二次函数地概念教学设计课题

合集下载

《二次函数》教学设计

《二次函数》教学设计

《二次函数》教学设计教学目标:1.理解二次函数的定义和性质。

2.掌握二次函数的图像和方程的基本性质。

3.能够利用二次函数解决实际问题。

教学重点:1.二次函数的定义和性质。

2.二次函数图像的绘制方法。

3.二次函数方程的求解。

教学难点:1.利用二次函数解决实际问题。

2.二次函数图像与相关参数的关系。

教学准备:1.电脑和投影仪。

2. PowerPoint课件。

3.白板、黑板、彩色粉笔和白板笔。

4.教材教辅资料。

教学过程:Step 1 引入新知识(5分钟)1.教师提问:“在生活中,你们见过哪些曲线?”学生回答,教师总结。

2.教师出示图片,让学生观察其中的曲线,引导他们发现图像形状特点,并了解曲线的名称。

3.教师引入二次函数的概念,解释二次函数的含义并举例说明。

Step 2 二次函数的图像(25分钟)1. 教师介绍二次函数的标准形式:y = ax^2 + bx + c,解释各个参数的含义。

2.教师通过示范,向学生讲解如何根据二次函数的参数画出对应的图像。

3.教师引导学生观察和讨论不同参数对二次函数图像的影响,比如a、b和c的正负值对图像的平移、翻转和缩放等方面的影响。

4.教师让学生通过练习题巩固二次函数图像的绘制方法。

Step 3 二次函数的方程(25分钟)1.教师引导学生观察二次函数图像与方程之间的关系,解释二次函数的方程是如何反映图像特点的。

2.教师讲解如何通过图像求解二次函数的方程,并通过示例演示求解过程。

3.教师引导学生通过练习题巩固二次函数方程的求解方法。

Step 4 二次函数的实际应用(20分钟)1.教师提供一些实际问题,让学生尝试利用二次函数解答。

2.教师引导学生分析问题,利用二次函数建立方程,并求解得到答案。

3.教师让学生分享并讨论各自的解题思路和答案。

Step 5 总结与拓展(10分钟)1.教师总结本节课的重点内容和学习收获,强调二次函数的重要性和实际应用。

2.教师布置作业,并提供相关的教辅资料供学生自主学习和练习。

二次函数教案 (第一课时)

二次函数教案 (第一课时)

二次函数教案 (第一课时)二次函数的教学设计一、教学内容二次函数(新人教版九年级下册第26.1.1节)二、教学目标1.知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。

2.教学思考学生能对具体情境中的数学息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。

3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。

4.情感态度通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。

三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。

2.教学困难根据函数解析式的结构特征,归纳出二次函数的概念。

第四,教学过程的安排教学活动流程活动1:温故知新,揭示课题活动内容和目的由回顾所学过的函数入手,引入函数大家庭中还会认识哪函数呢?然后从打篮球的例子引入二次函数。

学生能独立运用函数知识解决变量之间的关系。

2.活动:合作探究,获取新知识,制作探究环节,与学生互动,自主探索新知识,从而通过观察和归纳。

得到二次函数的解析式,获取新知。

本组题目是新知识的直接应用,目的是让学生能够区分。

活动3:小试身手,循序渐进认二次函数,循序渐进这一环节主要帮助学生处理解决问题,加深对二次函数的理解。

总结内容、应用、数学思维方法、获取知识的途径等。

活动四:回顾课堂,总结巩固方面,既总结知识,又提炼方法,让研究研究知识和运用知识都有很大的提升,方法就是学生讲收获。

活动5:课堂检测,测评反馈以测试的形式检测本节课的内容,检查学生的掌握程度,同时加深学生对知识的理解。

第五,教学过程的设计问题与情景【活动1】1.知识回顾:以问答式引起学生对知识的回忆。

2.揭示课题:以篮球为例。

二次函数课程教案(全)

二次函数课程教案(全)

课题:1.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的形式。

3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、先个体探求,尝试写出y 与x 之间的函数解析式。

2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。

(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

二次函数的概念教学设计

二次函数的概念教学设计

二次函数的概念教学设计教学设计:二次函数的概念一、设计意图:二次函数是高中数学中重要的一部分内容,是学生数学思维能力和解决实际问题的重要工具。

本教学设计旨在通过引导学生深入了解二次函数的定义、性质和图像的特点,发展学生的观察、思考和解决问题的能力。

二、教学目标:1.掌握二次函数的定义和一般形式;2.熟练掌握二次函数的图像;3.理解二次函数的性质,包括:对称性、最值和单调性等;4.能够运用二次函数解决实际问题。

