2019-2020学年河南省洛阳第二外国语学校七年级下学期期中数学试卷 (解析版)
2019-2020年七年级下学期期中考试数学试题 Word版含答案(II)
xx 学年度宜兴市周铁学区期中考试试卷 2019-2020年七年级下学期期中考试数学试题 Word 版含答案(II) 一、选择题:(本大题共有10小题,每小题3分,共30分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x) 3÷(-3x)=9x 2D .(-ab 2) 2=-a 2b 42. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是 ( )A.八边形B.九边形C.十边形D.十二边形3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3) 2C .x 2+2x +1=x(x +2)+1D .-18x 4y 3=-6x 2y 2•3x 2y4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C . 60°D .72°5. 若x 、y 满足0)2(12=++++-y x y x ,则 ( )A .1B .2C .–1D .–26.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有… ( )A .1B .2C .3D .47. 如果a =(-xx) 0、b =(-110)-1、c =(-53)2,那么a 、b 、c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数 ( )A .88°B .92°C .98°D .112°9. 若a m =2,a n =3,则a 2m-n 的值是 ( )A .1B .12C .34D .4310.为求1+2+22+23+…+2xx 的值,可令S =1+2+22+23+…+2xx ,则2S=2+22+23+24+…+2xx ,因此2S -S =2xx -1,所以1+2+22+23+…+2xx=2xx -1.仿照以上推理计算出1+3+32+33+…+3xx 的值是( )A .3xx -1B . 3xx -1C .D .二、填空题:(本大题共8小题,每空2分,共18分.)(第4题) (第8题)(第6题)第16题 第15题11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示 米.12. 因式分解:m 2-16= ;2x 2-8xy +8y 2= .13.一个三角形的两边长分别为3 cm 、5 cm ,且第三边为偶数,则这个三角形的周长为______________ cm .14.若,,则15. 如图,BC ⊥ED 于O ,∠A =45°,∠D =20°,则∠B =________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=__________。
南山区第二外国语(海德学校)2020-2021学年第二学期七年级期中考试数学试卷 -答案
(2)如图 2,∵EF 平分∠PEB, ∴可设∠BEF=∠PEF=α, ∵AB∥CD, ∴∠GFE=∠BEF=α, ∴四边形 PGFE 中,∠PGF=360°﹣∠P﹣2α, ∴∠PGC=180°﹣(360°﹣∠P﹣2α)=∠P+2α﹣180°, ∵∠EFG 是△FGH 的外角, ∴∠FGH=∠EFG﹣∠EHG=α﹣∠EHG, 又∵QG 平分∠PGC, ∴∠PGC=2∠FGH, 即∠P+2α﹣180°=2(α﹣∠EHG), 整理可得,∠P+2∠EHG=180°. 故答案为:∠P+2∠EHG=180°.
19.小明骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又 折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学离家距离与时间 的关系示意图.根据图中提供的信息回答下列问题:
(1)小明家到学校的距离是 1500 米?书店到学校的距离是 900 米? (2)小明在书店停留了 4 分钟,本次上学途中,小明一共行驶了 2700 米。 (3)在整个上学的途中 12-14 时间段小明骑车速度最快?最快的速度是 450 米/分钟? (4)如果小明不买书,以往常的速度去学校,需要 7.5 分钟?本次上学比往常多用
2020-2021 年度第二学期七年级期中考试数学试卷
(南山第二外国语海德学校)
参考答案与试题解析
一.选择题(共 10 小题)
1
2
3
4
5
6
78Leabharlann 910BB
D
2018-2019学年郑州外国语学校七年级(下)期中数学试卷(含解析)
2018-2019学年郑州外国语学校七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.下列各式中计算正确的是()A.(x4)3=x7B.(a m)2=a2mC.[(﹣a)2]5=﹣a10D.(﹣a3)2=﹣a62.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个3.若a=﹣0.22,b=﹣2﹣2,c=()﹣2,d=()0,则()A.a<b<c<d B.a<b<d<c C.c<a<d<b D.b<a<d<c 4.为了运用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是()A.[x﹣(2y+1)]2B.[x+(2y﹣1)][x﹣(2y﹣1)] C.[(x﹣2y)+1][(x﹣2y)﹣1]D.[x+(2y﹣1)]25.在下列图形中,由条件∠1+∠2=180°,不能得到AB∥CD的是()A.B.C.D.6.小明要从长度分别为5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为()cm.A.22B.27C.33D.327.健走活动中先以均匀的速度走完了规定路程,休息了一段时间后加快速度走完剩余的路程.设“佩奇小组”健走的时间为x,健走的路程为y,如图所示的能反映y与x的函数关系的大致图象是()A .B .C .D .8.将一副三角板(∠A =30°)按如图所示方式摆放,使得AB ∥EF ,则∠1等于()A .75°B .90°C .105°D .115°9.将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2﹣ab =a (a ﹣b )10.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片(a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣6,则小正方形卡片的面积是()A .2B .3C .4D .5二、填空题(每小题3分,共18分)11.2018年10月24日通车的港珠澳大桥连接香港、澳门、珠海,是目前世界上最长的跨海大桥,是中国从桥梁大国走向桥梁强国的里程碑之作,大桥总投资12690000万元,数字12690000用科学记数法表示为.12.若3m=2,9n=3,则93n﹣2m=.13.若关于x的二次三项式x2+2(m﹣3)x+1是完全平方式,则m=.14.如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连接,若AF恰好经过点G,且AF∥DE,∠B=∠C+10°,∠D=105°,∠B﹣∠CGF=.15.若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为.16.我国南宋时期杰岀的数学家杨辉是钱塘人,他在《详解九章算术》中记载的“杨辉三角”揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律,如(a+b)4=a4+4a3b+6a2b2+4ab3+b4;此规律还可以解决实际问题:假如今天是星期二,再过7天还是星期二,则再过814天是星期.三、解答题(共52分)17.(8分)计算:(1)﹣32+(﹣2016)0+()﹣2(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)18.(6分)化简并求值:(9x3y﹣12xy3+3xy2)÷(﹣3xy)﹣(2y+x)(2y﹣x),其中|x﹣1|+(y+2)2=0.19.(8分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D 在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=°.20.(10分)2018年5月14日,川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:距离地面高度(千米)012345所在位置的温度(℃)201482﹣4(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?21.(9分)如图,将一个边长为a+b的正方形分的成四部分,观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该阴影图形的总面积方法1:方法2:由此可得等量关系:应用该等量关系解决下列问题:(2)若图中的a,b(a>b)满足a2+b2=38,ab=13,求a+b的值;(3)若a2﹣4a+1=0,求a2+的值.22.(11分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.2018-2019学年郑州外国语学校七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各式中计算正确的是()A.(x4)3=x7B.(a m)2=a2mC.[(﹣a)2]5=﹣a10D.(﹣a3)2=﹣a6【分析】分别根据幂的乘方法则逐一判断即可.【解答】解:(x4)3=x12,故选项A不合题意;(a m)2=a2m,故选项B符合题意;[(﹣a)2]5=﹣a10,故选项C不合题意;(﹣a3)2=a6,故选项D不合题意.故选:B.2.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【解答】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的长度叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选:C.3.若a=﹣0.22,b=﹣2﹣2,c=()﹣2,d=()0,则()A.a<b<c<d B.a<b<d<c C.c<a<d<b D.b<a<d<c【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:∵a=﹣0.22=﹣0.04,b=﹣2﹣2=﹣,c=()﹣2=4,d=()0=1,∴b<a<d<c.故选:D.4.为了运用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是()A.[x﹣(2y+1)]2B.[x+(2y﹣1)][x﹣(2y﹣1)] C.[(x﹣2y)+1][(x﹣2y)﹣1]D.[x+(2y﹣1)]2【分析】原式利用平方差公式的结构特征变形即可.【解答】解:运用平方差公式计算(x+2y﹣1)(x﹣2y+1),应变形为[x+(2y﹣1)][x﹣(2y﹣1)],故选:B.5.在下列图形中,由条件∠1+∠2=180°,不能得到AB∥CD的是()A.B.C.D.【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解:A、∠1的对顶角与∠2的对顶角是同旁内角,它们互补,所以能判定AB ∥CD,故本选项不符合题意;B、∠1的对顶角与∠2是同旁内角,它们互补,所以能判定AB∥CD,故本选项不符合题意;C、∠1的邻补角∠BAD=∠2,所以能判定AB∥CD,故本选项不符合题意;D、由条件∠1+∠2=180°能得到AD∥BC,不能判定AB∥CD,故本选项符合题意;故选:D.6.小明要从长度分别为5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为()cm.A.22B.27C.33D.32【分析】根据题意得出四根小木棒选出三根的所有等可能的情况,找出能构成三角形的情况,即可求出答案.【解答】解:根据题意得:四根小木棒选出三根的情况有:5cm,6cm,11cm;5cm,6cm,16cm;5cm,11cm,16cm;6cm,11cm,16cm,共4种情况,其中构成三角形的情况有:6cm,11cm,16cm,1种情况,则他选的三根木棒形成的三角形的周长为:33cm.故选:C.7.健走活动中先以均匀的速度走完了规定路程,休息了一段时间后加快速度走完剩余的路程.设“佩奇小组”健走的时间为x,健走的路程为y,如图所示的能反映y与x的函数关系的大致图象是()A.B.C.D.【分析】根据题意,可以写出各段过程中,y随x的变化如何变化,从而可以解答本题.【解答】解:由题意可得,“佩奇小组”先以均匀的速度走完了规定路程这一过程中,y随x的增大而增大,“佩奇小组”休息一段时间这一过程中,y随x的增大不变,“佩奇小组”休息了一段时间后加快速度走完剩余的路程间这一过程中,y随x的增大而增大,故选:B.8.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.9.将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【分析】分别表示两个图形的面积,然后根据两个图形的面积相等,A即可得到答案为:A.【解答】解:左边图形的面积可以表示为:(a+b)(a﹣b),右边图形的面积可以表示为:(a﹣b)b+a(a﹣b),∵左边图形的面积=右边图形的面积,∴(a+b)(a﹣b)=(a﹣b)b+a(a﹣b),即:(a+b)(a﹣b)=a2﹣b2.故选:A.10.现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣6,则小正方形卡片的面积是()A.2B.3C.4D.5【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,再利用整式的混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣6,整理得,b2=2,则小正方形卡片的面积是2,故选:A.二、填空题(每小题3分,共18分)11.2018年10月24日通车的港珠澳大桥连接香港、澳门、珠海,是目前世界上最长的跨海大桥,是中国从桥梁大国走向桥梁强国的里程碑之作,大桥总投资12690000万元,数字12690000用科学记数法表示为 1.269×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将12690000用科学记数法表示为1.269×107.故答案为:1.269×107.12.若3m=2,9n=3,则93n﹣2m=.【分析】根据幂的乘方可得9n=32n=3,再根据幂的乘方法则以及同底数幂的乘方求解即可.【解答】解:∵3m=2,9n=3,∴9n=32n=3,∴93n﹣2m=32(3n﹣2m)=36n﹣4m=36n÷34m=.故答案为:13.若关于x的二次三项式x2+2(m﹣3)x+1是完全平方式,则m=4或2.【分析】根据完全平方公式即可求出答案.【解答】解:∵(x±1)2=x2±2x+1,∴2(m﹣3)=±2,∴m=4或2,故答案为:4或214.如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连接,若AF恰好经过点G,且AF∥DE,∠B=∠C+10°,∠D=105°,∠B﹣∠CGF=115°.【分析】延长DC交AF于K,进而根据等量关系、三角形外角的性质和平行线的性质解答即可.【解答】解:延长DC交AF于K,∵AF∥DE,∴∠B﹣∠CGF=∠BCD+10°﹣∠CGF=∠GKC+10°=∠D+10°=115°.故答案为:115°.15.若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为70°或86°.【分析】根据两边互相平行的两个角相等或互补列出方程求出x,然后求解即可.【解答】解:∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x+10)°=(3x﹣20)°,解得x=30,∠α=(2×30+10)°=70°,或②∠α+∠β=180°,∴(2x+10)°+(3x﹣20)°=180°,解得x=38,∠α=(2×38+10)°=86°,综上所述,∠α的度数为70°或86°.故答案为:70°或86°.16.我国南宋时期杰岀的数学家杨辉是钱塘人,他在《详解九章算术》中记载的“杨辉三角”揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律,如(a+b)4=a4+4a3b+6a2b2+4ab3+b4;此规律还可以解决实际问题:假如今天是星期二,再过7天还是星期二,则再过814天是星期三.【分析】根据814=(7+1)14=714+14×713+91×712+…+14×7+1可知814除以7的余数为1,从而可得答案.【解答】解:∵814=(7+1)14=714+14×713+91×712+…+14×7+1,∴814除以7的余数为1,∴假如今天是星期二,那么再过814天是星期三,故答案为:三三、解答题(共52分)17.(8分)计算:(1)﹣32+(﹣2016)0+()﹣2(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)【分析】(1)根据零指数幂的意义以及负整数指数幂的意义即可求出答案;(2)根据整式的运算法则即可求出答案.【解答】解:(1)原式=﹣9+1+4=﹣4;(2)原式=4x2﹣12xy+9y2﹣(9x2﹣y2)=4x2﹣12xy+9y2﹣9x2+y2=﹣5x2﹣12xy+10y218.(6分)化简并求值:(9x3y﹣12xy3+3xy2)÷(﹣3xy)﹣(2y+x)(2y﹣x),其中|x﹣1|+(y+2)2=0.【分析】根据非负数的性质以及整式的运算法则即可求出答案.【解答】解:由题意可知:x﹣1=0,y+2=0,∴x=1,y=﹣2,∴原式=﹣3x2+4y2﹣y﹣(4y2﹣x2)=﹣3x2+4y2﹣y﹣4y2+x2=﹣2x2﹣y,当x=1,y=﹣2时,原式=﹣2+2=0.19.(8分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D 在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=50°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=115°.【分析】探究:依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=50°.应用:依据两直线平行,同位角相等;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣65°=115°.【解答】解:探究:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=50°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,50;应用:∵DE∥BC,∴∠ABC=∠ADE=60°.(两直线平行,同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣65°=115°.故答案为:115.20.(10分)2018年5月14日,川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:距离地面高度(千米)012345所在位置的温度(℃)201482﹣4(1)上表反映的两个变量中,距离地面高度是自变量,所在位置的温度是因变量.(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:y =20﹣6h;当距离地面高度5千米时,所在位置的温度为:﹣10℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?【分析】(1)根据函数的定义即可求解;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,即可求解;(3)从图象上看,h=2时,持续的时间为2分钟,即可求解;(4)h=2时,y=20﹣12=8,即可求解.【解答】解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.21.(9分)如图,将一个边长为a+b的正方形分的成四部分,观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该阴影图形的总面积方法1:a2+b2方法2:(a+b)2﹣2ab由此可得等量关系:a2+b2=(a+b)2﹣2ab应用该等量关系解决下列问题:(2)若图中的a,b(a>b)满足a2+b2=38,ab=13,求a+b的值;(3)若a2﹣4a+1=0,求a2+的值.【分析】(1)根据图形和图形中的数据可以用代数式表示出阴影部分的面积;(2)根据题意和(1)中的结果可以求得a+b的值;(3)根据a2﹣4a+1=0,通过变形可以求得所求式子的值.【解答】解:(1)由题意可得,阴影图形的总面积方法1:a2+b2,方法2:(a+b)2﹣2ab,∴a2+b2=(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab,a2+b2=(a+b)2﹣2ab;(2)∵a,b(a>b)满足a2+b2=38,ab=13,∴38=(a+b)2﹣2×13,解得,a+b=8或a+b=﹣8(舍去),即a+b的值是8;(3)∵a2﹣4a+1=0,∴a﹣4+=0,∴a+=4,∴(a+)2=16,∴=16,∴a2+=14.22.(11分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.【分析】(1)结论:AB∥CD.只要证明∠AEM=∠EMD即可.(2)①想办法求出∠HEN即可解决问题.②结论:α=β.想办法用β表示∠HEN即可解决问题.【解答】解:(1)结论:AB∥CD.理由:如图1中,∵EM平分∠AEF交CD于点M,∴∠AEM=∠MEF,∵∠FEM=∠FME.∴∠AEM=∠FME,∴AB∥CD.(2)①如图2中,∵AB∥CD,∴∠BEG=∠EGH=β=60°,∴∠AEG=120°,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=60°,∵HN⊥EM,∴∠HNE=90°,∴∠EHN=90°﹣∠HEN=30°.②猜想:α=β或α=90°﹣β理由:①当点G在F的右侧时,∵AB∥CD,∴∠BEG=∠EGH=β,∴∠AEG=180°﹣β,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=90°﹣β,∵HN⊥EM,∴∠HNE=90°,∴α=∠EHN=90°﹣∠HEN=β.②当点G在F的左侧时,可得α=90°﹣β。
2019-2020学年河南省洛阳市偃师市七年级下学期期中数学试卷 (解析版)
