2一元线性回归模型
计量经济学的2.2 一元线性回归模型的参数估计
基于样本数据,所得到的总体回归函数的一个估 计函数称为样本回归函数。
问题:当我们设定总体回归模型的函数形式后, 如何通过样本数据得到总体回归函数的一个估计 (即样本回归函数)?--参数估计问题
E (Y | X i ) 0 1 X i
ˆ ˆ ˆ Yi f ( X i ) 0 1 X i
Xi确定
作此假设的理由:当我们把PRF表述为 时,我们假定了X和u(后者代表所有被省略的变量的影 响)对Y有各自的(并且可加的)影响。但若X和u是相关 25 的,就不可能评估它们各自对Y的影响。
线性回归模型的基本假设(4)
假设4、服从零均值、同方差、零协方差的正态分布 i~N(0, 2 ) i=1,2, …,n 意为:ui服从正态分布且相互独立。因为对两个正态 分布的变量来说,零协方差或零相关意为这两个变量 独立。 作该假设的理由:i代表回归模型中末明显引进的许多解释
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
3
回归分析的主要目的是要通过样本回归函 数(模型)SRF尽可能准确地估计总体回归函 数(模型)PRF。
ˆ ˆ ˆ Yi 0 1 X i
ˆ ˆ ˆ Yi 0 1 X i ui
同方差假设表明:对应于不同X值的全部Y值具有同 样的重要性。
22
线性回归模型的基本假设(2-3)
假设2、随机误差项具有零均值、同方差和不自相关 性(不序列相关): (2.3) 不自相关: Cov(i, j|Xi, Xj)=0 i≠j i,j= 1,2, …,n 或记为 Cov(i, j)=0 i≠j i,j= 1,2, …,n 意为:相关系数为0, i, j非线性相关。 几何意义如下
一元线性回归模型
1.高尔顿普遍回归定律。高尔顿的目 的在于发现为什么人口的身高分布有一种
稳定性。在现代,我们并不关心这种解释,
我们关心的是:在给定父辈身高的情形下,
找到儿辈平均身高的变化规律。
就是说,我们如果知道了父辈的身高,
就可预测儿辈的平均身高。假设我们得
到了一组父亲、儿子身高的数据,制成
如下的散点图。图中按统计分组的方法 将父亲身高分为若干组。
在经典物理学中,给定电阻Ω,电流I
和电压V 之间的关系即为函数关系,即
V I Ω
。这种典型的变量关系就是确
定性关系。
在经济系统中, 这种变量之间的函数关
系或确定性关系就很少见 。常见的是变量
之间是一种不确定的关系,既使变量X 是
变量Y 的原因, 给定变量X 的值也不能具
体确定变量Y的值, 而只能确定变量Y 的
(4.2)
其中,1 和 2 为未知而固定的参数, 称为回归系数; 1 为截距系数, 2 为斜 率系数。式(4.2)为线性总体回归函数 。
三、线性的含义
1.对变量为线性 对线性的第一种解释是指Y 的条件期望是 Xi 的线性函数,例如式(4.2)就是线性回归
函数,该回归线是一条直线。
按这种解释 E (Y / X i ) 1 2 X
统计特征,通常称变量X 与Y 之间的这种
关系为统计关系。
例如,企业总产出Y 与企业的资本投入
K 、劳动力投入L 之间的关系就是统计关 系。虽然资本K 和劳动力L 是影响产出Y 的两大核心要素,但是给定K 、L 的值并 不能确定产出Y 的值。因为,总产出Y 除 了受资本投入K、劳动力投入L 的影响外
对于Y 的每一条件分布,我们能计算 出它的条件期望,记为E(Y/X=Xi),即 在X取特定Xi 值时Y 的期望值。例如, X=1000时,Y 的期望值为:
计量经济学第2章 一元线性回归模型
15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)
2.2 一元线性回归模型的参数估计
于是,Y的概率函数为
P(Yi ) = 1
− 1 2σ
2
ˆ ˆ (Yi − β 0 − β1 X i ) 2
σ 2π
e
(i=1,2,…n)
4/29/2012
14
因为Yi是相互独立的,所以的所有样本观测值的联 合概率,也即或然函数(likelihood function) 或然函数(likelihood function)为: 或然函数
§2.2 一元线性回归模型的参数估计
一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 参数的普通最小二乘估计(OLS) 参数估计的最大或然法(ML) 三、参数估计的最大或然法(ML) * 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干扰项方差的估计
4/29/2012
1
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
4/29/2012
