八年级数学平方根和化简练习题

合集下载

(完整)初二数学平方根练习题

(完整)初二数学平方根练习题

算术平方根
一、选择题
1、下列叙述正确的是()
A.如果a存在平方根,则a>0 B.=±4
C.是5的一个平方根D.5的平方根是
2、“的平方根是”用数学式表示为()
A.B.
C.D.
3、已知正方形的边长为a,面积为S,则()
A.B.
C.D.
4、下列说法正确的是()
A.一个数的平方根一定是两个
B.一个正数的平方根一定是它的算术平方根
C.一个正数的算术平方根一定大于这个数的相反数
D.一个数的正的平方根是算术平方根
5、一个正数的算术平方根为m,则比这个数大2的数的算术平方根是()A.B.
C.m2+2D.m+2
6、如果a是b的一个平方根,则b的算术平方根是()
A.a B.-a
C.±a D.|a|
7、若x<2,化简的正确结果是()
A.-1B.1
C.2x-5D.5-2x
8、数a在数轴上表示如图所示,则化简的结果是()
A.-1B.1-2a
C.1D.2a-1
9、的算术平方根是()
A.-4B.4
C.2D.-2
10、已知,650.12=422630,则x=()
A.4226.3B.42.263
C.0.042263D.42263000
二、解答题
11、求下列各式的值.
12、求下列各式中x的值.
13、已知,求x的值.
14、。

