异分母分式相加减
《异分母分式的加减法》课件
4x 36 x 2 y 2
3
例题&解析
☞ 计算:
5 2 3 2 2 6a b 3ab 4abc
先找出最简 公分母,再通分,转 化为同分母的分 式相加减.
10 bc 8 ac 9 ab 解:原式= 2 2 2 2 2 2 12 a b c 12 a b c 12 a b c
最简公分母是: x
y (x+y) (x-y)2
若分式的分子、分母是多项式,能分解因式 的要先分解因式,再确定最简公分母.
y 通分: 4 x 2
2 y y 9 y 2 4x 4 x2 9 y2
5 6 xy
2 2
x 9 y2
解:最简公分母是 36 x y
9 y3 36 x 2 y 2
5 30 xy 5 6 xy 2 2 6 xy 36 x y 6 xy 6 xy
2 2
b a b 2b a 3a 2、 3a 2b 3a 2b 2b 3a
2 2 2b 3a 2b + 3a = = + 6ab 6ab 6ab
例题&解析
☞
计算:
1 6 (1) 2 ; x 3 x 9
x 3 6 解: (1) 原式 (x 3) ( x 3) ( x 3)(x 3) x 3 6 (x 3)(x 3)
xy ( x y)
x y xy
2 x 2( x 2)( x 2)
1 2( x 2)
例题&解析
1 计算: x 1 1 x 1 解: x 1 1 x x 1 1 1 1 x ( x 1)(1 x) 1 1 x 1 x ( x 1)(1 x) 1 1 x 1 x2 1 2 x2 1 x 1 x
八年级数学异分母的分式加减法
湖南教育出版社
小玲的妈妈买了一块蛋糕,分给小玲的弟弟这块蛋糕
的 1 , 分给小玲这块蛋糕的 1 ,应当怎样切这块蛋糕?
在图2中画出来.
3
· 120°
小玲和她的弟弟共分得这块蛋糕的几分之几?
1 1 1 2 13 2 3 5 3 2 32 23 6 6
x 32 x 32
x 3x 3
x
3
x
3 x
x2 32
3
x
3
2xx 3 x
x2 9
3
2x 6 x2 9
12x x2 9
计算: x 1 1
1 x 解 x1 1 x1 1
1
x 1 x 1 x 1 x 1
2 x2 1
2 x2 1
通分后,各个分式的分母变成相同,这时的分母叫
作公分母,例5中两个分式的公分母是 x 1 x 1
计算:
x3 x3 x3 x3
解 x 3x 3 x 3x 3 x 3x 3 x 3x 3
5
共分得这块蛋糕的
6
从上面的例子看到,异分母的分数相加,要先通分,化成同分母的分数 类似地,异分母的分式相加减,要先通分,即把各个分式的分子与分母 都乘以适当的同一个非零多项式,化成同分母的分式,然后再加减.
计算:
11 x 1 x 1
x
x 1
1 x
1
x
x
2023学年湖南八年级数学上学期同步知识讲练1-4-3 异分母分式的加减知识讲解(含解析)
专题1.4.3异分母分式的加减(知识讲解)【学习目标】1.让学生进一步熟练掌握求最简公分母的方法.2.能根据异分母分式的加减法则进行计算.3.在学习过程中体会从分数到分式的类比的方法,培养乐于探究、合作学习的习惯.【知识梳理】知识模块一异分母分式的加减法归纳:类似地,异分母的分式相加减时,要先通分,即把各个分式的分子、分母同乘一个适当的整式,化成同分母分式,然后再加减.异分母的分式加减法步骤:(1)确定最简公分母;(2)通分(即将各分式的分子分母各乘一个适当的式子,化成同分母分式);(3)利用同分母的分式加减法则(即分母不变,分子相加减)计算;(4)最后结果要化成最简分式.知识模块二整式与分式的加减运算方法总结:对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇到括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.【典型例题】【类型一】分母是单项式例1.计算:(1)32x -13y; (2)1a-12ab+abc.解析:(1)小题的最简公分母是6xy,(2)小题的最简公分母是2abc,通分后再根据同分母分式相加减的法则进行计算.解:(1)32x-13y=9y6xy-2x6xy=9y-2x6xy;(2)1a-12ab+abc=2bc2abc-c2abc+2a22abc=2bc-c+2a22abc.方法总结:异分母分式相加减,先通分,再转化为同分母分式相加减.【类型二】 分母是多项式例2. 计算:(1)xx 2-4-2x 2+4x +4; (2)a 2-4a +2+a +2; (3)m m -n -n m +n +2mn m 2-n 2. 解析:依据分式的加减法法则,(1)、(3)中先找出最简公分母分别为(x -2)(x +2)2、(m +n )(m -n ),再通分,然后运用同分母分式加减法法则运算;(2)中把后面的加数a +2看成分母为1的式子进行通分.