-973 1314090 1822500 947508 -929 975870 1102500 863784 -445 334050 562500 198381 -412 185580 202500 170074 -159 23910 22500 25408 28 4140 22500 762 402 180720 202500 161283 511 382950 562500 260712 1018 1068480 1102500 1035510 963 1299510 1822500 926599 5769300 7425000 4590020
第二章:一元线性回归模型理论与方法(第二部分)
最小二乘法的数学原理
• 纵向距离是Y的实际值与拟合值之差,差异 大拟合不好,差异小拟合好,所以又称为 拟合误差或残差。 • 将所有纵向距离平方后相加,即得误差平 方和,“最好”直线就是使误差平方和最 小的直线。 • 于是可以运用求极值的原理,将求最好拟 合直线问题转换为求误差平方和最小。
普通最小二乘法(OLS)
这三个准则也称作估计量的小样本性质。
拥有这类性质的估计量称为最佳线性无偏估计 量(best liner unbiased estimator, BLUE)。
高斯—马尔可夫定理(Gauss-Markov theorem)
在给定经典线性回归的假定下,最小二乘估计 量是具有最小方差的线性无偏估计量。
ˆ , ˆ 的均 2、无偏性,即以X的所有样本值为条件,估计量 0 1 0与1 。 值(期望)等于总体回归参数真值
ˆ X i2 Yi X i Yi X i 0 nX i2 (X i ) 2 ˆ nYi X i Yi X i 1 2 2 n X ( X ) i i
对数似然函 数极大化的 一阶条件
结构参数的 ML估计量
最大似然法与普通最小二乘法讨论
已知一组样本观测值(Yi,Xi)(i=1,2, …,n), 要求样本回归函数尽可能好地拟合这组值,即 样本回归线上的点Y ˆi 与真实观测点Yi的“总体” 误差尽可能地小。在技术处理上我们一般采用 “最小二乘法”。
最小二乘原则:由于估计值和实测值之差可正 可负,简单求和可能将很大的误差抵消掉,因 此,只有平方和才能反映二者在总体上的接近 程度。
n 1
证残差与 Yˆ 的样本协方差为0,即证: i
eiYˆ i
0
ห้องสมุดไป่ตู้
2 一元线性回归模型
4、回归分析
(1)“回归”一词的古典意义 英国生物学家F.高尔顿(Francis 遗传学研究中首先提出的。
Galton)在
(2)“回归”一词的现代意义: 回归分析是研究一个被解释变量(或因变量)对一 个或多个解释变量(或自变量)数量依赖关系的数 学分析方法。 目的:通过解释变量的已知值或设定值,去估计被 解释变量的平均值,或分析解释变量变动对被解释 变量产生的影响。
相关关系:非确定现象随机变量间的关系。
函数关系:
圆面积 f , 半径 半径2
欧姆定律(电流C=V/k, V为电压)
相关关系: 农作物产量 f 气温, 降雨量, 阳光, 施肥量
高档消费品的销售量与城镇居民收入之间的关 系 储蓄额与居民收入之间的关系 广告支出与商品销售额 工业增加值与能源消耗量 数学成绩与统计学成绩 „„
问:能否从该样本估计总体回归函数PRF?
可支配收入X 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 消费支出Y 888 1121 1340 1650 2179 2210 2398 2650 3021 3288
回答:of course
该样本的散点图: 样本散点图近 似于一条直线,画 一条直线以尽可能 地拟合该散点图, 由于样本取自总体, 该线可以近似地代 表总体回归线。该 线称为样本回归线
上例
ui Yi -E(Y Xi ) Yi 0 1X i 总体回归函数 Yi 0 1X i ui 个别值表现形式
引入随机扰动项的主要原因: 1、作为未知影响因素的代表
2、作为无法取得数据的已知因素的代表 3、作为众多细小影响因素的综合代表 4、模型的设定误差 5、变量的观测误差 6、变量的内在随机性
计量经济学第二篇一元线性回归模型
第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。
第二章经典单方程计量经济模型:一元线性回归模型
二、总体回归函数
例2.1:一个假想的社区由100户家庭组成,要研 究该社区每月家庭消费支出Y与每月家庭可支配收 入X的关系。
即如果知道了家庭的月收入,能否预测社区该类 家庭的平均月消费支出水平?
为达此目的,将该100户家庭依据每月可支配收入 划分为10组,以分析每一收入组的家庭消费支出。
每 月 家 庭 消 费 支 出 Y (元)
单方程计量经济学模型 理论与方法
Theory and Methodology of SingleEquation Econometric Model
第二章 经典单方程计量经济学模型: 一元线性回归模型
• 回归分析概述 • 一元线性回归模型的参数估计 • 一元线性回归模型检验 • 一元线性回归模型预测 • 实例
为了得到良好的估计量需要哪些条件?