2019-2020学年河南省洛阳市偃师市七年级第二学期期中数学试卷一、选择题1.下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=2.下列方程中,是一元一次方程的为()A.2x﹣y=1B.x2﹣y=2C.﹣2y=3D.y2=43.若关于x的方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为()A.4B.8C.6D.﹣64.解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6D.2(2x+1)﹣(10x+1)=15.将方程2x﹣3y﹣4=0变形为用含有y的式子表示x是()A.2x=3y+4B.x=y+2C.3y=2x﹣4D.y=6.若(a+b)2011=﹣1,a﹣b=1,则a2011+b2011的值是()A.2B.1C.0D.﹣17.下列在数轴上表示不等式2x﹣6>0的解集正确的是()A.B.C.D.8.不等式组的解集为()A.x<3B.x≥2C.2≤x<3D.2<x<39.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3B.m>3C.m<3D.m≥310.已知|2x﹣y﹣3|+(2x+y+11)2=0,则()A.B.C.D.二、填空题(每题3分,共15分)11.不等式ax>b的解集是x<,则a的取值范围是.12.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量最少为克.13.当a=时,关于x的方程﹣=1的解是x=﹣1.14.若5x﹣5的值与2x﹣9的值互为相反数,则x=.15.已知关于x,y的二元一次方程组的解为,则a﹣2b=.三、解答题(75分)16.解方程:x﹣=﹣117.解方程组:(1)(2)18.解不等式组:,并把解集在数轴上表示出来:19.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?20.已知关于x,y的方程组和有相同解,求(﹣a)b值.21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?22.某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?23.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1?参考答案一、选择题(每题3分,共30分)1.下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=【分析】根据等式的基本性质对各选项进行逐一分析即可.解:A、不符合等式的基本性质,故本选项错误;B、不论c为何值,等式成立,故本选项正确;C、∵=,∴•6c=•6c,即3a=2b,故本选项错误;D、当a≠b时,等式不成立,故本选项错误.故选:B.2.下列方程中,是一元一次方程的为()A.2x﹣y=1B.x2﹣y=2C.﹣2y=3D.y2=4【分析】根据一元一次方程的定义对各选项进行逐一分析即可.解:A、2x﹣y=1是二元一次方程,故本选项错误;B、x2﹣y=2是二元二次方程,故本选项错误;C、﹣2y=3是一元一次方程,故本选项正确;D、y2=4是一元二次方程,故本选项错误.故选:C.3.若关于x的方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为()A.4B.8C.6D.﹣6【分析】先求方程2x﹣4=12的解,再代入3x+2a=12,求得a的值.解:解方程2x﹣4=12,得x=8,把x=8代入3x+2a=12,得:3×8+2a=12,解得a=﹣6.故选:D.4.解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6D.2(2x+1)﹣(10x+1)=1【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线右括号的作用,以及去分母时不能漏乘没有分母的项.解:方程两边同时乘以6得:4x+2﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6.故选:C.5.将方程2x﹣3y﹣4=0变形为用含有y的式子表示x是()A.2x=3y+4B.x=y+2C.3y=2x﹣4D.y=【分析】将y看做已知数求出x即可.解:方程2x﹣3y﹣4=0,解得:x=y+2.故选:B.6.若(a+b)2011=﹣1,a﹣b=1,则a2011+b2011的值是()A.2B.1C.0D.﹣1【分析】利用乘方的意义,结合题意列出方程组,求出方程组的解得到a与b的值,代入原式计算即可求出值.解:∵(a+b)2011=﹣1,a﹣b=1,∴,解得:,则原式=0﹣1=﹣1.故选:D.7.下列在数轴上表示不等式2x﹣6>0的解集正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.解:∵2x﹣6>0,∴2x>6,则x>3,故选:A.8.不等式组的解集为()A.x<3B.x≥2C.2≤x<3D.2<x<3【分析】先求出每个不等式的解集,再求出不等式组的解集即可.解:∵解不等式①得:x<3,解不等式②得:x≥2,∴不等式组的解集为2≤x<3,故选:C.9.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3B.m>3C.m<3D.m≥3【分析】不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m的范围即可.解:不等式组变形得:,由不等式组的解集为x<3,得到m的范围为m≥3,故选:D.10.已知|2x﹣y﹣3|+(2x+y+11)2=0,则()A.B.C.D.【分析】利用非负数的性质列出方程组,求出方程组的解即可.解:∵|2x﹣y﹣3|+(2x+y+11)2=0,∴,①+②得:4x=﹣8,即x=﹣2,②﹣①得:2y=﹣14,即y=﹣7,则方程组的解为,故选:D.二、填空题(每题3分,共15分)11.不等式ax>b的解集是x<,则a的取值范围是a<0.【分析】不等式的两边同时除以一个数,不等号的方向改变,则这个数为负数.解:∵ax>b的解集是x<,方程两边除以a时不等号的方向发生了变化,∴a<0,故答案为a<0.12.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量最少为 1.5克.【分析】根据题意求出蛋白质含量的最小值即可.解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∴蛋白质含量的最小值=300×0.5%=1.5克,∴白质的含量不少于1.5克.故答案是:1.5.13.当a=﹣1时,关于x的方程﹣=1的解是x=﹣1.【分析】把x=﹣1代入方程计算即可求出a的值.解:把x=﹣1代入方程得:﹣=1,去分母得:2+3﹣a=6,解得:a=﹣1.故答案为:﹣1.14.若5x﹣5的值与2x﹣9的值互为相反数,则x=2.【分析】由5x﹣5的值与2x﹣9的值互为相反数可知:5x﹣5+2x﹣9=0,解此方程即可求得答案.解:由题意可得:5x﹣5+2x﹣9=0,∴7x=14,∴x=2.15.已知关于x,y的二元一次方程组的解为,则a﹣2b=2.【分析】首先把x、y的值代入,可得关于a、b的方程组,再利用减法消元可消去未知数b,解出a的值,然后把a的值代入②可得b的值,进而可得方程组的解,然后可得答案.解:把代入得:,①+②得:3a=4,a=,把a=代入①得:b=﹣,则a﹣2b=+=2,故答案为:2.三、解答题(75分)16.解方程:x﹣=﹣1【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1依次求解可得.解:12x﹣3(x﹣2)=2(5x﹣7)﹣12,12x﹣3x+6=10x﹣14﹣12,∴x=32.17.解方程组:(1)(2)【分析】(1)把①变形为y=4﹣2x③,再把③代入②可消去未知数y,解出x的值,然后把x的值代入③可得y的值,进而可得方程组的解;(2)首先化简两个方程,再利用减法消元求出方程组的解即可.解:(1),由①得:y=4﹣2x③,将③代入②中,2(4﹣2x)+1=5x,解得:x=1,把x=1代入③中,y=2,∴方程组的解为:.(2)原方程组可化为,①×3﹣②×4得:y=2,将y=2代入①得:x=2,∴方程组的解为:.18.解不等式组:,并把解集在数轴上表示出来:【分析】首先分别求得两个不等式的解集,然后在数轴上表示出来,公共部分即为不等式组的解集.注意在解不等式系数化一时:(1)系数为正,不等号的方向不变,(2)系数为负,不等号的方向改变.解:不等式可化为:,即;在数轴上可表示为:∴不等式组的解集为﹣2≤x<0.19.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.20.已知关于x,y的方程组和有相同解,求(﹣a)b值.【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b 的方程组即可得出a,b的值.解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得,解得:.所以(﹣a)b=(﹣2)3=﹣8.21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【分析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.22.某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?【分析】(1)找到关键描述语“用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服”,进而找到所求的量的不等关系,列出不等式组求解.(2)根据利润=售价﹣成本,分别求出甲款,乙款的利润相加后再比较,即可得出获利最大方案.解:设该店订购甲款运动服x套,则订购乙款运动服(30﹣x)套,由题意,得(1分)(1)解这个不等式组,得∵x为整数,∴x取11,12,13∴30﹣x取19,18,17答:方案①甲款11套,乙款19套;②甲款12套,乙款18套;③甲款13套,乙款17套.(2)解法一:设该店全部出售甲、乙两款运动服后获利y元,则y=(400﹣350)x+(300﹣200)(30﹣x)=50x+3000﹣100x=﹣50x+3000∵﹣50<0,∴y随x增大而减小∴当x=11时,y最大.解法二:三种方案分别获利为:方案一:(400﹣350)×11+(300﹣200)×19=2450(元)方案二:(400﹣350)×12+(300﹣200)×18=2400(元)方案三:(400﹣350)×13+(300﹣200)×17=2350(元)∵2450>2400>2350∴方案一即甲款11套,乙款19套,获利最大答:甲款11套,乙款19套,获利最大.23.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1?【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;(2)根据a的范围去掉绝对值符号,即可得出答案;(3)求出a<﹣,根据a的范围即可得出答案.解:(1)∵①+②得:2x=﹣6+2a,x=﹣3+a,①﹣②得:2y=﹣8﹣4a,y=﹣4﹣2a,∵方程组的解x为非正数,y为负数,∴﹣3+a≤0且﹣4﹣2a<0,解得:﹣2<a≤3;(2)∵﹣2<a≤3,∴|a﹣3|+|a+2|=3﹣a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<﹣,∵﹣2<a≤3,∴a的值是﹣1,∴当a为﹣1时,不等式2ax+x>2a+1的解为x<1.。
人教部编版2019-2020学年重点中学七年级(下)期中数学试卷(解析版)
2019-2020学年江苏省七年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列运算中,正确的是()A. B. C. D.2.若一个多边形的内角和是1080度,则这个多边形的边数为()A. 6B. 7C. 8D. 103.下列各式从左到右的变形,是因式分解的是()A. B.C. D.4.已知x2+2mx+9是完全平方式,则m的值为()A. 6B.C. 3D.5.如果a=(-)2、b=(-2014)0、c=(-)-1,那么a、b、c的大小关系为()A. B. C. D.6.下列各式能用平方差公式计算的是()A. B.C. D.7.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A. 第一次向左拐,第二次向右拐B. 第一次向左拐,第二次向右拐C. 第一次向左拐,第二次向右拐D. 第一次向左拐,第二次向左拐8.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=120°,则∠E的度数为()A.B.C.D.二、填空题(本大题共10小题,共20.0分)9.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm,这个数量用科学记数法可表示为2×10n cm,则n= ______ .10.若(x-2)(x+3)=x2+mx+n,则mn=______.11.计算:(-4)2015•(0.25)2014= ______ .12.已知关于x、y的方程ax=by+2014的一个解是,则a+b= ______ .13.把多项式-16x3+40x2y提出一个公因式-8x2后,另一个因式是______ .14.三角形的三边长分别为3、7、a,且a为偶数,则这个三角形的周长为______ .15.若2m=3,2n=5,则23m-2n=______.16.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为______°.17.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是______(用a、b的代数式表示).18.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有______ 个.三、计算题(本大题共4小题,共26.0分)19.计算题(1)()-1+(-2)0-|-2|-(-3)(2)a•a2•a3+(a3)2-(-2a2)3.20.因式分解:(1)x2-9y2(2)2x(a-b)-3(b-a)(3)-3x3+6x2y-3xy2.21.解方程组:(1)(2).22.已知a、b、c、为△ABC的三边长,a2+5b2-4ab-2b+1=0,且△ABC为等腰三角形,求△ABC的周长.四、解答题(本大题共6小题,共30.0分)23.先化简,再求值(x-2)2+2(x+2)(x+4)-(x-3)(x+3);其中x=-1.24.已知x+y=2,xy=-1,求下列代数式的值:(1)5x2+5y2;(2)(x-y)2.25.操作题画图并填空.(1)已知△ABC中,∠ACB=90°,AC=3个单位,BC=4个单位.画出把△ABC沿射线BC方向平移2个单位后得到△DEF;直接写出△DCF的面积为______.(2)小明有一张边长为13cm的正方形纸片(如图1),他想将其剪拼成一块一边为8cm,的长方形纸片.他想了一下,不一会儿就把原来的正方形纸片剪拼成了一张宽8cm,长21cm的长方形纸片(如图2),你认为小明剪拼得对吗?请说明理由.26.如图,在△ABC中,BD交AC于点D,DE交AB于点E,∠EBD=∠EDB,∠ABC:∠A:∠C=2:3:7,∠BDC=60°,(1)试计算∠BED的度数.(2)ED∥BC吗?试说明理由.27.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,请你利用方程组的思想方法求出图中阴影部分面积是多少cm2?28.已知:如图,直线MN⊥PQ于点C,△ACB是直角三角形,且∠ACB=90°,斜边AB交直线PQ于点D,CE平分∠ACN,∠BDC的平分线交EC的延长线于点F,∠A=36°.(1)如图1,当AB∥MN时,求∠F的度数.(2)如图2,当△ACB绕C点旋转一定的角度(即AB与MN不平行),其他条件不变,问∠F的度数是否发生改变?请说明理由.答案和解析1.【答案】B【解析】解:A、a2+a2=2a2,故原题计算错误;B、(-ab2)2=a2b4,故原题计算正确;C、a3÷a3=1,故原题计算错误;D、a2•a3=a5,故原题计算错误;故选:B.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.此题主要考查了合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,关键是掌握各计算法则.2.【答案】C【解析】解:根据n边形的内角和公式,得(n-2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.3.【答案】C【解析】解:A、右边不是积的形式,故A选项错误;B、是多项式乘法,不是因式分解,故B选项错误;C、是运用完全平方公式,x2-8x+16=(x-4)2,故C选项正确;D、不是把多项式化成整式积的形式,故D选项错误.故选:C.根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.这类问题的关键在于能否正确应用因式分解的定义来判断.4.【答案】D【解析】解:已知x2+2mx+9是完全平方式,∴m=3或m=-3,故选:D.根据完全平方公式的形式,可得答案.本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.5.【答案】A【解析】解:a=(-)2=、b=(-2014)0=1、c=(-)-1=-10,则a>b>c,故选;A.根据有理数的乘方法则、零指数幂和负整数指数幂的运算法则进行计算,比较即可.本题考查的是有理数的乘方、零指数幂、负整数指数幂的运算,掌握它们的运算法则是解题的关键.6.【答案】C【解析】解:A、B、D都不是平方差公式;C、(-m-n)(-m+n)=(-m)2-n2,故C正确;故选:C.根据两数和乘以这两个数的差等于这两个数的平方差,可得答案.本题考查了平方差公式,利用了平方差公式.7.【答案】D【解析】解:A、第一次向左拐40°,第二次向右拐40°,行驶方向相同,故本选项错误;B、第一次向左拐50°,第二次向右拐130°,行驶路线相交,故本选项错误;C、第一次向左拐70°,第二次向右拐110°,行驶路线相交,故本选项错误;D、如图,第一次向左拐70°,∠1=180°-70°=110°,第二次向左拐110°,∠2=110°,所以,∠1=∠2,所以,两次拐弯后的行驶方向与原来的方向相反.故选:D.作出图形,根据邻补角的定义求出∠1,再根据两直线平行,同位角相等求出∠2即可得解.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.【答案】D【解析】解:∵∠ABC、∠ACB的三等分线交于点E、D,∴∠FBC=2∠DBC,∠GCB=2∠DCB,∵∠BFC=132°,∠BGC=120°,∴∠FBC+∠DCB=180°-∠BFC=180°-132°=48°,∠DBC+∠GCB=180°-∠BGC=180°-120°=60°,即,由①+②可得:3(∠DBC+∠DCB)=108°,∴∠EBC+∠ECB=2(∠DBC+∠DCB)=72°,∴∠E=180°-(∠EBC+∠ECB)=180°-72°=108°,故选D.由三角形内角和及角平分线的定义可得到关于∠DBC和∠DCB的方程组,可求得∠DBC+∠DCB,则可求得∠EBC+∠ECB,再利用三角形内角和可求得∠E的度数.本题主要考查三角形内角和定理,掌握三角形内角和为180°是解题的关键.9.【答案】-7【解析】解:0.0000002=2×10-7.故答案为:-7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【答案】-6【解析】【分析】本题考查多项式乘以多项式,解题的关键是熟练运用多项式乘以多项式的法则,本题属于基础题型.先将等式的左边展开,再根据对应系数相等得到m,n,再代入计算即可求出mn的值.【解答】解:∵(x-2)(x+3)=x2+3x-2x-6=x2+x-6,∴m=1,n=-6,∴mn=-6.故答案为-6.11.【答案】-4【解析】解:(-4)2015•(0.25)2014=(-4)•(-4)2014•(0.25)2014=(-4)•(-4×0.25)2014=(-4)•(-1)2014=-4×1=-4故答案为:-4.根据幂的乘方和积的乘方的运算方法,求出(-4)2015•(0.25)2014的值是多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).12.【答案】2014【解析】解:把代入ax=by+2014得a=-b+2014,即a+b=2014,故答案为:2014.把代入ax=by+2014求解.本题主要考查了二元一次方程的解,解题的关键是把解代入原方程.13.【答案】2x-5y【解析】解:-16x3+40x2y=-8x2•2x+(-8x2)•(-5y)=-8x2(2x-5y),所以另一个因式为2x-5y.故答案为:2x-5y.根据提公因式法分解因式解答即可.本题考查了提公因式法分解因式,把多项式的各项写成公因式与另一个因式相乘的形式是解题的关键.14.【答案】16或18【解析】解:∵7-3<a<7+3,∴4<a<10,又∵第三边是偶数,∴a的值:6或8;∴三角形的周长为:3+6+7=16或3+8+7=18.故答案为:16或18.据三角形两边之和大于第三边,两边之差小于第三边.7-3<a<7+3,即4<a <10,又第三边是偶数,故a的值:6、8;三角形的周长可求.此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.15.【答案】【解析】解:∵2m=3,2n=5,∴23m-2n=(2m)3÷(2n)2,=27÷25,=,故答案为:.首先应用含2m,2n的代数式表示23m-2n,然后将2m,2n值代入即可求解.本题主要考查同底数幂的除法,幂的乘方,熟练掌握运算性质并灵活运用是解题的关键.16.【答案】135【解析】解:∵∠1=45°,∴∠3=90°-∠1=90°-45°=45°,∴∠4=180°-45°=135°,∵直尺的两边互相平行,∴∠2=∠4=135°.故答案为:135.根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.17.【答案】ab【解析】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.故答案为:ab.利用大正方形的面积减去4个小正方形的面积即可求解.本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.18.【答案】4【解析】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°-∠ABD,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°-∠ABC,∴∠ADB不等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴⑤正确;即正确的有4个,故答案为:4.根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.19.【答案】解:(1)()-1+(-2)0-|-2|-(-3)=2+1-2+3=4(2)a•a2•a3+(a3)2-(-2a2)3=a6+a6-(-8a6)=10a6【解析】(1)首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了幂的乘方和积的乘方,零指数幂、负整数指数幂的运算方法,以及同底数幂的乘法的运算方法,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).20.【答案】解:(1)原式=(x+3y)(x-3y);(2)原式=2x(a-b)+3(a-b)=(a-b)(2x+3);(3)原式=-3x(x2-2xy+y2)=-3x(x-y)2.【解析】(1)原式利用平方差公式分解即可;(2)原式变形后,提取公因式即可得到结果;(3)原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.【答案】解:(1),①×2+②×3得:11x=22,解得:x=2,把x=2代入①得:y=-1,则方程组的解为;(2),①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:y=3,则方程组的解为.【解析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】解:∵a2+5b2-4ab-2b+1=0,∴a2-4ab+4b2+b2-2b+1=0,∴(a-2b)2+(b-1)2=0,∴a-2b=0,b=1,∴a=2,b=1,∵等腰△ABC,∴c=2,∴△ABC的周长为5.【解析】已知等式配方后,利用非负数的性质求出a与b的值,即可确定出三角形周长.此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.23.【答案】解:原式=x2-4x+4+2(x2+4x+2x+8)-(x2-9)=x2-4x+4+2x2+8x+4x+16-x2+9=2x2+8x+29;将x=-1代入得原式=2×(-1)2+8×(-1)+29=23.【解析】先利用整式的乘法,完全平方公式,平方差公式计算,再进一步合并化简后,代入数值求得答案即可.此题考查整式的混合运算与化简求值,正确利用公式计算合并化简,再代入计算.24.【答案】解:(1)∵x+y=2,xy=-1,∴5x2+5y2=5(x2+y2)=5[(x+y)2-2xy]=5×[22-2×(-1)]=30;(2)∵x+y=2,xy=-1,∴(x-y)2=(x+y)2-4xy=22-4×(-1)=4+4=8.【解析】(1)原式提取5,利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)原式利用完全平方公式变形,将x+y与xy的值代入计算即可求出值.此题考查了完全平方公式,熟练掌握公式是解本题的关键.25.【答案】3【解析】解:(1)如图,∵△DEF由△ABC平移而成,∴AC=DF=3,BC=EF=4.∵BE=2,∴CE=4-2=2,∴S△DCF=×2×3=3.故答案为:3;(2)解:图1面积为13×13=169,图2面积为(13+8)×8=168,因为169≠168,所以小明拼的不对.(1)根据题意画出图形,再由平移的性质得出CF及DF的长,利用三角形的面积公式即可得出结论;(2)分别求出正方形与矩形的面积,再进行比较即可.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.26.【答案】解:(1)设∠ABC=2x,∠A=3x,∠C=7x,由内角和得∠ABC=30°,∠A=45°,∠C=105°,∵∠BDC=60°,∴∠DBC=15°,∴∠EBD=∠EDB=∠ABC-∠DBC=30°-15°=15°,∴∠EBD=∠EDB=15°,∴∠BED=180°-15°-15°=150°,(2)∵∠ABC=30°,∠BED=150°,∴∠ABC+∠BED=180°,∴ED∥BC.【解析】(1)根据已知和三角形内角和定理求出∠A=45°,∠ABC=30°,∠C=105°,根据三角形内角和定理求出∠DBC=180°-∠C-∠BDC=15°,代入求出∠EBD=∠EDB=∠ABC-∠DBC=15°,根据三角形内角和定理得出∠BED=180°-∠EBD-∠EDB,代入求出即可;(2)求出∠ABC+∠BED=180°,根据平行线的判定得出即可.本题考查了三角形的内角和定理,平行线的判定的应用,解此题的关键是求出各个角的度数,注意:同旁内角互补,两直线平行.27.【答案】解:设小长方形的长为xcm,宽为ycm,根据题意得:,解得:,∴S阴影=14×(6+2×2)-8×2×6=44(cm2).答:图中阴影部分面积是44cm2.【解析】本题考查了二元一次方程组的应用,观察图形列出关于x、y的二元一次方程组是解题的关键.设小长方形的长为xcm,宽为ycm,观察图形即可列出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据阴影部分的面积=大长方形的面积-6个小长方形的面积,即可求出结论.28.【答案】解:(1)∵AB∥MN,直线MN⊥PQ,∴PQ⊥AB,∴∠BDC=∠DCN=90°,∵∠ACN=∠A=36°,CE平分∠ACN,∴∠ACE=18°,∠ACD=90°-∠A=54°,∴∠DCE=∠ACD+○ACE=72°,∵DF平分∠CDB,∴∠CDF=45°,∴∠F=∠DCE-∠CDF=27°;(2)不发生改变.理由:∵CE是∠ACN的平分线,∴∠ACE=∠ACN,∴∠DCE=∠ACD+∠ACE=∠ACD+∠ACN,∵∠BDC=∠A+∠ACD,DF平分∠BDC,∴∠CDF=∠BDC=∠A+∠ACD,∴∠F=∠DCE-∠CDF=∠ACD+∠ACN-∠A-∠ACD=(∠ACN+∠ACD)-∠A=×90°-×36°=27°.【解析】(1)由AB∥MN,直线MN⊥PQ,CE平分∠ACN,DF平分∠CDB,易求得∠DCE 与∠CDF的度数,然后利用三角形外角的性质,求得∠F的度数.(2)由题意可得∠DCE=∠ACD+∠ACE=∠ACD+∠ACN,∠CDF=∠BDC=∠A+∠ACD,则可得∠F=∠DCE-∠CDF=∠ACD+∠ACN-∠A-∠ACD=(∠ACN+∠ACD)-∠A,继而求得答案.此题考查了平行线的性质、角平分线的定义以及三角形外角的性质.此题难度适中,注意掌握数形结合思想的应用.。
2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析
2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷一、选择题(每小题3分,共30分).
1.(3分)下列图形是中心对称图形的是()
A.B.C.D.
2.(3分)一元二次方程x(x﹣2)=2﹣x的根是()
A.﹣1B.2C.1和2D.﹣1和2
3.(3分)下列事件中,是随机事件的是()
A.两条直线被第三条直线所截,同位角相等
B.任意一个四边形的外角和等于360°
C.早上太阳从西方升起
D.平行四边形是中心对称图形
4.(3分)二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是()x……﹣3﹣2﹣101……
y……﹣17﹣17﹣15﹣11﹣5……
A.x=﹣3B.x=﹣2.5C.x=﹣2D.x=0
5.(3分)在同平面直角坐标系中,函数y=x﹣1与函数y=1
x的图象大致是()
A.B.
C.D.