三、教学内容与步骤:第一步:导入与热身(5分钟)通过展示或提问的方式,激发学生对二次函数的兴趣,引发学生对二次函数的初步认识。

导入问题:你能否举出身边的实例来说明二次函数的应用呢?第二步:引入二次函数的定义与表示方式(15分钟)1.通过举例的方式,引导学生理解二次函数的定义;教师:请你根据自己的理解,给出二次函数的定义并举例说明。

2. 引入一般形式:y = ax² + bx + c,讲解各个参数的意义;教师:请问,一般形式中a、b、c代表着什么意义?3.设计练习题,巩固学生对二次函数定义和一般形式的理解与掌握。

第三步:二次函数的图像与性质(30分钟)1.展示二次函数图像,并让学生观察和讨论二次函数图像的特点;2.引导学生找出二次函数图像的对称轴、顶点、开口方向等特征;3.讲解二次函数图像的具体性质,包括:对称性、最值和单调性等;4.设计练习题,让学生运用学到的知识判断图像的性质和找出图像的相关特点。

第四步:实际问题的实际应用(30分钟)1.通过实际问题的引入,让学生理解二次函数的实际应用;2.引导学生将实际问题抽象成二次函数的形式,并解决问题;3.调动学生思维,设计一些开放性问题,供学生讨论和解决。

第五步:课堂总结与反思(10分钟)1.小结本节课的主要内容与要点;2.指导学生针对学习内容回答问题或进行思考;3.强调二次函数的重要性和应用,并展示学生在本节课中的学习成果。

四、教学评估方法:1.在课堂上布置一些小练习,检测学生对二次函数的定义和性质的掌握情况;2.设计一些开放性问题,供学生进行讨论和解答,评估学生的实际问题解决能力。

数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。

2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。

3、通过学生共同观看和争论,培育大家的合作沟通意识。

(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。

2、具有初步的创新精神和实践力量。

教学重点1、体会方程与函数之间的联系。

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点1、探究方程与函数之间的联系的过程。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法争论探究法。

教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。

创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。

当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步进展估算力量。

(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。

次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。

)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。

3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。

)二、新课教授【例1】画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

沪教版数学九年级上册26.1《二次函数的概念》教学设计

沪教版数学九年级上册26.1《二次函数的概念》教学设计

沪教版数学九年级上册26.1《二次函数的概念》教学设计一. 教材分析沪教版数学九年级上册第26.1节《二次函数的概念》是整个初中数学阶段的重要内容,它为学生以后学习高中数学乃至大学数学打下基础。

本节内容主要介绍二次函数的定义、一般形式以及二次函数的图像特征。

教材通过实例引导学生理解二次函数的概念,并通过自主探究活动,让学生掌握二次函数的性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,例如一次函数和正比例函数。

他们在学习过程中能初步运用观察、实验、猜测、推理、交流等数学活动方式,进一步抽象和概括数学问题。

但二次函数的概念较为抽象,学生理解起来存在一定困难,因此,在教学过程中,需要教师引导学生通过实际问题来感受二次函数的实际意义,激发学生的学习兴趣。

三. 教学目标1.让学生理解二次函数的概念,掌握二次函数的一般形式。

2.使学生能够通过实际问题,运用二次函数的知识进行分析。

3.培养学生运用数学语言描述和解决问题的能力。

四. 教学重难点1.重点:二次函数的概念,二次函数的一般形式。

2.难点:理解二次函数的图像特征,能够运用二次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次函数的实际意义。

2.自主探究法:教师提出问题,引导学生分组讨论,共同探究二次函数的性质。

3.讲解法:教师对二次函数的概念、性质进行系统的讲解。

4.练习法:通过课堂练习,巩固所学知识。

六. 教学准备1.课件:制作关于二次函数概念、图像特征的课件。

2.练习题:准备一些关于二次函数的练习题,用于课堂练习和课后作业。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线运动,引出二次函数的概念。