2、无偏性,即估计量ˆ0 、 ˆ1 的均值(期望)等于总体回归
参数真值0 与1
证: ˆ1 kiYi ki (0 1 X i i ) 0 ki 1 ki X i ki i
易知 故
ki
xi 0 xi2
ki Xi 1
ˆ1 1 ki i
2、回归分析的基本概念
回归分析是研究一个变量关于另一个(些) 变量的统计依赖关系(因果关系X)的计算方法和 理论。
其用意:在于通过后者的已知或设定值,去 估计前者的总体均值。
回归分析主要内容包括: (1)根据样本观察值对 经济计量模型参数进行估计,求得回归方程;
(2)对回归方程、参数估计值进行显著性检验; (3)利用回归方程进行分析、评价及预测。
一、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值.
第2章一元线性回归模型
一元线性回归模型
回归分析是计量经济学的基础内容!
本章介绍一元线性回归模型,最小二乘估计方法及 其性质,参数估计的假设检验、预测等。
浙江财经大学 倪伟才
1
本章主要内容
2 .1 一元线性回归模型
2 .2 参数β0、β1的估计
2 .3 最小二乘估计的性质
2 .4 回归方程的显著性检验 2 .5 残差分析 2 .6 回归系数的区间估计
浙江财经大学 倪伟才 10
回归的术语
y的各种名称: 因变量(dependent variable)或被解释变量 (explained variable)或回归子(regressand)或内 生(endogenous); X的各种名称: 自变量(independent variable)或解释变量 (explanatory variable)或回归元(regressor)或外 生(exogenous) U的各种名称: 随机误差项或随机扰动项(stochastic error term, random disturbance term ): 表示其它因素的影响,是不可观测的随机误差!
浙江财经大学 倪伟才
9
2.1一元线性回归模型
由于两个变量y, x具有明显的线性关系,故考虑直 线方程y=0+1x(函数表达的是确定性关系,有缺 陷!) y=0+1x+u, 其中u表示除x外,影响y的其它一切 因素。 将y与x之间的关系用两部分来描述: a. 一部分0+1x ,由x的变化引起y变化; b.另一部分u ,除x外的其它一切因素引起y变化。 参数(parameters) 0 , 1 ; 0 称为回归常数(截距)(intercept, constant), 1称为回归斜率(slope)
第二章一元线性回归模型1
第二章一元线性回归模型计量经济学在对经济现象建立经济计量模型时,大量地运用了回归分析这一统计技术,本章和下一章将通过一元线性回归模型、多元线性回归模型来介绍回归分析的基本思想。
第一节回归分析的几个基本问题回归分析是经济计量学的主要工具,下面我们将要讨论这一工具的性质。
一、回归分析的性质(一)回归释义回归一词最先由F •加尔顿(Francis Galt on )提出。
加尔顿发现,虽然有一个趋势,父母高,儿女也高:父母矮,儿女也矮,但给定父母的身高,儿女辈的平均身高却趋向于或者“回归” 到全体人口的平均身高。
或者说,尽管父母双亲都异常高或异常矮,而儿女的身高则有走向人口总体平均身高的趋势(普遍回归规律)。
加尔顿的这一结论被他的朋友K •皮尔逊(Karl pearson)证实。
皮尔逊收集了一些家庭出身1000多名成员的身高记录,发现对于一个父亲高的群体,儿辈的平均身高低于他们父辈的身高,而对于一个父亲矮的群体,儿辈的平均身高则高于其父辈的身高。
这样就把高的和矮的儿辈一同“回归”到所有男子的平均身高,用加尔顿的话说,这是“回归到中等” 。
回归分析是用来研究一个变量(被解释变量Explained variable或因变量Dependent variable 与另一个或多个变量(解释变量Explanatory variable或自变量Independent variable之间的关系。
其用意在于通过后者(在重复抽样中)的已知或设定值去估计或预测前者的(总体)均值。
下面通过几个简单的例子,介绍一下回归的基本概念。
例子1.加尔顿的普遍回归规律。
加尔顿的兴趣在于发现为什么人口的身高分布有一种稳定性,我们关心的是,在给定父辈身高的条件下找出儿辈平均身高的变化。
也就是一旦知道了父辈的身高,怎样预测儿辈的平均身高。
为了弄清楚这一点,用图 1.1 表示如下图 1.1 对应于给定父亲身高的儿子身高的假想分布图 1.1 展示了对应于设定的父亲身高, 儿子在一个假想人口总体中的身高分布, 我们不难发现,对应于任一给定的父亲身高, 相对应都有着儿子身高的一个分布范围,同时随着父亲身高的增加,儿子的平均身高也增加,为了清楚起见,在1.1散点图中勾画了一条通过这些散点的直线,以表明儿子的平均身高是怎样随着父亲的身高增加而增加的。
2 一元线性回归模型
负线性相关
不相关
正线性相关
3、常用的两种相关关系的分析方法 对变量间(不确定性的)相关关系(统计依赖关系)
的考察主要是通过相关分析(correlation analysis)或
回归分析(regression analysis)来完成的。
• ……
• E(Y|X=3500)=2585
• 问题4:收入X与平均消费支出E(Y|X)之 间是什么关系?如何用方程式来表现这两种 关系?
