解电力电子器件产生的电磁干扰问题,我们需要了解它们的工作原理和频率范围。
电力电子器件通常工作在高频范围,其主要工作频率可以达到几十千赫兹甚至更高。
在这个频率范围内,电磁波会产生电磁干扰,对其他电子设备和系统造成一定的影响。
为了抑制电力电子器件的电磁干扰,可以采取以下一些技术手段:1. 滤波技术:通过合理设计和布置滤波器,可以在电力电子器件的输入和输出端口处滤除不同频段的干扰信号。
常用的滤波器包括低通滤波器、高通滤波器和带通滤波器等。
2. 屏蔽技术:通过在电力电子器件周围加装合适的金属屏蔽壳体,可以有效隔离器件产生的电磁辐射,防止其泄漏到周围环境中,从而减少对其他设备的干扰。
3. 接地技术:合理的接地设计可以有效抑制电力电子器件的共模干扰。
通过引入适当的接地点,可以将共模噪声引流到地,减少其对其他设备的影响。
4. 散热技术:电力电子器件在工作过程中会产生大量热量,如果散热不良,会导致器件温度过高,进而影响其性能和稳定性。
良好的散热设计可以提高器件的工作效率,并减少电磁干扰的产生。
除了以上技术手段,还有一些其他措施可以进一步抑制电力电子器件的电磁干扰。
例如,合理选用低电磁辐射的电力电子器件、增加电源屏蔽和滤波措施、优化器件的功率电子拓扑结构等。
这些措施综合起来,可以有效降低电力电子器件对其他设备和系统的电磁干扰。
总结起来,电力电子器件的电磁干扰抑制技术至关重要。
通过合理的滤波、屏蔽、接地、散热等措施,可以有效降低器件产生的电磁辐射和干扰,减少对其他设备和系统的影响。
未来,随着技术的不断进步和电子设备的智能化发展,电力电子器件的电磁干扰抑制技术也将不断完善和创新,以适应不断变化的需求。
单相电动机的电磁干扰和抗干扰技术
单相电动机的电磁干扰和抗干扰技术单相电动机广泛应用于家用电器、工业设备、农业机械等领域,为我们的生产生活提供了很大的便利。
然而,单相电动机在运行过程中常常伴随着电磁干扰问题。
电磁干扰对其他电子设备的正常工作产生不利影响,严重时甚至可能导致设备故障。
因此,为了提高单相电动机的可靠性和稳定性,抗干扰技术显得尤为重要。
一、单相电动机电磁干扰的原因1. 电磁辐射干扰单相电动机在运行过程中会产生电磁辐射,包括功率频率、高次谐波和脉动磁场等。
这些电磁辐射会传播到周围的电子设备中,干扰其正常工作。
尤其是功率频率电磁辐射,其频谱分布在几百赫兹至几千赫兹之间,与许多通信、显示等设备的工作频率范围存在重叠,因此容易引起干扰。
2. 电源线干扰单相电动机的运行过程中会产生脉动电流,这会导致电源线上出现电压和电流的不稳定。
这种电源线干扰可通过传导和辐射方式传播到其他设备中,引起它们的故障或操作不稳定。
3. 地线干扰单相电动机的地线通常与其他设备的地线共享。
因此,当电动机产生地线干扰时,可能会通过公共地线传播到其他设备中,干扰它们的正常工作。
二、抑制单相电动机电磁干扰的技术手段为了减小或消除单相电动机的电磁干扰,需要采取一些技术手段,如下所述:1. 滤波器的应用安装滤波器是抑制电磁干扰的常用措施之一。
滤波器可以将电动机产生的高频噪声滤掉,从而减小辐射干扰。
常见的滤波器包括差模滤波器和共模滤波器。
差模滤波器是通过串联电感和电容的方式,将差模信号滤出,减小干扰传播。
共模滤波器则是通过并联电感和电容的方式,将共模信号滤出。
2. 软启动技术单相电动机在启动时会产生较大的起动电流,这会引起电源线电压波动,进而影响其他设备的正常工作。
采用软启动技术可以逐渐增加电机的电源电压,使电机起动时电流逐渐升高,从而减小电网的波动。
3. 接地和屏蔽在单相电动机的设计中,合理的接地和屏蔽措施可以有效地减少电动机产生的电磁干扰。
通过保持电动机和其他设备之间的地线独立,并采取适当的屏蔽材料和结构,可以阻止干扰信号的传播。
电力电子系统的电磁干扰及抑制方法
电力电子系统的电磁干扰及抑制方法电力电子系统的应用范围越来越广泛,不仅在工业领域,还涉及到家庭电器等各个领域。
然而,电力电子系统在工作过程中会产生电磁干扰,给周围的电子设备、通信设备、无线电设备等带来不利影响。
为了解决这个问题,本文将介绍电力电子系统的电磁干扰及抑制方法。
一、电力电子系统的电磁干扰特点电力电子系统的电磁干扰主要包括辐射干扰和传导干扰。
辐射干扰是指电力电子系统发出的电磁波辐射干扰到周围设备,主要通过空气传播。
传导干扰是指电力电子系统的干扰通过导线传导到其他设备,如电力线、信号线等。
电力电子系统的电磁干扰频谱广,范围从几十千赫兹到几十兆赫兹,甚至更高。
干扰信号的能量较大,会影响到正常工作的电子设备的性能,甚至引发设备故障。
二、电力电子系统的电磁干扰源电力电子系统的电磁干扰主要来自以下几个方面:1. 开关器件的开关过程产生的高频噪声干扰。
2. 电力电子系统中的电源电路和滤波电路中的电流和电压突变。
3. 电力电子系统中的线圈和变压器产生的漏磁场和互感。
4. 电力电子系统中的电源变换器引起的谐波干扰。
以上干扰源产生的电磁干扰通过辐射和传导的方式传输到周围的设备中,造成电磁兼容性问题。
三、电力电子系统的电磁干扰抑制方法为了减少电力电子系统的电磁干扰,采取以下几种抑制方法:1. 运用滤波器:通过在电力电子系统中加入滤波器,可以减少电流和电压突变引起的干扰。
滤波器可以选择合适的频率范围进行设计,使其能够有效地过滤掉干扰信号。
2. 优化开关器件设计:改善开关器件的开关过程,减小开关过程中的电压和电流突变,从而减少高频噪声的辐射。
3. 确保设备的接地和屏蔽:合理设计电力电子系统的接地系统,确保设备的接地连接良好。