解:(1)原式=x (x +2)(x -2)-2(x +2)2=x (x +2)(x +2)2(x -2)-2(x -2)(x +2)2(x -2)=x (x +2)-2(x -2)(x +2)2(x -2)=x 2+4(x +2)2(x -2); (2)原式=a 2-4+(a +2)2a +2=2a (a +2)a +2=2a ; (3)原式=m (m +n )(m +n )(m -n )-n (m -n )(m +n )(m -n )+2mn (m +n )(m -n )=m 2+2mn +n 2(m +n )(m -n )=m +n m -n. 方法总结:分母是多项式时,应先因式分解,目的是为了找最简公分母以便通分.对于整式与分式的加减运算,可以将整式的每一项的分母看成1,再通分,也可以把整式的分母整体看成1,再进行通分运算.【类型三】分式的混合运算例3.计算:(1)(x 2-4x +4x 2-4-x x +2)÷x -1x +2; (2)a -52a -6÷(16a -3-a -3). 解:(1)原式=[(x -2)2(x -2)(x +2)-x x +2]÷x -1x +2=(x -2x +2-x x +2)÷x -1x +2=-2x +2×x +2x -1=-2x-1;(2)原式=a-52a-6÷(16a-3-a2-9a-3)=a-52(a-3)÷(5+a)(5-a)a-3=a-52(a-3)·a-3(5+a)(5-a)=-110+2a.方法总结:对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇到括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.【类型四】先化简,再根据所给字母的值求分式的值例4.先化简,再求值:(1x-y+1x+y)÷2xx2+2xy+y2,其中x=1,y=-2.解析:化简时,先把括号内通分,把除法转化为乘法,把多项式因式分解,再约分,最后代值计算.解:原式=2x(x-y)(x+y)·(x+y)22x=x+yx-y,当x=1,y=-2时,原式=1+(-2)1-(-2)=-13.方法总结:分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的计算顺序,式子化到最简再代值计算.【类型五】先化简,再自选字母的值求分式的值例5.先化简,再选择使原式有意义而你喜欢的数代入求值:2x+6x2-4x+4·x-2x2+3x-1x-2.解析:先把分式化简,再选数代入,x取除-3、0和2以外的任何数.解:原式=2(x +3)(x -2)2·x -2x (x +3)-1x -2=2x (x -2)-1x -2=2-x x (x -2)=-1x. 当x =1时,原式=-1.(x 取除-3、0和2以外的任何数)方法总结:取喜爱的数代入求值时,要注意所选择的值一定满足分式分母不为0,这包括原式及化简过程中的每一步的分式都有意义.【类型六】 整体代入求值例6. 已知实数a 满足a 2+2a -8=0,求1a +1-a +3a 2-1·a 2-2a +1(a +1)(a +3)的值. 解析:首先把分式分子、分母能因式分解的先因式分解,进行约分,然后进行减法运算,最后整体代值计算.解:1a +1-a +3a 2-1·a 2-2a +1(a +1)(a +3)=1a +1-a +3(a +1)(a -1)·(a -1)2(a +1)(a +3)=1a +1-a -1(a +1)2=2(a +1)2=2a 2+2a +1. 因为a 2+2a -8=0,所以a 2+2a =8,2a 2+2a +1=28+1=29. 方法总结:利用“整体代入”思想化简求值时,先把要求值的代数式化简,然后将已知条件变换成适合所求代数式的形式,再整体代入即可.【类型七】运用分式解决实际问题例7. 有一客轮往返于重庆和武汉之间,第一次往返航行时,长江的水流速度为a 千米/小时;第二次往返航行时,正遇上长江汛期,水流速度为b 千米/小时(b >a ).已知该船在两次航行中,静水速度都为v 千米/小时,问该船两次往返航行所花时间是否相等,若你认为相等,请说明理由;若你认为不相等,请分别表示出两次航行所花的时间,并指出哪次时间更短些?解析:重庆和武汉之间的路程一定,可设其为s,所用时间=顺流时间+逆流时间,注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,把相关数值代入,比较即可.解:设两次航行的路程都为s.第一次所用时间为:sv+a+sv-a=2vsv2-a2,第二次所用时间为:sv+b+sv-b=2vsv2-b2,∵b>a,∴b2>a2,∴v2-b2<v2-a2. ∴2vsv2-b2>2vsv2-a2.∴第一次的时间要短些.方法总结:①运用分式解决实际问题时,用分式表示实际问题中的量是解决问题的关键.②比较分子相同的两个分式的大小,分母大的反而小.。
2022年北师大版八下《异分母分式的加减》配套练习(附答案)