6.(3分)某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()
A.10%B.20%C.25%D.40%
第1 页共23 页。
安徽省合肥2019-2020学年人教版七年级(下)期中数学试卷 含解析 1
2019-2020学年七年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列各式正确的为()A.=±4B.﹣=﹣9C.=﹣3D.【考点】24:立方根;2C:实数的运算.【专题】514:二次根式.【分析】根据=|a|进行化简计算即可.【解答】解:A、=4,故原题计算错误;B、﹣=9,故原题计算错误;C、=3,故原题计算错误;D、=,故原题计算正确;故选:D.2,下列各数:,0.101001(每两个1之间的0增加一个)中,无理数有()A.1个B.2个C.3个D.4个【考点】22:算术平方根;24:立方根;26:无理数.【专题】511:实数.【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解:,∴,﹣0.34,,,0.101001(每两个1之间的0增加一个)是无理数,无理数有:,,0.101001(每两个1之间的0增加一个)共3个.故选:C.3.某种细胞的直径是0.00058毫米,0.00058这个数用科学记数法可表示为()A.5.8×10﹣4B.58×10﹣5C.5.8×10﹣5D.0.58×10﹣3【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00058=5.8×10﹣4,故选:A.4.若a<b,则下列不等式正确的为()A.3a﹣1<3b﹣1B.C.﹣a+1<﹣b+1D.a+x>b+x【考点】C2:不等式的性质.【专题】524:一元一次不等式(组)及应用.【分析】关键不等式的性质逐个判断即可.【解答】解:A、∵a<b,∴3a<3b,∴3a﹣1<3b﹣1,故本选项符合题意;B、∵a<b,∴<,故本选项不符合题意;C、∵a<b,∴﹣a>﹣b,∴﹣a+1>﹣b+1,故本选项不符合题意;D、∵a<b,∴a+x<b+x,故本选项不符合题意;故选:A.5.不等式﹣2x+6>0的正整数解有()A.无数个B.0个C.1个D.2个【考点】C7:一元一次不等式的整数解.【专题】1:常规题型.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣6,系数化为1,得:x<3,则不等式的正整数解为2,1,6.不等式﹣x﹣1≤0的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【专题】524:一元一次不等式(组)及应用.【分析】先求出x的取值范围,再在数轴上表示出来即可选出答案.【解答】解;﹣x﹣1≤0,﹣x≤1,x≥﹣2,在数轴上表示:故选:C.7.下列计算正确的是()A.(a2)3=a5B.a2•a=a3C.a9÷a3=a3D.a0=1【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法;6E:零指数幂.【专题】512:整式.【分析】分别根据幂的乘方,同底数幂的乘法,同底数幂的乘法法则以及任何非0数的0次幂等于1逐一判断即可.【解答】解:(a2)3=a6,故选项A不合题意;a2•a=a3,故选项B符合题意;a9÷a3=a6,故选项C不合题意;当a≠0时,a0=1,故选项D不合题意.8.计算:()2011×(1.5)2010×(﹣1)2010的结果为()A.B.C.D.【考点】47:幂的乘方与积的乘方.【专题】512:整式.【分析】分别根据积的乘方以及﹣1的偶数次幂等于1解答即可.【解答】解:()2011×(1.5)2010×(﹣1)2010=()2010×(1.5)2010×1=.故选:A.9.已知x﹣=2,则x2+的值为()A.2B.4C.6D.8【考点】4C:完全平方公式;6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】根据完全平方公式进行变形x2+═()2+2,然后代入计算.【解答】解:原式=()2+2=22+2=6,故选:C.10.某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打()A.六折B.七折C.八折D.九折【考点】C9:一元一次不等式的应用.【专题】524:一元一次不等式(组)及应用.【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于10%,列不等式求解.【解答】解:设打了x折,由题意得,1100×0.1x﹣700≥700×10%,解得:x≥7.即至多打7折.二、填空题(每题5分,共20分)11.已知a5=6,a2=2,则a3=3.【考点】48:同底数幂的除法.【专题】512:整式;66:运算能力.【分析】根据同底数幂的除法的运算方法,用a5除以a2,求出a3的值是多少即可.【解答】解:∵a5=6,a2=2,∴a3=6÷2=3.故答案为:3.12.比较大小:>【考点】22:算术平方根;2A:实数大小比较.【专题】511:实数;514:二次根式.【分析】先求出的值,再比较即可.【解答】解:=1>,故答案为:>.13.若a2+b2=2018,a﹣b=﹣1,则ab=.【考点】4C:完全平方公式.【专题】512:整式.【分析】根据完全平方公式即可求出答案.【解答】解:∵a2+b2=2018,a﹣b=﹣1,∴(a﹣b)2=1,∴a2﹣2ab+b2=1,∴2018﹣2ab=1,∴ab=,故答案为:14.若关于x的不等式组恰好有三个整数解,则实数a的取值范围是2<a≤3.【考点】CC:一元一次不等式组的整数解.【专题】524:一元一次不等式(组)及应用.【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.【解答】解:解不等式+>0,得:x>﹣,解不等式2x+3a+3>3(x+1)+2a,得:x<a,∵不等式组恰有三个整数解,∴不等式组的整数解为0、1、2,则2<a≤3.故答案为:2<a≤3.三、解答题(共9题,90分)15.计算或化简:(1)(2)(2a+3b)(3b﹣2a)﹣(3b﹣a)2【考点】2C:实数的运算;4C:完全平方公式;4F:平方差公式;6E:零指数幂;6F:负整数指数幂.【专题】511:实数;512:整式;66:运算能力.【分析】(1)原式第一项利用平方根计算,第二项利用立方根计算,第三项利用负指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:(1)原式=4+﹣+1=5;(2)原式=9b2﹣4a2﹣9b2+6ab﹣a2=﹣5a2+6ab.16.关于x的方程4x﹣3=k+x的解是非负数,求k的取值范围.【考点】85:一元一次方程的解;C6:解一元一次不等式.【专题】524:一元一次不等式(组)及应用.【分析】首先解方程求得x的值,根据方程的解是非负数,即可得到一个关于k的不等式,从而求得k的范围.【解答】解:移项,得:4x﹣x=k+3,系数化成1得:x=,根据题意,得:≥0,解得:k≥﹣3.17.解不等式(组):(1)(并在数轴上表示它的解集)(2)【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【专题】524:一元一次不等式(组)及应用.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)2(4+x)﹣6≤3x,8+2x﹣6≤3x,2x﹣3x≤6﹣8,﹣x≤﹣2,x≥2,将解集表示在数轴上如下:(2)解不等式x﹣2(x﹣3)≥4,得:x≤2,解不等式<,得:x>﹣,则不等式组的解集为﹣<x≤2.18.化简求值:(x+2y)(2y﹣x)﹣(x+y)2,其中x=,y=﹣2.【考点】4J:整式的混合运算—化简求值.【专题】512:整式.【分析】直接利用整式的混合运算法则化简进而把已知数据代入求出答案.【解答】解:原式=4y2﹣x2﹣(x2+y2+2xy)=3y2﹣2x2﹣2xy,当x=,y=﹣2时,原式=3×(﹣2)2﹣2×()2﹣2×(﹣2)×=12﹣+2=13.19.已知a+3和2a﹣15是某正数的两个平方根,b的立方根是﹣2,c算术平方根是其本身,求2a+b﹣3c的值.【考点】21:平方根;22:算术平方根;24:立方根.【专题】511:实数.【分析】先依据平方根的性质列出关于a的方程,从而可求得a的值,然后依据立方根的定义求得b的值,根据算术平方根得出c,最后,再进行计算即可.【解答】解:∵某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.c算术平方根是其本身∴a+3+2a﹣15=0,b=﹣8,c=0或1,解得a=4.当a=4,b=﹣8,c=0,2a+b﹣3c=8﹣8﹣0=0;当a=4,b=﹣8,c=1,2a+b﹣3c=8﹣8﹣3=﹣3.20.观察下列等式:等式1:;等式2:;等式3:;(1)猜想验证:根据观察所发现的特点,猜想第4个等式为,第9个等式为,并通过计算验证两式结果的准确性;(2)归纳证明:由以上观察探究,归纳猜想:用含n的式子表示第n个等式所反映的运算规律为=,证明猜想的准确性.【考点】22:算术平方根;37:规律型:数字的变化类.【专题】2A:规律型.【分析】(1)利用前面三个等式写出第4个等式,第9个等式,并通过计算验证两式结果的准确性;(2)利用等式中数据与序号数的关系得到=,然后根据二次根式的性质进行证明.【解答】解:(1)第4个等式为;第9个等式为;;(2)=;∵,又∵n≥2,∴原式=.故答案为:,;=.21.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.①请问道具A最多购买多少件?②若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【专题】34:方程思想;521:一次方程(组)及应用;524:一元一次不等式(组)及应用.【分析】(1)设购买一件A道具需要x元,购买一件B道具需要y元,根据“购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买A道具m件,则购买B道具(60﹣m)件.①根据总价=单价×数量结合购买两种道具的总费用不超过620元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论;②由A道具购买的件数不少于B道具购买件数,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合①的结论及m为整数值即可得出各购买方案,再求出各购买方案所需费用,比较后即可得出最少费用.【解答】解:(1)设购买一件A道具需要x元,购买一件B道具需要y元,依题意,得:,解得:.答:购买一件A道具需要15元,购买一件B道具需要5元.(2)设购买A道具m件,则购买B道具(60﹣m)件.①依题意,得:15m+5(60﹣m)≤620,解得:m≤32.答:A道具最多购买32件.②依题意,得:m≥60﹣m,解得:m≥30,又∵m≤32,且m为整数,∴m=30,31,32.∴该班级共有3种购买方案,方案1:A道具购买30件,B道具购买30件;方案2:A 道具购买31件,B道具购买29件;方案3:A道具购买32件,B道具购买28件.方案1所需费用15×30+5×30=600(元),方案2所需费用15×31+5×29=610(元),方案3所需费用15×32=5×28=620(元).∵600<610<620,∴最少购买费用为600元.22.阅读材料:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部.它有如下特点:①它的加,减,乘法运算与整式的加,减,乘法运算类似例如计算:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i;(3+i)i=3i+i2=3i﹣1②若他们的实部和虚部分别相等,则称这两个复数相等若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.(1)填空:(3i﹣2)(3+i)=7i﹣9;(1+2i)3(1﹣2i)3=125;(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)a的值;(3)已知(a+i)(b+i)=1﹣3i,求(a2+b2)(i2+i3+i4+…+i2019)的值.【考点】2C:实数的运算;37:规律型:数字的变化类.【专题】23:新定义;42:配方法;512:整式;66:运算能力;6A:创新意识.【分析】(1)按照定义计算即可;(2)先按照完全平方式及定义展开运算,求出a和b的值,再代入要求得式子求解即可;(3)按照定义计算ab及a+b的值,再利用配方法得出(a2+b2)的值;由于i2+i3+i4+i5=﹣1﹣i+1+i=0,4个一组,剩下两项,单独计算这两项的和,其余每相邻四项的和均为0,从而可得答案.【解答】解:(1)(3i﹣2)(3+i)=9i﹣3﹣6﹣2i=7i﹣9(1+2i)3(1﹣2i)3=[(1+2i)(1﹣2i)]3=(1﹣4i2)3=(1+4)3=125故答案为:7i﹣9;125.(2)∵(1+2i)2=1+4i+4i2=1+4i﹣4=﹣3+4i又a+bi是(1+2i)2的共轭复数∴a=﹣3,b=﹣4∴(b﹣a)a=(﹣4+3)﹣3=﹣1∴(b﹣a)a的值为﹣1.(3)∵(a+i)(b+i)=1﹣3i∴ab+(a+b)i﹣1=1﹣3i∴ab﹣1=1,a+b=﹣3∴ab=2,a+b=﹣3∴a2+b2=(a+b)2﹣2ab=9﹣2×2=5∵i2+i3+i4+i5=﹣1﹣i+1+i=0,i2+i3+i4+...+i2019有2018个加数,2018÷4=504 (2)∴i2+i3+i4+…+i2019=0+i2018+i2019=i2016•i2+i2016•i3=﹣1﹣i∴(a2+b2)(i2+i3+i4+…+i2019)=5(﹣1﹣i)=﹣5﹣5i.23.用四个长为m,宽为n的相同长方形按如图方式拼成一个正方形.(1)根据图形写出一个代数恒等式:(m﹣n)2=(m+n)2﹣4mn;(2)已知3m+n=9,mn=6,试求3m﹣n的值;(3)若m+n=1,求m2+n2的最小值.【考点】4D:完全平方公式的几何背景.【专题】512:整式;64:几何直观.【分析】(1)直接用阴影正方形边长的平方可求阴影面积,用大正方形面积减四个小长方形的面积可求阴影面积,可得等量关系;(2)直接代入计算;(3)由m2+n2=(1﹣n)2+n2=2(n﹣)2+≥,可求m2+n2的最小值.【解答】解:(1)∵直接用阴影正方形边长的平方可求阴影面积=(m﹣n)2,用大正方形面积减四个小长方形的面积可求阴影面积=(m+n)2﹣4mn,∴(m﹣n)2=(m+n)2﹣4mn;(2)∵(3m﹣n)2=(3m+n)2﹣6mn,∴(3m﹣n)2=81﹣36=45;(3)∵m+n=1,∴m=1﹣n,∴m2+n2=(1﹣n)2+n2=1+2n2﹣2n=2(n﹣)2+≥,∴m2+n2的最小值为.。
2019-2020学年河南省洛阳第二外国语学校八年级(下)期中数学试卷
2019-2020学年河南省洛阳第二外国语学校八年级(下)期中数学试卷一.选择题(共11小题)1.(3分)(2019秋•偃师市期中)下列根式是最简二次根式的是()A.B.C.D.2.(3分)(2013•广州)若代数式有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x>0D.x≥0且x≠1 3.(3分)(2013•重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.2B.C.D.4.(3分)(2016春•博乐市期末)正方形具有而矩形不一定具有的性质是()A.四个角都是直角B.对角线相等C.四条边相等D.对角线互相平行5.(3分)(2018•荆州)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小6.(3分)(2020春•武城县期末)已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=3x+b 上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y1<y2<y3D.y3<y1<y2 7.(3分)(2012•桃源县校级自主招生)如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用X、Y表示直角三角形的两直角边(X>Y),请观察图案,指出以下关系式中不正确的是()A.X2+Y2=49B.X﹣Y=2C.2XY+4=49D.X+Y=13 8.(3分)(2012•台州)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B.C.2D.+19.(3分)(2018•河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s 的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.210.(3分)(2019春•禹州市期末)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个B.2个C.3个D.4个11.(3分)(2019秋•岱岳区期末)如图,平行四边形ABCD的周长为36,对角线AC、BD 相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.12B.15C.18D.21二.填空题(共3小题)12.(3分)(2019•苏州模拟)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解集为.13.(3分)(2019春•新罗区期末)如图,在矩形ABCD中,AB=5,BC=12,点E是BC 边上一点,连接AE,将△ABE沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE=.14.(3分)(2019•新泰市二模)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形(1),(2),(3),(4)…,则三角形(2019)的直角顶点的坐标为.三.解答题(共9小题)15.(2020春•老城区校级期中)如图,在△ABC中,AB=AC=13,BC=10,求BC边上高的长.16.(16分)(2016秋•市北区期中)计算(要求写出演算步骤)(1)(2)(3)(4)17.(2019秋•泉港区期末)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?18.(2019秋•碑林区校级期末)如图,在平面直角坐标系中,点A(2,2),点B(﹣4,0),直线AB交y轴于点C.(1)求直线AB的表达式和点C的坐标;(2)在直线OA上有一点P,使得△BCP的面积为4,求点P的坐标.19.(2020•广陵区校级三模)如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.20.(2016春•建瓯市期末)某文具商店销售功能相同的A,B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,若购买计算器的数量超过5个,分别用含x的式子表示出y1和y2;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,请问购买哪种品牌的计算器更合算?说明理由.21.(2019春•渭滨区期末)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB 方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF为直角三角形?请说明理由.22.(2020•保定模拟)某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x套(x为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y元.(1)求y与x的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?(3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中20<a<40),且最多购进240套甲款运动服,若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.运动服款式甲款乙款进价(元/套)6080售价(元/套)10015023.(2020春•老城区校级期中)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:BD⊥CF.BD=CF.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,第(1)问结论还成立吗?并说明理由.(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.2019-2020学年河南省洛阳第二外国语学校八年级(下)期中数学试卷参考答案与试题解析一.选择题(共11小题)1.【解答】解:(A)原式=,故选项A不是最简二次根式;(B)原式=,故选项B不是最简二次根式;(C)原式=3,故选项C不是最简二次根式;故选:D.2.【解答】解:根据题意得:,解得:x≥0且x≠1.故选:D.3.【解答】解:在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选:D.4.【解答】解:根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对角线都相等、对角线互相平分,但矩形的长和宽不相等.故选:C.5.【解答】解:将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误;故选:C.6.【解答】解:∵直线y=3x+b,k=3>0,∴y随x的增大而增大,又∵﹣2<﹣1<1,∴y1<y2<y3.故选:C.7.【解答】解:A中,根据勾股定理以及正方形的面积公式即可得到,正确;B中,根据小正方形的边长是2即可得到,正确;C中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D中,根据A,C联立结合完全平方公式可以求得x+y=,错误.故选:D.8.【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当P′Q⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sin B=2×=.故选:B.9.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE===1∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.10.【解答】解:由图象可知A、B两城市之间的距离为300km,故①正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,把y=150代入y甲=60t,可得:t=2.5,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(2.5,150)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,乙的速度:150÷(2.5﹣1)=100,乙的时间:300÷100=3,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t=40时,可解得t=,当100﹣40t=﹣40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选:A.11.【解答】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,故选:B.二.填空题(共3小题)12.【解答】能使函数y=k1x+b的图象在函数y=k2x的上边时的自变量的取值范围是x<﹣1.故关于x的不等式k1x+b>k2x的解集为:x<﹣1.故答案为:x<﹣1.13.【解答】解:AB=5,BC=12,则AC=13,当△CEB′为直角三角形时,只能是∠EB′C和∠CEB′为直角,①当∠EB′C为直角时,即A、B′、C三点共线,设:BE=a=BE′,则CE=12﹣a,AB=AB′=5,B′C=AC﹣AB′=13﹣5=8,由勾股定理得:(12﹣a)2=a2+82,解得:a=,②当∠CEB′为直角时,即点B′落在AD边上,此时,ABEB′为正方形,故:BE=AB=5故答案为或5.14.【解答】解:∵A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∴△ABC的周长=3+4+5=12,∵△OAB每连续3次后与原来的状态一样,∵2019=3×673,∴三角形2019与三角形1的状态一样,∴三角形2019的直角顶点的横坐标=673×12=8076,∴三角形2019的直角顶点坐标为(8076,0).故答案为(8076,0).三.解答题(共9小题)15.【解答】解:如图,等腰△ABC中,AB=AC=13,BC=10,过A作AD⊥BC于D,则BD=5,在Rt△ABD中,AB=13,BD=5,则AD==12.故BC边上高的长的高为12.16.【解答】解:(1)原式=4+5﹣4=5;(2)原式==4;(3)原式=1﹣5+=;(4)原式=(﹣)×2﹣(3﹣2)=4﹣2﹣1=1.17.【解答】解:(1)根据勾股定理:梯子距离地面的高度为:=24米;(2)梯子下滑了4米,即梯子距离地面的高度为A'B=AB﹣AA′=24﹣4=20,根据勾股定理得:25=,解得CC′=8.即梯子的底端在水平方向滑动了8米.18.