另外,在设计过程中考虑使用金属屏蔽材料对电力电子系统进行屏蔽,减少辐射干扰。
4. 控制谐波产生:在电力电子系统中,通过合理设计电源变换器的参数,可以减少谐波干扰。
例如,在变频器的设计中,可以采用多级变换结构或者使用滤波器来减少谐波。
电力系统中的电磁干扰及其抑制方法
电力系统中的电磁干扰及其抑制方法随着科技的不断发展,电力系统已成为现代社会不可或缺的基础设施之一。
但是,电力设备带来的电磁干扰问题却一直影响着电力系统的稳定运行和电子设备的正常工作。
本文将探讨电力系统中的电磁干扰问题以及抑制方法。
一、电磁干扰的原因和种类电磁干扰(Electromagnetic Interference, EMI)是指电子设备在运行过程中被外界电磁场所干扰,从而导致设备发生异常甚至失效。
电磁干扰的主要原因是电力设备所产生的电磁辐射。
电力设备可产生较高频率的电磁辐射,这些辐射可分为两种类型:辐射电磁场和导电干扰。
前者是指电设备辐射出的电磁场通过空气介质扩散到其它设备上,从而引起电路内部电流产生变化;后者是指电设备内部的电流通过其接地线路或设备外壳接触物体时,引起电流流动所产生的电磁场感应到其它设备上。
根据电磁辐射频率的不同,EMI可分为两大类:低频EMI和高频EMI。
低频EMI主要集中在50/60 Hz电网频率和其倍频上,多产生于电力设备的开关或者变压器的磁场。
高频EMI则主要涉及射频电磁辐射,产生于电力设备的开关处理电路、电子电路以及现代化自动化控制系统的信号传输路径上。
二、电磁干扰所产生的影响电磁干扰所产生的影响范围很广,主要包括以下三个方面:1、对电子设备的正常工作产生影响。
如计算机、显示器、传感器等电子设备容易受到电磁干扰的影响,导致设备异常运行、数据丢失等问题。
2、对电力系统的稳定运行产生影响。
电力系统的稳定运行受到许多因素的影响,如受电系统质量、接地、绝缘、天气等。
电磁干扰带来的负面影响也占据了一席之地。
它可能会导致电网中的频率、电压、电流波动过大,从而影响到接入的电子设备的稳定工作,甚至引发整个电力系统的停运。
3、对人体健康带来影响。
电磁辐射在一定剂量及频率下,会对人的中枢神经、内分泌及免疫系统等造成不良影响,引起疾病和生理变化。
三、电磁干扰抑制方法为了减轻电磁干扰带来的影响,我们不仅要提高电子设备的抗干扰能力,还要从源头上降低电磁干扰的水平。
消除电磁干扰的三种方法
消除电磁干扰的三种方法
一、引入“降噪屏蔽电缆”
首先要明确的是,降噪屏蔽电缆是最有效的防止电磁干扰的方法,主要是利用外层的
金属屏蔽层来屏蔽敏感电气设备内部收发的电磁波。
它的屏蔽功能有两种,一是用金属箔、胶带或绝缘材料将设备与外界电磁环境隔绝开来;二是外部信号直接接入金属箔,使其不
能向设备内部渗透,对外部干扰具有极强的抑制作用。
二、利用信号分离技术
其次,电磁干扰也可以通过利用信号分离技术实现消除,主要原理是在受损的频带电
磁环境中,以及在潮湿的绝缘环境中,形成一种能抑制受损信号的电磁屏障,以保持信号
的稳定性。
信号分离技术可以合理布置电磁屏障,既可以获得较高的信号增益,又可以有
效抑制室内电磁干扰。
三、采用硬件或软件方法
硬件方面,可以采用射频滤波器,噪声材料等技术来减少电磁干扰。
其中,射频滤波
器可以有效降低无线射频电磁波的强度,从而减少噪声对设备的影响。
噪声材料可以用于
屏蔽噪声信号,其中噪声板和复合噪声材料是最常用的一种材料,用于有效滤除收发站内
部的电子系统和有线系统的高频电波。
软件方面,可以采用数字滤波器、模拟滤波器、低通滤波器等技术,相比硬件方法,
软件方法更加灵活、简单、节约成本,可以有效的抑制电磁干扰的影响。
而且软件还有一
个优点,即可以通过计算机程序检测出探测站和室内环境中有害电磁信号的出现,从而实
现自动抑制和维护设备的功能。
电磁继电器的电磁干扰与抑制方式研究
电磁继电器的电磁干扰与抑制方式研究电磁继电器是一种常用的电气控制器件,广泛应用于电力系统、工业控制、通信设备等领域。
随着电子设备的普及和电磁环境的复杂化,电磁继电器的电磁干扰问题越来越受到人们的关注。
电磁干扰不仅会影响电磁继电器的正常工作,还可能对周围的设备和系统产生不利影响。
研究电磁继电器的电磁干扰及其抑制方式具有重要意义。
电磁继电器的工作原理是利用电磁力来控制开关的通断,从而实现对电路的控制。
在其工作过程中,会产生电磁场并释放能量,这些能量可能对周围的电子设备和系统产生干扰。
电磁干扰可以分为传导干扰和辐射干扰两种类型。
传导干扰是指电磁继电器产生的电磁场通过导线或传导介质传播到其他设备或系统,引起其工作异常;辐射干扰则是指电磁继电器产生的电磁场直接辐射到周围的设备或系统,引起其工作异常。
为了解决电磁继电器的电磁干扰问题,需要从以下几个方面进行研究:1. 电磁干扰的机理分析2. 电磁干扰抑制技术研究3. 电磁兼容性设计与测试我们需要深入分析电磁干扰的机理。
电磁继电器的电磁干扰主要是由于其工作过程中产生的电磁场和能量释放所致。
需要从电磁场的产生原理、传播方式和影响范围等方面进行深入研究,了解电磁干扰的机理和特性。
针对电磁干扰问题,需要开展电磁干扰抑制技术的研究。
这包括从源头上减少电磁干扰的产生,对电磁继电器进行结构优化和材料选择,改进其工作方式和控制方法,以及设计并应用各种电磁屏蔽和滤波器等抑制技术,从而减少其对周围设备和系统的干扰。
电磁兼容性设计与测试也是解决电磁干扰问题的重要手段。