图形说明:平均来说,随着收入的增加,消费支出也
在线性增加。即每一个消费支出的(条件)期望均落
在一根正斜率的直线上。这条直线称为总体回归线。
3500
每 月 消 费 支 出 Y (元) 3000 2500 2000 1500 1000 500 0 500 1000 1500 2000 2500 3000 3500 4000 每月可支配收入X(元)
答:E(Y|X=800)=2420/4=561×1/4+ 594 ×1/4+ 627 ×1/4+ 638 ×1/4=605 • 知识点及注意点4: • 期望也称均值,描述一个随机变量的平均值 • 条件期望(条件均值):给定X的Y的期望值, 记为E(Y|X)。
• 对于每一个给定的X,都对应有且只有一个Y 的条件均值。 • E(Y|X=800)=561×1/4+ 594 ×1/4+ 627 ×1/4+ 638 ×1/4=605 • E(Y|X=1100)=825 • E(Y|X=1400)=1045
量。 • 记为
Y E (Y | X )
• 随机误差项主要包括下列因素(P27书中 六点综合为四点) –在解释变量中被忽略的因素的影响 P27; 说明:模型中被省略了的影响Y的那些 因素包含在随机扰动项中。
第二章 一元线性回归模型
∂Q ˆ ˆ = −2∑ (Yi − β 0 − β1 X i ) = 0 ∂β ˆ0 ˆ ˆ ∂Q = −2∑ (Y − β − β X )X = 0 i 0 1 i i ˆ ∂β1
化简得: 化简得:
ˆ ˆ ∑ (Yi − β 0 − β1 X i ) = 0 ˆ ˆ ∑ (Yi − β 0 − β1 X i )X i = 0
2.总体回归方程(线)或回归函数 总体回归方程( 总体回归方程 即对( )式两端取数学期望: 即对(2.8)式两端取数学期望:
E y i)= β 0 + β 1 x i (
(2.9)
(2.9)为总体回归方程。由于随机项的影响,所 )为总体回归方程。由于随机项的影响, 有的点( )一般不在一条直线上; 有的点(x,y)一般不在一条直线上;但所有的点 (x,Ey)在一条直线上。总体回归线描述了 与y )在一条直线上。总体回归线描述了x与 之间近似的线性关系。 之间近似的线性关系。
Yi = β X i + ui
需要估计, 这个模型只有一个参数 需要估计,其最 小二乘估计量的表达式为: 小二乘估计量的表达式为:
∑XY ˆ β= ∑X
i i 2 i
例2.2.1:在上述家庭可支配收入-消费支出例中,对 :在上述家庭可支配收入-消费支出例中, 于所抽出的一组样本数据, 于所抽出的一组样本数据,参数估计的计算可通过下面 的表2.2.1进行。 进行。 的表 进行
二、一元线性回归模型 上述模型中, 为线性的, 上述模型中, 若f(Xi)为线性的,这时的模型 为线性的 一元线性回归模型: 即为 一元线性回归模型:
yi = β 0 + β1 xi + ui 其中:yi为被解释变量,xi为解释变量,ui为随机误 差项,β 0、β1为回归系数。
第二章 一元线性回归模型
__
__
2
/n
★样本相关系数r是总体相关系数 的一致估计
相关系数有以下特点:
• • • • 相关系数的取值在-1与1之间。 (2)当r=0时,线性无关。 (3)若r>0 ,正相关,若r<0 ,负相关。 (4)当0<|r|<1时,存在一定的线性相关 关系, 越接近于1,相关程度越高。 • (5)当|r|=1时,表明x与y完全线性相关 (线性函数),若r=1,称x与y完全正相关; 若r=-1,称x与y完全负相关。 • 多个变量之间的线性相关程度,可用复相 关系数和偏相关系数去度量。
●假定解释变量X在重复抽样中取固定值。 但与扰动项u是不相关的。(从变量X角度看是外生的)
注意: 解释变量非随机在自然科学的实验研究中相对
Yi 1 2 X i ui
●假定解释变量X是非随机的,或者虽然X是随机的,
容易满足,经济领域中变量的观测是被动不可控的, X非随机的假定并不一定都满足。
E( y xi ) 0 1xi
11
• 可以看出,虽然每个家庭的消费支出存在差 异,但平均来说,家庭消费支出是随家庭可 支配收入的递增而递增的。当x取各种值时, y的条件均值的轨迹接近一条直线,该直线称 为y对x的回归直线。(回归曲线)。 • 把y的条件均值表示为x的某种函数,可写 为:
E( y xi ) 0 1xi
Var ( y xi ) 2
Cov( yi , y j ) 0
y | xi ~ N (0 1xi , )
2
22
第三节 参数估计
• 一、样本回归方程
• 对于
yi 0 1 xi ui
• 在满足古典假定下,两边求条件均值,得到总体 回归函数:
8.2.2一元线性回归模型的最小二乘估计课件(人教版)
ෝ=x,则
通过经验回归方程
x=179.733,即当父亲身高为179.733cm时,儿子的平均身
高与父亲的身高一样.