【解答】解:(1)设直线AB的解析式为y=kx+b,把A(2,2),B(﹣4,0)分别代入得,解得,∴直线AB的解析式为y=x+;当x=0时,y=x+=∴C点坐标为(0,);(2)易得直线OA的解析式为y=x,作PQ∥y轴交直线AB于Q,如图,设P(t,t),则Q(t,t+),∵△BCP的面积为4,∴×PQ×4=4,即|t+﹣t|=2,∴t=﹣1或t=5,∴P点坐标为(﹣1,﹣1)或(5,5).19.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=20.【解答】解:(1)设A种品牌的计算器的价格为x元,B种品牌的计算器的价格为y元,根据题意得,解得,答:A种品牌的计算器的价格为30元,B种品牌的计算器的价格为32元;(2)根据题意得y1=0.8•30x=24x,当x>5,y2=32×5+0.7×32(x﹣5)=22.4x+48,(3)当购买计算器的数量超过5个,若y1<y2时,24x<22.4x+48,解得x<30;若y1=y2时,24x=22.4x+48,解得x=30;若y1>y2时,24x>22.4x+48,解得x>30;所以购买计算器的数量超过5个而不足30个时,购买A种品牌的计算器更合算;购买计算器的数量为30个时,购买A种和B品牌的计算器一样合算;购买计算器的数量超过30个时,购买B种品牌的计算器更合算.21.【解答】(1)证明:∵∠B=90°,∠A=60°,∴∠C=30°,∴AB=AC=30,由题意得,CD=4t,AE=2t,∵DF⊥BC,∠C=30°,∴DF=CD=2t,∴DF=AE,∵DF∥AE,DF=AE,∴四边形AEFD是平行四边形;(2)当∠EDF=90°时,如图①,∵DE∥BC,∴∠ADE=∠C=30°,∴AD=2AE,即60﹣4t=2t×2,解得,t=,当∠DEF=90°时,如图②,∵AD∥EF,∴DE⊥AC,∴AE=2AD,即2t=2×(60﹣4t),解得,t=12,综上所述,当t=或12时,△DEF为直角三角形.22.【解答】解:(1)根据题意得y=(100﹣60)x+(150﹣80)(300﹣x)=﹣30x+21000;即y=﹣30x+21000.(2)由题意得,60x+80(300﹣x)≤20000,解得x≥200,∴至少要购进甲款运动服200套.又∵y=﹣30x+21000,﹣30<0,∴y随x的增大而减小,∴当x=200时,y有最大值,y最大=﹣30×200+21000=15000,∴若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是15000元.(3)由题意得,y=(100﹣60+a)x+(150﹣80)(300﹣x),其中200≤x≤240,化简得,y=(a﹣30)x+21000,∵20<a<40,则:①当20<a<30时,a﹣30<0,y随x的增大而减小,∴当x=200时,y有最大值,则服装店应购进甲款运动服200套、乙款运动服100套,获利最大.②当a=30时,a﹣30=0,y=21000,则服装店应购进甲款运动服的数量应满足200≤x≤240,且x为整数时,服装店获利最大.③当30<a<40时,a﹣30>0,y随x的增大而增大,∵200≤x≤240,∴当x=240时,y有最大利润,则服装店应购进甲款运动服240套、乙款运动服60套,获利最大.23.【解答】(1)证明:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BD⊥CF;(2)(1)的结论仍然成立,理由:∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠DAF+∠CAD=90°+∠CAD,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,∠ACF=∠ABD=45°∴∠BCF=∠ACB+∠ACF=45°+45°=90°∴BD⊥CF.(3)①BC、CD与CF的关系:CD=BC+CF理由:与(1)同法可证△BAD≌△CAF,从而可得:BD=CF,即:CD=BC+CF②△AOC是等腰三角形理由:与(1)同法可证△BAD≌△CAF,可得:∠DBA=∠FCA,又∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180°﹣45°=135°,∴∠ABD=∠FCA=135°∴∠DCF=135°﹣45°=90°∴△FCD为直角三角形.又∵四边形ADEF是正方形,对角线AE与DF相交于点O,∴OC=DF,∴OC=OA∴△AOC是等腰三角形.。
北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)
北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份) 解析版
2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.32.(3分)下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查3.(3分)下列计算正确的是()A .=±4B .C .D .4.(3分)如图,关于x的不等式x ≥的解集表示在数轴上,则a的值为()A.﹣1B.2C.1D.35.(3分)解方程组①,②,比较简便的方法是()A.都用代入法B.都用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法6.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C.求证:AB∥CD.证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB7.(3分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为()A.(1,﹣3)B.(﹣5,3)C.(1,﹣1)D.(﹣5,﹣1)8.(3分)如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm29.(3分)关于x的不等式组的解集中所有整数之和最大,则a的取值范围是()A.﹣3≤a≤0B.﹣1≤a<1C.﹣3<a≤1D.﹣3≤a<1 10.(3分)如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为()A.100°B.120°C.140°D.160°二.填空题(每小题3分,共15分)11.(3分)一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是.12.(3分)一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,41.在列频数分布表时,如果取组距为3,那么应分成组.13.(3分)如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE 射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=.14.(3分)已知方程组的解是,则方程组的解是.15.(3分)在平面直角坐标系中,A(﹣2,0),B(﹣1,2),C(1,0),连接AB,点D 为AB的中点,连接OB交CD于点E,则四边形DAOE的面积为.三.解答题(本大题共8小题,共75分)16.(8分)计算:(1)++|1﹣|+2;(2)++|1﹣|.17.(8分)解不等式组,把解集表示在数轴上,并求出不等式组的整数解.18.(8分)若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.19.(10分)如图,点A、B、C的坐标分别为(﹣1,1)(3,﹣3)(1.﹣2)三角形A1B1C1是由三角形ABC向上平移2个单位长度,再向右平移2个单位长度后得到的,其中点A1、B1、C1分别是点A、B、C的对应点.(1)画出三角形A1B1C1,并写出点A1、B1、C1的坐标:(2)连接AA1和CC1,若x轴上有一点P(x,0),使得三角形P A1C1的面积等于四边形ACC1A1的面积,求x的值.20.(10分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.21.(10分)对于不等式:a x>a y(a>0且a≠1),当a>1时,x>y;当0<a<1时,x<y,请根据以上信息,解答以下问题:(1)解关于x的不等式:25x﹣1>23x+1;(2)若关于x的不等式:a x﹣k<a5x﹣2(a>0且a≠1),在﹣2≤x≤﹣1上存在x的值使其成立,求k的取值范围.22.(11分)已知点D在∠ABC内,E为射线BC上一点,连接DE,CD.(1)如图1,点E在线段BC上,连接AE,∠AED=∠A+∠D.①求证AB∥CD;②过点A作AM∥ED交直线BC于点M,请猜想∠BAM与∠CDE的数量关系,并加以证明;(2)如图2,点E在BC的延长线上,∠AED=∠A﹣∠D.若M平面内一动点,MA∥ED,请直接写出∠MAB与∠CDE的数量关系.23.(10分)已知某水果行租赁甲、乙两种货车同时装运香蕉和荔枝,调查了两种车满载时的装运能力,数据如表所示.甲车(辆)乙车(辆)荔枝共计(吨)香蕉共计(吨)1163241610(1)请分析表中数据,分别求出甲、乙货车每辆可以装运荔枝和香蕉各多少吨;(2)现计划将荔枝30吨,香蕉13吨运往外地,若租用甲、乙两种货车共10辆,求安排甲、乙两种货车有几种方案.2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)参考答案与试题解析一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
2019-2020学年河南省洛阳市八年级(下)期末数学试卷 (解析版)
2019-2020学年河南省洛阳市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤12.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.43.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.56.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>09.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.810.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是.13.(3分)方程组的解为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是,BC、CF、CD 三条线段之间的数量关系为;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.2019-2020学年河南省洛阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.2.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.4【分析】根据合并同类二次根式法则、二次根式的性质和平方差公式依此计算可得.【解答】解:①与不是同类二次根式,不能合并,此式计算错误;②()2=2,此式计算正确;③5﹣=4,此式计算错误;④(+)(﹣)=2﹣3=﹣1,此式计算正确;故选:B.3.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定【分析】根据方差的定义,方差越小数据越稳定即可判断.【解答】解:∵甲的方差是0.28,乙的方差是0.21,∴S甲2>S乙2,∴乙的成绩比甲的成绩稳定;故选:C.4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°【分析】根据正方形的性质,可以得到∠ACB和∠CAB的度数,再根据AC=AE,可以得到∠ACE和∠AEC的度数,然后即可得到∠BCE的度数.【解答】解:∵AC是正方形ABCD的对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=∠AEC,∵∠ACE+∠AEC+∠CAE=180°,∴∠ACE=∠AEC=67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°,故选:D.5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.5【分析】根据众数和算术平均数的定义列式计算可得.【解答】解:将这组数据重新排列为7,7,7,8,8,9,9,10,11,14,所以这组数据的众数为7,平均数为=9,故选:B.6.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分【分析】根据加权平均数的计算公式进行计算,即可得出答案.【解答】解:根据题意得:90×20%+80×40%+85×40%=84(分);答:这个人的面试成绩是84分.故选:D.7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定【分析】根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=AC,即可求解.【解答】解:∵D、E分别是△ABC各边的中点,∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=AC=6cm.故选:B.8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>0【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故选:B.9.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.8【分析】由菱形的性质得出OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD 中,由含30°角的直角三角形的性质求出CD=2OD=2,由勾股定理求出OC,得出AC,由菱形的面积公式即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD中,∵∠ACD=30°,∴CD=2OD=2,∴OC===,∴AC=2OC=2,∴菱形ABCD的面积=AC•BD=×2×2=2.故选:A.10.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4【分析】连接MB交AC于N,此时DN+MN最小,先证明这个最小值就是线段BM的长,利用勾股定理就是即可解决问题.【解答】解:如图,连接MB交AC于N,此时DN+MN最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴DN=BN,∴DN+MN=BN+NM=BM,在Rt△BMC中,∵∠BCM=90°,BC=16,CM=CD﹣DM=16﹣4=12,∴BM=.故选:C.二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是 5.5元.【分析】将数据重新排列,再根据中位数的定义求解可得.【解答】解:将这组数据重新排列为:3,5,5,5,6,6,6,10,所以这组数据的中位数为=5.5(元),故答案为:5.5元.13.(3分)方程组的解为.【分析】由图象可知,一次函数x+y=3与y=2x的交点坐标为(1,2),所以方程组的解为.【解答】解:∵一次函数x+y=3与y=2x的交点坐标为(1,2),∴方程组的解为.故答案为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为8.【分析】连接EF,AE交BF于O点,如图,由作法得AB=AF,AE平分∠BAD,先证明四边形ABEF为菱形得到AE⊥BF,OA=OE,BO=OF=3,然后利用勾股定理计算出OA,从而得到AE的长.【解答】解:连接EF,AE交BF于O点,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠F AE=∠BEA,由作法得AB=AF,AE平分∠BAD,∴∠BAE=∠F AE,∴∠BAE=∠BEA,∴BA=BE,∴AF=BE,而AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF为菱形,∴AE⊥BF,OA=OE,BO=OF=3,在Rt△AOB中,OA===4,∴AE=2OA=8.故答案为8.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为或.【分析】过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.【解答】解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当MD′=ND′时,MD′=ND′=MN=AD=,由勾股定理可知:AN==,∴EM=DM﹣DE=AN﹣DE=﹣a,∵ED′2=EM2+MD′2,即,解得:a=.综上知:DE=或.故答案为:或.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先计算二次根式的乘除运算、化简二次根式,再计算加减运算可得.【解答】解:(1)原式=3﹣2+﹣3=﹣;(2)原式=﹣+2=4+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)【分析】作出A点到公路的距离,构造出直角三角形,利用勾股定理易得BD长,那么根据直角三角形BCD的各边利用勾股定理即可求得商店与车站之间的距离.【解答】解:作AB⊥L于B,则AB=30m,AD=50m.∴BD=40m.设CD=x,则CB=40﹣x,x2=(40﹣x)2+302,x2=1600+x2﹣80x+302,80x=2500,x≈31,答:商店C与公交站D之间的距离约为31米.18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.【分析】(1)先由读1本书的人数及其所占百分比可得总人数,再用总人数乘以读4本书的百分比可得其人数,用读3本书人数除以总人数可得其百分比,据此可补全统计图,最后根据中位数的定义可得答案;(2)根据加权平均数的定义求解可得;(3)用总人数乘以样本中四月份“读书量”为5本的学生人数所占比例可得答案.【解答】解:(1)∵被调查的总人数为3÷5%=60(人),∴读书4本的人数为60×20%=12(人),读3本书的人数所占百分比为×100%=35%,∵共有60个数据,其中位数为第30、31个数据的平均数,而第30、31个数据均为3本,∴中位数为=3(本),故答案为:3本.(2)本次所抽取学生四月份“读书量”的平均数为=3.6(本);(3)估计该校七年级学生中,四月份“读书量”为5本的学生人数为600×=60(人).19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.【分析】(1)把A点坐标代入y1=ax+2可求出a的值;(2)设C(t,t﹣1),利用两点间的距离公式得到(t﹣2)2+(t﹣1﹣1)2=(2)2,然后解方程可得到点C的坐标;(3)先确定一次函数y1=﹣x+2与x轴的交点坐标为(4,0),然后结合函数图象,写出x轴上且直线y=x﹣1在直线y=﹣x+2上方所对应的自变量的范围即可.【解答】解:(1)把A(2,1)代入y1=ax+2得2a+2=1,解得a=﹣;(2)设C(t,t﹣1),∵A(2,1),AC=2,∴(t﹣2)2+(t﹣1﹣1)2=(2)2,解得t1=0,t2=4,∴点C的坐标为(0,﹣1)或(4,3);(3)当y=0时,﹣x+2=0,解得x=4,∴一次函数y1=﹣x+2与x轴的交点坐标为(4,0),∴当2<x<4时,y2>y1>0.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,由三角形DEF的面积求出EG的长,根据勾股定理求出FG的长,则可求出答案.【解答】(1)证明:∵AF=DC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形;(2)解:如图,连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠DEF=90°,DE=8,EF=6,∴DF===10,∴S△DEF=EF×DE,∴EG==,∴FG=CG===,∴AF=CD=DF﹣2FG=10﹣=.故答案为:.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?【分析】(1)根据3部A型号手机和2部B型号手机营业额10800元,4部A型号手机和1部B型号手机营业额10400元,构造二元一次方程组求解即可;(2)①根据:每类手机利润=单部手机利润×部数,总利润=A型手机利润+B型手机利润,得函数关系式.注意a的取值范围.②根据①的关系式,利用一元函数的性质得出结论.【解答】解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得解得(2)①由题意,得w=(2000﹣1500)a+(2400﹣1800)(50﹣a),即w=30000﹣100a,又∵50﹣a≤3a∴a≥∴w关于a的函数关系式为w=30000﹣100a(a≥);②w关于a的函数关系式为w=30000﹣100a,∵k=﹣100<0,∴w随a的增大而减小,又∵a只能取正整数,∴当a=13时,总利润w最大,最大利润w=30000﹣100×13=2870050﹣a=37答:该营业厅购进A型号手机13部,B型号手机37部时,销售总利润最大,最大利润为28700元22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是BC⊥CF,BC、CF、CD三条线段之间的数量关系为CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,根据直角三角形斜边上中线的性质即可得到DF的长,再求出CD,BC即可解决问题.【解答】解:(1)如图1中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF⊥BC,CF+CD=BC.(2)结论:CF⊥BC,CF﹣CD=BC.理由:如图2中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∴BC+CD=CF,∴CF﹣CD=BC;(3)如图3中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,BD=CF=5,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵OD=OF,∴DF=2OC=13,∴Rt△CDF中,CD===12,∴BC=DC﹣BD=12﹣5=7,∴AB=AC=,∴S△ABC=××=.23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为(,0),点C的坐标为(0,﹣1);(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y=0和x=0,可得B、C点坐标;(2)根据面积的和差,可得关于t的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y轴的右侧,有三个符合条件的点M,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M的坐标.【解答】解:(1)将D(1,﹣)代入y=x+n,解得n=﹣3,即y=x﹣3,当y=0时,x﹣3=0.解得x=,即B点坐标为(,0);将(1,﹣)代入y=﹣x+m,解得m=﹣1,即y=﹣x﹣1,当x=0时,y=﹣1.即C点坐标为(0,﹣1);故答案为:(,0),(0,﹣1);(2)如图1,S△BDP=(t﹣)×|﹣|=,当y=0时,﹣x﹣1=0,解得x=﹣,即E点坐标为(﹣,0),S△CDP=S△DPE﹣S△CPE=(t+)×﹣×(t+)×|﹣1|=,由△BDP和△CDP的面积相等,得:=+,解得t=5.2;(3)以CP为腰作等腰直角△CPM,有以下两种情况:①如图2,当以点C为直角顶点,CP为腰时,点M1在y轴的左侧,不符合题意,过M2作M2A⊥y轴于A,∵∠PCM2=∠PCO+∠ACM2=∠PCO+∠OPC=90°,∴∠ACM2=∠OPC,∵∠POC=∠CAM2,PC=CM2,∴△POC≌△CAM2(AAS),∴PO=AC=5.2,OC=AM2=1,∴M2(1,﹣6.2);②如图3,当以点P为直角顶点,CP为腰时,过M4作M4E⊥x轴于E,同理得△COP≌△PEM4,∴OC=EP=1,OP=M4E=5.2,∴M4(6.2,﹣5.2),同理得M3(4.2,5.2);综上所述,满足条件的点M的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).。
2019-2020学年河南省洛阳市九年级(上)期中数学试卷(解析版)