提问:你们认为什么是二次函数?2.呈现(10分钟)呈现二次函数的一般形式,y=ax^2+bx+c(a≠0)。

讲解二次函数的各部分含义,让学生理解二次函数的定义。

3.操练(10分钟)让学生分组讨论,探究二次函数的性质。

《二次函数》教学设计 【完整版】

《二次函数》教学设计 【完整版】

第1课时二次函数.教学目标1.理解二次函数的概念,掌握二次函数的形式.2.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.3.让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系模型的过程,发展概括及分析问题、解次问题的能力.4.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.教学重点理解二次函数y=ax2+bx+c(a、b、c)是常数,且a≠0的概念.教学难点教材中涉及的实际问题有的较为复杂,要求学生有较强的抽象概括能力.教学过程一、导入新课正方体的六个面是全等的正方形(下图),设正方体的棱长为x ,表面积为y .如果改变正方体的棱长x ,那么正方体的表面积y 会随之改变,y 与x 之间有什么关系?教师引导学生思考问题,列出方程.导入新课的教学.二、新课教学显然,对于x 的每一个值,y 都有一个对应值,即y 是x 的函数,它们的具体关系可以表示为y =6x 2.问题1n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系每个队要与其他(n -1)个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数m =21n (n -1), 即m =21n 2-21n .这个函数解析式表示比赛的场次数m 与球队数n 的关系,对于n 的每一个值,m 都有一个对应值,即m 是n 的函数.问题2某种产品现在的年产量是20t ,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y 与x 之间的关系应怎样表示这种产品的原产量是20t ,一年后的产量是20(1+x )t ,再经过一年后的产量是20(1+x )(1+x )t ,即两年后的产量 y =20(1+x )2,即y =20x +40x +40.这个函数解析式表示了两年后的产量y 与计划增产的倍数x 之间的关系,对于x 的每一个值,y 都有一个对应值,即y 是x 的函数.思考:函数y =6x 2、m =21n 2-21n 、y =20x +40x +40有什么共同特点在上面的问题中,函数都是用自变量的二次式表示的.一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.其中,x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.三、巩固练习教材第29页练习1、2.四、课堂小结今天你学习了什么二次函数的概念是什么五、布置作业习题第1、2题.。

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。

进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

最新-二次函数数学教案(优秀11篇)二次函数教案

最新-二次函数数学教案(优秀11篇)二次函数教案

二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。

《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。

【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。

【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。

【教学重点】二次函数的概念。

【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。

一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。

2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。

二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。

注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。

《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

二次函数课程教案(全)

二次函数课程教案(全)

课题:1.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的形式。

3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、先个体探求,尝试写出y 与x 之间的函数解析式。

2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。

(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

二次函数的概念教案

二次函数的概念教案

二次函数的概念教案一、教学目标1.理解二次函数的概念;2.会求一些简单的实际问题中二次函数的解析式和它的定义域;3.在从问题出发到列二次函数解析式的过程中,体验用函数思想去描述、研究变量之间变化规律的意义.二、教学重点及难点教学重点:对二次函数概念的理解.教学难点:由实际问题确定函数解析式和确定自变量的取值范围.三、教学设计要点1.情境设计:通过思考回顾引入新课题;2.教学内容的处理:知识点与具体题目结合,使学生灵活运用知识;3.教学方法:启发式教学;四、教学用具粉笔、多媒体PPT五、教学过程(一)复习提问我们学过了哪些函数?(一次函数、反比例函数)什么叫一次函数?(y=kx+b,其中k≠0)表达式中的自变量是什么?函数是什么?(函数的基本概念:在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y 是x的函数,也可以说x是自变量,y是因变量。

)为什么要有k≠0的条件?k值对函数性质有什么影响?说明:复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.(二)由实际问题引入新课引言中的问题:正方体的六个面是全等的正方形,设正方形的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为问题1:多边形的对角线数d与边数n有什么关系?问题2:某工厂一种产品今年的年产量是20件,计划明后两年增加产量.如果每年的增长率为x,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?说明:由以上三例,引导启发学生归纳出(1)函数解析式的一边均为整式(表明这种函数与一次函数有共同的特征).(2)自变量的最高次数是2(这与一次函数不同).本处设计了三个问题,学生容易分析其中的变量以及变量之间的关系,也不难列出函数解析式.通过归纳解析式特点,自然引出二次函数的定义.(三)学习新课1、二次函数的定义:形如y=ax2+bx+c(a≠0,a、b、c为常数)的函数叫做二次函数.其中x是自变量,y是因变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的概念教学设计
常德芷兰实验学校陈佳雪
一、教材分析:
1、教材的地位和作用
二次函数是在学生学习了一次函数、正比例函数、反比例函数的基础上,来学习的一个新的函数,学习二次函数将为一元二次方程的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想,为后来学习二次函数的图象做铺垫,更是高中学习阶段不可缺少的一类重要函数,在学业水平测试中占有较大比例,更是压轴题的热门.
2、学情分析
从心理特征来说,初中阶段的学生观察能力,记忆能力和想象能力迅速发展。