八年级数学上册《第二章2 平方根》讲解与例题

八年级数学上册《第二章2 平方根》讲解与例题

《第二章2 平方根》讲解与例题1.平方根(1)平方根的概念:若是一个数x 的平方等于a ,即x 2=a ,那么那个数x 就叫做a 的平方根(也叫做二次方根).32=9,因此3是9的平方根.(-3)2=9,因此-3也是9的平方根,因此9的平方根是3和-3.(2)平方根的表示方式:正数a 的平方根可记作“±a ”,读作“正、负根号a ”.“ ”读作“根号”,“a ”是被开方数.例如:2的平方根可表示为± 2. (3)平方根的性质:假设x 2=a ,那么有(-x )2=a ,即-x 也是a 的平方根,因此正数a 的平方根有两个,它们互为相反数;只有02=0,故0的平方根为0;由于同号的两个数相乘得正,因此任何数的平方都可不能是负数,故负数没有平方根.综合上述:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.如:4的平方根有两个:2和-2,-4没有平方根.我明白了,一个数a 的平方根能够表示成±a .你可要警惕哦!(1)不是任何数都有平方根,负数可没有平方根,(2)式子a 只有当a ≥0时才成心义,因为负数没有平方根.【例1-1】 求以下各数的平方根:(1)81;(2)(-7)2;(3)11549. 分析:依照平方根的概念,求一个数a 的平方根可转化为求一个数的平方等于a 的运算,更具体地说,确实是找出平方后等于a 的数.解:(1)∵(±9)2=81,∴81的平方根是±9,即±81=±9.(2)∵(-7)2=72=49,∴(-7)2的平方根是±7,即±49=±7. (3)∵11549=6449,又⎝ ⎛⎭⎪⎫±872=6449, ∴11549的平方根是±87, 即±11549=±87. 【例1-2】 以下各数有平方根吗?若是有,求出它的平方根;假设没有,请说明理由.(1)94;(2)0;(3)-9;(4)|-0.81|;(5)-22. 分析:序号存在情况 原因 (1)有2个 正数有两个平方根 (4)有2个 (3)无 负数没有平方根 (5)无 (2) 有1个 0的平方根是它本身解:(1)∵94是正数,∴94有两个平方根. 又∵⎝ ⎛⎭⎪⎫±322=94,∴94的平方根是±32. (2)0只有一个平方根,是它本身.(3)∵-9是负数,∴-9没有平方根.(4)∵|-0.81|=(±0.9)2,是正数,∴|-0.81|的平方根是±0.9.(5)∵-22=-4,是负数,∴-22没有平方根.2.算术平方根(1)算术平方根的概念:若是一个正数x 的平方等于a ,即x 2=a ,那么那个正数x 就叫做a 的算术平方根.(2)算术平方根的表示方式:正数a 的算术平方根记作“a ”,读作“根号a ”.(3)算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0;负数没有平方根,固然也没有算术平方根.淡重点 算术平方根的性质(1)只有正数和0(即非负数)才有算术平方根,且算术平方根也是非负数;(2)一个正数a 的正的平方根确实是它的算术平方根.若是明白一个数的算术平方根,就能够够写出它的负的平方根.【例2】 求以下各数的算术平方根:(1)0.09;(2)121169. 分析:依照算术平方根的意义,求一个非负数a 的算术平方根,第一要找出平方等于a 的数,写出平方式;从平方式中确信a 的算术平方根的值.解:(1)∵0.32=0.09,∴0.09的算术平方根是0.3,即0.09=0.3;(2)∵⎝ ⎛⎭⎪⎫11132=121169, ∴121169的算术平方根是1113. 析规律 如何确信一个数的算术平方根 求一个数的算术平方根与求一个数的平方根类似,先找到一个平方等于所求数的数,再求算术平方根,应专门注意数的符号.3.开平方求一个数a (a ≥0)的平方根的运算,叫做开平方,其中a 叫做被开方数.开平方运算是已知指数和幂求底数.(1)因为平方和开平方互逆,故可通过平方来寻觅一个数的平方根,也能够利用平方验算所求平方根是不是正确.(2)开平方与平方互为逆运算,正数、负数、0能够进行“平方”运算,且“平方”的结果只有一个;但“开平方”只有正数和0才能够,负数不能开平方,且正数开平方时有两个结果.(3)关于生活和生产中的已知面积求长度的问题,一样可用开平方加以解决.【例3】 小明家打算用80块正方形的地板砖铺设面积是20 m 2的客厅,试问小明家需要购买边长是多少的地板砖?解:设正方形的地板砖的边长为x m ,由题意,得80x 2=20,那么x 2=0.25.故x =±0.5.∵地板砖的边长不能为负数,∴x =0.5.∴小明家应购买边长为0.5 m 的地板砖.4.a 2与(a )2的关系a 表示a 的算术平方根,依据算术平方根的概念,(a )2=a (a ≥0).a 2表示a 2的算术平方根,依据算术平方根的概念,假设a ≥0,那么a 2的算术平方根为a ;假设a <0,那么a 2的算术平方根为-a ,即a 2=|a |=⎩⎪⎨⎪⎧ a ,a ≥0,-a ,a <0. (1)区别:①意义不同:(a )2表示非负数a 的算术平方根的平方;a 2表示实数a 的平方的算术平方根.②取值范围不同:(a )2中的a 为非负数,即a ≥0;a 2中的a 为任意数.③运算顺序不同:(a )2是先求a 的算术平方根,再求它的算术平方根的平方;a 2是先求a 的平方,再求平方后的算术平方根.④写法不同.在(a )2中,幂指数2在根号的外面;而在a 2中,幂指数2在根号的里面.⑤运算结果不同:(a )2=a ;a 2=|a |=⎩⎪⎨⎪⎧ a ,a ≥0,-a ,a <0.(2)联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即(a )2≥0,a 2≥0.③仅当a ≥0时,有(a )2=a 2. 点技术 巧用(a )2=a 将(a )2=a 反过来确实是a =(a )2,利用此式可使某些运算更为简便.【例4】 化简:(6)2=__________;(-7)2=__________. 解析:(-7)2=|-7|=7.答案:6 75.平方根与算术平方根的关系(1)区别:①概念不同平方根的概念:若是一个数x 的平方等于a ,即x 2=a ,那么那个数x 叫做a 的平方根.算术平方根的概念:若是一个正数x 的平方等于a ,即x 2=a ,那么那个正数x 叫做a 的算术平方根. ②表示方式不同平方根:正数a 的平方根用符号±a 表示.算术平方根:正数a 的算术平方根用符号a 表示,正数a 的负的平方根-a 能够看成是正数a 的算术平方根的相反数.③读法不同a读作“根号a”;±a读作“正、负根号a”.④结果和个数不同一个正数的算术平方根只有一个且必然为正数,而一个正数的平方根有两个,它们一正一负且互为相反数.(2)联系:①平方根中包括了算术平方根,确实是说算术平方根是平方根中的一个,即一个正数的平方根有一正一负两个,其中正的那一个确实是它的算术平方根,如此要求一个正数a的平方根,只要先求出那个正数的算术平方根a,就能够够直接写出那个正数的平方根±a了.②在平方根±a和算术平方根a中,被开方数都是非负数,即a≥0.严格地讲,正数和0既有平方根,又有算术平方根,负数既没有平方根,又没有算术平方根.③0的平方根和算术平方根都是0.【例5-1】(1)求(-3)2的平方根;(2)计算144;(3)求(π-3.142)2的算术平方根;(4)求16的平方根.错解(1)因为(-3)2=9,故(-3)2的平方根是-3;(2)因为(±12)2=144,所以144=±12;(3)(π-3.142)2的算术平方根是(π-3.142)2=π-3.142;〔或±(π-3.142)〕(4)16的平方根是±4.剖析(1)一个正数的平方根是互为相反数的两个数,而这里(-3)2的平方根只有一个数,只表明两个平方根中的一个负的平方根,漏掉了一个正的平方根;(2)混淆了平方根与算术平方根的概念,144表示144的算术平方根,它是一个非负数,错解中出现了增解-12;(3)错在忽视了π<3.142,即π-3.142<0;或混淆了平方根与算术平方根的概念;(4)这里错误地将16的平方根当成16的平方根,其实这里是求16的算术平方根的平方根,该题将两个相近概念“算术平方根”和“平方根”含在一个小题中.正解(1)±(-3)2=±9=±3;【例(1)±81;(2)-16;(3)925;(4)(-4)2.分析:±81表示81的平方根,故其结果是一对相反数;-16表示16的负平方根,故其结果是负数;925表示925的算术平方根,故其结果是正数;(-4)2表示(-4)2的算术平方根,故其结果必为正数. 解:(1)∵92=81,∴±81=±9. (2)∵42=16,∴-16=-4.(3)∵⎝ ⎛⎭⎪⎫352=925,∴925=35. (4)∵42=(-4)2,∴(-4)2=4. 释疑点 与平方根相关的三种符号 弄清与平方根有关的三种符号±a ,a ,-a 的意义是解决这种问题的关键.±a 表示非负数a 的平方根,a 表示非负数a 的算术平方根,-a 表示非负数a 的负平方根.注意a ≠±a .在具体解题时,“ ”的前面是什么符号,其计算结果确实是什么符号,既不能漏掉,也不能多添.6.巧用算术平方根的两个“非负性”众所周知,算术平方根a 具有双重非负性:(1)被开方数具有非负性,即a ≥0. (2)a 本身具有非负性,即a ≥0.这两个非负性形象、全面地反映了算术平方根的本质属性.在解决与此相关的问题时,假设能认真观看、认真地分析题目中的已知条件,并挖掘出题目中隐含的这两个非负性,就可幸免用常规方式造成的繁杂运算或误解,从而收到事半功倍的成效.由于初中时期学习的非负数有三类,即一个数的绝对值,一个数的平方(偶次方)和非负数的算术平方根.关于算术平方根和平方数的非负性相关的求值问题,一样情形下都是它们的和等于0的形式.此类问题能够分成以下几种形式:(1)算术平方根、平方数、绝对值三种中的任意两种组成一题〔| |+( )2=0,| |+ =0,( )2+=0〕,乃至同一道题目中同时显现这三个内容〔| |+( )2+=0〕.(2)题目中没有直接给出平方数,而是需要先利用完全平方公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例6-1】假设-x2+y=6,那么x=__________,y=__________.解析:由-x2成心义得x=0,故y=6.答案:0 6【例6-2】假设|m-1|+n-5=0,那么m=__________,n=__________.解析:依照题意,得m-1=0,n-5=0,因此m=1,n=5.答案:1 5注:假设几个非负数的和为0,那么每一个数都为0.【例6-3】若是y=x2-4+4-x2x+2+2 013成立,求x2+y-3的值.分析:由算术平方根被开方数的非负性知,x2-4≥0,4-x2≥0,因此,x2-4=0,即x=±2;又x+2≠0,即x≠-2,因此x=2,y=2 013,于是得解.解:由题可知x2-4≥0,且4-x2≥0,∴x2-4=0,即x=±2.又∵x+2≠0,即x≠-2,∴x=2.将x=2代入y=x2-4+4-x2x+2+2 013,可得y=2 013.∴x2+y-3=22+2 013-3=2 014.点评:解答这种问题时,先确信题目中非负数的类型,然后依照类型“对症下药”.不要误以为x=±2.。

初中数学八年级上册 平方根运算 专项练习题(100道题)

初中数学八年级上册 平方根运算 专项练习题(100道题)