5.3 分式的加减法第2课时 异分母分式的加减一、判断正误并改正: (每题4分,共16分) 1. ab a b a a b a a b a --+=--+=0〔 〕2.11)1(1)1(1)1()1(1)1(22222-=--=---=-+-x x x x x x x x x 〔 〕3.)(2121212222y x y x +=+〔 〕4.222b a c b a c b a c +=-++〔 〕二、认真选一选:(每题4分,共8分)1. 如果x >y >0,那么xy x y -++11的值是〔 〕 A.零B.正数C.负数2. 甲、乙两人分别从相距8千米的两地同时出发,假设同向而行,那么t 1小时后,快者追上慢者;假设相向而行,那么t 2小时后,两人相遇,那么快者速度是慢者速度的〔 〕 A.211t t t + B.121t t t + C.2121t t t t +- D.2121t t t t -+三、填一填:1. 异分母分式相加减,先________变为________分式,然后再加减.2. 分式xy 2,y x +3,y x -4的最简公分母是________.3. 计算:222321xyz z xy yz x +-=_____________.4. 计算:)11(1xx x x -+-=_____________. 5. 22y x M -=2222y x y xy --+yx y x +-,那么M=____________. 6. 假设〔3-a 〕2与|b -1|互为相反数,那么ba -2的值为____________. 7. 如果x <y <0,那么xx ||+xy xy ||化简结果为____________. 8. 假设0≠-=y x xy ,那么分式=-x y 11____________. 9. 计算22+-x x -22-+x x =____________.第1课时 三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔 〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔 〕A. 80° B. 80°或20° C . 80°或50° D. 20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ . 10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF= _________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
异分母的分式相加减的运算法则
异分母的分式相加减的运算法则
在进行异分母的分式相加减的运算时,首先需要将分母进行通分,即找到它们的最小公倍数,然后将每个分式的分子乘以通分的倍数,得到新的分子,最后再将新的分子相加或相减即可。
下面将详细介绍。
1. 异分母的分式相加
假设有两个分式相加,分别为a/b和c/d,其中b和d为不相等的正整数。
首先,需要找到b和d的最小公倍数m,通分后,得到新的分子为am/bm和cm/dm。
然后将两个新的分式相加,得到结果为(am+cm)/bm。
最后,如果要将结果化简为最简分数形式,需要对分子和分母进行约分,得到最简分数。
例如,计算1/2 + 1/3的结果。
首先,找到2和3的最小公倍数为6,通分后得到2/6和3/6。
然后将这两个分式相加,得到结果为(2+3)/6=5/6。
最后,将结果化简为最简分数5/6。
2. 异分母的分式相减
与分式相加类似,异分母的分式相减也需要先将分母进行通分,然后将相减的分式的分子相减,得到新的分子,最后化简为最简分数。
例如,计算1/2 - 1/3的结果。
首先,找到2和3的最小公倍数为6,通分后得到2/6和3/6。
然后将这两个分式相减,得到结果为(2-3)/6=-1/6。
最后,将结果化简为最简分数-1/6。
总结来说,异分母的分式相加减的运算法则可以概括为以下几个步骤:
1. 找到分式的最小公倍数,进行通分。
2. 将通分后的分子相加或相减。
3. 化简结果为最简分数形式。
通过以上方法,可以较为简便地进行异分母的分式相加减运算,希望对你有所帮助。
异分母分式的加减法
1、求下列各组分式的最简公分母:
(1)
y 4x2
,
5 6xy
,
x 9y2
7y (2) 8xy2 , 6x2
(3) 3x , 2y 2y(x y) 3x(x y)
(4)
x
2
1
xy
,y yx
2、把下列各组分式通分:
y5x (1) 4x2 , 6xy , 9 y2
(2)
x2
1
xy
,y yx
拓展探究
异分母分式的加减法
(一)
计算:
1 1 13 1 2 3 2 5 2 3 23 32 6 6 2 1 23 15 6 5 1 5 3 5 3 3 5 15 15
异分母分数相加减:先通分,把异 分母分数化为同分母的分数,然后再分 母不变,分子相加减。
如何计算:
y 4x2
5 6xy
1 1 3y 3y
2x 2x 3y 6xy 1 12x 2x 3y 3y 2x 6xy
例1:通分
(1)
x 3y
2
,
1 4xy
4a 3c 5b (2)5b2c , 4a2b , 2ac2
解(1)最简公分母是12xy2
x 3y2
x 4x 3y2 4x
4 12
x2 xy
2
1 4xy
13y 4xy 3y
y5x
你能计算:4x2 6xy 9 y2 吗