在电磁继电器的设计和制造过程中,需要考虑其与周围设备和系统的兼容性,采取合理的设计措施和技术手段,从而减少电磁干扰的可能性。
需要建立标准化的电磁兼容性测试方法和标准,对电磁继电器进行全面的兼容性测试,确保其符合相关的电磁兼容性要求。
电磁继电器的电磁干扰问题需要从多个方面进行研究和解决。
通过对电磁干扰机理的深入分析、电磁干扰抑制技术的研究,以及电磁兼容性设计与测试的实施,可以有效减少电磁继电器的电磁干扰,提高其工作稳定性和可靠性,保障电力系统和电子设备的正常运行。
抑制电磁干扰的六种常用方法
《抑制电磁干扰的六种常用方法》
电磁干扰是一种对计算机系统及其他电子设备造成的不可控的电磁脉冲,可以影响系统的性能,甚至导致系统故障。
因此,抑制电磁干扰是确保系统安全运行的重要措施。
下面介绍一下抑制电磁干扰的六种常用方法。
一、采用屏蔽技术。
屏蔽技术是将电磁干扰源和敏感设备之间的电磁波隔离开来,从而抑制电磁干扰的传播。
屏蔽技术可以用金属箔或金属铠装箔来实现,也可以采用特殊的电磁屏蔽材料,如铁钢箔和铝箔。
二、采用电磁屏蔽材料。
电磁屏蔽材料可以有效地吸收可能传播到被保护设备的电磁波,从而抑制电磁干扰的传播。
常用的电磁屏蔽材料包括铁钢箔、铜箔、铝箔和特殊电磁屏蔽材料等。
三、采用绝缘材料。
绝缘材料可以有效地阻止电磁波的传播,从而有效地抑制电磁干扰。
常用的绝缘材料包括橡胶、塑料、纸等,这些材料可以用于屏蔽线缆、电缆、连接器和电子元件等。
四、采用磁护屏。
磁护屏可以有效地抑制电磁脉冲,防止其影响被保护设备的性能。
磁护屏是一种带有磁吸铁片的箔,可以有效地吸收外界的电磁波,从而起到抑制电磁干扰的作用。
五、采用多层护屏。
多层护屏可以有效地增加电磁波吸收的隔离效果,从而抑制电磁干扰的传播。
多层护屏通常由金属箔、铝箔和电磁屏蔽材料组成,以确保电磁波的隔离效果。
六、采用电磁屏蔽结构。
电磁屏蔽结构是一种用于抑制电磁干扰的特殊结构,其特点是结构内部由金属箔、铝箔和电磁屏蔽材料组成,可以有效地抑制电磁波的传播。
以上就是抑制电磁干扰的六种常用方法,这些方法可以有效地抑制电磁干扰的传播,从而确保系统的安全运行。
如何进行电路的电磁干扰抑制
如何进行电路的电磁干扰抑制电磁干扰是现代电子设备和电路中常见的问题,它会对电子设备的性能和稳定性产生负面影响。
为了有效抑制电路的电磁干扰,我们可以采取一系列的措施和技术手段。
本文将介绍几种常见的方法来进行电路的电磁干扰抑制。
一、电路布局设计电路布局设计是电磁干扰抑制的第一步。
合理的电路布局可以降低信号回路之间的相互干扰。
以下是一些电路布局设计的原则:1. 分离摆放敏感电路和干扰源:将敏感电路和干扰源放置在不同的电路板上,或者采用金属屏蔽隔离。
2. 最短线路原则:电路布线应尽量缩短,减小电流回路的面积。
3. 保持线路间距:避免线路之间的交叉和靠近。
4. 使用地面屏蔽:在电路板上使用地面屏蔽,形成屏蔽环境,减小电磁辐射。
5. 避免共模干扰:使用差分传输线、差分信号传输等方法,抑制共模信号的干扰。
二、滤波器的应用滤波器是电磁干扰抑制的重要手段之一。
通过选择合适的滤波器来滤除电磁干扰信号,可以有效提高电路的抗干扰能力。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
1. 低通滤波器:用于滤除高频电磁干扰信号,使得只有低频信号通过。
2. 高通滤波器:用于滤除低频电磁干扰信号,使得只有高频信号通过。
3. 带通滤波器:用于滤除指定的频率范围之外的电磁干扰信号。
4. 带阻滤波器:用于滤除指定的频率范围内的电磁干扰信号。
三、地线和屏蔽措施有效地布置地线和采取屏蔽措施对于电磁干扰抑制至关重要。
以下是几种常见的地线和屏蔽措施:1. 单点接地:将各个电路板的地点连接到一个地方,形成一个电位参考点,避免地线回流产生的共模干扰。
2. 地面屏蔽:在电路板或设备外壳上使用金属屏蔽材料,起到防护屏蔽的作用,减少电磁辐射和接收干扰。
3. 电磁屏蔽罩:对于一些特别敏感的电子设备,可以使用电磁屏蔽罩来包裹,减少外部干扰的影响。
四、接地技术良好的接地技术有助于降低电路的电磁干扰。
以下是几种常用的接地技术:1. 按照接地分区原则划分接地系统:将设备分为数字、模拟和电源等不同的接地分区,减少接地回流路径。
浅谈开关电源电磁干扰及其抑制技术
浅谈开关电源电磁干扰及其抑制技术摘要:开关电源以其重量轻、体积小、效率高、可靠性高等优点得到了广泛的应用。
然而,开关电源的电磁干扰不容忽视。
近年来,随着科学技术的发展,电磁干扰问题涉及到的领域不断扩大。
特别是消费类电子电源的体积越来越小,功率越来越大,开关电源的功率密度越来越大,电磁干扰越来越严重,将极大地影响人们的生活和设备的运行。
因此,开关电源的电磁干扰抑制技术一直是国内相关技术人员的研究重点。
关键词:开关电源;电磁干扰;抑制技术引言随着电子信息技术的飞速发展,开关电源以其转换效率高、稳定性好等优点被广泛应用于各个领域。
开关电源在实际应用中经常发生电磁干扰,影响开关电源的使用体验。
解决开关电源的电磁干扰问题,促进开关电源的可靠稳定应用。
1.开关电源工作机理开关电源的主要作用是将电网交流电,转换为设备所需要的直流电,保证用电设备的正常运转。
开关电源电路主要由以下的部分组成:一、输入整流滤波电路;二、反馈控制电路;三、初级功率回路;四、次级整流滤波电路。
其中输入滤波电路主要包括过滤电网杂波的输入滤波器,其能阻止开关电源本身产生的干扰影响到电网,同时也能滤除电网的干扰,保证开关电源正常运行。