初中数学八年级上册平方根运算专项练习题(100道题)一、选择题1. 若a为正整数,下列分数中哪个不是无理数?A. √(a+1)/√(a-1)B. √(a-1)/√(a+1)C. √(a+3)/√(a+4)D. √(a-1)/√(a-2)2. √(24+10√6)=______A. √3+√2B. √6+√2C. 2√2+√3D. 4√6-√33. √(2+√3)=_____A. √3/2+1/√2B. 1/2+√3/√2C. √3/2+√2D. 1/2+1/√24. √(5+2√6)=_____A. √3+√2B. √2+√3C. 1/√3+√2D. 1/√2+√35. √(23+16√2)=_____A. √2+4B. √2-4C. 4-√2D. 4+√2二、填空题6. 若a*b=6且a+b=5,则a和b的平方根之积为______7. 若m√n=5√3, 则m的值为______8. 若√(x-1)=2+√3, 则x的值为______9. 若√(x+1)=2-√3, 则x的值为______10. 若√(x-7)+√(x+3)=√(x+1)+√(x-5), 则x的值为______三、解答题11. 化简√[(3+√5)(3-√5)]12. 用通分法化简√(2+√3)+√(2-√3)13. 求解方程√(x+2)+√(x-1)=√x+√(x+3)14. 已知√(x+2)-√x=√2, 求x的值15. 用配方法解方程√x+√(x-3)=8...四、解析及答案请见附录部分。

五、参考资料1. 林一修,苏士悌等.《初中数学(八年级上册)》. 北京:人民教育出版社,201X.附录:解析及答案1. 答案:B。

根据有理化的方法以及无理数加法有理分母等法则,得分数√(a-1)/√(a+1) 为无理数。

2. 答案:B。

根据二次根式化简的方法,得√(24+10√6) =√6+√2。

3. 答案:A。

根据二次根式化简的方法,得√(2+√3) =√3/2+1/√2。

初二数学化简平方根练习题

初二数学化简平方根练习题

初二数学化简平方根练习题在初二数学中,化简平方根是一个重要的概念。

通过化简平方根,我们可以简化复杂的数学表达式,并更好地理解数学运算。

本文将为大家提供一些初二数学化简平方根的练习题,希望对大家的数学学习有所帮助。

1. 化简下列平方根表达式:a) √12b) √32c) √20解析:a) √12 = √(4 × 3) = √4 × √3 = 2√3b) √32 = √(16 × 2) = √16 × √2 = 4√2c) √20 = √(4 × 5) = √4 × √5 = 2√52. 化简下列平方根表达式:a) √27b) √48c) √75解析:a) √27 = √(9 × 3) = √9 × √3 = 3√3b) √48 = √(16 × 3) = √16 × √3 = 4√3c) √75 = √(25 × 3) = √25 × √3 = 5√33. 化简下列平方根表达式:a) √18b) √40c) √54解析:a) √18 = √(9 × 2) = √9 × √2 = 3√2b) √40 = √(4× 10) = √4 × √10 = 2√10c) √54 = √(9 × 6) = √9 × √6 = 3√64. 化简下列平方根表达式:a) √80b) √108c) √180解析:a) √80 = √(16 × 5) = √16 × √5 = 4√5b) √108 = √(36 × 3) = √36 × √3 = 6√3c) √180 = √(36 × 5) = √36 × √5 = 6√55. 化简下列平方根表达式:a) √72b) √120c) √162解析:a) √72 = √(36 × 2) = √36 × √2 = 6√2b) √120 = √(4 × 30) = √4 × √30 = 2√30c) √162 = √(81 × 2) = √81 × √2 = 9√2通过以上练习题,我们可以发现化简平方根的基本规律。

八年级数学上册综合算式专项练习题根号运算

八年级数学上册综合算式专项练习题根号运算

八年级数学上册综合算式专项练习题根号运算在八年级数学上册综合算式的学习中,根号运算是一个重要的内容。

根号运算是指对某个数求平方根或者平方根以外的其他根。

在本文中,我将为大家提供一些八年级数学上册综合算式专项练习题,以帮助大家更好地理解和掌握根号运算。

1. 计算下列根号运算:a) √16b) √81c) √25d) √121e) √36解答:a) √16 = 4b) √81 = 9c) √25 = 5d) √121 = 11e) √36 = 62. 化简下列根号运算:a) 2√8b) 3√27c) 5√32d) 4√18e) √75解答:a) 2√8 = 2 × 2√2 = 4√2b) 3√27 = 3 × 3√3 = 9√3c) 5√32 = 5 × 4√2 = 20√2d) 4√18 = 4 × 3√2 = 12√2e) √75 = √25 × √3 = 5√33. 求下列根号运算的值:a) (√5 + √3)²b) (√7 - √2)(√7 + √2)c) (√15 + √6)(√15 - √6)解答:a) (√5 + √3)² = (√5 + √3)(√5 + √3) = 5 + 2√15 + 3 = 8 + 2√15b) (√7 - √2)(√7 + √2) = (√7)² - (√2)² = 7 - 2 = 5c) (√15 + √6)(√15 - √6) = (√15)² - (√6)² = 15 - 6 = 9通过以上的练习题,我们可以加深对根号运算的理解和应用。

根号运算在实际生活和数学问题中都有广泛的应用,因此掌握这一内容对于数学学习和解决实际问题都非常重要。

在解答根号运算的过程中,我们可以利用一些基本的数学性质和技巧,如分解因式、合并同类项、化简表达式等,来简化运算并得到准确的答案。

(完整版)八年级数学平方根练习题包含答案

(完整版)八年级数学平方根练习题包含答案

第11章平方根练习题班级:________ 姓名________ 分数________ ◆随堂检测1、259的算术平方根是 ;81的算术平方根___ __2、一个数的算术平方根是9,则这个数的平方根是3、若2x -有意义,则x 的取值范围是 ,若a ≥0,则a 04、下列叙述错误的是( )A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18 D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b 满足3|4|0a b -+-=,求c 的取值范围 分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围解:因为3|4|0a b -+-=而3a -≥0 |4|b -≥0,所以3a -=0 |4|b -=0所以a=3 b=4 又因为b-a<c<a+b 所以 1<c<7●拓展提高一、选择1、若22m +=,则2(2)m +的平方根为( )A 、16B 、16±C 、4±D 、2±2、16的算术平方根是( )A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是4、若2x -+2(4)y +=0,则xy =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是 ;若a<57<b ,(a 、b 为连续整数),则a= , b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简 222()a b a b --- =4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.参考答案:随堂检测:1、35,3 2、9±3、x ≥2,≥4、D拓展提高:1、C2、C3、04、165、由题意知:2a =2(2)-= 4 ,b=2 所以2a +2b= 4+4=86、解:因为a ,所以a=13,又因为b-1是400的算术平方根,所以b-1=20 b=21 =●体验中考:1、B2、9;7,83、-2b40.4==,所以每块瓷砖的边长为0.4米.。

八年级数学《平方根》练习题(含答案)

八年级数学《平方根》练习题(含答案)

八年级数学《平方根》练习题(含答案)一、选择题1. 若 $a = 4$,则 $\sqrt{a}$ 的值是多少?A. 2B. 4C. 8D. 16答案:A2. 若 $b = 16$,则 $\sqrt{b}$ 的值是多少?A. 2B. 4C. 8D. 16答案:B二、填空题1. $3\sqrt{3} \approx $ ____________。