对于响应变量Y , 通过视察得到的数据称为观测值 , 通
ෝ为预测值. 视察值减去预测值称为
过经验回归方程得到的
残差.
残差是随机误差的估计结果,通过对残差的分析可判
叫做b,a的最小二乘估计.
求得的,ෝ
ഥ); 与相关系数
易得: 经验回归直线必过样本中心(ഥ
,
r符号相同.
对于上表中的数据,利
用我们学过的公式可以计算出
=0.839
,ෝ
=28.957,求出儿
子身高Y关于父亲身高x的经验
回归方程为
ŷ 0.839 x 28.957
相应的经验回归直线如图所示.
n i =1
n i =1
n
n
Q(a,b ) = ( yi - bxi - a ) = [ yi - bxi - ( y - bx ) + ( y - bx ) - a ]
2
i =1
n
2
i =1
= [( yi y ) b( xi - x ) + ( y - bx ) - a ]
2
i =1
i =1
综上,当a)( y y )
i
i
i =1
.
n
( x - x)
2
i
i =1
ˆ
ˆ
a
=
y
bx
时, Q到达最小.
ˆ aˆ 称为Y 关于x 的经验回归方程,也称
8.2.2 一元线性回归模型参数的最小二乘估计 (2)
i 1
i 1
与经验回归方程有关,因此R2越大,表示残差平方和越小,即模型的拟合效果
越好; R2越小,表示残差平方和越大,即模型的拟合效果越差.
决定系数R2:
n
( yi yˆi )2
R2
1
i 1 n
( yi y)2
i 1
n
( yˆi y)2
i1 n ( yi y)2 i 1
回归平 方和
总偏差 平方和
决定系数是总偏差平方和中回归平方和所占的比重. 显然0≤R2≤1,
R2越接近1,则线性回归刻画的效果越好.
还可以证明,在一元线性回归模型中R2=r2,即决定系数R2等于响
应变量与解释变量的样本相关系数r的平方.
n
( xi x)( yi y)
r
i 1
n
n
( xi x)2
( yi y)2
编号 胸径/cm 树高/cm
1 2 3 4 5 6 7 8 9 10 11 12 18.1 20.1 22.2 24.4 26.0 28.3 29.6 32.4 33.7 35.7 38.3 40.2 18.8 19.2 21.0 21.0 22.1 22.1 22.4 22.6 23.0 24.3 23.9 24.7
为了利用一元线性回归模型估计参数c1和c2,我们引进一个中间变量x, 令x=ln(t-1895). 通过x=ln(t-1895),将年份变量数据进行变换,得到新的成
对数据(精确到0.01),如下表所示.
编号 x Y/s
1
2
3
4
5
6
7
8
0.00 2.83 3.26 3.56 3.71 4.11 4.17 4.29
(5)
第2章一元线性回归模型
布图上的点接近于一条曲线时,称为非线性相关。简单相关按
符号又可分为 正相关 (见图2.3.4 )、负相关 (见图2.3.8 )和零 相关 (见图2.3.6 )。两个变量趋于在同一个方向变化时,即同
增或同减,称为变量之间存在正相关;当两个变量趋于在相反
方向变化时,即当一个变量增加,另一个变量减少时,称为变 量之间存在负相关;当两个变量的变化相互没有关系时,称为
4、普通最小二乘法
为什么要使用OLS? (1)OLS的应用相对简便; (2)以最小化残差平方和为目标在理论很合理; (3)OLS估计量有很多有用的性质。 1)估计的回归线通过Y和X的均值。下列等式总是
ˆ ˆX 严格成立的:设下,可以证明,OLS是 “最优”的估计方法。
2.2.2 最小二乘估计量的性质
一个用于考察总体的估计量,可从如下几个方面考察其
优劣性: (1)线性。即它是否是另一个随机变量的线性函数;
(2)无偏性。即它的均值或期望是否等于总体的真实值;
(3)有效性。即它是否在所有的线性无偏估计量中具有 最小方差; (4)渐近无偏性。 即样本容量趋于无穷大时,它的均值 序列趋于总体的真值; (5)一致性。即样本容量趋于无穷大时,它是否依概率 收敛于总体的真值;
1.总变差的分解
ˆ b ˆX ˆ b Yt的估计值位于估计的回归线 Y t 0 1 t 上,Y围绕其均值的变异 (Y Y )可被分解为两部分:
ˆ Y ) (1) (Y t
ˆ) (2) (Yt Y t
样本回归函数:
3.相关系数检验
(1)变量相关的定义和分类
相关:指两个或两个以上变量间相互关系的程度或强度。
2 2 ˆ e ( Y Y ) i i OLS 最小化 i i 1 i 1
第2章一元线性回归模型2
• 因此,解释变量X对被解释变量Y具有影 响
2020/6/18
案例分析
• 工资 • 被解释变量:工资(1976年每小时美元数
) • 解释变量:教育(年数) • 计量模型:
• wage = 0 + 1 educ +
• t=10.17 • 问题:如何对待稻草人假设?
