数学家手抄报资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学家手抄报资料
导语:早期的数学家或者自身家庭富足,或者依附于对研究有兴趣的富豪权贵,研究数学更多是出于爱好。而在现代逐渐形成了数学家这个职业。下面是著名数学家的手抄报资料,欢迎阅读参考!
篇一:数学家手抄报资料
1、数学家高斯的故事
高斯念小学的时候,有一次在教师教完加法后,因为教师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
教师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!!原来呀,高斯已经算出来了,小朋友你可知道他是关于如何算的吗?
高斯告诉大家他是关于如何算出的:把 1加至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于<5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因
此奠定了他以后的数学基础,更让他成为――数学天才!
2、数学故事:蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客大家按他说的做了.
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.
3、数学故事:数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛.表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜.当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛.
工作人员写出一个201位的大数,让求这个数的23次方根.运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案.而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多.
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”.
4、数学故事:工作到最后一天的华罗庚
华罗庚出生于江苏省,从小喜欢数学,而且非常聪明.1930年,
19岁的华罗庚到清华大学读书.华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位.他对数论有很深的研究,得出了著名的华氏定理.他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产.
记者在一次采访时问他:“你最大的愿望是什么?”
他不加思索地回答:“工作到最后一天.”他的确为科学辛劳工作的最后一天,实现了自己的诺言.
篇二:数学家高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,教师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,教师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比教师高得多,后来成为大学教授,他教了高斯更多更深的数学。
教师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,
但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学教师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean).
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
希腊时代的数学家已经知道关于如何用尺规作出正2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1.但
是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
1、n = 2k,k = 2, 3,
2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,
费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra).
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。