答案:5.192. 若 $\sqrt{x} = 5$,则 $x = $ ____________。

答案:25三、解答题1. 请将以下根式化简:$\sqrt{48}$解:$\sqrt{48}=\sqrt{16\times3}=4\sqrt{3}$2. 小明想用木板围一块矩形花坛,长为 $6\sqrt{2}$ 米,宽为$3\sqrt{2}$ 米,需要多长的木板?解:周长为 $2(6\sqrt{2}+3\sqrt{2})=18\sqrt{2}$,所以需要$18\sqrt{2}$ 米的木板。

四、挑战题1. 若 $x>0$,$y>0$,$x\neq y$,且 $\sqrt{x} + \sqrt{y} =\sqrt{xy}$,则 $x$ 与 $y$ 的值至少为多少?解:将等式两边平方得到 $x+y+2\sqrt{xy}=xy$,移项可以得到$\sqrt{xy}=x+y-xy$。

因为 $x+y-xy>0$,所以 $\sqrt{xy}>0$,即$xy>0$,因此 $x$ 和 $y$ 同号。

不妨设 $x>y$,则$\sqrt{x}+\sqrt{y}<2\sqrt{x}$,又因为$\sqrt{x}+\sqrt{y}=\sqrt{xy}$,所以 $\sqrt{xy}<2\sqrt{x}$,即 $y<4x$。

又因为 $y>x$,所以$x<2y$。

结合 $y<4x$ 可以得到 $x>4y$,代入 $x<2y$ 中得到$y<\dfrac{1}{6}x$。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.2.当a<0时,化简|2a- |的结果是………()A.a B.-a C.3a D.-3a【答案】D.【解析】∵a<0,∴|a|=-a,则原式=|2a-|a||=|2a+a|=-3a.故选D【考点】二次根式的性质与化简.3.下列计算错误的是 ( )A.B.C.D.【答案】D.【解析】A.,计算正确;B.,计算正确;C.,计算正确;D.,计算错误.故选D.考点: 二次根式的运算.4.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B5.已知,求的值.【答案】2005【解析】解:因为,所以,即,所以.故,从而,所以,所以.6.下列说法错误的是()A.5是25的算术平方根B.1是1的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C【解析】A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0, =0,所以D正确.故选C.7.的平方根是,的算术平方根是 .【答案】3【解析】;,所以的算术平方根是3.8.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.9.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项根式运算.10.若有意义,则________.【答案】1.【解析】由题意,得:,解得,则=1.故答案是:1.【考点】二次根式有意义的条件.11.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.12. 16的算术平方根是()A.4B.-4C.D.256【答案】A【解析】16的算术平方根是=4,选A.一个非负数a有两个平方根±,它们互为相反数, 称为a的算术平方根,由题,16的算术平方根是=4,选A.【考点】算术平方根.13.已知,那么= .【答案】4【解析】由题意分析可知,在满足本题的条件下,,代入得y=1,所以=4【考点】二次根号的意义点评:本题属于对二次根号的基本性质和代数式有意义的条件的基本考查和运算14.函数y=中自变量x的取值范围是________.【答案】x≥-1【解析】易知根号下为非负数。

初二平方根算数练习题

初二平方根算数练习题

初二平方根算数练习题在初二数学学习中,平方根是一个重要的概念。

掌握平方根的计算方法和练习题的解答,对于学生在数学成绩提升和应对考试有着重要的作用。

本文将提供一些初二平方根的算数练习题,帮助初二学生巩固和提高平方根的运算能力。

1. 计算下列各式的平方根:(1) √16 =(2) √25 =(3) √36 =(4) √49 =(5) √64 =2. 化简下列各式:(1) √(2^2) =(2) √(3^2) =(3) √(4^2) =(4) √(5^2) =(5) √(6^2) =3. 计算下列各式:(1) √(49 + 25) =(3) √(144 - 100) =(4) √(25 + 36 - 16) =(5) √(49 - 16 + 81) =4. 判断下列各式的真假:(1) √(9 + 16) = √9 + √16(2) √(25 + 36) = √25 + √36(3) √(16 - 9) = √16 - √9(4) √(25 + 36 - 16) = √25 + √36 - √16(5) √(49 - 16 + 81) = √49 - √16 + √81 解答:1. 计算下列各式的平方根:(1) √16 = 4(2) √25 = 5(3) √36 = 6(4) √49 = 7(5) √64 = 82. 化简下列各式:(1) √(2^2) = 2(3) √(4^2) = 4(4) √(5^2) = 5(5) √(6^2) = 63. 计算下列各式:(1) √(49 + 25) = √74(2) √(16 - 9) = √7(3) √(144 - 100) = √44(4) √(25 + 36 - 16) = √45(5) √(49 - 16 + 81) = √1144. 判断下列各式的真假:(1) √(9 + 16) ≠ √9 + √16这个不等式是错误的,根据平方根的运算法则,方括号里的运算必须先进行,再求平方根。

初中数学解立方根与平方根练习题及答案

初中数学解立方根与平方根练习题及答案

初中数学解立方根与平方根练习题及答案1. 求平方根a) √64 =b) √144 =c) √25 =d) √169 =答案:a) √64 = 8b) √144 = 12c) √25 = 5d) √169 = 132. 求平方根(化简根式)a) √12 =b) √18 =c) √27 =d) √48 =答案:a) √12 = 2√3c) √27 = 3√3d) √48 = 4√33. 求立方根a) ∛8 =b) ∛64 =c) ∛125 =d) ∛729 =答案:a) ∛8 = 2b) ∛64 = 4c) ∛125 = 5d) ∛729 = 94. 求立方根(化简根式)a) ∛27 =b) ∛54 =c) ∛128 =d) ∛216 =答案:b) ∛54 = 3∛2c) ∛128 = 2∛2d) ∛216 = 65. 综合练习:求平方根与立方根a) ∜256 =b) ∛512 =c) 2√3 + 3√2 =d) 4∛3 - ∛48 =答案:a) ∜256 = 4b) ∛512 = 8c) 2√3 + 3√2 = 5√2 + 2√3d) 4∛3 - ∛48 = 3∛2通过以上练习题,我们可以加深对于求平方根和立方根的理解。