解:最简公分母是 36x2 y2
y5x 4x2 6xy 9 y2
y 9y2 4x2 9y2
5 6xy 6xy 6xy
x 4x2 y2
4x3
本节主要学习了: 1、如何确定最简公分母; 2、对异分母分式进行通分。
八年级数学下册异分母分式的加减教案
第2课时 异分母分式的加减1 .学会确定几个分式的最简公分母并 进行通分;(重点)2.能正确地运用分式的加、减、乘、除、乘方的运算法则进行混合运算. (重点,难点)一、情境导入小学我们学习过异分母分数的加减法,如 3 + 2=必+ “3=3 23 X 2 2X 2—呢? x + 1 x — 1二、合作探究 探究点一:分式的通分【类型一】最简公分母是 _________ .解析:■/ x 2— 3x = x(x — 3), x 2— 9 = (x +3)(x — 3) ,•••最简公分母为 x(x + 3)(x — 3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍 数;字母及式子取各分母中所有字母和式子 的最高次幕.“所有字母和式子的最高次幕”是指“凡出现的字母(或含字母的式子) 为底数的幕的因式选取指数最大的 ”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分母应当乘的单项式,分子也相应地乘以这个 单项式.解:⑴最简公分母是2b 2d , bi =, ac _ acd . 2^= 2b^d ;2 2 b3b 2c⑵最简公分母是6a bc , 20V 63bb?, 2a _ 4a 3 .3bc 2= 6a 2bc 2;(3)最简公分母是10xy 2z 2 ,壬九= 8xz 3 = 3z 25 _ — 25y 2 10xy 2z 2,10xy 2= 10xy 2z 2, — 2xz 2=— 10xy 2z 2.方法总结:通分时,先确定最简公分母, 然后根据分式的基本性质把各分式的分子、 分母同时乘以一个适当的整式, 使分母化为最简公分母.【类型三】 分母是多项式分式的通分2mn 3m⑵4m 2 — 9, 4m 2— 6m + 9.解析:先把分母因式分解,再确定最简 公分母,然后再通分.解:⑴最简公分母是2a(a + 1)(a — 1),a = _______ a 2 (a - 1) ______ 2 (a + 1) = 2a (a + 1)( a — 1), 1 = 2 (a + 1) . a 2 — a = 2a ( a + 1)( a — 1);⑵最简公分母是(2m + 3)(2m — 3)2,2mn = 2mn (2m — 3) 4m 2— 9 = (2m + 3)( 2m — 3) 2 ,3m = 3m (2m + 3) ______________ 4m 2 — 6m + 9 = ( 2m + 3)( 2m — 3) 2.方法总结:①确定最简公分母是通分的 关键,通分时,如果分母是多项式,一般应 先因式分解,再确定最简公分母;②在确定最简公分母后,还要确定分子、分母应乘的 因式,这个因式就是最简公分母除以原分母55,那么如何计算 6分式尢与悬的最简公分母a2 (a + 1)1 a 2— a ;c ac ; (1)bd ,2b 2; b 2a (2)2a 2c ,3bc 2;4 35 ⑶ 5y 2z ,10xy 2,— 2xz 2.解析:先确定最简公分母,找到各个分通分.(1)的商. 探究点二:异分母分式的加减法 【类型一】 计算: 异分母分式的加减法运算 ⑴x 2— 4 x 2+ 4x + 4, a 2 — 4 ⑵兀+汀2; m n 2mn (3) - + 一. m — n m + n m — n 解析:依据分式的加减法法则,(1)、(3) 中先找出最简公分母分别为 (x — 2)(x + 2)2、 (m + n )(m — n),再通分,然后运用同分母分 式加减法法则运算;(2)中把后面的加数a + 2看成分母为1的式子进行通分. 解:⑴原式=(x + 2)( x — 2) 2 x (x +2) (x + 2) ( x — 2) 2 (x — 2) (x + 2) 2 (x — 2) x (x + 2)— 2 (x — 2) (x + 2) 2( x — 2) /+ 4 ______ (x + 2) 2 (x — 2);a 2— 4 +( a + 2) 2 m (m + n ) n (m — n )2mn + (m + n )( m — n ) (m + n )(m — n ) m 2 + 2mn + n 2 —(m + n )( m — n ) m — n 方法总结:分母是多项式时,应先因式 分解,目的是为了找最简公分母以便通 分.对于整式与分式的加减运算,可以将整 式的每一项的分母看成 1,再通分,也可以 把整式的分母整体看成 1,再进行通分运算. 【类型二】 分式的混合运算计算:m + n x 2— 4x + 4 x x — 1(1)( x 2— 4 — x + 2)訐2;a — 516⑵ h r 三-a - 3).