整流电路,将电网交流电转化为脉冲直流电。
给控制回路提供能量基础;反馈控制电路是是利用现代电力电子技术,通过对输出电压电流的采样比较,反馈控制开关管开通和关断的时间比率,以实现稳定输出,来满足电气设备的要求,保证整个电气部分的正常运行。
初级功率回路主要由高频变压器、初级开关管、功率检测电阻等组成。
接受反馈控制回路的调节,将整流电路的脉冲直流电,通过高频变压器传递到次级;次级整流滤波电路主要由次级二极管,储能及滤波电容和恒流恒压控制电路组成。
和反馈控制电路相关联,将变压器从初级传递的能量整流后进行一系列的处理,以提供设备所需的直流电压和电流。
1.电磁干扰的危害开关电源内部出现的电磁干扰可分为两种,一种是干扰信号通过导线或公共电源线进行传输,互相产生干扰称为传导干扰;另外一种是开关电源产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备,称为辐射干扰。
电磁干扰抑制技术分享
电磁干扰抑制技术分享电磁干扰抑制技术是一种应用于电子设备和通信系统中的重要技术手段,主要用于解决电磁干扰对系统正常工作造成的影响。
在当今高科技发展的时代,电子设备和通信系统广泛存在,电磁环境复杂多变,因此电磁干扰抑制技术显得尤为重要。
首先,电磁干扰是指电磁波在传输、发射或接收过程中与原正常信号相混叠而导致系统性能下降的现象。
电磁干扰可能来自各个方面,例如电源线、雷电、射频设备、微波炉等,对系统的稳定性和可靠性造成威胁。
因此,采取有效的电磁干扰抑制措施对于确保设备和系统的正常运行至关重要。
电磁干扰抑制技术主要包括以下几个方面:1. 电磁波屏蔽技术:通过采用金属屏蔽罩、金属板、金属丝网等材料,将设备或器件包裹在内部,有效屏蔽外界电磁波的干扰,保护内部电路不受外界影响。
2. 地线设计技术:地线在电磁干扰抑制中扮演着至关重要的角色,合理设计和布置地线可以有效降低设备受电磁干扰的风险,提高系统的稳定性和可靠性。
3. 滤波器技术:滤波器是一种具有特定频率传递和阻断功能的电路元件,通过合理设计滤波器可以屏蔽不同频率范围的电磁波干扰,保障系统的正常工作。
4. 耦合器设计技术:对于共模干扰和不同模干扰问题,耦合器设计技术可以有效减少信号与干扰信号的耦合程度,降低干扰对系统性能的影响。
总的来说,电磁干扰抑制技术是一门综合性的技术,需要结合电磁学、信号处理、数字电路等多方面知识,才能有效应对复杂多变的电磁环境。
仅仅依靠一个简单的技术手段或方法是难以满足电磁干扰抑制的需求的。
在实际应用中,电磁干扰抑制技术不仅可以应用于电子设备、通信系统等领域,还可以应用于航空、军事、医疗等领域,起到重要的保障作用。
只有不断加强技术研究、提升技术水平,才能更好地应对电磁干扰问题,确保系统的正常运行和信息的安全传输。
综上所述,电磁干扰抑制技术是一项重要且必不可少的技术,在当今电子信息技术发展的大背景下,亟需加强研究和应用,以确保设备和系统的正常运行、信息的安全传输。
电力设备的电磁干扰与屏蔽技术
电力设备的电磁干扰与屏蔽技术电力设备的广泛应用使得我们的生活变得更加便捷和舒适,然而,与此同时,电力设备还带来了一个严重的问题,即电磁干扰。
电磁干扰不仅影响到其他电子设备的正常工作,还可能对人体健康产生不良影响。
因此,研究和采用电磁干扰屏蔽技术成为电力设备设计和应用的重要任务之一。
一、电磁干扰的来源电磁干扰是由电力设备发出的电磁波引起的。
电力设备的工作原理决定了它们会产生电磁辐射,这种辐射同样会干扰周围的电子设备。
例如,变压器、变频器、开关电源等电力设备都会产生电磁干扰。
二、电磁干扰的影响电磁干扰对电子设备和通信系统的正常运行造成了很大的影响。
首先,电磁干扰会导致通信信号的丢失或变形,从而降低了通信质量。
其次,电磁干扰还可能导致电子设备的故障和损坏,降低了设备的可靠性和寿命。
此外,电磁干扰还对人体健康构成潜在威胁,长期接触电磁辐射可能引发一系列健康问题。
三、电磁干扰的屏蔽技术为了减少电磁干扰,我们需要采用一些屏蔽技术来控制和抑制电磁辐射。
以下是几种常见的电磁干扰屏蔽技术:1. 电磁屏蔽材料:电磁屏蔽材料是一种能吸收或反射电磁波的特殊材料。
通过在电力设备周围或设备内部使用电磁屏蔽材料,可以有效地减少电磁辐射的发生。
目前市场上有各种不同的电磁屏蔽材料可供选择。
2. 接地技术:接地是一种常用的屏蔽技术。
通过将电力设备与地面或其他良好导电的物体连接,可以将电磁辐射导向地面,从而减少其对其他设备的干扰。
合理的接地系统设计可以显著提高电磁屏蔽效果。
3. 屏蔽箱或屏蔽房间:对于一些特别敏感的电子设备或场合,可以采用屏蔽箱或屏蔽房间的方式来实现电磁屏蔽。
屏蔽箱或屏蔽房间是由电磁屏蔽材料构成的封闭空间,可以将电磁辐射隔离在内部,有效地屏蔽干扰。
4. 滤波器:滤波器是一种可以削弱或滤除特定频率电磁波的装置。
通过在电力设备的电源线或信号线上安装滤波器,可以减少电磁干扰信号的传输,从而减少干扰的影响。
四、电磁干扰监测和预防除了采用屏蔽技术,我们还需要进行电磁干扰监测和预防工作。
抑制电磁辐射干扰的方法
抑制电磁辐射干扰的方法
随着科技的不断发展,电磁辐射干扰问题已经成为了一个普遍存在的问题。
电磁辐射干扰不仅会影响到设备的正常工作,还可能对人体健康造成危害。
因此,抑制电磁辐射干扰已经成为了一项非常重要的技术。
抑制电磁辐射干扰的方法主要有以下几种:
1.屏蔽技术:通过在电子设备周围设置屏蔽材料来阻挡电磁辐射的传播。