求平方根就是找到一个数,它的平方等于被开方的数;而求立方根则是找到一个数,它的立方等于被开方的数。

在解决这些问题时,我们需要掌握一些基本的化简根式的方法。

例如,当根号下的数可以被平方数整除时,我们可以将其化简为一个整数乘以根号下的平方数。

希望通过这些练习题和答案的提供,能够帮助同学们更好地理解和掌握求解平方根和立方根的方法,提高数学解题的能力。

数学综合算式练习题平方根与分式化简

数学综合算式练习题平方根与分式化简

数学综合算式练习题平方根与分式化简数学综合算式练习题:平方根与分式化简在学习数学的过程中,我们经常会遇到一些与平方根和分式化简相关的算式。

掌握这些算式的运算规则和技巧对于数学的学习起着至关重要的作用。

本篇文章将为大家提供一些练习题,帮助大家巩固平方根和分式化简的知识。

一、平方根的基本运算1. 化简下列各式:(1) √9(2) √4×√16(3) √(16×4)(4) √(16+25)解答:(1) √9 = 3(2) √4×√16 = 2×4 = 8(3) √(16×4) = √64 = 8(4) √(16+25) = √41 (无法再进一步化简)2. 求下列各式的值:(1) (√(16×9))/√4(2) √(100/25)(3) (√(121)-√(49))/√(81)解答:(1) (√(16×9))/√4 = (4×3)/2 = 12/2 = 6(2) √(100/25) = √4 = 2(3) (√(121)-√(49))/√(81) = (11-7)/9 = 4/9二、分式化简3. 化简下列各式:(1) (a^2+2a)/(a^2-a)(2) (4x^2-36)/(2x^2+10x)解答:(1) (a^2+2a)/(a^2-a) = a(a+2)/(a(a-1)) = (a+2)/(a-1)(2) (4x^2-36)/(2x^2+10x) = 2(x^2-9)/(2x(x+5)) = (x^2-9)/(x(x+5)) 4. 求下列各式的值:(1) (2x^2-18)/(x^2+x) (x≠0)(2) (a^2-4)/(a^2+4a) (a≠-4)解答:(1) (2x^2-18)/(x^2+x) = 2(x^2-9)/(x(x+1)) = 2(x-3)(x+3)/(x(x+1))(2) (a^2-4)/(a^2+4a) = (a-2)(a+2)/(a(a+4))三、混合练习5. 化简下列各式:(1) (√8/√2)^2(2) (1+√5)(1-√5)(3) (a^3b^2/(a^5b))^-2解答:(1) (√8/√2)^2 = (2√2/√2)^2 = (2)^2 = 4(2) (1+√5)(1-√5) = 1-5 = -4(3) (a^3b^2/(a^5b))^-2 = (a^(-6)b^(-4))/(a^(-10)b^(-2)) =a^4b^2/a^10b^2 = a^(-6)b^0 = 1/(a^6)通过完成以上的练习题,相信大家对于平方根和分式化简的运算规则和技巧有了更深入的了解。

八年级数学上册根式运算练习题

八年级数学上册根式运算练习题

八年级数学上册根式运算练习题一、平方根运算练习题1. 求下列数的平方根:a) 64b) 144c) 225d) 400e) 6252. 求下列数的平方根并化简:a) 16b) 49c) 81d) 121e) 1693. 计算下列平方根:a) √(9/16)b) √(14/25)c) √(56/64)d) √(150/225)e) √(300/400)4. 计算下列平方根并化简:a) √(8/18)b) √(12/27)c) √(24/32)d) √(60/120)e) √(96/128)二、乘法运算练习题1. 计算下列乘法:a) (5√3)(2√3)b) (4√5)(3√2)c) (√6)(√10)d) (-3√7)(7√7)e) (2√8)(4√2)2. 化简下列乘法:a) 3√5 × 2√10b) √3 × √7c) √6 × √8e) 5√10 × 4√23. 先将下列乘法化简,再计算:a) (2√3)^2b) (3√5)^3c) (√2)^4 × (√3)^2d) (√7)^3 × (√7)^4e) (5√6)^2 × (4√3)^3三、除法运算练习题1. 计算下列除法:a) √12 ÷ √3b) √15 ÷ √5c) √8 ÷ √2d) √20 ÷ √4e) √24 ÷ √62. 先将下列除法化简,再计算:a) (√32)^2 ÷ (√4)^3b) (√18)^3 ÷ (√2)^4c) (√10)^4 ÷ (√5)^2e) (√42)^2 ÷ (√6)^33. 计算下列除法并化简:a) (3√20) ÷ (√4)b) (√45) ÷ (√3)c) (√8) ÷ (√2)d) (√72) ÷ (√6)e) (√50) ÷ (√25)四、混合运算练习题1. 计算下列表达式的值:a) (3√5 + 2√5) + (4√5 - √5)b) (5√6 - √3) + (√6 + √5)c) 4√7 × (√7 + 2√7)d) 2√10 - 3√5 - (3√2 - √8)e) (√12 + √8) ÷ √2 - (√3 - √6)2. 将下列表达式化简,并求出结果:a) (√3 + √2)(√3 - √2)b) (√5 + √7)(√5 - √7)c) (√6 + √10)(√6 - √10)d) (√12 + √48)(√12 - √48)e) (√15 + √35)(√15 - √35)3. 计算下列混合运算表达式的值并化简:a) (√2 + √3)^2 - (√2 - √3)^2b) (√5 + √6)^2 - (√5 - √6)^2c) (√8 + √12)^2 - (√8 - √12)^2d) (√10 + √15)(√10 - √15)e) (√3 + √5)(√3 - √5) + (√7 + √15)(√7 - √15)以上是八年级数学上册的根式运算练习题,通过这些练习题的完成,可以帮助学生巩固和提高根式运算的技巧和能力。