(x 一 2) 2解:⑴原式—[(x — 2)( x + 2)x — 1 x + 2] x + 2=(口-亠) x + 2 x + 空 x — 1 — 2 x + 2 x + 2 x +2 x —12 x — 1;a — 5(2)原式=(5 + a )( 5-a )(5 + a )( 5— a )——1 ——10+ 2a .方法总结:对于一般的分式混合运算来 讲,其运算顺序与整式混合运算一样,是先 乘方,再乘除,最后加减,如果遇到括号要 先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.探究点三:分式运算的化简求值 【类型一】 先化简,再根据所给字母的值求分式的值0先化简,再求值:( 1+x — y12xx + 丿 x 2+ 2xy + y 2, 其中 x = 1, y =— 2.解析:化简时,先把括号内通分,把除 把多项式因式分解,再约分,法转化为乘法, 最后代值计算.解原式=(x + y ) 2_x + y2x — x — y ,当 x — 1,y —— 2 时,原式一1 +(_ j )1 —(— 2)2x(x — y )( x + y )1=—3.方法总结:分式的化简求值,其关键步 骤是分式的化简.要熟悉混合运算的计算顺数代入求值:22.x ii — 4x + 4 x 2 + 3x x — 2 解析:先把分式化简,再选数代入,可取除一3、0和2以外的任何数.2 (x + iii)iv v vi vii viii ix 2解:原式= 2 •—、(x — 2) 2 x (x + 3) x — 21x (x — 2) x — 21 x'探究点四:运用分式解决实际问题D 有一客轮往返于重庆和武汉之 间,第一次往返航行时,长江的水流速度为 a 千米/小时;第二次往返航行时, 正遇上长 江汛期,水流速度为b 千米/小时(b > a).已 知该船在两次航行中, 静水速度都为v 千米 /小时,问该船两次往返航行所花时间是否 相等,若你认为相等,请说明理由;若你认 为不相等,请分别表示出两次航行所花的时 间,并指出哪次时间更短些?解析:重庆和武汉之间的路程一定,可设其为s,所用时间=顺流时间+逆流时间, 注意顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度, 把相关数值代入,比较即可.解:设两次航行的路程都为 s.当x = 1时,原式=—1.(x 取除一 3、0 和2以外的任何数)方法总结:取数代入求值时,要注意所 选择的值一定满足分式分母不为0,这包括原式及化简过程中的每一步的分式都有意 义.【类型三】 整体代入求值已知实数a 满足a 2+ 2a — 8 = 0,1 a + 3 a 2— 2a + 9求 一2--的值.a + 1 a 2 — 1(a + 1)( a + 3)解析:首先把分式分子、分母能因式分 解的先因式分解进行约分,然后进行减法运 算,最后整体代值计算.a 2- 2a + 1(a + 1) ( a + 3)1 a + 12vs第二次所用时间为亠+亠v + b v — b2vs(a — 1) 2(a +T a 2 + 2a — 8 = 0, — a 2+ 2a = 8,—原式 _ = 2=8 + 1 = 9.方法总结:利用“整体代入”思想化简 求值时,先把要求值的代数式化简, 然后将 已知条件变换成适合所求代数式的形式, 再 整体代入即可. iv 2— b 2,■/ b > a ,二 b 2>a 2, /• v 2 — b 2v v 2— a 2, 2vs 2vs"T —P>T —P.•••第一次的时间要短些.方法总结:①运用分式解决实际问题 时,用分式表示实际问题中的量是解决问题 的关键;②比较分子相同的两个分式的大 小,分母大的反而小.— 2_____________________________ a + 1 — (a + 1) 2— (a + 1) 2— a 2+ 2a + 1.1)( a - 1)序,式子化到最简再代值计算.【类型二】 先化简,再选择字母的值 求分式的值=先化简,再选择使原式有意义的2x + 6x — 21第一次所用时间为拦+S v — aa + 3(a + 1)( a + 3)三、板书设计1•分式的通分2 •异分母分式的加减法:先通分,化为同分母分式,再按同分母分式相加减的法则进行计算.3•分式的混合运算:先乘方,再乘除,最后算加减,如果遇到括号要先算括号里面的.对于异分母分式相加减,注意强调转化思想:通过通分,把异分母分式转化为同分母分式,再按同分母分式相加减的法则进行计算•对于分式混合运算,关键是要注意各种运算的先后顺序,最后结果要化为最简分式•在教学中,注意培养学生认真细致的学习态度,从运算符号到通分、约分,都应认真对待,一丝不苟•。
异分母分式的加减法 讲课课件
3x x 2x 2 x x 2x 2 原式 x 2x x 2x
3x 2 x 2 2 x 8
能力&提升
分析:
☞
2
a a b 计算 a b
解法1:把-a ,-b看成两个单项式,分母分别是1
a a a b a b a b a b 1 1
x3 x3 ( x 3)( x 3) ( x 3)( x 3)
分子相减时, “减式”要加括 号!
