第六章气体动理论解读

合集下载

气体动理论

气体动理论

第十三章 气体动理论本章从理想气体的微观组成出发,假以统计性假设,推出理想气体的压强和温度公式,揭示了压强和温度的本质;提出了理想气体内能的概念,介绍了理想气体能量按自由度均分原理;阐述了理想气体的麦克斯韦速率分布率。

这称为气体动理论。

气体动理论的产生和发展凝聚了众多物理学家的智慧和心血。

早在1678年,胡克就提出了气体压强是由大量气体分子与器壁碰撞的结果的观点。

之后,在1738年,伯努利根据这一观点推导出压强公式,并且解释了玻意耳定律。

1744年,俄国的罗蒙诺索夫提出了热是分子运动表现的观点。

在19世纪中叶,气体动理论经克劳修斯、麦克斯韦和玻耳兹曼的努力而有了重大发展。

1858年,克劳修斯提出气体分子平均自由程的概念并导出相关公式。

1860年,麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。

之后,麦克斯韦又建立了输运过程的数学理论。

1868年,玻耳兹曼在麦克斯韦气体分子速率分布律中又引进重力场。

第一节理想气体状态方程一、状态参量1.状态参量概念如何描述系统的冷热变化规律,这就需要一些物理量。

假设气体的质量为 m ,其宏观状态一般可以用气体的压强p 、体积V 和温度T 三个物理量来描述。

如果在热力学过程中伴随着化学反应,还需要物质的量、摩尔质量 、物质各组分的质量等物理量来描述。

如果热力学系统处于磁场中,还需要电场强度E 、电极化矢量P 、磁场强度H 和磁化强度M 等物理量来描述。

选择几个描写系统状态的参量,称为状态参量。

2.状态参量分类按照不同的划分标准,状态参量可作如下划分:(1)按状态参量描写系统的性质划分可分为:V P E P H M几何参量:描述系统的空间广延性。

如体积 。

力学参量:描述系统的强度。

如压强 。

化学参量:描述系统的化学组分。

如各组分的质量,物质的量。

电磁参量:描述系统的电磁性质。

如电场强度 ,电极化强度 ,磁场强度 ,磁化强度 。

大学物理气体动理论

大学物理气体动理论

气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和

气体分子动理论

气体分子动理论

气体分子动理论气体分子动理论是物理学中研究气体行为的理论框架。

它基于原子和分子在气体中的微观运动,试图解释和预测气体的宏观性质。

本文将介绍气体分子动理论的基本原理和相关概念。

分子运动和气体行为气体由大量分子组成,这些分子在气体容器中不断运动,并与容器和其他分子发生碰撞。

气体的宏观性质,如温度、压力和体积,可以从分子的运动状态推导出来。

气体分子动理论通过研究分子之间的相互作用和运动规律,解释了气体的行为。

分子运动规律根据气体分子动理论,分子具有以下运动规律:1.分子无规则运动:分子在气体容器中呈现无规则、自由的运动状态。

它们在容器内沿不同方向高速运动,并不断改变运动方向和速度。

2.分子之间的弹性碰撞:分子之间发生弹性碰撞,碰撞后能量和动量守恒,但在碰撞中的分子可能会发生运动速度和方向的改变。

3.平均运动速度:分子的速度服从Maxwell-Boltzmann分布,即分子的速度呈现连续分布,平均速度与温度相关。

4.分子间距和碰撞:分子之间的距离很大,相对于分子的体积而言,分子之间的相互作用可以忽略不计。

然而,当分子靠近时,它们之间的碰撞会对气体的性质产生影响。

气体宏观性质的解释气体分子动理论通过分子的运动规律,解释了气体的一些宏观性质:1.压力:气体分子运动产生的碰撞力对容器壁施加压力,压力与分子速度和碰撞频率有关。

2.温度:气体分子的平均动能与其速度平方成正比,因此温度可以视为分子的平均运动速度的度量。

3.体积:气体分子之间的距离较大,在碰撞时每个分子所占的体积可以忽略不计,因此气体没有固定的形状和体积,可以完全填满容器。

气体状态方程气体状态方程描述了气体的状态和性质。

根据气体分子动理论,可以推导出理想气体状态方程:PV = nRT其中,P是气体的压力,V是气体的体积,n是气体的摩尔数,R是气体常数,T是气体的温度。

这个方程表明,在一定温度下,气体的压力和体积成正比,与摩尔数成正比。

该方程也可以用来推导气体的其他性质。

第六章 气体动理论 (3)

第六章 气体动理论 (3)

气体的内能是气体内部的能量,气体的内能永远不为0。
(2)理想气体内能:对于理想气体而言,分子间的作用
力忽略不计,分子与分子间的势能为零,分子刚性,不
考虑振动,分子内原子间的振动势能为0,则:。 所以,对于理想气体而言,所有分子的动能总和即为气 体的内能。
10
i 一个分子的能量为: kT 2
32
2 e
32
m 2 2 kT
m 2v e 2kT
2
2v
m 4π 2πkT
2
e
m 2 2 kT
m 2v 1 2kT
动动能完全相等,可以认为分子的平均平动
动能均匀分配在每个平动自由度上。
推 广
在热平衡条件下,物质(气体、液体、固体) 分子的每一个自由度都具有相同的平均动能, 1 都是 kT
2
—能量按自由度均分定理
上述结论可推广到振动和转动,利用能量均分定理: 对于有t 个平动自由度、r 个转动自由度和s 个振动 自由度的气体分子,分子的平均总动能为上述三种运 动动能之和:
方均根速率用于计算分子的平均平动动能
例:金属导体中的电子,在金属内部作无规则运动,与
容器中的气体分子很类似。设金属中共有N 个电子,其 中电子的最大速率为vm,设电子速率在v~v+dv 之间的几 率为 2
0 v vm dN Av dv N v vm 0
式中A 为常数。
8RT RT 1.60 M mol M mol
(3)方均根速率