2020/6/18
2020/6/18
复习
第2章(1)思考题: • 1、回归分析中的变量有何特点? • 2、被解释变量的两个组成部分的含义是什么
? • 3、刻划被解释变量的两个参数分别是什么? • 4、样本回归模型与总体回归模型有何区别? • 5、最小二乘估计法的核心思想是什么? • 6、回归模型参数的估计量是什么?
t
ˆ 1 se (ˆ 1 )
(3)给定显著性水平a,查t分布表,得临界值c=t a/2(n-2)
(4) 比较,判断
若
若
2020/6/18
|t|> t a/2(n-2),则拒绝H0 ,接受H1 ; |t| t a/2(n-2),则拒绝H1 ,接受H0 ;
简易判断法则
• 当n > 30时,t分布近似于正态分布 • 给定显著性水平为5%,临界值c约为2 • 如果t的绝对值大于2,就可以拒绝稻草
解释变量的显著性
Y i 01X ii
• 如果1等于零,则X对Y没有影响
• 1的估计值不等于零
• 但是
• 1真的不等于零吗?
• 问题: • 如何说服我们相信你高考的数学成绩不 是零分? 2020/6/18
1、假设检验概述
•假设检验采用的逻辑推理方法是反证法。
先假定原假设正确,然后根据样本信息,观察由 此假设而导致的结果是否合理,从而判断是否接受 原假设。
第2章 一元线性回归模型
(regression analysis)来完成的
2020/2/6
中山学院经济与管理系
4
2.1 模型的建立及其假定条件
2 回归分析的概念 回归分析研究一个变量关于另一个(些)变量的
具体依赖关系的计算方法和理论。
其用意:在于通过后者的已知或设定值,去估计 (或)预测前者的(总体)均值。
2020/2/6
中山学院经济与管理系
5
2.1 模型的建立及其假定条件
回归分析的基本思想和方法以及“回归”名称的由来 英国统计学家高尔顿(F.Galton,1822-1911)和他
的学生皮尔逊(K.Pearson,1856-1936)在研究父母身高 与其子女身高的遗传问题时,观察了1078对夫妇,以每对 夫妇的平均身高作为自变量,而取他们的一个成年儿子的 身高作为因变量,将结果在平面直角坐标系上绘成散点图 ,发现趋势近乎一条直线,计算出的回归直线方程为:
二乘法(Ordinary least squares, OLS)给出的
判断标准是:二者之差的平方和最小
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i )) 2
1
1
即在给定样本观测值之下,选择出 ˆ0、ˆ1能使 yi
, 之y?i差的平方和最小(即为使残差平方和最小)
(4)被解释变量的样本平均值等于其估计值的平均值
2020/2/6
中山学院经济与管理系
26
2.2 一元线性回归模型的参数估计
4 截距为零的一元线性回归模型的参数估计 截距为零的一元线性回归模型的一般形式为:
yi xi ui
这个模型只有一个参数 需要估计,其最小二乘估
计量的表达式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元线性回归模型一、单项选择题1、表示x 与y 之间真实线性关系的是【 】A tt x y 10ˆˆˆββ+= B E t t x y 10)(ββ+= C t t t u x y ++=10ββ D t t x y 10ββ+=2、参数β的估计量βˆ具备有效性是指【 】 A Var(βˆ)=0 B Var(βˆ)为最小 C (βˆ-β)=0 D (βˆ-β)为最小 3、对于ii i e x y ++=10ˆˆββ,以σˆ表示估计标准误差,i y ˆ表示回归值,则【 】 A σˆ=0时,)ˆ(i iyy -∑=0 B σˆ=0时,2)ˆ(i i y y -∑=0 C σˆ=0时,)ˆ(i iyy-∑为最小 D σˆ=0时,2)ˆ(i i y y -∑为最小 4、设样本回归模型为i i i e x y ++=10ˆˆββ,则普通最小二乘法确定的iβˆ的公式中,错误的是【 】 A∑∑---=21)())((ˆx x y y x x ii iβ B ∑∑∑∑∑--=221)(ˆi ii i i i x x n y x y x n βC ∑∑-⋅-=221)(ˆx n x y x n y x ii i β D 21ˆxii i i y x y x n σβ∑∑∑-=5、对于ii i e x y ++=10ˆˆββ,以σˆ表示估计标准误差,r 表示相关系数,则有【 】 A σˆ=0时,r =1 