仿例&练习
☞
a2
分析
先找 最简公分母.
计算:2) 22a 1 . (
解: (2)
2a a 2 (a 2)( a 2) (a 2)( a 2) 2a (a 2) (a 2)( a 2) 2a a 2 (a 2)( a 2) a2 (a 2)( a 2)
2
大展&身手
☞
2
4 x( x 1) 2 ( x 1)( x 1) ( x 1)( x 1)
4x2 4x 2 ( x 1)( x 1)
大展&身手
☞
2
4a 1 a 4 解:原式 2 b a b b b
2 2
2a 1 a b 计算:3. b 2 ab b 4
12 2(m 3) (m 3)( m 3) 2m 6 (m 3)( m 3)
2 计算 : m2 9 3 m
☞ 12
把多项式中能 分解因式的先 分解因式,没按 降幂排列先按 降幂排列.
想一想:还能 化简吗?
2 2(m 3) (m 3)(m 3) m3
2.4.2 异分母分式的加、减法 第2课时
) (B) v1v2 千米
v1 +v2
(C)2v1v2 千米
v1 +v2
(D)无法确定
【温馨提示】总路程除以总时间是平均速度. 温馨提示】总路程除以总时间是平均速度.
小时, 【解析】选C.设这段路长为s千米,小明上坡用 s 小时,下 解析】 C.设这段路长为s千米, 设这段路长为
v1 s 小时,它走上、 坡用 小时,它走上、下坡的平均速度为 v2
2b2 3a2 2b2 +3a2 解: (1) 原式 = + = ; 6ab 6ab 6ab
( 2) 原式 =
1 2 1 2 + 2 = + a −1 a −1 a −1 ( a +1)( a −1) a+1 2 = + ( a+1)( a-1) ( a+1)( a-1)
= a+3 ( a+1)( a-1)
a +3 . 2 a −1
=
【解析】 解析】
【解析】 解析】
【解析】 解析】
1.(2010·包头中考) 1.(2010·包头中考)化简 包头中考 其结果是( 其结果是( )
【解析】 解析】
2.在一段坡路,小明骑自行车上坡时的速度为每小时v 2.在一段坡路,小明骑自行车上坡时的速度为每小时v1千 在一段坡路 米,下坡时的速度为每小时v2千米,则他在这段路上、下 下坡时的速度为每小时v 千米,则他在这段路上、 坡的平均速度是每小时( 坡的平均速度是每小时( (A) v1 +v2 千米
在如图的电路中,已测定CAD支路的电阻是R 欧姆, CAD支路的电阻是 例3 在如图的电路中,已测定CAD支路的电阻是R1欧姆, 又知CBD支路的电阻R 50欧姆 欧姆, 又知CBD支路的电阻R2比R1大50欧姆,根据电学有关定 CBD支路的电阻 律可知总电阻R与R1R2满足关系式 律可知总电阻R R1的式子表示总电阻R 的式子表示总电阻R
异分母分式的加减法 优秀教案
第五章分式与分式方程3.分式的加减法(二)一、学生起点分析学生知识技能基础:学生在上节课已经学习过同分母的分式相加减及分母互为相反式分式的加减运算。
在第四章又学习了因式分解,在本章的前面几节课中,回忆了分数的基本性质,学习了分式的基本性质、分式的约分及分式的乘除等。
对这节课异分母分式相加减内容的学习都有了充分的铺垫。
学生活动经验基础:从学习字母表示数开始,学生就经历过许多从实际问题建模的思想,用代数式去解决实际问题的经验。
同时在以前的学习中,学生也经历了很多合作交流的学习过程,具有了一定的活动的经验和合作与交流的能力。
二、教学任务分析分式的加减法是代数变形的基础之一,在学习完同分母分式的加减法法则后必将谈到异分母分式的加减法,教科书安排了三节课的教学,就是不让难度突然加大,而是循序渐进的去接受,允许学生经过一定时间的学习达到《标准》要求的目标,应把教学重点放在落实和理解上。
本节内容不多,教学时对异分母分式加减法法则的探索过程上,要使学生充分活动起来,在观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则。
本节课的教学目标为:1、会找最简公分母,能进行分式的通分;2、理解并掌握异分母分式加减法的法则;3、经历异分母分式的加减运算和通分的探讨过程,训练学生的分式运算能力。
4、培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识。
三、教学过程设计本节课设计了6个教学环节:问题引入——学习新知——运用新知和小试牛刀——分式加减应用——课堂小结——拓展提高。
第一环节问题引入活动内容问题1:同分母分式是怎样进行加减运算的?问题2:异分母分数又是如何进行加减?问题3:那么?你是怎么做的?=+aa 413活动目的:通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时又对问题3点明了类比的思想方法,使进入新知识的学习顺理成章。
异分母分式的加减法 教学设计