2019-2020学年河南省洛阳市九年级(上)期中数学试卷一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .85.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x ==7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3600(1)12000x +=B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过() A .第一象限B .第二象限C .第三象限D .第四象限10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1CD 二、填空题(每小题3分,共15分)11.计算23--= .12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 .13.二次函数224y x x =-+的顶点坐标是 .14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 个.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根. 20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标; (4)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标;21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.23.如图,抛物线2y x bx c=-++交x轴于A,B两点,交y轴于点C直线122y x=-+经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求PBC∆面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.2019-2020学年河南省洛阳市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-【解答】解:224-=-, 则比22-小1的数是5-, 故选:D .2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯【解答】解:171亿17= 100 000 10000 1.7110=⨯. 故选:B .3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒【解答】解://AB CD ,B EFC ∴∠=∠,2E EFC D B D D D D ∴∠=∠-∠=∠-∠=∠-∠=∠,22E ∠=︒, 22D ∴∠=︒,故选:A .4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .8【解答】解:连接OE ,与DC 交于点F , 四边形ABCD 为矩形,OA OC ∴=,OB OD =,且AC BD =,即OA OB OC OD ===, //OD CE ,//OC DE , ∴四边形ODEC 为平行四边形,OD OC =,∴四边形ODEC 为菱形,DF CF ∴=,OF EF =,DC OE ⊥, //DE OA ,且DE OA =, ∴四边形ADEO 为平行四边形,2AD =,2DE =,OE ∴=,即OF EF ==在Rt DEF ∆中,根据勾股定理得:1DF ==,即2DC =,则11222ODEC S OE DC =⋅=⨯=菱形.故选:A .5.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)【解答】解:观察图象可知(4,2)O '-,故选:C .6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==- B .121x x ==C .11x =,21x =-D .120x x ==【解答】解:(1)10x x x +--=,(1)(1)0x x x ∴+-+=,则(1)(1)0x x +-=, 10x ∴+=或10x -=,解得11x =-,21x =, 故选:C .7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( ) A .3600(1)12000x += B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=【解答】解:根据题意列出方程,得236003600(1)3600(1)12000x x ++++=. 故选:D .8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<【解答】解:抛物线的对称轴为直线1x =,抛物线与x 轴的一个交点坐标为(1,0)-, ∴抛物线与x 轴的另一个交点坐标为(3,0), ∴抛物线的解析式可设为(1)(3)y a x x =+-,把(0,3)-代入得31(3)a -=-,解得3a =,∴抛物线的解析式为(1)(3)y x x =+-,即223y x x =--,2(1)4y x =--,1x ∴=时,y 有最小值4-, 2x =时,2233y x x =--=-,∴当12x -<<,y 的取值范围是40y -<.故选:D .9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:点(,)m n 在坐标系中的第四象限, 0m ∴>,0n <, 20m ∴+>,40n -<,∴一次函数(2)4y m x n =++-的图象经过第一、三、四象限.故选:B .10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1 CD【解答】解:由旋转的特性可知,BM BN =, 又60MBN ∠=︒, BMN ∴∆为等边三角形. MN BM ∴=,点M 是高CH 所在直线上的一个动点,∴当BM CH ⊥时,MN 最短(到直线的所有线段中,垂线段最短). 又ABC ∆为等边三角形,且2AB BC CA ===,∴当点M 和点H 重合时,MN 最短,且有112MN BM BH AB ====. 故选:B .二、填空题(每小题3分,共15分) 11.计算23--= 12- . 【解答】解:原式93=-- 12=-.故答案为:12-.12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 2x - .【解答】解:解不等式12x-,得:2x -,解不等式74x -+>,得:3x <, 则不等式组的解集为2x -, 故答案为:2x -.13.二次函数224y x x =-+的顶点坐标是 (1,3) .【解答】解:224y x x =-+,∴12ba-= 244144344ac b a -⨯⨯-==, 即顶点坐标为(1,3), 故答案为:(1,3).14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 3 个.【解答】解:①因为抛物线的对称轴1x =, 所以12ba-=,即20b a +=, 所以①正确;②因为(1,0)A -,对称轴1x =,所以设抛物线与x 轴的另一个交点为E , 所以(3,0)E ,所以3x =时,0y =,即3x =是20ax bx c ++=的一个根. 所以②正确; ③如图:过点B 作BD ⊥对称轴于点D ,设对称轴交x 轴于点C , AP BP ⊥, 90APB ∴∠=︒, 90APC BPD ∴∠+∠=︒, 90BPD PBD ∠+∠=︒, PBD APC ∴∠=∠,AP BP =,Rt APC Rt PBD(AAS)∴∆≅∆ 1PC BD ∴==,2DP AC ==, 3DC ∴=, 3OB ∴=,(0,3)B ∴.又(3,0)E ,(1,0)A -.设抛物线解析式为(1)(3)y a x x =+-, 把(0,3)B 代入,解得1a =-, ∴抛物线解析式为223x x -++,当1x =时,4y =, 即4a b c ++=. 所以③正确. 故答案为3.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的【解答】解:分两种情况: ①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形, 90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上, 1452BAE B AE BAD ∴∠=∠'=∠=︒,AB BE ∴=, ∴315a =, 53a ∴=; ②当点B '落在CD 边上时,如图2. 四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上, 90B AB E ∴∠=∠'=︒,1AB AB ='=,35EB EB a ='=,DB ∴'==,3255EC BC BE a a a =-=-=.90B AD EB C AB D ∠'=∠'=︒-∠', 90D C ∠=∠=︒,ADB ∴∆'∽△B CE ',∴DB AB CE B E ''='12355a =,解得1a =2a =. 综上,所求a 的值为53或故答案为53三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 【解答】解:解方程220x x -=得:0x =或2,2234(1)121x x x x x ---÷+++2(2)(2)(1)1(2)(2)x x x x x x +-+=++- 1x =+,当2x =时,原式没有意义,舍去; 当0x =时,原式1=.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 50 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:48%50÷=(人),最喜爱戏曲的人数为:506%3⨯=(人);“娱乐”类人数占被调查人数的百分比为:18100%36%50⨯=, ∴ “体育”类人数占被调查人数的百分比为:18%30%36%6%20%----=, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是36020%72︒⨯=︒;故答案为:50,3,72︒.(2)20008%160⨯=(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.【解答】解:(1)对于直线y =+,令0x =,则y = 令0y =,则1x =-,故点A 的坐标为,点B 的坐标为(1,0)-,则AO =1BO =, 在Rt ABO ∆中,tan AOABO BO∠==,60ABO ∴∠=︒;(2)在ABC ∆中, AB AC =,AO BC ⊥, AO ∴为BC 的中垂线,即BO CO =,则C 点的坐标为(1,0),设直线l 的解析式为:(y kx b k =+,b 为常数),则0b k b ==+⎪⎩,解得:k b ⎧=⎪⎨=⎪⎩即函数解析式为:y =+.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根.【解答】解:(1)关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根, ∴210(2)4(1)(2)0k k k k +≠⎧⎨=--+->⎩, 解得:2k >-且1k ≠-,∴实数k 的取值范围为2k >-且1k ≠-.(2)2k >-且1k ≠-,∴满足条件的k 的最小整数值为0,此时原方程为220x -=,解得:1x =,2x =.20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标;(4)在x轴上找一点P,使PA PB+的值最小,请直接写出点P的坐标;【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.222(3)如图,点M即为所求,点M的坐标(1,0)-.(4)如图,点P即为所求,点P的坐标(2,0).21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;【解答】解:(1)设每箱新红星a 元,每箱红富士b 元,由题意可得: 40600.943001000.9354950a b a b +⨯=⎧⎨⨯+=⎩, 解得4050a b =⎧⎨=⎩,答:每箱新红星40元,每箱红富士50元;(2)设购置新红星x 箱,则购置红富士(120)x -箱,所需的总费用为y 元, 由题意可得:1(120)2x x -, 解得:40x , 又60x ,所以新红星箱数x 的取值范围:4060x , 当4050x <时, 40500.8(120)y x x =+⨯- 804800x =+,所以40x =时,y 有最小值80000元,当5060x 时,0.840500.8(120)724800y x x x =⨯+⨯-=+, 所以50x =时,y 有最小值8400元, 80008400<,∴购买新红星40箱,红富士80块,费用最少,最少费用为8000元.22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: 12S S = . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.【解答】解:(1)结论:12S S =.理由:如图1中,作EH BA ⊥交BA 的延长线于H ,CM AD ⊥于M .由题意CA AE =,AD AB =,90CAE DAF ∠=∠=︒, EAH CAM ∴∠=∠, sin sin CAM EAH ∴∠=∠,111sin 22S AD CM AD AC CAM ==∠,211sin 22S AB EH AB AE EAH ==∠, 12S S ∴=.故答案为12S S =.(2)结论:2BE AM =.理由:如图2中,延长AM 到T ,使得MT AM =,连接CT ,DT .CM DM =,AM MT =,∴四边形ADTC 是平行四边形,//AC DT ∴,AC DT =,180CAD ADT ∴∠+∠=︒,90CAE BAD ∠=∠=︒,180BAE CAD ∴∠+∠=︒,BAE ADT ∴∠=∠,AE AC DT ==,BA AD =,()BAE ADT SAS ∴∆≅∆,BE AT ∴=,AM MT =,2BE AM ∴=.(3)作//DT AC 交AH 的延长线于T .连接DE .=,AC AEAB AD∠=∠=︒,=,90BAD CAE∴∠=∠=︒,BAC DAE∠=∠,ABD ADB45∴∆≅∆,BAC DAE SAS()BC DE==,∴∠=∠=︒,2ADE ABC45∴∠=∠+∠=︒,BDE BDA ADE90BE∴===,∠=∠=︒,BAD CAE90∴∠+∠=︒,180CAD BAEAC DT,//∴∠+∠=︒,CAD ADT180∴∠=∠,BAE ADTAH BE⊥,∠+∠=︒,ABE BAT90DAT BAT∴∠+∠=︒,90∴∠=∠,DAT ABE=,AB AD∴∆≅∆,()ABE DAT ASA=,∴=,AE DTBE AT=,AC AE∴=,AC DT∠=∠,∠=∠,AHC DHTCAH T∴∆≅∆,()AHC THD AAS∴=,AH HT12AH BE ∴==. 23.如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C 直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m . ①求PBC ∆面积最大值和此时m 的值; ②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【解答】解:(1)直线122y x =-+经过点B ,C ,则点B 、C 的坐标分别为:(4,0)、(0,2), 将点B 、C 的坐标代入抛物线表达式并解得:72b =,2c =, 故抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点27(,2)2P m m m -++,点1(,2)2H m m -+, PBC ∆面积2211714(22)282222PH OB m m m m m =⨯⨯=⨯⨯-+++-=-+, 20-<,∴面积存在最大值为8,此时,2m =;②设27(,2)2P m m m -++,点1(,2)2Q n n -+,当AB 是平行四边形的边时, 点A 向右平移92个单位得到B ,同样点()P Q 向右平移92个单位得到()Q P , 则92m n ±=,2712222m m n -++=-+,解得:m =,n =当AB 是平行四边形的对角线时, 由中点公式得:4m n +=,27122222m m n -++-+=,解得:0m =或4(舍去4);综上点P 的坐标为,或,或,或或(0,2).。
2020-2021学年七年级下学期期中数学试卷及答案解析 (36)
2020-2021学年七年级下学期期中数学试卷一、选择题(本题共有12小題,每小题3分,共36分,每小题有四个选项,其中有一个是正确的)1.−67的绝对值是( )A .67B .−76C .−67D .76 解:−67的绝对值是67.故选:A .2.港珠澳大桥的桥隧全长55000米,是世界最长的跨海大桥,数字55000用科学记数法表示为( )A .5.5×104B .0.55×104C .5.5×103D .55×103解:将55000用科学记数法表示应为:5.5×104.故选:A .3.图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .解:从左面看易得第一层左上角有1个正方形,第二层最有2个正方形.故选:A .4.某商品的进价为200元,标价为300元,打x 折销售时后仍获利5%,则x 为( )A .7B .6C .5D .4解:设商品是按标价的x 折销售的,根据题意列方程得:(300×x 10−200)÷200=5%,解得:x =7.则此商品是按标价的7折销售的.故选:A .5.如图,将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=( )A .45°B .50°C .60°D .70°解:如图,∵直尺的两边互相平行,∴∠3=∠1=40°,∴∠4=∠3=40°,∴∠2=∠4+30°=40°+30°=70°.故选:D .6.下列运算正确的是( )A .3x 3﹣5x 3=﹣2xB .6x 3÷2x ﹣2=3xC .(13x 3)2=19x 6D .﹣3(2x ﹣4)=﹣6x ﹣12解:A 、3x 3﹣5x 3=﹣2x 3,原式计算错误,故本选项错误;B 、6x 3÷2x ﹣2=3x 5,原式计算错误,故本选项错误; C 、(13x 3)2=19x 6,原式计算正确,故本选项正确; D 、﹣3(2x ﹣4)=﹣6x +12,原式计算错误,故本选项错误;故选:C .7.下列说法正确的是( )A .单项式32nx 2y 的系数是32B .同一平面内,过一点有且只有一条直线与已知直线平行C .内错角相等,两直线平行D .若AB =BC ,则点B 是线段AC 的中点解:A 、单项式32nx 2y 的系数是32n ,故A 错误;B、同一平面内,过直线外一点有且只有一条直线与已知直线平行,故B错误;C、内错角相等,两直线平行,故C正确;D、A、B、C在同一条直线上,若AB=BC,则点B是线段AC的中点,故D错误;故选:C.8.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.9.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS解:由作法得OD=OC=OC′=OD′,CD=C′D′,则可根据“SSS”可判定△OCD≌△OC′D′,所以∠A′O′B′=∠AOB.故选:D.10.从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是()A.y=t﹣0.5B.y=t﹣0.6C.y=3.4t﹣7.8D.y=3.4t﹣8解:根据题意得:y=2.4+(t﹣3)=t﹣0.6(t≥3).故选:B.11.观察下列关于a的单项式,探究其规律:a,3a2,5a3,7a4,9a5,….按照上述规律,第2019个单项式是()A.2019a2019B.4039a2019C.4038a2019 D.4037a2019解:根据分析的规律,得第2019个单项式是4037x2019.故选:D.12.如图,两个正方形边长分别为a、b,如果a+b=9,ab=12,则阴影部分的面积为()A.25B.22.5C.13D.6.5解:当a+b=7,ab=12时,由题意得:S阴影=12a2−12b(a﹣b)=12a2−12ab+12b2=12[(a+b)2﹣2ab]−12ab=12(81﹣24)﹣6=22.5故选:B.二、填空题.(本题共有2小题,每小题3分,共6分)13.若﹣5x a+5y3+8x3y b=3x3y3,则ab的值是﹣6.解:∵﹣5x a+5y3+8x3y b=3x3y3,∴a+5=3,b=3,解得:a=﹣2,故ab=﹣6.故答案为:﹣6.14.在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB和∠BOC的平分线,则∠MON的度数是30°或50°.解:∠BOC在∠AOB内部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB﹣∠BON=40°﹣10°=30°;∠BOC在∠AOB外部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB+∠BON=40°+10°=50°,故答案为:30°或50°.三、解答题(本题6分)15.(6分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).一、填空题[每题3分,共2题,共6分)16.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10.解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.17.如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高,点E 从点B出发,在直线BC上以2cm的速度移动,过点E作BC的垂线交直线CD于点F,当点E运动2或5s时,CF=AB.解:①如图,当点E在射线BC上移动时,若E移动5s,则BE=2×5=10(cm),∴CE=BE﹣BC=10﹣3=7cm.∴CE=AC,在△CFE与△ABC中,{∠ECF=∠ACE=AC∠CEF=∠ACB,∴△CEF ≌△ABC (ASA ),∴CF =AB ,②当点E 在射线CB 上移动时,若E 移动2s ,则BE ′=2×2=4(cm ),∴CE ′=BE ′+BC =4+3=7(cm ),∴CE ′=AC ,在△CF ′E ′与△ABC 中,{∠E′CF =∠A CE′=AC ∠CEF′=∠ACD =90°,∴△CF ′E ′≌△ABC (ASA ),∴CF ′=AB ,综上所述,当点E 在射线CB 上移动5s 或2s 时,CF ′=AB ;故答案为:2或5.二、解答题18.(8分)(1)计算:(12)−1−(3.14﹣π)0+|﹣3|﹣0.253×43(2)解方程;x 6−30−x 4=5解:(1)原式=2﹣1+3﹣(0.25×4)3=4﹣1=3;(2)去分母得:2x ﹣3(30﹣x )=60,则2x ﹣90+3x =60,整理得:5x =150,解得:x =30.19.(6分)化简求值:[(2x +y )2﹣(2x +y )(x ﹣y )﹣2x 2]÷(﹣2y ),其中x =﹣2,y =12.解:原式=(4x2+4xy+y2﹣2x2+2xy﹣xy+y2﹣2x2)÷(﹣2y)=(5xy+2y2)÷(﹣2y)=−5 2x﹣y,当x=﹣2,y=12时,原式=5−12=412.20.(6分)如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=12∠ABC,∠ECB=12∠ACB∵∠ABC=∠ACB(已知)∴∠DBC=∠ECB.∠F=∠DBF(已知)∴∠F=∠ECB∴EF∥AD(同位角相等,两直线平行).解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=12∠ABC,∠ECB=12∠ACB,∵∠ABC=∠ACB(已知)∴∠DBC=∠ECB.∵∠DBF=∠F,(已知)∴∠F=∠ECB,∴EF∥AD(同位角相等,两直线平行).21.(8分)小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,l1描述小凡的运动过程;(2)小凡谁先出发,先出发了10分钟;(3)小光先到达图书馆,先到了10分钟;(4)当t=34分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=18千米/分钟,小光所走的路程为3千米时,用的时间为:3÷18=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:520+(60−50)60=10(千米/小时),小光的速度为:550−1060=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.22.(8分)如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB 的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.解:(1)∵D是BC的中点,∴BD=CD,∵AB∥CG,∴∠B=∠DCG,又∵∠BDE=∠CDG,∴△BDE≌△CDG,∴BE=CG;(2)BE+CF>EF.理由:如图,连接FG,∵△BDE≌△CDG,∴DE=DG,又∵FD⊥EG,∴FD垂直平分EG,∴EF=GF,又∵△CFG中,CG+CF>GF,∴BE+CF>EF.23.(10分)(1)如图1中,∠ABC=90°,AB=BC,点B在直线上L上,过A、C两点作直线L的连线段垂足分别为点D、点E,求证:△ADB≌△BEC;(2)如图2,△ABC中,∠ACB=90°,AC=6,BC=8,点P从A点出发沿A﹣C﹣B 路径向终点运动,终点为B点,点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A 点,点P与Q分别以1和3的迳动速度同时开始运动,两点都要到相应的终点才能停止运动,在某时刻,分别过P和Q作PF⊥l于B,QF垂直l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.(1)证明:∵△ABC是等腰直角三角形,∴AB=AC.∠ABC=90°,∵AD⊥l,CE⊥l,∴∠ADB=∠BEC=∠ABC=90°,∴∠DAB+∠DBA=90°,∠DBA+∠CBE=90°,∴∠DAB=∠CBE,∴△ADB≌△BEC,(2)解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,如图2所示:CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,如图3所示:∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;如图4所示:理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,如图5所示:∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意即点P运动1或3.5或12秒时,△PEC与△QFC全等.。