这种方法可以有效地降低电磁辐射的干扰,但是也会影响设备的通风和散热。
2.滤波技术:通过设置滤波器来消除电磁辐射中的高频噪声。
这种方法可以在不影响设备通风散热的情况下有效地降低干扰。
3.接地技术:通过将设备接地来减少电磁辐射的干扰。
这种方法可以有效地消除地线噪声,降低电磁辐射的干扰。
4.防护技术:通过在设备周围设置金属屏蔽箱来阻挡电磁辐射的传播。
这种方法可以有效地降低电磁辐射的干扰,但是也会影响设备的移动性和使用方便性。
总之,抑制电磁辐射干扰的方法有很多种,可以根据具体的情况选择适合的方法来降低干扰。
在实际应用中,可以采用不同的方法结合使用,以达到最佳的效果。
- 1 -。
电磁干扰方法
电磁干扰方法电磁干扰(Electromagnetic Interference, EMI)是指电磁能量对电子设备或系统造成的不希望的影响。
电磁干扰可能来自自然界,如雷电、宇宙射线等,也可能来自人造源,如无线电发射机、电力线路、电气设备等。
为了减少或消除电磁干扰,可以采取以下几种方法:1. 屏蔽:使用导电材料(如铜或铝)制成的屏蔽罩或屏蔽室来包围干扰源或被干扰的设备,从而阻止电磁波的传播。
屏蔽效果取决于屏蔽材料的厚度、导电性和结构设计。
2. 接地:通过将设备的金属部件连接到大地,可以有效地引导干扰电流流向地面,从而减少对设备的影响。
良好的接地设计对于提高系统的电磁兼容性至关重要。
3. 滤波:使用滤波器可以阻止不希望的频率范围内的信号进入设备。
例如,电源线滤波器可以减少电源线上的高频干扰。
4. 隔离:在电路设计中使用隔离变压器、光耦合器或电容隔离等技术,可以在不同部分之间提供电气隔离,从而减少干扰的传播。
5. 排布和走线:合理设计电路板和电缆的布局,避免高功率线路与敏感线路平行或靠近,可以减少串扰和辐射干扰。
6. 抑制和吸收:使用抑制器(如瞬态电压抑制器,TVS)可以限制电压尖峰,而使用吸收材料(如磁性材料)可以吸收特定频率的电磁波。
7. 频率选择和调制:选择合适的工作频率和调制方式,可以避免与其他设备的干扰频率重合,或者减少干扰的影响。
8. 时间分隔:在数字系统中,可以通过时间分隔技术(如时分复用)来减少不同信号之间的干扰。
9. 设计和测试:在产品设计阶段就考虑电磁兼容性,并进行严格的测试,可以确保产品在实际使用中具有良好的抗干扰性能。
10. 标准和规范:遵循国际和国家的电磁兼容性标准和规范,如IEC 61000系列标准,可以确保设备的电磁发射和抗干扰性能符合要求。
在实际应用中,通常需要结合多种方法来达到最佳的干扰抑制效果。
电磁干扰问题的解决往往需要综合考虑系统的设计、材料选择、工作环境等多个因素。
简单的电磁干扰解决方案
简单的电磁干扰解决方案一、简介电磁干扰(EMI)是电磁场的一种电磁物理现象,当某一电磁源(常被称为“污染源”)产生的电磁波反射或吸收其它系统,导致这些系统的电磁噪声无线电干扰信号,从而影响到系统的正常功能,使其失去功能,或者降低系统的性能时就产生了电磁干扰。
电磁干扰在今天的电子系统中是一种普遍存在的现象,可以影响到电路的正确运行,给系统的安全造成威胁。
因此,抑制电磁干扰(EMI)对保障电子系统的安全运行具有重要的意义。
二、EMI解决方案1、电气隔离技术电气隔离技术是通过将电源线与信号线用特殊的隔离技术进行分离,使信号线之间的电源电压不再共享,从而阻止电磁干扰发射和接收,成功阻挡电磁干扰,大大提高系统的可靠性和稳定性。
而且,隔离技术可以有效降低电磁波的出发和增加电磁场的整体稳定性。
2、屏蔽技术屏蔽技术是一种用于抑制电磁干扰的非常有效的技术,其原理是使用屏蔽物质,如金属片和金属层,在发射端和接收端之间形成屏蔽壁,从而阻隔外界的电磁干扰。
屏蔽技术能有效地抑制外来的电磁波,提高系统的电磁兼容性。
3、平衡电网技术由于电磁波的本质是电磁场,因此,我们可以从电磁场的角度考虑,通过平衡外界的电磁场,可以有效地阻挡外界的电磁干扰。
这里,电磁场均衡技术的概念是将室内外的电磁场保持平衡,避免由外界传入的电磁波对系统的电磁兼容性造成损害。
4、电流过滤器技术电流过滤器是一种电磁屏蔽技术,它可以在电源的输入端和输出端安装特殊的电流过滤器,从而组成一个电流过滤器系统。
在这个系统中,电流过滤器可以有效地过滤掉外界的电磁波,使系统本身不受影响,有效地抑制外界电磁干扰。
三、结论电磁干扰抑制是一种非常重要的任务,它影响到系统的安全运行,所以在设计系统时,应该考虑到如何减少电磁干扰的问题,而且还应该采取有效的技术措施来抑制电磁干扰,以保证系统的正常功能。
本文介绍了几种电磁干扰抑制的方法,如电气隔离技术、屏蔽技术、平衡电网技术和电流过滤器技术,同时也可以用一些信号处理技术,比如信号平滑技术来减少电磁干扰的影响。
电磁干扰抑制技术
电磁干扰抑制技术1.电磁干扰概述电磁干扰是指任何能使设备或系统性能降级的电磁现象。
一个系统或系统内某一线路受电磁干扰的程度可用公式表示。
(1)电磁干扰类型有传导干扰和辐射干扰,前者是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;后者是电子设备产生的干扰信号通过空间耦合将干扰信号传给另一个电网络或电子设备。
(2)电磁干扰源分为自然和人为干扰源两大类,前者指自然界固有的与人活动无关的电磁干扰现象,如大气放电、地球磁场、太阳所发出的辐射等;后者指人类工业和社会活动产生的电磁干扰,如点火系统、输电线系统、电感性设备、变频设备、开关器件和继电器等。