B σˆ=0时,r =-1 C σˆ=0时,r =0 D σˆ=0时,r =1 或r =-1 6、产量(x ,台)与单位产品成本(y , 元/台)之间的回归方程为yˆ=356-1.5x ,这说明【 】A 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少1.5元C 产量每增加一台,单位产品成本平均增加356元D 产量每增加一台,单位产品成本平均减少1.5元7、在总体回归直线E x y10)ˆ(ββ+=中,1β表示【 】 A 当x 增加一个单位时,y 增加1β个单位 B 当x 增加一个单位时,y 平均增加1β个单位 C 当y 增加一个单位时,x 增加1β个单位 D 当y 增加一个单位时,x 平均增加1β个单位8、对回归模型t t t u x y ++=10ββ进行统计检验时,通常假定t u 服从【 】 A N (0,2i σ) B t(n-2) C N (0,2σ) D t(n)9、以y 表示实际观测值,y ˆ表示回归估计值,则普通最小二乘法估计参数的准则是使【 】A )ˆ(i iyy -∑=0 B 2)ˆ(i iyy-∑=0 C)ˆ(i iyy-∑为最小 D 2)ˆ(i iyy-∑为最小 10、设y 表示实际观测值,yˆ表示OLS 回归估计值,则下列哪项成立【 】 A yˆ=y B y ˆ=y C yˆ=y D y ˆ=y 11、用普通最小二乘法估计经典线性模型t t t u x y ++=10ββ,则样本回归线通过点【 】A (x ,y )B (x ,y ˆ)C (x ,yˆ) D (x ,y ) 12、以y 表示实际观测值,yˆ表示回归估计值,则用普通最小二乘法得到的样本回归直线 ii x y 10ˆˆˆββ+=满足【 】 A )ˆ(i iyy -∑=0 B 2)ˆ(y yi-∑=0 C2)ˆ(i iyy-∑=0 D 2)(y yi-∑=013、用一组有30个观测值的样本估计模型t t t u x y ++=10ββ,在0.05的显著性水平下对1β的显著性作t 检验,则1β显著地不等于零的条件是其统计量t 大于【 】A 05.0t (30)B 025.0t (30)C 05.0t (28)D 025.0t (28) 14、已知某一直线回归方程的判定系数为0.64,则解释变量与被解释变量间的相关系数为【 】 A 0.64 B 0.8 C 0.4 D 0.32 15、相关系数r 的取值范围是【 】A r ≤-1B r ≥1C 0≤ r ≤1D -1≤ r ≤1 16、判定系数2R 的取值范围是【 】A 2R ≤-1 B 2R ≥1 C 0≤2R ≤1 D -1≤2R ≤1 17、某一特定的x 水平上,总体y 分布的离散度越大,即2σ越大,则【 】 A 预测区间越宽,精度越低 B 预测区间越宽,预测误差越小 C 预测区间越窄,精度越高 D 预测区间越窄,预测误差越大 18、在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施【 】 A 增大样本容量 n B 提高置信水平C 提高模型的拟合优度D 提高样本观测值的分散度19、对于总体平方和TSS 、回归平方和RSS 和残差平方和ESS 的相互关系,正确的是【 】 A TSS>RSS+ESS B TSS=RSS+ESS C TSS<RSS+ESS D TSS 2=RSS 2+ESS 2二、多项选择题1、一元线性回归模型t t t u x y ++=10ββ的经典假设包括【 】 A 0)(=t u E B 2)(σ=t u Var (常数) C 0),cov(=j i u u D t u ~N(0,1) E x 为非随机变量,且0),cov(=t t u x2、以y 表示实际观测值,yˆ表示回归估计值,e 表示残差,则回归直线满足【 】 A 通过样本均值点(x ,y ) B∑∑=ttyy ˆC 0),cov(=t t e xD 2)ˆ(t tyy-∑=0 E0)ˆˆ(2=-∑yyt3、以带“∧”表示估计值,u 表示随机误差项,如果y 与x 为线性相关关系,则下列哪些是正确的【 】A t t x y 10ββ+=B t t t u x y ++=10ββC t t t u x y ++=10ˆˆββD t t t u x y ++=10ˆˆˆββE tt x y 10ˆˆˆββ+= 4、以带“∧”表示估计值,u 表示随机误差项,e 表示残差,如果y 与x 为线性相关关系,则下列哪些是正确的【 】A t t x y E 