2019-2020学年湖北省武汉市江岸区七一中学七年级下学期期中数学模拟试卷(二) (解析版)
2019-2020学年七年级第二学期期中数学模拟试卷(二)一、选择题(共10小题)1.9的平方根是()A.±3B.﹣3C.3D.2.下列各数中,是无理数的为()A.B.0.5050050005…C.3.14D.3.在下列现象中,属于平移的是()A.荡秋千运动B.月亮绕地球运动C.操场上红旗的飘动D.教室可移动黑板的左右移动4.下列各式中,正确的是()A.B.C.D.5.在下列图形中,线段PQ的长度表示点P到直线L的距离的是()A.B.C.D.6.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°7.已知是整数,则满足条件的最小正整数n为()A.0B.1C.2D.88.下列命题中,真命题的是()A.直线外一点与直线上所有点的连线段中,垂线段最短B.两条直线被第三条直线所截,内错角相等C.过一点有且只有一条直线与已知直线垂直D.图形在平移过程中,对应线段平行且相等9.将一组线段按如图所示的规律排列下去,若有序数对(m,n)表示第m行从左到右第n 个数,如(3,2)表示的数是5,则(15,6)表示的数是()A.110B.﹣110C.111D.﹣11210.如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EF∥HC,连FH交AD 于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①AD∥BC;②GK平分∠AGC;③∠E+∠EAG+∠HCK=180°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有()A.4个B.3个C.2个D.1个二、填空题(共7小题,共26.0分)11.=1.01,求=.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.13.一个数的平方等于它本身,这个数是,一个数的平方根等于它本身,这个数是.14.与最接近的两个整数之和为.15.如果两个角的两边分别垂直,其中一个角比另一个角的2倍少9°,那么这两个角的和是.16.对于实数a,我们规定:符号[a]表示不大于a的最大整数,例如:[]=2,[]=2.(1)若[]=1,写出满足题意的x的整数值.(2)=.17.阅读理解并在括号内填注理由:如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,∴∠MEB=∠MFD,(),∴又∵∠1=∠2,(),∴∠MEB﹣∠1=∠MFD﹣∠2,即∠MEP=∠,∴EP∥,().三、解答题(共7小题,共64.0分)18.计算:(1);(2).19.求下列各式中的x的值:(1)x3﹣8=0;(2)(x﹣1)2=4.20.如图,已知锐角∠AOB,M,N分别是∠AOB两边OA,OB上的点.(1)过点M作OB的垂线段MC,C为垂足;(2)过点N作OA的平行线ND;(3)平移△OMC,使点M移动到点N处,画出平移后的△ENF,其中E,F分别为点O,C的对应点;(4)请直接写出点E是否在直线ND上.21.观察下列各式发现规律,完成后面的问题:2×4=32﹣1,3×5=42﹣1,4×6=52﹣1,5×7=62﹣1(1)12×14=,99×101=(2)(n﹣1)(n+1)=(n≥1且n为整数)(3)童威家现有一个用篱笆围成的长方形菜园,其长比宽多2米(长、宽均为整数),为了扩大菜园面积,童威用原来的篱笆围成一个正方形,童威的做法对吗?面积是否扩大了?如果扩大了,扩大了多少?试说明理由.22.已知:如图,射线CB∥OA,∠C=∠OAB=110°,点E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动线段AB,其它条件不变,那么∠OFC:∠OBC的值是否发生变化?若变化,找出变化规律;若不变,求出这个比值.23.(1)①如图1,已知AB∥CD,点E在直线AB、CD之间,探究∠ABE、∠BED、∠CDE之间的数量关系,并说明理由.②将图1中射线BA绕B逆时针方向旋转一定角度后,射线BA交射线DC于F,得到图2,形成四边形BFDE,探究四边形中∠B、∠E、∠D、∠BFD之间有何数量关系,并说明理由.(2)在图3中,AB∥CD,∠ABE与∠CDE的角平分线交于点N,∠ABM=∠ABN,∠CDM=∠CDN,写出∠M与∠E之间数量关系,并说明理由.24.(1)经过薄凸透镜光心的光线,其传播方向不变.如图1,光线a从空气中射入薄凸透镜,再经过凸透镜的光心,射入到空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行?并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等.如图2有一口井,已知入射光线a与水平线OC的夹角为15°,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线OC 的夹角∠MOC)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=160°,∠DCF=80°,射线AB、CD分别绕A点、C点以2度/秒和5度/秒的速度同时顺时针转动.设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.参考答案一、选择题(共10小题,共30.0分)1.9的平方根是()A.±3B.﹣3C.3D.【分析】利用平方根定义计算即可得到结果.解:9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.下列各数中,是无理数的为()A.B.0.5050050005…C.3.14D.【分析】根据无理数是无限不循小数,可得答案.解:A.,是有理数;B.0.5050050005…是无理数;C.3.14是有理数;D.是有理数.故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有限小数或无限循环小数是有理数.3.在下列现象中,属于平移的是()A.荡秋千运动B.月亮绕地球运动C.操场上红旗的飘动D.教室可移动黑板的左右移动【分析】根据平移的定义,旋转的定义对各选项分析判断即可得解.解:A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室可移动黑板的左右移动是平移,故本选项正确.故选:D.【点评】本题考查了生活中的平移现象,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.4.下列各式中,正确的是()A.B.C.D.【分析】分别根据算术平方根的定义,平方根的定义以及立方根的定义逐一判断即可.解:A.,故本选项不合题意;B.,故本选项不合题意;C.,故本选项不合题意;D.,正确.故选:D.【点评】本题主要考查了算术平方根、平方根以及立方根,熟记相关定义是解答本题的关键.5.在下列图形中,线段PQ的长度表示点P到直线L的距离的是()A.B.C.D.【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的概念判断.解:图A、B、D中,线段PQ不与直线L垂直,故线段PQ不能表示点P到直线L的距离;图C中,线段PQ与直线L垂直,垂足为点Q,故线段PQ能表示点P到直线L的距离;故选:C.【点评】本题考查了点到直线的距离的概念.6.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.已知是整数,则满足条件的最小正整数n为()A.0B.1C.2D.8【分析】先把化简成2,再根据是整数分析最小正整数n的值即可.解:∵=2且是整数∴2n是完全平方数∴正整数n的最小值是2故选:C.【点评】此题主要考查二次根式的定义和化简,有一定难度,考生需重点关注到是整数以及是求n的最小正整数值.同时,熟练掌握二次根式的定义和化简方法,也是解题的关键.8.下列命题中,真命题的是()A.直线外一点与直线上所有点的连线段中,垂线段最短B.两条直线被第三条直线所截,内错角相等C.过一点有且只有一条直线与已知直线垂直D.图形在平移过程中,对应线段平行且相等【分析】根据垂线段公理对A进行判断;根据平行线的性质对B进行判断;根据垂直公理对C进行判断;根据平移的性质对D进行判断.解:A、直线外一点与直线上所有点的连线段中,垂线段最短,此命题为真命题,B、两条平行直线被第三条直线所截,内错角相等,所以B选项为假命题;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,所以C选项为假命题;D、图形在平移过程中,对应线段平行(或共线)且相等,所以D选项为假命题.故选:A.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.将一组线段按如图所示的规律排列下去,若有序数对(m,n)表示第m行从左到右第n 个数,如(3,2)表示的数是5,则(15,6)表示的数是()A.110B.﹣110C.111D.﹣112【分析】根据有序数对(m,n)表示第m行从左到右第n个数,对如图中给出的有序数对和(3,2)表示整数5可得规律,进而可求出(15,6)表示的数.解:根据有序数对(m,n)表示第m行从左到右第n个数,对如图中给出的有序数对和(3,2)表示整数5可知:(3,2):+2=5;(3,1):﹣+1=﹣4;(4,4):﹣+4=﹣10;…由此可以发现,对所有数对(m,n)(n≤m)有,(m,n):(1+2+3+…+m﹣1)+n=+n.表示的数是偶数时是负数,奇数时是正数,所以(15,6)表示的数是:+6=111.故选:C.【点评】本题考查了规律型﹣图形的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律.10.如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EF∥HC,连FH交AD 于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①AD∥BC;②GK平分∠AGC;③∠E+∠EAG+∠HCK=180°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有()A.4个B.3个C.2个D.1个【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK =∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;延长EF 交AD于P,延长CH交AD于Q,根据平行线的性质和三角形外角的性质得到∠E+∠EAG+∠HCK=180°;故③正确;根据题意列方程得到∠FGA=∠DGH=37°,设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义健康得到结论.解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;延长EF交AD于P,延长CH交AD于Q,∵EF∥CH,∴∠EPQ=∠CQP,∵∠EPQ=∠E+∠EAG,∴∠CQG=∠E+∠EAG,∵AD∥BC,∴∠HCK+∠CQG=180°,∴∠E+∠EAG+∠HCK=180°;故③正确;∵∠FGA的余角比∠DGH大16°,∴90°﹣∠FGA﹣∠DGH=16°,∵∠FGA=∠DGH,∴90°﹣2∠FGA=16°,∴∠FGA=∠DGH=37°,设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.【点评】本题考查了平行线的判定和性质,角平分线的定义,三角形的外角的性质,正确的识别图形是解题的关键.二、填空题(共7小题,共26.0分)11.=1.01,求=101.【分析】依据被开方数向左或向右移动2n位,则对应的算术平方根向左或向右移动n 位求解即可.解:∵=1.01,∴=101.故答案为:101【点评】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.【点评】本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.13.一个数的平方等于它本身,这个数是0,1,一个数的平方根等于它本身,这个数是0.【分析】分别根据平方、平方根的概念解答即可.解:一个数的平方等于它本身,这个数是0,1;一个数的平方根等于它本身,这个数是0.故答案为:0,1;0.【点评】此题主要考查了平方运算、平方根的定义.做此题时可根据各个概念,从0,1中找.14.与最接近的两个整数之和为13.【分析】直接利用与最接近的两个整数是6和7,进而得出答案.解:∵,∴,与最接近的两个整数是6和7,6+7=13.故答案为:13【点评】本题考查了估算无理数的大小,利用平方解题是解的关键.15.如果两个角的两边分别垂直,其中一个角比另一个角的2倍少9°,那么这两个角的和是180°或18°.【分析】由角的两边分别垂直可得出两角相等或互补,设其中一个角为α,则另一个角为2α﹣9°,然后列方程解题即可.解:设一个角为α,则另一个角为2α﹣9°∵两个角的两边分别垂直∴α+2α﹣9°=180°或α=2α﹣9°解得α=63°或α=9°∴当α=63°时,2α﹣9°=117°当α=9°时,2α﹣9°=9°即63°+117°=180°9°+9°=18°∴这两个角的和是180°或18°故答案为:180°或18°【点评】本题考查了垂线,熟记两边分别垂直的两个角的关系是相等或者互补是解决本题的关键,千万不要漏掉其中一个情况.16.对于实数a,我们规定:符号[a]表示不大于a的最大整数,例如:[]=2,[]=2.(1)若[]=1,写出满足题意的x的整数值1,2,3.(2)=﹣5148.【分析】(1)根据定义可知x<4,可得满足题意的x的整数值;(2)根据定义化简计算即可.解:(1))∵12=1,22=4,且[]=1,∴x=1,2,3,故答案为:1,2,3;(2)=(﹣3)+(﹣4)+…+(﹣101)=﹣5148.故答案为:﹣5148【点评】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.17.阅读理解并在括号内填注理由:如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,∴∠MEB=∠MFD,(两直线平行,同位角相等),∴又∵∠1=∠2,(已知),∴∠MEB﹣∠1=∠MFD﹣∠2,即∠MEP=∠MFQ,∴EP∥FQ,(同位角相等,两直线平行).【分析】由两直线平行同位角相等得∠MEB=∠MFD,根据角的和差证明∠MEP=∠MFQ,最后由同位角相等,证明EP∥FQ.【解答】证明:如图所示:∵AB∥CD(已知),∴∠MEB=∠MFD,(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠MEB﹣∠1=∠MFD﹣∠2(等式的性质),∴∠MEP=∠MFQ(角的和差),∴EP∥FQ(同位角相等,两直线平行).【点评】本题综合考查平行线的判定与性质,角的和差,等式的性质等相关知识点,重点掌握平行线的判定与性质,难点是一题多解,几种不同方法证明两直线平行.三、解答题(共7小题,共64.0分)18.计算:(1);(2).【分析】(1)先求被开方数,再开方运算即可;(2)由绝对值的性质,先进行绝对值运算,再进行加法运算即可.解:(1)原式==;(2)原式=2+﹣=3﹣.【点评】本题考查实数的运算;熟练掌握二次根式的运算,绝对值运算是解题的关键.19.求下列各式中的x的值:(1)x3﹣8=0;(2)(x﹣1)2=4.【分析】(1)根据立方根的定义解答即可;(2)根据平方根的定义解答即可.解:(1)x3﹣8=0,x3=8,,x=2;(2)(x﹣1)2=4x﹣1=±2,x=1+2或x=1﹣2,解得x=3或x=﹣1.【点评】本题主要考查了立方根和平方根,熟记相关定义是解答本题的关键.20.如图,已知锐角∠AOB,M,N分别是∠AOB两边OA,OB上的点.(1)过点M作OB的垂线段MC,C为垂足;(2)过点N作OA的平行线ND;(3)平移△OMC,使点M移动到点N处,画出平移后的△ENF,其中E,F分别为点O,C的对应点;(4)请直接写出点E是否在直线ND上.【分析】(1)依据过点M作OB的垂线段MC,C为垂足进行作图;(2)依据过点N作OA的平行线ND进行作图;(3)依据平移△OMC,使点M移动到点N处进行作图;(4)依据AO∥DN,AO∥NE,即可得到EN与DN重合.解:(1)如图所示,垂线段MC即为所求;(2)如图所示,直线ND即为所求;(3)如图所示,△ENF即为所求;(4)点E在直线ND上.【点评】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.观察下列各式发现规律,完成后面的问题:2×4=32﹣1,3×5=42﹣1,4×6=52﹣1,5×7=62﹣1(1)12×14=132﹣1,99×101=1002﹣1(2)(n﹣1)(n+1)=n2﹣1(n≥1且n为整数)(3)童威家现有一个用篱笆围成的长方形菜园,其长比宽多2米(长、宽均为整数),为了扩大菜园面积,童威用原来的篱笆围成一个正方形,童威的做法对吗?面积是否扩大了?如果扩大了,扩大了多少?试说明理由.【分析】(1)根据等式的变化,直接写出后面两个等式的结果即可;(2)由(1)找规律可得结论;(3)设原长方形菜园的宽为x米,则长为(x+2)米,分别计算原长方形和现在正方形的面积,作对比可得结论.解:(1)∵2×4=32﹣1,3×5=42﹣1,4×6=52﹣1,5×7=62﹣1,…∴12×14=132﹣1,99×101=1002﹣1;故答案为:132﹣1,1002﹣1;(2)由(1)得:(n﹣1)(n+1)=n2﹣1(n≥1且n为整数),故答案为:n2﹣1;(3)设原长方形菜园的宽为x米,则长为(x+2)米,此时长方形的周长=2(x+x+2)=4x+4,∴现在正方形的边长为=x+1,∴正方形的面积=(x+1)2=x2+2x+1,原长方形的面积=x(x+2)=x2+2x,∴童威的做法对,面积扩大了1平方米.【点评】本题考查了实数以及规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.22.已知:如图,射线CB∥OA,∠C=∠OAB=110°,点E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动线段AB,其它条件不变,那么∠OFC:∠OBC的值是否发生变化?若变化,找出变化规律;若不变,求出这个比值.【分析】(1)利用平行线的性质求出∠AOC,再证明∠EOB=∠AOC即可.(2)想办法证明∠CFO=2∠OBC即可解决问题.解:(1)∵AO∥BC,∴∠C+∠AOC=180°,∵∠C=110°,∴∠AOC=70°,∵CE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠COA=35°.(2)∵BC∥OA,∴∠AOB=∠OBC,∵∠AOB=∠BOF,∴∠FOB=∠OBC,∵∠CFO=∠FOB+∠OBC=2∠OBC,∴∠OFC:∠OBC=2.【点评】本题考查平移的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)①如图1,已知AB∥CD,点E在直线AB、CD之间,探究∠ABE、∠BED、∠CDE之间的数量关系,并说明理由.②将图1中射线BA绕B逆时针方向旋转一定角度后,射线BA交射线DC于F,得到图2,形成四边形BFDE,探究四边形中∠B、∠E、∠D、∠BFD之间有何数量关系,并说明理由.(2)在图3中,AB∥CD,∠ABE与∠CDE的角平分线交于点N,∠ABM=∠ABN,∠CDM=∠CDN,写出∠M与∠E之间数量关系,并说明理由.【分析】(1)①过E作EF∥AB,根据平行线的性质即可得到结论;②过点B作GB∥CD,根据平行线的性质即可得到结论;(2)由(1)①的结论即可得到结果.解:(1)①如图1,过E作EF∥AB,∴∠FEB+∠EBA=180°,∵CD∥AB,EF∥AB,∴CD∥EF,∴∠CDE+∠DEF=180°,∴∠CDE+∠DEB+∠ABE=360°,②如图2,过点B作GB∥CD,∴∠BFD=∠GBF,由(1)知∠GBE+∠E+∠D=360°,∴∠B+∠E+∠D+∠BFD=360°;(2)如图3,过M作MF∥AB,∵AB∥CD,∴MF∥CD,∵∠ABM=∠ABN,∠CDM=∠CDN,∴设∠MBN=x,∠MDN=y,则∠MDC=2y,∠ABM=2x,∠EBN=3x,∠EDN=3y,∴∠BMF=2x,∠DMF=2y,∠ABE=6x,∠CDE=6y,∴∠BMD=2(x+y),过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠BEG=180°﹣∠ABE=180°﹣6x,∠DEG=180°﹣∠CDE=180°﹣6y,∴∠BED=∠BEG+∠DEG=360°﹣(6x+6y)=360°﹣3∠BMD,∴3∠BMD+∠BED=360°.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.24.(1)经过薄凸透镜光心的光线,其传播方向不变.如图1,光线a从空气中射入薄凸透镜,再经过凸透镜的光心,射入到空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行?并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等.如图2有一口井,已知入射光线a与水平线OC的夹角为15°,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线OC 的夹角∠MOC)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=160°,∠DCF=80°,射线AB、CD分别绕A点、C点以2度/秒和5度/秒的速度同时顺时针转动.设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.【分析】(1)根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上42°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.解:(1)∵∠3﹣∠1=∠4﹣∠2,∴a∥b;(2)∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为15°,b垂直照射到井底,∴∠1+∠2=180°﹣15°﹣90°=75°,∴∠1=×75°=37.5°,∴MN与水平线的夹角为:∠MOC=37.5°+15°=52.5°;(3)解:存在,分三种情况如图①,AB与CD在EF的两侧时,∵∠BAF=160°,∠DCF=80°,∴∠ACD=180°﹣80°﹣(5t)°,∠BAC=160°﹣(2t)°,要使AB∥CD,则∠ACD=∠BAC,∴180°﹣80°﹣(5t)°=160°﹣(2t)°,解得t=﹣20(舍去);如图②,CD旋转到AB都在EF的右侧时,∵∠BAC=160°,∠DCF=80°,∠DCF=360°﹣(5t)°﹣80°,∠BAC=160°﹣(2t)°,要使AB∥CD,则∠BAC=∠DCF,即360°﹣(5t)°﹣80°=160°﹣(2t)°,解得t=40,此时(360°﹣80°)÷5°=56,∴0<t<56;如图③,CD旋转到AB都在EF的左侧时,∵∠BAC=160°,∠DCF=80°,∴∠DCF=(5t)°﹣(180°﹣80°+180°)=(5t)°﹣280°;∠BAC=(2t)°﹣160°;要使AB∥CD,则∠BAC=∠DCF,即(5t)°﹣280°=(2t)°﹣160°;解得t=40,此时2t>160,∵80°<160°,∴此情况不存在.综上所述,t为40秒时,CD与AB平行.【点评】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.。
2019-2020学年北京师大附属实验中学七年级(下)期中数学试卷(解析版)