2.电磁干扰的抑制不论电磁干扰如何复杂,电磁干扰的逻辑拓扑关系由三个基本要素组成,即存在电磁干扰能源;存在电磁干扰受体,当电磁干扰强度超出界限时,被干扰设备的性能将发生混乱;在干扰源和干扰受体间存在耦合通道传输电磁能量。
电磁干扰抑制技术就是围绕三要素,抑制干扰源、切断电磁干扰耦合途径、降低电磁敏感装置的敏感性。
(1)抑制干扰源确定何处是干扰源,靠近干扰源采取相应措施,抑制效果就比较好。
一般来说,电流电压发生剧变的位置就是干扰源,如继电器通断、电容充电、电机运转、晶闸管导通、IGBT工作、集成电路开关工作等。
另外,市电电源并非理想的50Hz正弦波,也是干扰源。
可采用低噪声电路、瞬态抑制电路、旋转装置抑制电路、稳压电路等;选择的器件尽可能用低噪声、高频特性好、稳定性高。
但抑制电路选择不适当的器件也可能成为新干扰源。
(2)切断电磁干扰耦合途径主要为传导和辐射两种,噪声经导线直接耦合到电路中最常见。
抑制传导干扰的主要措施是串接滤波器。
有低通、高通、带通和带阻四种,根据信号与噪声频率选择相应的滤波器。
如噪声频率远高于信号频率,常用LC低通滤波器,结构简单,效果好。
但对于要求较高的产品,必须用穿心式滤波器。
此式滤波器也称为穿越式滤波器,有C型、T型和LC型结构,高频特性优良,可工作在1GHz以上,体积小、重量轻,允许电流大,可广泛用于各种场合。
电磁干扰抑制的屏蔽技术
UP 1 CR / C2
电磁屏蔽技术
讨论:(1)屏蔽体不接地,若 C3 C1、 C2CR /(C2 CR ) C1
Up
C1
C3
C1U S C2CR /(C2
CR )
Up US
U N1
C2U P C2 CR
UP 1 CR / C2
U N1
C2U S C2 CR
1 1 CR
/ C2 US
电磁屏蔽技术
4. 屏蔽的分类(按工作原理)
• 电场屏蔽:静电屏蔽、低频交变电场屏蔽(利用良好接地 的金属导体制作)
• 磁场屏蔽:静磁屏蔽、低频交变磁场屏蔽(利用高导磁率 材料构成低磁阻通路)
• 电磁屏蔽:用于高频电磁场的屏蔽(利用反射和衰减来隔 离电磁场的耦合)
电磁屏蔽技术
5. 屏蔽效能( SE )
UN0
CSR0U S CSR0 CR
US
1 CR / CSR0
S US ~
CSR0 R
CR
UN0
未加屏蔽的耦合
CSR1
C1 S
C2 R
US ~加屏蔽(忽略CSR1的影响)
UN1
Up
C1
C3
C1U S C2CR /(C2
CR )
U N1
C2U P C2 CR
屏蔽效能:屏蔽体的性质的定量评价。
定义:
电屏蔽效能
SE E0 或
磁屏蔽效能
E1
SE H0 或 H1
SE(dB) 20 log E0 E1
SE(dB) 20 log H0 H1
E0、H0 —— 未加屏蔽时空间中某点的电(磁)场;
E1、H1—— 加屏蔽后空间中该点的电(磁)场;
电磁屏蔽技术
电力电子技术中的电磁干扰如何抑制
电力电子技术中的电磁干扰如何抑制电力电子技术在现代电力系统中发挥着重要的作用,但同时也会带来电磁干扰的问题。
电磁干扰可以对电力设备的正常运行和周围环境造成负面影响。
因此,抑制电磁干扰成为电力电子技术发展中的一个重要课题。
本文将介绍电力电子技术中常见的电磁干扰形式以及抑制电磁干扰的方法和措施。
1. 电磁干扰的形式在电力电子技术中,常见的电磁干扰形式有辐射干扰和传导干扰两种。
辐射干扰是指电力电子设备产生的高频电磁辐射信号对周围电子设备的干扰,如无线电、电视等设备。
传导干扰则是指电力电子设备通过电力线路或者其他传导介质将电磁干扰传递给其他设备,引起故障或者干扰。
2. 抑制电磁干扰的方法为了有效抑制电磁干扰,在电力电子技术的设计和应用过程中,可以采取以下方法:2.1 电磁兼容设计电磁兼容设计是指在电力电子设备设计过程中,考虑到其电磁兼容性,并采取相应的措施来降低电磁辐射和传导干扰。
包括合理布局电路、减少电流回路的面积、选择合适的元器件和线缆等。
2.2 滤波器的应用滤波器是用来抑制电磁干扰的重要装置。
通过将滤波器连接到电力电子设备的输入和输出端口,可以有效地去除干扰信号。
常见的滤波器包括电源滤波器、线缆滤波器等。
2.3 接地和屏蔽措施良好的接地系统和屏蔽措施可以降低电力电子设备对外界和其他设备的干扰。
接地线的正确布置和接地电阻的控制是保证接地效果的关键。
屏蔽措施包括对设备进行金属屏蔽和电磁泄露的隔离。
2.4 控制策略的优化电力电子设备的控制策略也是影响电磁干扰的重要因素。
通过优化控制策略可以减少电磁干扰的产生。
例如,采用调制技术来降低开关频率,使用软开关技术等。
3. 电磁干扰抑制的工程实践在实际工程中,为了有效抑制电磁干扰,需要结合具体应用进行综合考虑。
例如,在电力变换器的设计和制造中,可以采用模块化设计,减少干扰源之间的相互影响;使用高频变压器和隔离层等。
同时,合理选择设计方案、加强测试验证也是关键。
4. 结论电力电子技术中电磁干扰的抑制是一个复杂的问题,但通过合理的设计和有效的措施,可以降低干扰对系统和周边设备的影响。
第7讲-电磁干扰隔离及抑制技术
电磁干扰隔离及抑制技术
Ø
这在核测试时常常采用
Ø
瞬时干扰的出现时间无确定的规律,采用被动的时间 回避方法
u
u
在瞬时干扰前期征兆出现时,利用高速电子开关将信号通道、电源 切断,暂时停止工作。将存贮的信息迅速转移至存贮器中,待瞬时 干扰过去后,再重新恢复工作 对卫星、航天飞行器、飞行中的导弹的电子系统的防护特别有用, 因为很难采用屏蔽隔离等防护方法来有效减弱核辐射或者电磁脉冲
7.