北师大版八年级数学上册2.2平方根练习试题

北师大版八年级数学上册2.2平方根练习试题

2.2 平方根知识点回顾1、算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a ≥0,a ≥02、平方根的概念:若x 2=a ,则x 叫a 的平方根,x =± a.3、平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.4、开平方及相关运算:求一个数a 的平方根的运算叫做开平方,其中a 叫做被开方数.开平方与平方互为逆运算.【对应练习】算术平方根1.数5的算术平方根为( ) A. 5 B .25 C .±25 D .± 52.如果a -3是一个数的算术平方根,那么a 的值可能为( )A .0B .1C .2D .43.下列有关说法正确的是( )A .0.16的算术平方根是±0.4B .(-6)2的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是744.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________.6.求下列各数的算术平方根:(1)0.25; (2)13; (3)⎝ ⎛⎭⎪⎫-382; (4)179.7.如图,某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?平方根1.81的平方根是( )A .9B .-9C .±9D .272.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对3.如果一个数的一个平方根是-16,那么这个数是________.4.计算: (1)( 3.1)2=________; (2)(-8)2=________.5.求下列各数的平方根:(1)25; (2)1681; (3)0.16; (4)(-2)2.6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.参考答案算术平方根1.A 2.D 3.D 4.0.9m 5.10 6.解:(1)0.25=0.5. (2)13. (3)⎝ ⎛⎭⎪⎫-382=38. (4)179=43. 7.解:100000÷40=2500(cm 2),2500=50(cm),故底面边长应是50cm.平方根1.C 2.B 3.256 4.(1)3.1 (2)8 5.解:(1)25的平方根是±5. (2)1681的平方根是±49. (3)0.16的平方根是±0.4. (4)(-2)2的平方根是±2.7.解:由题意得2x +1+x -7=0,解得x =2,∴2x +1=5,x -7=-5,∴这个正数为25.【课后作业】算术平方根一、选择题 1.下列各式中,正确的是( ) A.-49- =-(-7)=7 B.412 =121C.1694+ =2+43=243D.25.0 =±0.52.下列说法正确的是( )A.5是25的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根 3.36的算术平方根是( )A.±6B.6C.±6D. 64.一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是( )A.m +2B.m +2C.22+mD.2+m5.当1<x <4时,化简221x x +--1682+-x x 结果是( )A.-3B.3C.2x -5D.5二、填空题 6.x 2=(-7)2,则x =______. 7.若2+x =2,则2x +5的平方根是______.8.若14+a 有意义,则a 能取的最小整数为____.9.已知0≤x ≤3,化简2x +2)3(-x =______.10.若|x -2|+3-y =0,则x ·y =______.三、解答题 11.已知某数有两个平方根分别是a +3与2a -15,求这个数.12. 已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.13. 已知a <0,b <0,求4a 2+12ab +9b 2的算术平方根.14. 要切一块面积为36 m 2的正方形铁板,它的边长应是多少?15.甲乙二人计算a +221a a +-的值,当a =3的时候,得到下面不同的答案:甲的解答:a +221a a +-=a +2)1(a -=a +1-a =1.乙的解答:a +221a a +-=a +2)1(-a =a +a -1=2a -1=5.哪一个解答是正确的?错误的解答错在哪里?为什么?平方根1.已知()0232212=++++-z y x ,求x+y+z 的值.2.若x ,y 满足52112=+-+-y x x ,求xy 的值.3.求55=-+x x 中的x .4.若115+的小数部分为a ,115-的小数部分为b ,求a +b 的值.5.△ABC 的三边长分别为a ,b ,c ,且a ,b 满足04412=+-+-b b a ,求c 的取值范围.参考答案算术平方根一、1.B 2.A 3.D 4.C 5.C二、6.±7 7.±3 8.0 9.3 10.6三、11.49 12.13 13.-2a -3b 14.6 m 15.乙的解答是正确的 略平方根1.因为21-x ≥0,()22+y ≥0,23+z ≥0,且()0232212=++++-z y x ,所以21-x =0,()22+y =0,23+z =0,解得21=x ,2-=y ,23-=z ,所以x +y +z = 3-.2.因为2x -1≥0,1-2x ≥0,所以 2x -1=0,解得 x =21 ,当 x =21时,y =5,所以 x y =21×5=25. 3.解:因为x -5≥0,x x -=-55≥0 ,所以 x =5 .4.解:因为4113<< ,所以115+的整数部分为8,115-的整数部分为1,所以115+的小数部分3118115-=-+=a ,115-的小数部分1141115-=--=b ,所以1114311=-+-=+b a .5.解:由04412=+-+-b b a ,可得0)2(12=-+-b a ,因为 1-a ≥0,2)2(-b ≥0, 所以1-a =0,2)2(-b =0,所以a = 1,b = 2,由三角形三边关系定理有:b- a < c < b +a ,即1 < c < 3.。

八年级数学平方根测试题

八年级数学平方根测试题

1.数怎么又不够用了1.下列数中是无理数的是( )A.0.12∙∙32B.2πC.0D.722 2.下列说法中正确的是( )A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.3.1415926是有理数3.下列语句正确的是( )A.3.78788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数4.在直角△ABC 中,∠C =90°,AC =23,BC =2,则AB 为( ) A.整数 B.分数 C.无理数 D.不能确定5.面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定6.在0.351,-32, 4.969696…,6.751755175551…,0,-5.2333,5.411010010001…中,无理数的个数有______.7.______小数或______小数是有理数,______小数是无理数.8.x 2=8,则x ______分数,______整数,______有理数.(填“是”或“不是”)9.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”)10.一个高为2米,宽为1米的大门,对角线大约是______米(精确到0.01).11.已知:在数-43,-∙∙24.1,π,3.1416,32,0,42,(-1)2n,-1.424224222…中,(1)写出所有有理数; (2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.12.我们知道,无限不循环小数叫无理数.试根据无理数的意义,请你构造写出两个无理数.13.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.14.如图,在△ABC 中,CD ⊥AB ,垂足为D ,AC =6,AD =5,问:CD 可能是整数吗?可能是分数吗?可能是有理数吗?平方根1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= . 2.求下列各式的值:= ;= ;= ;= ;= ;= .3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= . 4.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .5.(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ; (3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,= .13.1平方根1.填空:(1)如果一个正数的平方等于a ,那么这个正数叫做a 的 ;如果一个数平方等于a ,那么这个数叫做a 的 .(2)正数有 个平方根,它们 ;0的平方根是 ;负数 .2.填空:(1)因为( )2=144,所以144的平方根是 ;(2)因为( )2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是 ,169的算术平方根是 ; (2)964的平方根是 ,964的算术平方根是 .196的,= ;5.一个正数有 个平方根,它们 ;6.16的平方根是 , 的平方根是±9,0的平方根是 ;7=,-= ;8.如果2x 2=6,那么x= ;如果x 2=0.49,那么x= ;9.若一个数的一个平方根是2.1,则它的另一个平方根是 ;10.下列说法中正确的是 ( )A .25的平方根是5B .-25的平方根是-5C .-3是9的平方根D .0没有平方根11.在下列各数中:81, 0,-81,(-1.2)2, 1,3.14,-1.44, -(-1.6).能进行开平方运算的数共有( )A .4个B .5个C .6个D .7个12.下列说法中, 正确的是 ( )A .因为-2的平方是42=- B .当x 为正数时,x+1一定有平方根C .当x >y 时,2x-3y 一定有平方根D .(-2005)2没有平方根13.下列说法中, 正确的是 ( )A .116的平方根是14B .任何有理数都有平方根C .任何非负数都有2个平方根D .一个正数的2个平方根的和等于014.求下列各数的平方根: 28125(1)0.0064; (2); (3)2; (4) 1.69; (5)1; (6)(4).144499---- 15.求下列各式中x 的值. (1) 0252=-x (2) (3) (4) 【选做】已知:直角三角形中,有两条边的长为3和4,求第三边的长。

平方根及算术平方根综合训练题及答案解析

平方根及算术平方根综合训练题及答案解析

第 5 页 共 10 页 ◎ 第 6 页 共 10 页
参考答案与试题解析
一、 选择题 1.【答案】D【解析】依据平方根的性质即可作出判断. 2.【答案】C【解析】������、根据平方根的定义即可判定; ������、根据算术平方根的定义即可判定; ������、根据平方根的定义即可判定; ������、根据平方根的定义即可判定.
Байду номын сангаас
16. 一个正方形的面积为21,估计该正方形边长应在( )
A.2到3之间
B.3到4之间
C.4到5之间
D.1 D.3
D.2 ∼ 3之间 D.5到6之间
C.√5是5的一个平方根 3. 下列语句写成数学式子正确的是( ) A.9是81的算术平方根:±√81 = 9 C.5是(−5)2的算术平方根:√(−5)2 = 5
一、 选择题 1. 下列说法正确的是( ) A.4的平方根是2 C.(−2)2没有平方根 2. 下列叙述正确的是( ) A.如果������存在平方根,则������ > 0
B.−4的平方根是−2 D.2是4的一个平方根
B.√16 = ±4
13. 当√4������ + 1的值为最小值时,������的取值为( )
36. 已知������ = √������ − 4 + √4 − ������ + 9,则������������的算术平方根为_______________________.
37. 若|������ − ������ + 1|与√������ + 2������ + 4互为相反数,则(������ − ������)2013 =___________________.