2019-2020学年师大附属实验中学七年级(下)期中数学试卷一.选择题(共10小题)1.同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直D.平行或相交2.在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各数中是无理数的是()A.3.1415926B.C.D.4.如图,∠1和∠2是对顶角的图形有()个.A.1B.2C.3D.45.两条直线被第三条直线所截,若∠1与∠2是同旁内角,且∠1=70°,则()A.∠2=70°B.∠2=110°C.∠2=70°或∠2=110°D.∠2的度数不能确定6.在平面直角坐标系中,点P(4,﹣3)到x轴的距离()A.4B.3C.5D.﹣37.下列语句中,真命题是()A.若a2=b2,则a=bB.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.﹣3是的平方根D.相等的两个角是对顶角8.如图,将三角形ABC沿BC方向平移3cm得到三角形DEF,若三角形ABC的周长为20cm,则四边形ABFD的周长为()A.23cm B.26cm C.29cm D.32cm9.如图,若“马”所在的位置的坐标为(﹣2,2),“象”所在位置的坐标为(﹣1,4),则“将”所在位置的坐标为()A.(4,1)B.(1,4)C.(1,2)D.(2,1)10.如图,3,在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.3﹣C.﹣3D.6﹣二.填空题11.如图,当剪子∠AOB增大15°时,∠COD增大度,其根据是:.12.﹣绝对值是,2﹣的相反数是.13.如果点P(a,2)在第二象限,那么点Q(﹣3,a﹣1)在.14.比较下列实数的大小(填上>、<或=).①π 3.14159;②4;③.15.如图,有一块长为44m、宽为24m的长方形草坪,其中有三条直道将草坪分为六块,则分成的六块草坪的总面积是m2.16.若点P(m+3,m2﹣2)在直角坐标系的x轴上,则P点的坐标为.17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=°,∠3=°,∠4=°.18.已知x,y为实数,且+(y+2)2=0,则x=,y=,y x的算术平方根是.19.若一个正数x的平方根是a﹣2和2a+5,则a=,x=.20.在平面直角坐标系中,已知A(0,a),B(b,0),C(b,6)三点,其中a,b满足关系式a=+3.若在第二象限内有一点P(m,1),使四边形ABOP的面积与三角形ABC的面积相等,则a=,b=,点P的坐标为.三.解答题21.完成证明并写出推理根据:如图,直线PQ分别与直线AB、CD交于点E和点F,∠1=∠2,射线EM、EN分别与直线CD交于点M、N,且EM⊥EN,则∠4与∠3有何数量关系?并说明理由.解:∠4与∠3的数量关系为,理由如下:∵∠1=∠2(已知),∴∥().∴∠4=∠().∵EM⊥EN(已知),∴°().∵∠BEM﹣∠3=∠,∴∠﹣∠3=°.22.计算:(1)+(+)(2)|﹣2|+﹣23.在平面直角坐标系xOy中,三角形ABC的三个顶点分别是A(﹣3,﹣4),B(2,﹣1),C(﹣1,1).(1)在所给的网格图中,画出这个平面直角坐标系;(2)点A经过平移后对应点为A1(﹣5,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.①画出平移后的三角形A1B1C1;②若BC边上一点P(x,y)经过上述平移后的对应点为P1,用含x,y的式子表示点P1的坐标;(直接写出结果即可)③求三角形A1B1C1的面积.24.根据语句画图,并填空.①画∠AOB=80°;②画∠AOB的平分线OC;③在OC上任取一点P,画垂线段PD⊥OA于D;④画直线PF∥OB交OA于F;⑤比较PF,PD的大小为;⑥∠OPF=°.25.已知,如图,AD∥BE,C为BE上一点,CD与AE相交于点F,连接AC.∠1=∠2,∠3=∠4.(1)求证:AB∥CD;(2)若∠3=90°,AE=12cm,AB=5cm,BE=13cm,则AC=cm.26.在平面直角坐标系xOy中,对于点A(x,y),若点B的坐标为(ax+y,x+ay),则称点B是点A的“a﹣a演化点”.例如,点A(﹣2,6)的“﹣演化点”为B(×(﹣2)+6,﹣2+×6),即B(5,1).(1)已知点P(﹣1,5)的“3﹣3演化点”是P1,则P1的坐标为;(2)已知点T(6,0),且点Q的“2﹣2演化点”是Q1(4,8),则△QTQ1的面积S为;(3)已知O(0,0),A(0,8),C(5,0),D(3,8),且点K(1,﹣k)的“k﹣k演化点”为K1,当S=S时,k=.27.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一一“猪蹄模型”.即已知:如图1,AB∥CD,E为AB、CD之间一点,连接AE,CE得到∠AEC.求证:∠AEC=∠A+∠C.小明笔记上写出的证明过程如下:证明:过点E作EF∥AB,∴∠1=∠A.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C.请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB∥CD,∠E=60°,则∠B+∠C+∠F=.(2)如图3,AB∥CD,BE平分∠ABG,CF平分∠DCG,∠G=∠H+27°,则∠H=.参考答案与试题解析一.选择题(共10小题)1.同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直D.平行或相交【分析】根据在同一平面内两直线的位置关系进行解答即可.【解答】解:同一平面内如果两条直线不重合,那么他们平行或相交;故选:D.2.在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.3.下列各数中是无理数的是()A.3.1415926B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.3.1415926有限小数,属于有理数;B.是无理数;C.是分数,属于有理数;D.,是整数,属于有理数.故选:B.4.如图,∠1和∠2是对顶角的图形有()个.A.1B.2C.3D.4【分析】根据对顶角的两边互为反向延长线进行判断.【解答】解:图形中从左向右第1,2,4个图形中的∠1和∠2的两边都不互为反向延长线,故不是对顶角,只有第3个图中的∠1和∠2的两边互为反向延长线,是对顶角.故选:A.5.两条直线被第三条直线所截,若∠1与∠2是同旁内角,且∠1=70°,则()A.∠2=70°B.∠2=110°C.∠2=70°或∠2=110°D.∠2的度数不能确定【分析】两直线被第三条直线所截,只有当两条被截直线平行时,内错角相等,同位角相等,同旁内角互补.不平行时以上结论不成立.【解答】解:因为两条直线的位置关系不明确,所以无法判断∠1和∠2大小关系,故选:D.6.在平面直角坐标系中,点P(4,﹣3)到x轴的距离()A.4B.3C.5D.﹣3【分析】根据点的纵坐标的绝对值是点到x轴的距离,可得答案.【解答】解:在平面直角坐标系中,点P(4,﹣3)到x轴的距离为3.故选:B.7.下列语句中,真命题是()A.若a2=b2,则a=bB.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.﹣3是的平方根D.相等的两个角是对顶角【分析】根据等式的性质、平方根、对顶角和点到直线的距离进行判断即可.【解答】解:A、若a2=b2,则a=b或a=﹣b,原命题是假命题;B、从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,原命题是假命题;C、﹣3是的平方根,是真命题;D、相等的两个角不一定是对顶角,原命题是假命题;故选:C.8.如图,将三角形ABC沿BC方向平移3cm得到三角形DEF,若三角形ABC的周长为20cm,则四边形ABFD的周长为()A.23cm B.26cm C.29cm D.32cm【分析】先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.【解答】解:∵△ABC沿BC方向平移3cm得到△DEF,∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故选:B.9.如图,若“马”所在的位置的坐标为(﹣2,2),“象”所在位置的坐标为(﹣1,4),则“将”所在位置的坐标为()A.(4,1)B.(1,4)C.(1,2)D.(2,1)【分析】由“马”、“象”所在位置的坐标可建立直角坐标系,即可得出结论.【解答】解:∵“马”所在的位置的坐标为(﹣2,﹣2),“象”所在位置的坐标为(﹣1,4),∴建立直角坐标系如下:∴“将”所在位置的坐标为(1,4)故选:B.10.如图,3,在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.3﹣C.﹣3D.6﹣【分析】设点A表示的数是x,再根据中点坐标公式即可得出x的值.【解答】解:设点A表示的数是x,∵数轴上表示3、的对应点分别为C、B,点C是AB的中点,∴,解得x=6﹣.故选:D.二.填空题11.如图,当剪子∠AOB增大15°时,∠COD增大15度,其根据是:两条直线相交,对顶角相等.【分析】两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.两条直线相交,构成两对对顶角.互为对顶角的两个角相等(对顶角的性质).【解答】解:因为∠AOB与∠COD是对顶角,所以当∠AOB增大15°时,∠COD也随之增大15°.其根据是:两条直线相交,对顶角相等.12.﹣绝对值是,2﹣的相反数是﹣2.【分析】根据负数的绝对值等于它的相反数解答;根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣绝对值是,2﹣的相反数是﹣2,故答案为:,﹣2.13.如果点P(a,2)在第二象限,那么点Q(﹣3,a﹣1)在第三象限.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由题意,得a<0,a﹣1<﹣1,点Q(﹣3,a﹣1)在第三象限,故答案为:第三象限.14.比较下列实数的大小(填上>、<或=).①π> 3.14159;②<4;③>.【分析】根据实数大小比较的法则进行比较即可.【解答】解:①π>3.14159;②∵4=∴<4;③()2=,()2=,∵,∴>.故答案为:>;<;>.15.如图,有一块长为44m、宽为24m的长方形草坪,其中有三条直道将草坪分为六块,则分成的六块草坪的总面积是880m2.【分析】草坪的面积等于矩形的面积﹣三条路的面积+三条路重合部分的面积,由此计算即可.【解答】解:S=44×24﹣2×24×2﹣2×44+2×2×2=880(m2).故答案为:880.16.若点P(m+3,m2﹣2)在直角坐标系的x轴上,则P点的坐标为(3+,0)或(3﹣,0).【分析】直接利用x轴上点的坐标特点得出m的值,进而计算得出答案.【解答】解:∵点P(m+3,m2﹣2)在直角坐标系的x轴上,∴m2﹣2=0,解得:m=±,∴m+3=3±,∴P点的坐标为:(3+,0)或(3﹣,0).故答案为:(3+,0)或(3﹣,0).17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=58°,∠3=58°,∠4=122°.【分析】利用垂直定义可得∠AOE=90°,再根据角的和差关系可得∠3的度数,利用对顶角的性质可得∠2的度数,然后利用邻补角的性质可得∠4的度数.【解答】解:∵EO⊥AB于O,∴∠AOE=90°,∵∠1=32°,∴∠3=58°,∴∠2=58°,∴∠4=180°﹣58°=122°,故答案为:58;58;122.18.已知x,y为实数,且+(y+2)2=0,则x=4,y=﹣2,y x的算术平方根是4.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:x﹣4=0,y+2=0,解得:x=4,y=﹣2,则y x=(﹣2)4=16,∴y x的算术平方根是4.故答案为:4,﹣2,4.19.若一个正数x的平方根是a﹣2和2a+5,则a=﹣1,x=9.【考点】21:平方根.【专题】511:实数;66:运算能力.【分析】由于正数的平方根互为相反数,所以a﹣2与2a+5的和为0,所以列出方程即可求出a与x的值.【解答】解:由题意知:(a﹣2)+(2a+5)=0,解得a=﹣1,∴a﹣2=﹣3,∴x=(﹣3)2=9.故答案为:﹣1;9.20.在平面直角坐标系中,已知A(0,a),B(b,0),C(b,6)三点,其中a,b满足关系式a=+3.若在第二象限内有一点P(m,1),使四边形ABOP的面积与三角形ABC的面积相等,则a=3,b=4,点P的坐标为(﹣4,1).【考点】72:二次根式有意义的条件;D5:坐标与图形性质;K3:三角形的面积.【专题】514:二次根式;66:运算能力.【分析】根据二次根式有意义的条件分别求出a、b,根据三角形的面积公式列式计算得到答案.【解答】解:由a,b满足关系式可知,b2﹣16≥0,16﹣b2≥0,b+4≠0,解得,b=4,∴a=3,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积=×6×4=12,四边形ABOP的面积=△AOP的面积+△AOB的面积=×3×(﹣m)+×3×4=6﹣m,由题意得,6﹣m=12,解得,m=﹣4,∴点P的坐标为(﹣4,1),故答案为:3;4;(﹣4,1).三.解答题21.完成证明并写出推理根据:如图,直线PQ分别与直线AB、CD交于点E和点F,∠1=∠2,射线EM、EN分别与直线CD交于点M、N,且EM⊥EN,则∠4与∠3有何数量关系?并说明理由.解:∠4与∠3的数量关系为∠4﹣∠3=90°,理由如下:∵∠1=∠2(已知),∴AB∥CD(同位角相等,两直线平行).∴∠4=∠BEM(两直线平行,内错角相等).∵EM⊥EN(已知),∴∠MEN=90°(垂直的定义).∵∠BEM﹣∠3=∠MEN,∴∠4﹣∠3=90°.【考点】JB:平行线的判定与性质.【专题】14:证明题;67:推理能力.【分析】由已知同位角相等得到AB与CD平行,利用两直线平行内错角相等得到一对角相等,再根据垂直的定义及等量代换即可得证.【解答】解:∠4与∠3的数量关系为∠4﹣∠3=90°,理由如下:∵∠1=∠2(已知),∴AB∥CD(同位角相等,两直线平行).∴∠4=∠BEM(两直线平行,内错角相等).∵EM⊥EN(已知),∴∠MEN=90°(垂直的定义).∵∠BEM﹣∠3=∠MEN,∴∠4﹣∠3=90°.故答案为:∠4﹣∠3=90°;AB,CD;同位角相等,两直线平行;BEM;两直线平行,内错角相等;∠MEN=90°,垂直的定义;MEN;4,90°.22.计算:(1)+(+)(2)|﹣2|+﹣【考点】2C:实数的运算.【专题】511:实数;66:运算能力.【分析】(1)直接利用立方根以及二次根式的性质分别化简得出答案;(2)直接利用绝对值的性质、二次根式的性质分别化简得出答案.【解答】解:(1)原式=﹣3+1+6=4;(2)原式=2﹣+0.2﹣=2.2﹣2.23.在平面直角坐标系xOy中,三角形ABC的三个顶点分别是A(﹣3,﹣4),B(2,﹣1),C(﹣1,1).(1)在所给的网格图中,画出这个平面直角坐标系;(2)点A经过平移后对应点为A1(﹣5,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.①画出平移后的三角形A1B1C1;②若BC边上一点P(x,y)经过上述平移后的对应点为P1,用含x,y的式子表示点P1的坐标;(直接写出结果即可)③求三角形A1B1C1的面积.【考点】Q4:作图﹣平移变换.【专题】558:平移、旋转与对称;64:几何直观.【分析】(1)利用点A、B的坐标确定x、y的位置,从而得到直角坐标系;(2)①利用点A、A1的坐标特征确定平移的方向和距离,再根据此平移的规律写出B1、C1的坐标,然后描点即可;②利用①中的平移规律写出点P1的坐标;③用一个矩形的面积分别减去三个直角三角形的面积.【解答】解:(1)如图,(2)①如图,△A1B1C1为所作;②点P1的坐标为(x﹣2,y+3);③三角形A1B1C1的面积=5×5﹣×5×3﹣×2×3﹣×2×5=9.5.24.根据语句画图,并填空.①画∠AOB=80°;②画∠AOB的平分线OC;③在OC上任取一点P,画垂线段PD⊥OA于D;④画直线PF∥OB交OA于F;⑤比较PF,PD的大小为PF>PD,理由垂线段最短;⑥∠OPF=40°.【考点】J3:垂线;J4:垂线段最短;JA:平行线的性质;N3:作图—复杂作图.【专题】13:作图题;64:几何直观;66:运算能力.【分析】根据语句即可画出图形,根据作图过程,和平行线的性质即可完成填空.【解答】解:如图,①画∠AOB=80°;②画∠AOB的平分线OC;③在OC上任取一点P,画垂线段PD⊥OA于D;④画直线PF∥OB交OA于F;⑤比较PF,PD的大小为PF>PD,理由是垂线段最短;⑥∵PF∥OB,∴∠DFP=∠AOB=80°,∵OP平分∠AOB,∵∠AOP=AOB=40°,∴∠OPF=40°.故答案为:PF>PD,垂线段最短,40.25.已知,如图,AD∥BE,C为BE上一点,CD与AE相交于点F,连接AC.∠1=∠2,∠3=∠4.(1)求证:AB∥CD;(2)若∠3=90°,AE=12cm,AB=5cm,BE=13cm,则AC=cm.【考点】JB:平行线的判定与性质.【专题】14:证明题;67:推理能力.【分析】(1)由AD与BE平行,得到一对内错角相等,根据题意等量代换得到一对同位角相等,即可得证;(2)利用勾股定理逆定理得到三角形ABE为直角三角形,利用三角形面积公式求出AC 的长即可.【解答】(1)证明:∵AD∥BE,∴∠DAC=∠3,即∠2+∠EAC=∠3,∵∠1=∠2,∠3=∠4,∴∠1+∠EAC=∠4,即∠EAB=∠4,∴AB∥CD;(2)解:在△ABE中,AE=12cm,AB=5cm,BE=13cm,∴AE2+AB2=BE2,∴△ABE为直角三角形,∵∠3=90°,∴AC⊥BE,∵S△ABE=AE•AB=BE•AC,∴AC==cm.故答案为:.26.在平面直角坐标系xOy中,对于点A(x,y),若点B的坐标为(ax+y,x+ay),则称点B是点A的“a﹣a演化点”.例如,点A(﹣2,6)的“﹣演化点”为B(×(﹣2)+6,﹣2+×6),即B(5,1).(1)已知点P(﹣1,5)的“3﹣3演化点”是P1,则P1的坐标为(2,14);(2)已知点T(6,0),且点Q的“2﹣2演化点”是Q1(4,8),则△QTQ1的面积S为20;(3)已知O(0,0),A(0,8),C(5,0),D(3,8),且点K(1,﹣k)的“k﹣k演化点”为K1,当S=S时,k=.【考点】D5:坐标与图形性质;K3:三角形的面积.【专题】23:新定义;531:平面直角坐标系;552:三角形.【分析】(1)根据样例进行计算便可;(2)选求出Q点的坐标,再由三角形的面积公式计算面积;(3)先根据新定义求出K1的坐标,再根据S=S列出k的方程,求得k便可.【解答】解:(1)由题意得,P1的横坐标为:﹣1×3+5=2,P1的纵坐标为:﹣1+5×3=14,∴P1(2,14),故答案为:(2,14);(2)设Q点的坐标为(m,n),∵点Q的“2﹣2演化点”是Q1(4,8),∴,解得,,∴Q(0,4),=20,故答案为20;(3)∵点K(1,﹣k)的“k﹣k演化点”为K1,∴K1(0,1﹣k2),∵S=S,∴,解得,k=,故答案为:.27.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一一“猪蹄模型”.即已知:如图1,AB∥CD,E为AB、CD之间一点,连接AE,CE得到∠AEC.求证:∠AEC=∠A+∠C.小明笔记上写出的证明过程如下:证明:过点E作EF∥AB,∴∠1=∠A.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C.请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB∥CD,∠E=60°,则∠B+∠C+∠F=240°.(2)如图3,AB∥CD,BE平分∠ABG,CF平分∠DCG,∠G=∠H+27°,则∠H=51°.【考点】J8:平行公理及推论;JB:平行线的判定与性质.【专题】152:几何综合题;551:线段、角、相交线与平行线;66:运算能力;67:推理能力.【分析】(1)由EM∥AB,FN∥EM,FN∥CD分别得∠1=∠B,∠2=∠3,∠4+∠C=180°,由角的和差计算∠B+∠C+∠F的度数为240°;(2)由角平分线得∴∠ABG=2∠1,∠DCG=2∠4,根据直线EF∥AB,EF∥CD得2∠1+∠7=180°,2∠4+∠8=180°,等式的性质得2(∠1+∠2)=∠BGC+180°;直线MN∥AB,MN∥CD得∠1=∠5,∠4=∠6,等量代换2(∠5+∠6)=∠BGC+180°,又因∠BGC=∠BHC+27°求得∠BHC的度数为51°.【解答】解:(1)过点E、F分别作EM∥AB,FN∥AB,如图2所示:∵EM∥AB,∴∠1=∠B,又∵FN∥AB,∴FN∥EM,∴∠2=∠3,又∵AB∥CD,∴FN∥CD,∴∠4+∠C=180°,又∵∠BEF=∠1+∠2,∠EFC=∠3+∠4,∠E=60°∴∠B+∠EFC+∠C=∠1+∠3+∠4+∠C=(∠1+∠2)+(∠4+∠C)=60°+180°=240°;(2)过点G、H作EF∥AB,MN∥AB,如图3所示:∵BE平分∠ABG,CF平分∠DCG,∴∠ABG=2∠1,∠DCG=2∠4,又∵EF∥AB,∴2∠1+∠7=180°,又∵AB∥CD,∴EF∥CD,∴2∠4+∠8=180°,∴∠7+∠8=360°﹣2(∠1+∠4),又∵∠7+∠8+∠BGC=180°,∴2(∠1+∠2)=∠BGC+180°,又∵MN∥AB,∴∠1=∠5,又∵AB∥CD,∴MN∥CD,∴∠4=∠6,∴2(∠5+∠6)=∠BGC+180°,又∵∠5+∠6+∠BHC=180°,∴∠BGC+2∠BHC=180°,又∠BGC=∠BHC+27°,∴3∠BHC+27°=180°,∴∠BHC=51°;故答案为:240°,51°.。
河南省洛阳市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析
河南省洛阳市2019~2020学年度高一第一学期期中考试数学试卷一、选择题(本大题共12小题)1.若U={2,3,4,5},M={3,4},N={2,3},则(∁U M)∩(∁U N))是()A.3,B.C.4,D.2.函数的定义域为()A. B.且C. D.3.设,则f(f(-1))的值为()A.5B.6C.9D.104.定义运算:,则函数f(x)=1⊕2x的值域是()A. B. C. D.5.已知a>0且a≠1,下列四组函数中表示相等函数的是()A.与B.与C.与D.与6.函数f(x)=()x-3的零点所在的区间为()A. B. C. D.7.函数的奇偶性为( )A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数8.已知a=log20.1,b=20.1,c=0.21.1,则a,b,c的大小关系是()A. B. C. D.9.函数f(x)=ln|x-1|的图象大致是()A. B.C. D.10.定义在R上的奇函数f(x)在(0,+∞)上递增,,则满足f(log8x)>0的x的取值范围是()A. B. C. D.11.若偶函数是自然对数的底数)的最大值为n,则f(n m)=()A. B. C.e D.112.已知定义在(0,+∞)上的单调函数f(x),满足f(f(x)-x2)=2,则不等式f(x)>7x-11的解集为()A. B.C.或D.二、填空题(本大题共4小题,共20.0分)13.已知幂函数y=f(x)的图象过点=______.14.某商品进货单价为30元,按40元一个销售,能卖40个;若销售单位每涨1元,销售量减少一个,要获得最大利润时,此商品的售价应该为每个______元.15.函数f(x)=ln(x+4)+ln(1-x)的单调增区间是______.16.已知集合M={x|m•4x-2x+1-1=0},N={x|-1≤x≤1},若M∩N=∅,则实数m的取值范围为______.三、解答题(本大题共6小题,共70.0分)17.已知集合A={x|3≤3x≤27},B={x|log2x>1}.(1)求A∩B,A∪B;(2)已知集合C={x|1<x<a},若C∪A=A,求实数a的取值范围.18.计算下列各式:(1);(2).19.若函数,(Ⅰ)在给定的平面直角坐标系中画出函数f(x)图象;(Ⅱ)利用图象写出函数f(x)的值域、单调区间.20.已知函数是定义在R上的奇函数,且.(1)求函数f(x)的解析式;(2)判断并证明f(x)在(1,+∞)上的单调性.21.已知函数的定义域为[,2].(1)若t=log2x,求t的取值范围;(2)求y=f(x)的值域.22.已知函数f(x)=.(1)判断并证明f(x)的奇偶性;(2)当x∈[1,+∞)时,mf(x)≤2x-2恒成立,求实数m的取值范围.答案和解析1.【参考答案】D【试题分析】解:∵U={2,3,4,5},M={3,4},N={2,3},∴(∁U M)={2,5},(∁U N)={4,5},则(∁U M)∩(∁U N))={5},故选:D.根据集合补集的定义,结合交集进行运算即可.本题主要考查集合的基本运算,结合补集,交集的定义是解决本题的关键.比较基础.2.【参考答案】D【试题分析】解:由题意可得,,解可得,-1<x≤3,故函数的定义域为(-1,3].故选:D.由题意可得,,解不等式即可求解函数的定义域.本题主要考查了函数定义域的求解,属于基础试题.3.【参考答案】B【试题分析】解:∵,∴f(-1)=(-1)2+1=2,f(f(-1))=f(2)=3×2=6.故选:B.推导出f(-1)=(-1)2+1=2,从而f(f(-1))=f(2),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.4.【参考答案】A【试题分析】解:f(x)=1⊕2x=.∵当x≤0时,f(x)=2x∈(0,1];当x>0时,f(x)=1,∴f(x)的值域为(0,1].故选:A.根据新运算法则求解f(x)的解析式和x的范围,由分段函数的性质求解值域.本题考查了函数值域的求法,考查了分类讨论思想,解答此题的关键是理解题意,属基础题. 5.【参考答案】B【试题分析】解:A中y=定义域为R,而y=()2定义域为[0,+∞),定义域不同,不是同一函数;C中y=定义域[2,+∞)∪(-∞-2],y=•定义域为[2,+∞),定义域不同,不是同一函数;D中y=log a x2定义域为,(-∞,0)∪(0,+∞)定义域不同,不是同一函数;所以只有B正确,故选:B.判断函数的定义域与对应法则是否相同,即可判断两个函数是否相同函数.本题考查函数的基本性质,判断两个函数是否相同,需要判断定义域与对应法则是否相同. 6.【参考答案】C【试题分析】解:∵f(x)=()x-3在定义域内属于单调递增函数,且f(0)=-2,f(1)=-,f(2)=-,f(3)=,f(4)=, ∴f(x)的零点区间为(2,3),故选:C.f(x)=()x-3在定义域内属于单调递增函数,根据二分法只需判断区间端点的正负号即可求解;考查二分法确定函数的零点区间;7.