平衡电路实例
VN 1
电磁干扰隔离及抑制技术
V3 Z1 = 1 Z1 + jωC 31
V3 Z 2 = 1 Z2 + jωC32
VN 2
7.
7.
电磁干扰隔离及抑制技术
平衡电路实例
共模抑制比(CMRR)
有时称为平衡系数 Ø共模抑制比 (Common Mode Rejectio隔离及抑制技术
不平衡电路转换为平衡电路
扭绞线平衡结构减小感性耦合
电磁干扰隔离及抑制技术
MK =
µ 0 l a14 a23 ln 2π a13 a 24
7.
平衡电路用于差分放大器
电磁干扰隔离及抑制技术
双端输入
单端输入
7.
差分放大器
辅助电源-VC和射极电阻RE都是为了稳定差分放大器的工作 电流,改善差分放大器性能而设置的 电磁干扰隔离及抑制技术 7. RE对共模EMI信号有很强的电流负反馈左用,RE阻值越大, 对共模EMI信号的抑制能力便越强 对要放大的差分信号VS没有影响
电磁干扰隔离及抑制技术 7.
Ø
Ø
共模抑制比(CMRR)
Ø
例如某平衡电路的CMRR是60dB
ü
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁干扰及常用的抑制技术摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。
电磁兼容性设计是目前电子设备及机电一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。
电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。
常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。
关键词:电磁干扰干扰抑制屏蔽接地1.电磁干扰电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。
构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。
只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。
1.1 电磁干扰的分类常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。
1、按其来源分类(1) 自然干扰。
自然干扰是指由于大自然现象所造成的各种电磁噪声。
(2) 人为干扰。
由于电子设备和其他人工装置产生的电磁干扰。
2、按干扰功能分类(1) 有意干扰。
有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。
这是当前电子战的重要手段。
(2) 无意干扰。
无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。
3、按干扰出现的规律分类(1) 固定干扰。
多为邻近电气设备固定运行时发出的干扰。
(2) 半固定干扰。
偶尔使用的设备(如行车、电钻等)引起的干扰。
(3) 随机干扰。
无法预计的偶发性干扰。
4、按耦合方式分类(1) 传导耦合干扰。
传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。
(2) 辐射耦合干扰。
电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。
1.2 电磁噪声耦合途径干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。
1、电磁噪声传导耦合(1)直接传导耦合。
电导性直接传导耦合最简单、最常见,但它也是最易被人们忽视的一种耦合方式。
在考虑电磁兼容性问题时,必须考虑导线不但有电阻足,而且有电感L,漏电阻R,以及杂散电容C。
在实际使用中尤其是频率比较高时,这些分布参数对信号的传输有着十分重要的影响。
如何考虑分布参数的影响与传输线的长度密切相关。
根据传输线的长度与传输信号频率的关系可把传输线分为长线和短线,对短信号线不必进行阻抗匹配,而对长信号线应在终端进行阻抗匹配。
(2)公共阻抗耦合。
当干扰源的输出回路与被干扰电路存在一个公共阻抗时,两者之间就会产生公共阻抗耦合。
干扰源的电磁噪声将会通过公共阻抗耦合到被干扰电路而产生干扰。
所谓“公共阻抗”通常不是人们故意接人的阻抗,而是由公共地线和公共电源线的引线电感所造成的阻抗和不同接地点问的电位差造成的寄生耦合。
公共阻抗耦合主要包括公共地阻抗耦合和公共电源阻抗耦合。
(3)共模电流和差模电流。
干扰电流在导线上传输时有两种方式:共模方式和差模方式。
一对导线上如流过差模电流则两条线上的电流大小相等、方向相反,一对导线上如流过共模电流则两条线上的电流方向相同,一般有用信号都是差模电流。
干扰在传输线上既可以差模方式出现,也可以共模方式出现。
2、电磁辐射耦合常把干扰源通过电场的耦合看成是电容性耦合(电场耦合),通过磁场的耦合看成电感性耦合,电场与磁场同时存在则为电磁场耦合。
(1)电容性耦合。
当干扰源产生的干扰波以电压形式出现时,干扰源与信号电路之间就存在电场(电容性耦合)。
这时,干扰电压经电容耦合到信号电路。
抑制电容性耦合可采取合理布置电路及电场屏蔽等措施。
(2)电感性耦合。
交流载体,如交流电动机、动力线、发电动机、变压器等,必将在载体周围空间产生工频磁场,干扰其周围的电路及电子装置。
当变送器、热电偶等小信号通过较长的信号线传送时,在信号传送途中经常会受到这种交变磁场的干扰。
(3)电磁场耦合。
远场时电场与磁场干扰之比等于常数,通称为电磁场耦合。
大功率的高频发生装置(如高频加热炉)、晶闸管变流装置、整流子电动机的电刷滑环、开关、继电器、接触器等节点开断时产生的电弧,电焊机的弧光,电车集电环产生的火花,以及航空雷达信号等,都将产生强烈的电磁波,并以空间辐射的形式干扰电子设备。
电子设备中长的信号输入/输出线和控制线等也具有天线效应,即能够辐射干扰波和接收干扰波。
离干扰源较远的地区干扰主要是由辐射电磁场造成的。
3、串扰当信号平行且距离很近时,由于线间互感和互容的存在,在相邻两信号之间产生的干扰,称为串扰。