5.3分式的加减法(2)——异分母分式的加减法●教学目标(一)教学知识点1.异分母的分式加减法的法则.2.分式的通分.(二)能力训练要求1.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力.2.进一步通过实例发展学生的符号感.(三)情感与价值观要求1.在学生已有数学经验的基础上,探求新知,从而获得成功的快乐.2.提高学生“用数学”意识.●教学重点1.掌握异分母的分式加减运算.2.理解通分的意义.●教学难点1.化异分母分式为同分母分式的过程.2.符号法则、去括号法则的应用.●教学过程一.复习旧知,导入新课1.同分母分式的加减法法则?2.异分母的分式如何进行加减?理由?二.出示目标,心中有数1.掌握异分母分式的加减法法则,会运用法则进行简单的加减运算;2.能解决一些与异分母分式的加减有关的简单的实际问题。
三.自学课本,探究新知认真阅读教材P119的“议一议”,独立完成下列问题。
(时间:3分钟)1.你能说出小明和小亮每一步的依据吗?2.说出这两种做法的异同之处,你怎样评价这两种做法?3.类比异分数的加减法法则,得出异分母分式的加减法法则。
学生自学3分钟,师友交流。
四.师友合作,成果展示根据分式的基本性质,异分母的分式可化为同分母的分式 ,这一过程叫做分式的通分。
为了计算方便,异分母的分式通分时,通常取最简单的公分母 (简称最简公分母),作为它们的共同分母。
找出下列分式的最简公分母并通分:(1)231x x 与ax 2(2)51+x 与51-x (3)412-x 与421-x(4)922-a 与9612++-a a a 确定最简公分母的一般方法:(1)分母是单项式的,最简公分母是各分母系数的最小公倍数、相同字母的最高次幂和所有不同字母及其指数的乘积;(2)分母是多项式的,要先把它们分解因式,再按照分母都是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面确定最简公分母。
初中数学分式的加减知识点
If one day I have money or I am completely out of money, I will start wandering.整合汇编简单易用(页眉可删)初中数学分式的加减知识点分式加减法法则(rule of addition and subtraction of fraction)是分式的运算法则之一。
下面是初中数学分式的加减知识点,快来看看吧!初中数学知识点总结:分式的加减法则以下是对分式的加减知识点的总结学习,同学们认真记录笔记。
法则:同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:b(a)±b(c)=b(a±c)法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为:b(a)±d(c)=bd(ad)±bd(bc)=bd (ad±bc)注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;(3)运算时顺序合理、步骤清晰;(4)运算结果必须化成最简分式或整式。
希望上面对分式的加减知识点的总结内容,同学们都能很好的掌握,并在考试中取得理想的成绩。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的`数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面;②两条数轴;③互相垂直;④原点重合。
三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
异分母分式加减法的法则
1120 ∴ 实际修建这条盲道用了 x 10 天 . x
因此 , 实际修建这条盲道的工期比原计划缩短了
1120 1120 11200 (天) . x - x 10 x ( x 10)
9
拓展练习
工效问题
一项工程 , 甲单独做 a h 完成, 乙单独做 b h 完成 . 甲、乙两人一起完成这项工程,需要多长时间?
计算: (1) 1 1 ;
解: (1)
( x 3) ( x 3) x 3 x 3 x 3 x 3 x 3 x 3 分子相减时, 26 . x 9 “减式”要配括号!
6
例题解析
例 2 解: (2)
吃透例题 , 成功一半
a 4 a2
v甲 =
1 a
, v乙 =
1 b
。
设 “甲、乙两人一起完成这项工程” 需要 x 天 , 1 1 x =1。 则: a b ab 解得 x= a b 。
10
a2 3 . a 1
8
例题解析
学以致用 , 方为能者
例 根据规划设计,某市工程队准备在开发区修建一 3 1120m的盲道. 由于采用新的施工方式 , 实际每天修 长 条长 建盲道的长度比原计划增加10m, 从而缩短了工期. 原计划每天修建盲道 x m , 那么 假设原计划每天修建盲道 (1) 原计划修建这条盲道需要多少天? (2) 实际修建这条盲道的工期比原计划缩短了几天? 解: (1) 原计划修建这条盲道需要 1120 天;
3
基 基础
础
练
( 2)
习
1、把下列各式通分:
异分母分式加减法
异分母分式加减法
《异分母分式加减法,你真的懂吗?》
嘿,同学们!你们知道吗?数学的世界里有一种神奇又有点让人头疼的运算,叫做异分母分式加减法。
这玩意儿就像是一个藏着秘密的小怪兽,得把它的秘密揭开,才能战胜它!