七八年级数学平方根立方根实数练习题

七八年级数学平方根立方根实数练习题

平方根练习题一、填空题1、 判断下列说法是否正确⑴5是25的算术平方根 ( ) ⑵56是2536的一个平方根 ( ) ⑶()24-的平方根是-4 ( ) ⑷ 0的平方根与算术平方根都是0 ( )2____,=⑵____,=⑶____,=⑷____=37=,则_____x =,x 的平方根是_____4 ) A 。

94± B 。

94 C 。

32± D 。

325、给出下列各数:49, 22,3⎛⎫- ⎪⎝⎭0, 4,- 3,-- ()3,-- ()45--,其中有平方根的数共有( )A 。

3个 B. 4个 C 。

5个 D. 6个6、若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,试求a b +的平方根。

7、求下列各数中的x 值 ⑴225x = ⑵2810x -= ⑶2449x = ⑷225360x -=8、如果一个正数的两个平方根为1a +和27a -,请你求出这个正数9。

因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 10的平方根是 11.非负的平方根叫 平方根 二、选择题12. 9的算术平方根是( )A .-3B .3C .±3D .81 13.下列计算正确的是( )A =±2B =。

636=± D.992-=-14.下列说法中正确的是( )A .9的平方根是3B 2C 。

4D 。

215. 64的平方根是( ) A .±8 B .±4 C .±2 D 16. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .—14 D .14三计算题17.计算:(1(2(3(4) 18.求下列各数的平方根.(1)100; (2)0; (3)925; (4)1; (5)11549; (6)0.0919_______;9的平方根是_______. 四、能力训练20.一个自然数的算术平方根是x,则它后面一个数的算术平方根是( )A .x+1B .x 2+1C +1 D21.若2m —4与3m —1是同一个数的平方根,则m 的值是( ) A .—3 B .1 C .-3或1 D .-122.已知x ,y +(y —3)2=0,则xy 的值是( ) A .4 B .-4 C .94 D .-9427.利用平方根、立方根来解下列方程.(1)(2x —1)2-169=0; (2)4(3x+1)2-1=0; (3)274x 3—2=0; (4)12(x+3)3=4.四、课后练习1、25的平方根是( )A 、5 B 、5- C 、5± D 、5±2.36的平方根是( )A 、6 B 、6± C 、6 D 、 6±3.当≥m 0时,m 表示( ) A .m 的平方根 B .一个有理数 C .m 的算术平方根 D .一个正数4.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-5.算术平方根等于它本身的数是( )A 、 1和0 B 、0 C 、1 D 、 1±和0 6.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±7.2)6(-的平方根是( )A 、-6 B 、36 C 、±6 D 、±68。

【2020全国版】八年级数学下册专题讲练:二次根式的化简及运算试题(含答案)

【2020全国版】八年级数学下册专题讲练:二次根式的化简及运算试题(含答案)

二次根式的化简及运算一、二次根式基本运算二次根式的乘除法1. 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

2.3. 商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

4.二次根式的加减法需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。

类似于合并同类项。

化简步骤:(1)“一分”,即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或因式)的幂的积的形式;(2)“二移”,即把能开得尽的因数(或因式),用它的算术平方根代替,移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上;(3)“三化”,即化去被开方数中的分母。

二、二次根式的乘方1. 将单独根式中的整式(数)部分,根式部分分别乘方,如计算(23)2时,先将2乘方,再将3乘方,结果再相乘;2. 多项式的乘方注意使用乘方公式,同时也可以将其因式分解。

总结:1. 乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑被开方数的取值范围,最后把运算结果化成最简二次根式;2. 对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并。

但在化简二次根式时,二次根式的被开方数应不含分母。

例题1(1)除实数a 外,与k 的差的绝对值最大的实数是 ; (2)求x 的值。

解析:(1)直接求b 、c 、d 、e 与k 的差的绝对值,比较大小即可;(2)根据题意,a -k =x ,b -k =-33,c -k =-33,d -k =23,e -k =33,又有a +b +c +d +e =5k ,可求k 的值。

答案:解:(1)∵|b -k|=|-31|=33,|c -k|=|-27|=33,|d -k|=12=23,|e -k|=31=33, ∴与k 的差的绝对值最大的实数是c ;(2)依题意,得a -k =x ,b -k =-33,c -k =-33,d -k =23,e -k =33, 五式相加,得a +b +c +d +e -5k =x -3,又有a +b +c +d +e =5k ,所以x -3=0,即x =3。

初中数学平方根算术平方根二次根式综合练习题(附答案)

初中数学平方根算术平方根二次根式综合练习题(附答案)