10)(ββ+=B t t x y 10ˆˆββ+=C t t t e x y ++=10ˆˆββD t t t e x y ++=10ˆˆˆββE tt x y E 10ˆˆ)(ββ+= 5、回归分析中估计回归参数的方法主要有【 】 A 相关系数法 B 方差分析法 C 最小二乘估计法 D 极大似然法 E 矩估计法6、用普通最小二乘法估计模型t t t u x y ++=10ββ的参数,要使参数估计量具备最佳线性无偏估计性质,则要求:【 】A 0)(=t u EB 2)(σ=t u Var (常数)C 0),cov(=j i u uD t u 服从正态分布E x 为非随机变量,且0),cov(=t t u x7、假设线性回归模型满足全部基本假设,则其参数估计量具备【 】 A 可靠性 B 合理性C 线性D 无偏性E 有效性 8、普通最小二乘直线具有以下特性【 】A 通过点(x ,y )B y y=ˆ C0=∑ieD∑2ie=0 E ),cov(i i e x =09、对于线性回归模型t t t u x y ++=10ββ,要使普通最小二乘估计量具备线性、无偏性和有效性,则模型必须满足:【 】A 0)(=t u EB 2)(σ=t u Var (常数)C 0),cov(=j i u uD t u 服从正态分布E x 为非随机变量,且0),cov(=t t u x10、由回归直线tt x y 10ˆˆˆββ+=估计出来的t y ˆ值【 】 A 是一组估计值 B 是一组平均值 C 是一个几何级数 D 可能等于实际值 E 与实际值y 的离差和等于零11、反应回归直线拟合优度的指标有【 】 A 相关系数 B 回归系数C 样本决定系数D 回归方程的标准误差E 剩余变差(或残差平方和)12、对于样本回归直线tt x y 10ˆˆˆββ+=,回归平方和可以表示为(2R 为决定系数)【 】 A2)ˆ(y y t -∑ B 221)(ˆx x t-∑β C ))((ˆ1y y x xt t--∑β D 22)(y y R t -∑E22)ˆ()(yy y y t t---∑∑ 13、对于样本回归直线tt x y 10ˆˆˆββ+=,σˆ为估计标准差,下列决定系数2R 的算式中,正确的有【 】A∑∑--22)()ˆ(y yy y tt B 1-∑∑--22)()ˆ(y y y y tt tC∑∑--2221)()(ˆy y x x t tβ D∑∑---21)())((ˆy y y y x x t t t βE 1-∑--22)()2(ˆy y n t σ14、下列相关系数的算式中,正确的是【 】 Ayx yx xy σσ⋅- Byx t tn y y x x σσ∑--))((Cyx y x σσ),cov( D∑∑∑----22y y(())(())ttt tx xy y x xE∑∑∑--⋅-2222yn yxn xyx n yx tttt三、判断题1、随机误差项u i 与残差项e i 是一回事。
( )2、总体回归函数给出了对应于每一个自变量的因变量的值。
( )3、线性回归模型意味着因变量是自变量的线性函数。
( )4、在线性回归模型中,解释变量是原因,被解释变量是结果。
( )5、在实际中,一元回归没什么用,因为因变量的行为不可能仅由一个解释变量来解释。
( )四、计算与分析题1、试将下列非线性函数模型线性化: (1) S 型函数 y=1/(x e -+10ββ+u);(2) Y=1βsinx+2βcosx+3βsin2x+4βcos2x+u 。
2、对下列模型进行适当变换化为标准线性模型: (1) y=0β+1βx 1+2β21x+u ; (2) Q=A ue L K βα; (3) Y=exp(0β+1βx+u); (4) Y=)](exp[1110u x ++-+ββ。
3、假设A 先生估计消费函数(用模型i i i u Y C ++=βα表示),并获得下列结果:i iY C 81.015ˆ+=t =(3.1) (18.7) n=19; 2R =0.98 括号里的数字表示相应参数的t 值,请回答以下问题: (1) 利用t 值经验假设:β=0(取显著水平为5%) (2) 确定参数统计量的标准方差;(3) 构造β的95%的置信区间,这个区间包括0吗?4、你的朋友将不同年度的债券价格作为该年利率(在相等的风险水平下)的函数,估计出的简单方程如下:ii X Y 78.44.101ˆ-= 其中:i Y =第i 年美国政府债券价格(每100美元债券)i X =第i 年联邦资金利率(按百分比)。