就说上次数学考试吧,老师出了一道异分母分式加减法的题目,我一看,哎呀,这可咋整?脑袋一下子就懵了!我就像一只在迷宫里乱转的小老鼠,找不到出路。
我看看同桌,他眉头紧皱,嘴里还嘟囔着:“这什么破题啊,怎么这么难!”我心里想:“可不是嘛,这也太难了!”
这时候,我后面的学霸小李发话了:“这题不难呀,先通分不就好了嘛!”我赶紧转过头问:“怎么通分呀?”小李一脸无奈地说:“你连通分都不知道?就是找分母的最小公倍数呀!”我还是一脸迷茫,问道:“那最小公倍数又怎么找啊?”小李白了我一眼,说:“你怎么连这个都没搞懂!就比如2 和3,最小公倍数不就是6 嘛!”
我似懂非懂地点点头,开始自己琢磨。
我就想啊,这异分母分式加减法不就跟我们分糖果一样嘛。
比如说,有一堆不同大小的糖果盒子,要把里面的糖果合在一起,是不是得先把盒子变成一样大小的呀?这通分不就是把盒子变成一样大小嘛!
我按照这个思路,开始试着做题。
哎呀,好像有点眉目了!我一步一步地算着,终于算出了答案。
等老师讲题的时候,我发现自己居然做对了,心里那个高兴劲儿啊,就像大热天吃了一根冰棒,爽极了!
经过这次,我算是明白了,异分母分式加减法其实也没那么可怕。
只要我们掌握了方法,找到了窍门,就一定能把它拿下!所以呀,同学们,遇到难题别害怕,多想想,多试试,总会找到解决办法的!你们说是不是?。
异分母分式的加减练习及答案
异分母分式的加减练习及答案一、判断正误并改正: (每小题4分,共16分) 1. ab a b a a b a a b a --+=--+=0( )2.11)1(1)1(1)1()1(1)1(22222-=--=---=-+-x x x x x x x x x ( )3.)(2121212222y x y x +=+( ) 4.222b a c b a c b a c +=-++( )二、认真选一选:(每小题4分,共8分)1. 如果x >y >0,那么x y x y -++11的值是( )A.零B.正数C.负数D.整数2. 甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t 1小时后,快者追上慢者;若相向而行,则t 2小时后,两人相遇,那么快者速度是慢者速度的( ) A.211t t t + B.121t t t + C.2121t t t t +- D.2121t t t t -+三、填一填:1. 异分母分式相加减,先________变为________分式,然后再加减.2. 分式xy 2,y x +3,y x -4的最简公分母是________.3. 计算:222321xyz z xy yz x +-=_____________.4. 计算:)11(1xx x x -+-=_____________. 5. 已知22y x M -=2222y x y xy --+yx y x +-,则M=____________. 6. 若(3-a )2与|b -1|互为相反数,则ba -2的值为____________. 7. 如果x <y <0,那么xx ||+xy xy ||化简结果为____________. 8. 若0≠-=y x xy ,则分式=-x y 11____________. 9. 计算22+-x x -22-+x x =____________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11 b
1. 分式 2a ,
, 6ab
3a2
的最简公分母是_6_a_2b_
2.
分式
a
4
b
与
2ab a2 b2
的最简公分母是_a_2__b_2
3.
分式
2, a1
1, a2 2a 1
1 a 1
的最简公分
母是____a__1___a__1__2 __
注意:如果分母有多项式,应先把多项式因 式分解,再确定公因式
例1 计算
(1)
7 6x2
y
2 3 xy 2
(2) x x x3 x2
(3) x 2 x2 x2
例2 计算
(1)
a2
4
2a
2
a
a
(2)
x2 x1 x2 2x x2 4x 4
做一做
(1)
5 12a2
3 8ab
(2) a b a2 b2 b a ab
(3)
2a 1 a2 4 a 2
7.3
2
2006.5.23 二
合作学习
计算: 7 5 14 15 1 12 8 _2_4_____2__4_______2_4__
类似地,我们可以用怎样的方法 计算下列异分母分式的加减?
(1) a b (2) b b
ba
2a a2
议一议 怎样确定各分式的最简公分母 各分母的系数应取最小公倍数 各分母所有字母应取它们的最高次幂 将取出的因式写成积的形式
(4)
x x2
x x 2
2x x
例3
计算: 4
a2 4
1 2a
,并求当
a
=
-3时
原式的值.
你收获什么?
异分母分式相加减,先通 分,化为同分母分式,然后再按 同分母分式相加减法则进行计 算.
作业
(1)作业本及书上课后练习 (2) 分组讨论P165 “探究活动 ”
先化简,再求值:
x 3
3 x
x2
x2 9 6x
9
, 其中x
3