初中数学平方根算术平方根二次根式综合练习题一、单选题1.课间操时,小华、小军、小刚的位置如图所示.如果小华的位置用()0,0表示,小军的位置用()2,1表示,那么小刚的位置可以表示为( )A.()5,4B.()4,5C.()3,4D.()4,32.已知Rt ABC △中,90C ∠=︒,若14cm a b +=,10cm c =,则ABC S △为( )A.224cmB.236cmC. 248cmD.260cm3.下列各组数中,是勾股数的是( )A.6,9,12B.-9,40,41C.9,12,13D.7,24,254.实数,a b 在数轴上对应点的位置如图所示,化简a 的结果是( )A.2a b -+B.2a b -C.b -D.b5.如图,阴影部分的面积为16 cm 2,则图中长方形的周长为( )A.28 cmB.24 cmC. 25 cmD.不能确定6.若一个正数的两个平方根分别是1a -和3a -,则a 的值为( )A.2B.-2C. 1D. 47.如图,数轴上的点A,B,O,C,D 分别表示数-2,-1,0,1,2,则表示数2的点P 应落在( )A. 线段AB 上B. 线段BO 上C. 线段OC 上D. 线段CD 上8.在3.1?41?5,17,83,0,0.89-,13π-,2011-,0.303?003?000?3,5+,无理数有( )A.2个B.3个C.4个D.5个9.如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A 的豆豆,如果点A 用(-1,2)表示,那么(1,-2)所表示的位置是( )A.点AB.点BC.点CD.点D二、解答题10.已知a b c 、、是ABC △的三边,a b 、使等式2248200a b a b +-+-=成立,且c 是偶数,求ABC △的周长.11.如图,数轴的正半轴上有A B C 、、三点,表示12A B ,,点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为x .(1)请你直接写出x 的值;(2)求()22x -的平方根.12.如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠︒=,将一直角三角板(30M ∠︒=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周.如图2,经过t 秒后,ON 落在OC 边上,则t =________秒(直接写结果).(2)如图3,三角板继续绕点O 以每秒5°的速度沿逆时针方向旋转到起点OA 上.同时射线OC 也绕O 点以每秒10︒的速度沿逆时针方向旋转一周,①当OC 转动9秒时,求MOC ∠的度数.②运动多少秒时,35MOC ∠︒=?请说明理由.13.探索乘法公式时,我们经常设置图形面积的不同表示方法来验证乘法公式我国著名的数学家赵爽,早在公元3世纪,就把一个长方形分成四个全等的直角三角形(如图①),用四个全等的直角三角形拼成了一个大的正方形(如图②),这个图形称为赵爽弦图,这个图形验证了一个非常重要的结论,即直角三角形中两直角边a b ,与斜边c 满足关系式222a b c +=.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图③),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图④),利用上面探究所得结论,求当3a =,4b =时梯形ABCD 的周长.(3)如图⑤,在每个小正方形边长为1的方格纸中,ABC △的顶点都在方格纸格点上,请在图中画出ABC △的高BD ,利用上面的结论,求高BD 的长.14.已知52a +的立方根是3,31a b +-的算术平方根是4,c.(1)求,,a b c 的值;(2)求3a b c -+的平方根.15.王老师给同学们布置了这样一道习题:一个数的算术平方根为26m -,它的平方根为()2m ±-,求这个数.小张的解法如下:依题意可知, 26m -是2m -、()2m --两数中的一个. (1)当262m m -=-时,解得4m =. (2)所以这个数为262462m -=⨯-=. (3)当()262m m -=--时,解得83m =. (4) 所以这个数为82262633m -=⨯-=-. (5) 综上可得,这个数为2或23-. (6) 王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.16.已知:0=,求实数,a b 的值,的整数部分和小数部分.三、填空题17.如果1a a <+,那么整数a =_________.18.如图,已知圆柱体底面圆的半径为二,高为2,AB CD ,分别是两底面的直径.若一只小虫从A点出发,沿圆柱侧面爬行到C 点,则小虫爬行的最短路线的长度是 (结果保留根号)19.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺成的若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为 .20.已知ABC △的三边长分别为a b c 、、,且a b c 、、满足26950a a c -+-=,则ABC △的形状是 三角形.21.已知m ,n 为两个连续的整数,且m n <<,则m n +=__________.22.,那么2x y +=__________.23.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于__________对称.参考答案1.答案:D解析:小华的位置用()0,0表示,小军的位置用()2,1表示,∴每个小方格的边长为1,且确定平面直角坐标系中x 轴为从下数第一条横线,y 轴为从左数第一条竖线.∴可以确定小刚位置点的坐标为()4,3.2.答案:A解析:在Rt ABC △中,90C ∠=︒,222100a b c ∴+==,将14a b +=两边平方得()2214a b +=,即222196a b ab ++=,则48ab =,故2124cm 2ABC S ab ==△. 3.答案:D解析:A 不是,因为2226912+≠;B 不是,因为9-不是正整数;C 不是,因为22291213+≠;D 是,因为22272425+=,且7、24、25是正整数故选D4.答案:A解析:题图知,0,00a b a b <>-<,所以,则()2,a a a b a a b a b =-+-=---=-+故选A5.答案:B4= cm.因为长方形的长等于宽的2倍,所以长方形的长为8 cm ,宽为4cm.所以长方形的周长为2(84)24⨯+=cm.故选B.6.答案:A解析:根据题意得130.a a -+-=解得2a =.故选A.7.答案:B解析:253,120,<<∴-<<∴表示数2的点P 应落在线段BO 上.故选B.8.答案:C解析:,13π-,0.3030030003-,5+,共4 个,其余则为有理数.9.答案:D解析:以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2).10.答案:∵2248200a b a b +--+=,∴()()22448160a ab b -++-+=, ∴()()22240a b -+-=,解得:24a b ==,,∵a b c 、、是ABC △的三边,且c 是偶数,∴4c =.故ABC △的周长长为:24410++=.解析:解析: 12.答案:(1)∵30AOC ∠=︒而三角板每秒旋转5︒∴当ON 落在OC 边上时,有530t =︒得6t =故答案为6.(2)①当OC 转动9秒时,30109120COA ∠=︒+︒⨯=︒而309059165MOA ∠=︒+︒+︒⨯=︒又∵MOC MOA COA ∠=∠-∠即:16512045MOC ∠=︒-︒=︒答:当OC 转动9秒时,MOC ∠的度数为45.②设OC 运动起始位置为射线OP (如图1),运动t 秒时,35MOC ∠=︒,则905MOP t ∠=︒+,10COP t ∠=当35MOC ∠=︒时,有9051035()t t ︒+-=︒或1090535()t t -︒+=︒得11t =或25t =因为三角板与射线OC 都只旋转一周,所以不考虑再次追及的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (2)
(3) (4)
2.计算:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)Biblioteka (10)(11)(12)
(13)
(14)
1. 的平方根是,算术平方根是。
2. 的立方根是。
3. 的立方根是。
4. 的立方根是。
5.3x– 4的算术平方根是0,则x=。
6.算术平方根等于它本身的数是。
二、化简: =; × =; =; =;
=; × =; =; =。
(1)5 (1)
(2) (3)
(4) (5)
(6) (7)
二、巩固练习:
1.判断下列计算是否正确?并说明理由。
(7)如果y3=-8,那么y= . ( )
2(求下列各数的平方根:

100
144
0
-4
1.69
-64
0.25
-0.36
324
平方根
算术平方根
3:求下列各数的立方根:

27
-27
0
64
-64
-0.008
-125
0.125
-216
立方根
.(B组)
:1) 3的平方根是,算术平方根是。
2) 5的平方根是,算术平方根是。
平方根与立方根的概念与性质,
1.根据第1小题和第2小题,判断正误:
(1)如果y2= 4,那么y= . ( )(2)如果y2= 4,那么y= . ( )
(3)如果y2= 4,那么y= . ( )(4)如果y3= 8,那么y= . ( )
(5)如果y3= 8,那么y= . ( )(6)如果y3=-8,那么y= . ( )
相关文档
最新文档