【参考答案】A【试题分析】本题考查了函数的奇偶性,属中档题.先求出定义域为[-2,0)∪(0,2],再根据定义域化简解析式,观察可知为奇函数.【试题答案】解:f(x)=的定义域为[-2,0)∪(0,2],所以f(x)==,f(-x)==-=-f(x),所以f(x)为奇函数.故选:A.8.【参考答案】D【试题分析】解:a=log20.1<0,b=20.1>1,c=0.21.1∈(0,1).∴b>c>a.故选:D.利用指数函数与对数函数的单调性即可得出.本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.9.【参考答案】B【试题分析】解:∵当x>1时,f(x)=ln|x-1|=ln(x-1),其图象为:∵当x<1时,f(x)=ln|x-1|=ln(1-x),其图象为:综合可得,B符合,故选:B.题目中函数解析式中含有绝对值,须对x-1的符号进行讨论,去掉绝对值转化为对数函数考虑,利用对数函数的图象与性质解决.本题考查对数函数的图象与性质,对数函数的图象是对数函数的一种表达形式,形象地显示了函数的性质,为研究它的数量关系提供了“形”的直观性.10.【参考答案】C【试题分析】解:定义在R上的奇函数f(x)在(0,+∞)递增,,∴f(x)在(-∞,0)上递增,且f(-)=0,又∵f(log8x)>0,∴log8x>或-<log8x<0,解可得,x>2或,故x的取值范围为()∪(2,+∞).故选:C.由已知结合奇函数的对称性可得,log8x>或-<log8x<0,解对数不等式即可求解.本题主要考查了利用奇函数的对称性求解不等式,解题的关键是灵活利用对称性.11.【参考答案】A【试题分析】解:∵函数是自然对数的底数)的最大值为n,∴当x=m时,函数是自然对数的底数)的最大值为n=1,∵f(x)是偶函数,∴f(1)=f(-1),∴()=(),∴(1-m)2=(m+1)2,1+m2-2m=1+m2+2m,解得m=0,∴f(n m)=f(1)=e-1=.故选:A.当x=m时,函数是自然对数的底数)的最大值为n=1,再由f(x)是偶函数,求出m=0,由此能求出f(n m).本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.12.【参考答案】C【试题分析】解:∵f(x)是定义在(0,+∞)上的单调函数,∴由f(f(x)-x2)=2得,f(x)=x2+c,∴f(c)=c2+c=2,且c>0,解得c=1,∴f(x)=x2+1,∴由f(x)>7x-11得,x2+1>7x-11,且x>0,解得0<x<3或x>4,∴原不等式的解集为{x|0<x<3或x>4}.故选:C.根据题意可设f(x)=x2+c,从而可得出f(c)=c2+c=2,根据c>0可解出c=1,从而得出f(x)=x2+1,从而根据原不等式得出x2+1>7x-11,且x>0,解出x的范围即可.本题考查了单调函数的定义,一元二次不等式的解法,考查了推理和计算能力,属于基础题.13.【参考答案】【试题分析】解:设f(x)=x n,n是有理数,则∵幂函数的图象过点∴=2n,即2-2=2n,可得n=-2∴幂函数表达式为f(x)=x-2,可得f(3)=3-2=故答案为:设f(x)=x n,n是有理数,根据f(2)=计算出n=-2,从而得到函数表达式,求出f(3)的值.本题给出幂函数经过定点,求幂函数表达式,着重考查了幂函数的定义与简单性质等知识,属于基础题. 14.【参考答案】625【试题分析】解:设售价为x元,总利润为W元,则W=(x-30)[40-1×(x-40)]=-x2+110x-2400=-(x -55)2+625,∴x=55时,获得最大利润为625元故答案为:625根据题意,总利润=销售量×每个利润,设售价为x元,总利润为W元,则销售量为40-1×(x-40),每个利润为(x -30),据此表示总利润,利用配方法可求最值.本小题主要考查函数模型的选择与应用,考查配方法求最值,属于中档题.15.【参考答案】【试题分析】解:函数f(x)=ln(x+4)+ln(1-x),定义域{x|-4<x<1},f(x)=ln(x+4)+ln(1-x)=ln(x+4)(1-x),令t=(x+4)(1-x),当x时单调递增,当x时单调递减,则y=ln t.为增函数,由复合函数的单调性“同增异减”得:函数f(x)单调递增区间为,单调递减区间为,故答案为:.先求定义域,采用复合函数判断单调性的方法得出结论.本题主要考查对数函数的单调性和特殊点,对数函数的定义域,复合函数的单调性规律,属于基础题.16.【参考答案】【试题分析】解:∵M∩N=∅,∴①m=0时,M=∅,满足条件;②m≠0时,△=4+4m<0,即m<-1时,M=∅,满足条件;△=4+4m≥0,即m≥-1时,设2x=t,(t>0),则mt2-2t-1=0,且或,∴或m>8,∴综上得,实数m的取值范围为.故答案为:.根据M∩N=∅,可讨论m:m=0时,得出M=∅,满足题意;m≠∅时,根据韦达定理即可判断出方程m•4x-2x+1-1=0无解,即得出M=∅,满足题意,从而得出m的范围为全体实数.本题考查了描述法的定义,交集的定义及运算,空集的定义,韦达定理,考查了计算和推理能力,属于基础题.17.【参考答案】解:(1)A={x|3≤3x≤27}={x|1≤x≤3},B={x|log2x>1}={x|x>2}.则A∩B={x|2<x≤3},A∪B={x|x≥1}.(2)若C∪A=A,则C⊆A,当C=∅时,则a≤1,满足条件.则C≠∅,则a>1,则要满足C⊆A,则1<a≤3,综上a≤3,即实数a的取值范围是a≤3.【试题分析】(1)求出集合的等价条件,结合交集,并集的定义进行求解即可.(2)结合集合关系转化为C⊆A,利用集合关系进行求解即可.本题主要考查集合的基本运算以及集合关系的应用,求出集合的等价条件,结合集合关系进行转化是解决本题的关键.比较基础.18.【参考答案】解:(1)=+-1+,=,=5;(2),=2-2-+,=-2×3+1=-5.【试题分析】(1)结合指数的运算性质即可求解;(2)结合指数与对数的运算性质即可求解.本题主要考查了指数与对数的运算性质的简单应用,属于基础试题.19.【参考答案】解:(Ⅰ)函数图象如图所示;(II)由图象可得函数的值域为(-∞,-1]∪(1,+∞)单调递减区间为[-1,0]单调递增区间为(-∞,-1)和(0,+∞)【试题分析】(I)利用指数函数和二次函数图象的画法,分段画出f(x)的图象即可;(II)由图象看,函数的值域即函数图象的纵向分布,函数的单调区间即函数随自变量增大的变化趋势,由图象读出这些信息即可本题主要考查了分段函数函数图象的画法,函数的值域及函数单调性的直观意义,辨清函数概念和性质是解决本题的关键20.【参考答案】解:(1)∵f(x)是R上的奇函数,∴f(0)=0,且,∴,解得,∴;(2)f(x)在(1,+∞)上单调递减,证明如下:设x1>x2>1,则=,∵x1>x2>1,∴x2-x1<0,x1x2-1>0,且,∴,∴f(x1)<f(x2),∴f(x)在(1,+∞)上单调递减.【试题分析】(1)根据f(x)是R上的奇函数即可得出f(0)=b=0,再根据即可求出a=1,从而得出;(2),从而可以看出f(x)在(1,+∞)上单调递减,根据减函数的定义证明:设任意的x1>x2>1,然后作差,通分,提取公因式,得出,根据x1>x2>1说明f(x1)<f(x2)即可得出f(x)在(1,+∞)上单调递减.本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,已知函数求值的方法,函数的单调性,减函数的定义,考查了推理和计算能力,属于基础题.21.【参考答案】解:(1)∵,∴t=log2x∈[-2,1],(2)∵=(1+log2x)(2+2log2x),∴f(t)=(t+2)(t+1)=t2+3t+2=在[-2,]上单调递减,在[-,1]上单调递增,当t=-即x=时,函数取得最小值-,当t=1即x=2时,函数取得最大值6故函数的值域为[-,6].【试题分析】(1)由,结合对数函数的单调性可求t的范围;(2)先对函数进行化简,然后结合二次函数的单调性即可求解函数的值域.本题主要考查了函数的定义域及值域的求解,解题的关键是二次函数的性质的应用.22.【参考答案】解:(1)f(x)为定义域为R的奇函数,证明如下:∵f(x)=,∴f(-x)===-f(x),∴f(x)为定义域为R的奇函数,(2)由x∈[1,+∞)时,mf(x)≤2x-2恒成立,可得m≤2x-2,∵x≥1,∴>0,∴m≤在x≥1恒成立,令t=2x-1,则t≥1,∴m=t+1,设g(t)=t+1,则g(t)在[1,+∞)上单调递增,∴g(t)min=g(1)=0,∴m≤0,故m的范围为:(-∞,0].【试题分析】(1)要判断函数的奇偶性,只要检验f(-x)与f(x)的关系即可;(2)由已知及x≥1,可判断>0,从而原不等式可转化为m≤在x≥1恒成立,构造函数,利用单调性可求.本题主要考查函数奇偶性和单调性的判断,及利用函数的单调性求解函数的最值,体现了转化思想的应用.。
2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)
2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。
2023-2024学年河南省郑州市高新区枫杨外国语学校七年级(下)期中数学试卷+答案解析
2023-2024学年河南省郑州市高新区枫杨外国语学校七年级(下)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列运算正确的是()A. B.C. D.2.今年4月份,月季花在郑州环线、京广、中州大道、陇海等高架桥上盛开,绚丽满城,成为郑州一道亮丽的风景线.若月季花的花粉粒的直径约为,将用科学记数法表示应为() A. B. C. D.3.下列图形中,线段AD的长表示点A到直线BC距离的是()A. B.C. D.4.如图,AD为的平分线,添加下列条件后,不能证明≌的是()A.B.C.D.5.一副三角板按如图放置,其中,,,若,则下列角与互余的是()A. B. C. D.6.如图,已知,尺规作图的方法作出了≌,请根据作图痕迹判断≌的理论依据是()A.SASB.AASC.ASAD.SSS7.等腰三角形的两边分别为3和6,则这个三角形的周长是()A.9B.12C.15D.12或158.请阅读以下“预防近视”知识卡读书、写字、看书姿势要端正.一般人正常的阅读角度约为俯角如图视线BC与水平线BA的夹角在学习和工作中,要保持读写姿势端正,可概括为“三个一”,包括:眼与书本的距离1尺;身体与桌子距离1拳;握笔时,手指离笔尖1寸.书本与课桌的角度要保持在至已知如图,桌面和水平面平行,CD与书本所在平面重合,根据卡片内容,请判断正常情况下,坐姿正确且座椅高度适合时,视线BC和书本所在平面所成角度可能为以下哪个角度()A. B. C. D.9.我国首辆火星车正式被命名为:“祝融”,为应对极限温度环境,火星车使用的是新型隔温材料一一纳米气凝胶,该材料导热率与温度的关系如表.根据表格中的数据对应关系,下列选项描述不正确的是()温度…100150200250…导热率……A.在这个变化过程中,自变量是温度,因变量是导热率B.在一定温度范围内,温度越高,该材料导热率越高C.当温度为时,该材料导热率为D.温度每升高增高该材料导热率增加10.如图1,在长方形ABCD中,动点P从点A出发,沿运动,至点D处停止.点P运动的路程为x,的面积为y,且y与x之间满足的关系如图2所示,则当时,对应的x的值是()A.4B.4或12C.4或16D.5或12二、填空题:本题共5小题,每小题3分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年河南省洛阳第二外国语学校七年级第二学期期中数学试卷一、选择题(共10小题).1.在下列各数0.21,,,﹣π,3.141,,0.010010001…(相邻两个1之间依次增加一个0)中,是无理数的有()A.1个B.2个C.3个D.4个2.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c3.下列各式中计算正确的是()A.=9 B.C.=﹣1 D.=﹣2 4.下列图形中,∠1和∠2是同位角的是()A.B.C.D.5.已知下列各式:①②2x﹣3y=5③xy=2④x+y=z﹣1⑤,其中为二元一次方程的个数是()A.1 B.2 C.3 D.46.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()A.(﹣3,﹣5)B.(5,﹣3)C.(3,﹣5)D.(﹣3,5)7.如图,∠BAC=90°,AD⊥BC,垂足为D,则下面的结论中正确的个数为()①AB与AC互相垂直;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是B点到AC的距离.A.2 B.3 C.4 D.58.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<09.若不等式组,有且只有三个正整数解,则a的取值范围为()A.0≤a<1 B.0<a<1 C.0<a≤1D.0≤a≤110.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二.填空题(共5小题)11.如图:将一张长方形纸条折叠,如果∠1=50°,则∠2=.12.已知x+2的平方根是±2,2x+y+7的立方根是3,则x2+y的立方根为.13.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是cm.14.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有(填写所有正确的序号).15.运行程序如图所示,规定:从“输入一个值x”到“结果是否≥19”为一次程序如果程序操作进行了三次才停止,那么x的取值范围是.三.解答题(共8小题)16.解方程:(1)①4﹣3(2﹣x)=5x;②=1﹣.(2)解不等式(组):①﹣>﹣1;②.17.已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.18.请把下面证明过程补充完整:已知:如图,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.求证:∠A=∠C.证明:因为BE、DF分别平分∠ABC、∠ADC(),所以∠1=∠ABC,∠3=∠ADC().因为∠ABC=∠ADC(已知),所以∠1=∠3(),因为∠1=∠2(已知),所以∠2=∠3().所以∥().所以∠A+∠=180°,∠C+∠=180°().所以∠A=∠C().19.如图所示,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A、B,点B 到点A的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.20.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.21.将一箱苹果分给若干位小朋友,若每位小朋友分4个苹果,则还剩20个苹果,若每位小朋友分8个苹果,则有一位小朋友分到了苹果但不足8个,则有小朋友多少个,苹果多少个?22.新房装修后,甲居民购买家居用品的清单如下表,因污水导致部分信息无法识别,根据下表解决问题:家居用品名称单价(元)数量(个)金额(元)挂钟30 2 60垃圾桶15塑料鞋架40艺术字画a 2 90电热水壶35 1 b合计8 280(1)直接写出a=,b=;(2)甲居民购买了垃圾桶,塑料鞋架各几个?(3)若甲居民再次购买艺术字画和垃圾桶两种家居用品,共花费150元,则有哪几种不同的购买方案?23.如图1,D是△ABC延长线上的一点,CE∥AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数.(3)如图3,AH∥BD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QM∥GR,猜想∠MQN与∠ACB的关系,说明理由.参考答案一.选择题(共10小题)1.在下列各数0.21,,,﹣π,3.141,,0.010010001…(相邻两个1之间依次增加一个0)中,是无理数的有()A.1个B.2个C.3个D.4个解:无理数有:,﹣π,0.010010001…(相邻两个1之间依次增加一个0),共3个,故选:C.2.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c解:A、如果a∥b,a⊥c,那么b⊥c,说法正确;B、如果b∥a,c∥a,那么b∥c,说法正确;C、如果b⊥a,c⊥a,那么b⊥c,说法错误;D、如果b⊥a,c⊥a,那么b∥c,说法正确;故选:C.3.下列各式中计算正确的是()A.=9 B.C.=﹣1 D.=﹣2 解:A、原式=|﹣9|=9,正确;B、原式=5,错误;C、原式=1,错误;D、原式=﹣2,错误.故选:A.4.下列图形中,∠1和∠2是同位角的是()A.B.C.D.解:根据同位角定义可得D是同位角,故选:D.5.已知下列各式:①②2x﹣3y=5③xy=2④x+y=z﹣1⑤,其中为二元一次方程的个数是()A.1 B.2 C.3 D.4解:①是分式方程,故不是二元一次方程;②正确;③是二次方程,故不是二元一次方程;④有3个未知数,故不是二元一次方程;⑤是一元一次方程.故选:A.6.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()A.(﹣3,﹣5)B.(5,﹣3)C.(3,﹣5)D.(﹣3,5)解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=3,|y|=5,∴点P(x,y)坐标中,x=3,y=﹣5,∴P点的坐标是(3,﹣5).故选:C.7.如图,∠BAC=90°,AD⊥BC,垂足为D,则下面的结论中正确的个数为()①AB与AC互相垂直;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是B点到AC的距离.A.2 B.3 C.4 D.5解:①AB与AC互相垂直,说法正确;②AD与AC互相垂直,说法错误;③点C到AB的垂线段是线段AB,说法错误,应该是AC;④线段AB的长度是点B到AC的距离,说法正确;⑤线段AB是B点到AC的距离,说法错误,应该是线段AB的长度是B点到AC的距离;正确的有2个,故选:A.8.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0解:两边都除以3,得x>﹣y,两边都加y,得x+y>0,故选:A.9.若不等式组,有且只有三个正整数解,则a的取值范围为()A.0≤a<1 B.0<a<1 C.0<a≤1D.0≤a≤1解:∵解不等式①得:x≤3,又∵不等式组有且只有三个正整数解,∴0≤a<1,故选:A.10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选:B.二.填空题(共5小题)11.如图:将一张长方形纸条折叠,如果∠1=50°,则∠2=100°.解:由折叠的性质得到:∠1=∠3=50°.∵a∥b,∴∠3+∠1=∠2=100°,即∠2=100°.故答案是:100°.12.已知x+2的平方根是±2,2x+y+7的立方根是3,则x2+y的立方根为.解:∵x+2的平方根是±2,∴x+2=22=4,解得x=2;∵2x+y+7的立方根是3,∴2x+y+7=33=27,∴2×2+y+7=27,解得y=16;∴x2+y=22+16=4+16=20∴x2+y的立方根为.故答案为:.13.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是50cm.解:根据题意得,,解之得,x=3,h=20,则10张塑料凳整齐地叠放在一起时的高度是20+3×10=50cm.14.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有①③④(填写所有正确的序号).解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥CB;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD,故答案为:①③④.15.运行程序如图所示,规定:从“输入一个值x”到“结果是否≥19”为一次程序如果程序操作进行了三次才停止,那么x的取值范围是≤x<4.解:依题意,得:,解得:≤x<4.故答案为:≤x<4.三.解答题(共8小题)16.解方程:(1)①4﹣3(2﹣x)=5x;②=1﹣.(2)解不等式(组):①﹣>﹣1;②.解:(1)①4﹣3(2﹣x)=5x,4﹣6+3x=5x,5x﹣3x=4﹣6,2x=﹣2,x=﹣1,②,2(5x+1)=6﹣(2x﹣1),10x+2=6﹣2x+1,10x+2x=6+1﹣2,12x=5,x=;(2)①,3(2x﹣1)﹣2(5x+2)>﹣12,6x﹣3﹣10x﹣4>﹣12,6x﹣10x>﹣12+3+4,﹣4x>﹣5,x<;②,解不等式①得:x<﹣2,解不等式②得:x≤﹣4,∴不等式组的解集为:x≤﹣4.17.已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.解:(1)当m=1时,不等式为>﹣1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.18.请把下面证明过程补充完整:已知:如图,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.求证:∠A=∠C.证明:因为BE、DF分别平分∠ABC、∠ADC(已知),所以∠1=∠ABC,∠3=∠ADC(角平分线的定义).因为∠ABC=∠ADC(已知),所以∠1=∠3(等式的性质),因为∠1=∠2(已知),所以∠2=∠3(等量代换).所以AB∥CD(内错角相等,两直线平行).所以∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补).所以∠A=∠C(等式的性质).【解答】证明:∵BE、DF分别平分∠ABC、∠ADC(已知),∴∠1=∠ABC,∠3=∠ADC(角平分线定义),∵∠ADC=∠ABC,∴∠1=∠3(等式的性质),∵∠1=∠2,∴∠2=∠3(等量代换),∴AB∥CD(内错角相等,两直线平行),∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补),∴∠A=∠C(等式的性质),故答案为:已知,角平分线的定义,等式的性质,等量代换,AB∥CD,内错角相等,两直线平行,ADC,ABC,两直线平行,同旁内角互补,等式的性质.19.如图所示,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A、B,点B 到点A的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.解:(1)∵点A、B分别表示1,,∴AB=﹣1,即x=﹣1;(2)∵x=﹣1,∴原式==,∴1的立方根为1.20.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.解:(1)如图所示:A′(0,4)、B′(﹣1,1)、C′(3,1);(2)S△ABC=×(3+1)×3=6;(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,由题意得×4×|y+2|=6,解得y=1或y=﹣5,所以点P的坐标为(0,1)或(0,﹣5).21.将一箱苹果分给若干位小朋友,若每位小朋友分4个苹果,则还剩20个苹果,若每位小朋友分8个苹果,则有一位小朋友分到了苹果但不足8个,则有小朋友多少个,苹果多少个?解:设有小朋友x个,则苹果(4x+20)个,依题意,得:,解得:5<x<7.∵x为正整数,∴x=6,4x+20=44.答:有小朋友6个,苹果44个.22.新房装修后,甲居民购买家居用品的清单如下表,因污水导致部分信息无法识别,根据下表解决问题:家居用品名称单价(元)数量(个)金额(元)挂钟30 2 60垃圾桶15塑料鞋架40艺术字画a 2 90电热水壶35 1 b合计8 280(1)直接写出a=45,b=35;(2)甲居民购买了垃圾桶,塑料鞋架各几个?(3)若甲居民再次购买艺术字画和垃圾桶两种家居用品,共花费150元,则有哪几种不同的购买方案?解:(1)根据表格数据所示:a==45(元),b=35×1=35(元).故答案是:45;35;(2)设甲居民购买了垃圾桶x个,塑料鞋架y个,依题意得:,解得.答:甲居民购买了垃圾桶1个,塑料鞋架2个;(3)设甲居民购买了艺术字画z幅,垃圾桶w个.依题意得:45z+15w=150,则w=10﹣3z.因为z、w都是正整数,所以当z=1时,w=7,当z=2时,w=4,当z=3时,w=1,故有3种购买方案:①购买艺术字画1幅,垃圾桶7个;②购买艺术字画2幅,垃圾桶4个;③购买艺术字画3幅,垃圾桶1个.23.如图1,D是△ABC延长线上的一点,CE∥AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数.(3)如图3,AH∥BD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QM∥GR,猜想∠MQN与∠ACB的关系,说明理由.解:(1)∵CE∥AB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,FA平分∠HAD,∴∠FCD=∠ECD,∠HAF=∠HAD,∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD),∵CH∥AB,∴∠ECD=∠B,∵AH∥BC,∴∠B+∠HAD=110°,∴∠F=(∠B+∠HAD)=55°;(3)∠MQN=∠MQG﹣∠NQG=180°﹣∠QGR﹣∠NQG=180°﹣(∠AQG+∠QGD)=180°﹣(180﹣∠CQG+180°﹣∠QGC)=(∠CQG+∠QGC)=∠ACB.。