当两根信号线紧靠在一起或当信号线与地距离很近时串扰严重。
若将发送线和接收线改用两对双绞线,其中一根在始端和终端接地。
对于一般TTL电路就比较安全了。
4、浪涌浪涌顾名思义就是瞬间出现超出稳定值的峰值,它包括浪涌电压和浪涌电流。
浪涌电压是指的超出正常工作电压的瞬间过电压。
本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲。
可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。
浪涌电流是指电源接通瞬间或是在电路出现异常情况下产生的远大于稳态电流的峰值电流或过载电流。
它很可能使电路在浪涌的一瞬间烧坏,如PN结电容击穿,电阻烧断等等。
2.常用的干扰抑制技术电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。
常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。
2.1 屏蔽技术屏蔽技术用来抑制电磁噪声沿着空间的传播及切断辐射电磁噪声的传输途径。
通常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的“场”相互隔离。
如果目的是防止噪声源向外辐射场的干扰,则应该屏蔽噪声源,这种方法称主动屏蔽。
如果目的是防止敏感设备受噪声辐射场的干扰,则应该屏蔽敏感设备,这种方法称被动屏蔽。
对于电场、磁场、电磁场等不同的辐射场,由于屏蔽机理不同而采取的方法也不尽相同。
屏蔽技术通常分为三大类:电场屏蔽、磁场屏蔽及电磁场屏蔽(同时存在电场及磁场的高频辐射电磁场的屏蔽)。
1、电场屏蔽电场屏蔽是抑制噪声源和敏感设备之间由于存在电场耦合而产生的干扰。
电场有静电场和交变电场之分。
利用金属屏蔽体可对电场起到屏蔽作用,但是,屏蔽体的屏蔽必须完善并良好地接地。
如果可能,最好使用低电阻金属(铜、铝)做成屏蔽罩,并使之与机壳(地)可靠相连。
无论是静电场或交变电场,电场屏蔽的必要条件是完善的屏蔽及屏蔽体良好接地。
2、磁场屏蔽磁场屏蔽的目的是消除或抑制噪声源与敏感设备之间由于磁场耦合所产生的干扰。
对于不同的频率必须采取不同的磁场屏蔽措施。
(1)低频磁场屏蔽。
图1-1 低频磁场屏蔽(a)主动屏蔽(b)被动屏蔽通电线圈周围产生磁场,磁力线是闭合的,由于磁力线分布在整个空间,可能对附近的敏感设备产生干扰。
对于恒定磁场和低频段(100kHz以下)干扰磁场,采用高磁导率的铁磁材料(如硅钢片、坡莫合金、铁等)制成管状或杯状罩进行磁场屏蔽。
这样,既可将磁场干扰限制在屏蔽罩内,也可使外界低频干扰磁场对置于屏蔽罩内的电路和器件不产生干扰。
如图1-1(a)所示线圈的磁屏蔽,由于铁磁材料的高磁导率,因而使屏蔽体内的线圈产生的磁通主要沿屏蔽罩通过,而使屏蔽罩外面的元件、电路不受磁场的影响,即主动屏蔽。
同样,当屏蔽体放入外磁场中,磁力线将集中在屏蔽体内通过,不至于泄漏在屏蔽壳体包围的内部空间中去,从而保证该空间不受外磁场的影响,即被动屏蔽,如图1-1(b)所示。
在使用铁磁性材料作屏蔽壳体时,如果需要在壳体上开缝,一定要注意开缝的方向。
图1-1(a)中壳体上磁力线是垂直流动的,所以横向的缝隙会阻挡磁力线,使磁阻增加,从而使屏蔽性能变坏。
纵向的缝隙不会阻挡磁力线,但应注意缝不能太宽。
(2)高频磁场屏蔽。
图1-2 高频磁场屏蔽(a)主动屏蔽(b)被动屏蔽高频磁场采用低电阻率的金属良导体材料来屏蔽,如铜、铝,当高频磁场穿过金属板时由于电磁感应原理在金属板上产生感应电动势,由于金属板的电导率很高所以产生很大的涡流。
如图1-2(a)所示。
涡流又产生反磁场,与穿过金属板的原磁场相互抵消,同时又增强了金属板周围的原磁场。
总的效果是使磁力线在金属板四周绕行而过。
如果做一个金属盒把线圈包围起来,则线圈电流产生的高频磁场在金属盒内壁产生涡流,从而把原磁场限制在盒内,不至于向外泄漏,起到主动屏蔽作用。
金属盒外的高频磁场同样由于涡流作用只能绕过金属盒,而不能进入盒内,起到了被动屏蔽的作用,如图1-2(b)所示。
由于高频电流具有集肤效应,涡流只在金属表面的薄层中流过,金属屏蔽体不需太厚,薄薄一层(0.2~0.8mm)金属良导体就能起到良好的高频磁场屏蔽作用。
磁场屏蔽和接地与否影响不大,一般均接地,可同时起到电场屏蔽的作用。
3、电磁场屏蔽对于高频电磁干扰,通常采用电阻率小的良导体材料,且接地良好的屏蔽体就可同时实现电场屏蔽和磁场屏蔽。
在实际屏蔽时,有些场合不便于使用金属板,就可用金属网代替,要求屏蔽效能高时,就可采用双层金属网屏蔽。
低频时,电场屏蔽一般不成问题,因反射量很大。
磁场情况则有所不同,因反射量小只能靠增加吸收量来增加总屏蔽量,就是说增加屏蔽物厚度,使屏蔽物的电导率和磁导率增加而增加吸收量,从而提高磁屏蔽能力。
2.1 接地技术接地的目的有两个,一是为保护人身和设备安全,避免雷击、漏电、静电等危害。
此类地线称为保护地线,应与真正大地连接。
另一个是为了保证设备的正常工作,如直流电源常需要有一极接地,作为参考零电位。
传输信号传输也常需要有一根线接地,作为基准电位,传输信号的大小与该基准电位相比较。
另外,对设备进行屏蔽时在很多情况下只有与接地相结合,才能具有应有的效果。
接地系统又分为保护地线、工作地线、地环路和屏蔽接地四种。
1、保护地线为确保操作人员的人身安全和设备运行安全,电气设备的机壳、底盘都应该接地。
常用的电源插座或配电板上都有保护地线。
图1-3为交流单相220V供电线路中的三根线:火线、中线、地线。
正常工作时电流从火线流经负载,由中线返回,保护地线上无电流流过。
若线路发生绝缘击穿或出现故障时,使火线与机壳相连,则保护地线上流过很大故障电流,使火线上的保险丝熔断,从而切断电源。
因为机壳是通过保护地线与大地相连的,机壳始终保持大地电位,所以即使人接触机壳也不会发生危险的。
按照直接接触安全操作电压的规定,普通环境电压应为48V以下,潮湿环境和手持设备应在24V以下,超过上述值即应妥善接地。
图1-3 保护地线的作用示意图2、工作地线工作地线是给电源和传输信号提供一个等电位,但在实际电路中工作地线常常兼作电源和信号线的回流线。