但同时,学生进入九年级之后,上课气氛比较沉闷,不爱发表自己的见解,所以本节课我将利用生活中的视频,图片和时事问题引发学生的兴趣,创造条件和机会,让学生发表见解,发挥学习的主动性。

从认知状况来说,学生已经学习了一次函数、正比例函数、反比例函数,对函数概念已经有了认识,但对于得出二次函数的概念(由于其抽象程度较高,)学生可能会产生一定的困难,所以我将结合生活中的图片和实例予以引导。

二、教学目标分析
1、知识目标:掌握二次函数的概念,理解二次函数的一般式,初步运用二次函数解决简单应用题,了解如何根据实际问题确定自变量的取值范围。

2、能力目标:通过视频图片的引入,培养学生的观察力,抽象概括能力及创造想象能力
3、情感目标:通过观察、讨论、合作交流等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的信心.
4、教学重点难点:新概念教学指出,正确的理解数学概念是牢固掌握数学知识,灵活运用知识解决问题的金钥匙,所以本节课的重点是对二次函数概念的理解。

难点是由实际问题确定函数解析式和自变量的取值范围。

三、课堂结构设计
1、设计理念:形的引入,揭示为什么学二次函数,再数的解析,得出什么是二次函数,最后达到数形结合的统一、
2、为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了六个教学环节:(1)联系生活,引出概念
(2)合作交流,提炼概念
(3)全面剖析,理解概念
(4)例题讲练,运用概念
(5)拓展延伸,升华概念
(6)归纳小结,整理概念
四、教学过程分析:
(五)拓展延伸,升华概念
1、已知函数m
m
x
m
y-
+
=2
)1
(,
(1) m取什么值时,此函数是正比例函
数?
(2) m取什么值时,此函数是反比例函
数?
(3) m取什么值时,此函数是二次函
数?
2、为了迎接芷兰实验学校每年一次的班级
排球赛,如图初三某学生现站在0处练习
发球,将球从0点正上方2m的A处发出,
把球看成点,其运行高度y(m)与运行的
水平距离x(m)满足表达式(插入视频)
y=a(x-6) ²+h.已知球网与0点的距离为
9m,高度为2.43m,球场的边界距0点的水
平距离为18m
(1)当h=2.6时,求y关于x的函数表
达式(2)当h=2.6时,球能否越过球网?
球会不会出界?试说明理由。

解:(1)点A(0,2)代入解析式得
学生上黑板解
答,答完由班上学
生点评,让学生在
点评中发现问题
并改正所犯的同
类错误
第2个问题有难
度,可能需要老师
适当的引导,学生
才能发现坐标,再
结合待定系数法
第一个习题,主要
让学生区分三种
函数类型,通过对
比,熟记二次函数
的概念,形神升华
第二个习题以身
边的问题为题,提
高兴趣,让学生了
解数学来源于生
活服务生活的道
理,更是体现了数
形结合的统一,再
一次升华概念。

五、教学评价分析
数学概念,就是事物在数量关系和空间形式方面的本质属性,是人们通过实践,从数学所研究的对象的许多属性中,抽出其本质属性概括而形成的。

在这一个过程中,我突出了三个特色
特色一:以二次函数的概念这把金钥匙为主角jue,让学生经历发现钥匙,找到钥匙并运用钥匙的过程,完全掌控了这把金钥匙。

特色二:始终以形到数到数形结合为主线,目的明确,思路清晰,让学生充分感受到数形结合的魅力。

特色三:以生活中的视频图片引入,再回归到解决身边的问题,让学生了解了数学来源于生活又服务于生活的道理,学以致用,增强信心!
以上就是我对二次函数概念教学上的一些想法,请大家提出宝贵的意见,谢谢。

毕达哥拉斯曾经说过,在数学的天地里,不是我们知道什么,而是我们怎么知道什么。

相关文档
最新文档