2
由计算统计平均值公式:
幻灯片 34
3kT m

第六章 分子动理论

第六章 分子动理论
(2)温度是大量分子的集体表现. (3)在同一温度下各种气体分子平均平 动动能均相等.
24
注意
热运动与宏观运动的区别:温度所 反映的是分子的无规则运动,它和物体 的整体运动无关,物体的整体运动是其 中所有分子的一种有规则运动的表现.
25
4、零点能的问题 例如铜块中的自由电子在0K时平均平动动能为4.23eV。 温度所描述的运动是分子无规则运动 温度和系统的整体运动无关。
1 3 2 mv kT 而 2 2
1 2 v v v v 3
2 x 2 y 2 z
1 2 1 2 1 2 1 1 2 mv x mv y mv z ( mv ) 2 2 2 3 2
1 1 3 ( kT ) kT 2 3 2
之所以会出现上述结果,是因为分子无规则热运动,相互碰 撞后达热平衡的结果。
22
理想气体压强公式 理想气体物态方程 分子平均平动动能:
2 p n k 3 p nkT
1 3 2 k m v kT 2 2
微观量的统计平均
宏观可测量量
23
1 2 3 温度 T 的物理意义 k 2 m v 2 kT
(1)温度是分子平均平动动能的量度.
k T
2
微观量: 描述个别分子运动状态的物理 量(不可直接测量),如分子的m , 等. v
宏观量: 表示大量分子集体特征的物理 量(可直接测量),如 p,V,T 等. 微观量 统计平均 宏观量
3
研究方法
1 热力学 —— 宏观描述 2 气体动理论 —— 微观描述
4
§6-1 平衡态
温度
理想气体状态方程
14
6.2.2 分子性质
每个分子运动具有偶然性,然而正是由于每个分子的偶 然性,才使得大量分子运动出现了规律性。这种规律性具 有统计平均意义,称为统计规律性。 在平衡态,当重力的影响可以忽略时,容积内各处的压 强、密度、温度都相同,而分子始终在作无规则的热运动, 故我们可以认为:

气体分子动理论

气体分子动理论

气体分子动理论气体是物质存在的其中一种形态,它的分子运动对于我们理解气体的性质至关重要。

气体分子动理论是一种描述气体性质的科学理论,它通过解释气体分子的运动行为和碰撞规律,为我们提供了对气体行为的深入认识。

1. 分子运动的基本规律气体分子的运动有其基本规律,其中最重要的是玻尔兹曼分布规律。

根据玻尔兹曼分布规律,气体分子的速度分布服从高斯分布,即呈现一个钟形曲线。

这意味着气体分子的速度有一定的平均值,同时也存在一定的速度分散。

这种分布规律的存在,决定了气体的宏观性质,如压强、温度等。

2. 碰撞与压强气体分子之间的碰撞是气体压强产生的主要原因。

当气体分子运动速度较慢,分子之间碰撞不频繁时,气体的压强较低。

相反,当气体分子运动速度较快,分子之间碰撞频繁时,气体的压强较高。

根据气体分子动理论,气体压强与温度呈正相关,其数学关系为压强和温度的乘积与分子间平均速度的平方成正比。

3. 温度与分子速度气体分子运动的速度与气体的温度有着密切的关系。

根据气体分子动理论,气体温度与分子平均动能成正比。

换句话说,温度越高,气体分子的平均动能越大,分子的平均速度也会增加。

这也解释了为什么在相同温度下,不同气体的分子速度可能不同的原因。

例如,氢气分子较轻,根据等温分子速度公式,它的速度较大;而氮气分子较重,其速度相对较低。

4. 分子扩散与扩散速率分子扩散是气体分子运动的另一个重要现象。

根据气体分子动理论,气体分子会自发地从高浓度区域向低浓度区域扩散。

扩散速率受到多种因素的影响,如温度、分子间相互作用力以及分子质量等。

高温下的气体分子动能较大,扩散速率较快;而分子间的相互作用力越大,扩散速率越慢。

5. 分子间相互作用力气体分子间存在一定的相互作用力,这种作用力对气体性质有着重要影响。

分子间相互作用力可以分为吸引力和斥力。

对于吸引力较大的气体分子,它们的运动速度相对较慢,而分子间距离较小。

这种相互作用力称为范德华力。

相反,当气体分子间的斥力较大时,其运动速度较快,分子间距离较大,这种相互作用力被称为排斥力。

气体动力论

气体动力论

aa
a
N个分子作用在S1面的压强为:
Pb F ca m bv1 2 x cv2 2x v2 Nx
Nm v1 2xv2 2x v2 Nx abc N
由于: v1 2xv2 2N x v2 Nxv2 x1 3v2
abcV
N V
n
所以:
p
1 3
nmv2
压强公式
P
2 3
n
k
k
1 2
mv2
分子平均平动动能
对于理想气体,分子间的相互作用力忽略不计,所以理想气体 分子没有相互作用的势能。因此,理想气体的内能就是所有分子的 各种运动动能的总和。
EM 2i RT2i PV
内能只是气体状态参数温度T的单值函数 气体状态变化时内能的增量:
EM 2i RT2i(PV)
第23页,本讲稿共40页
讨论题:明确下列各种表示的物理意义
2、平衡态,准静态过程
若无外界影响,系统的宏观性质将在长时间内保持不变,这种 状态称为平衡态。
系统从一个状态经过一系列中间状态变到另一个状态,这叫状 态变化过程,简称过程。如果这其中经过的所有中间状态都无限接 近平衡状态,则称这种过程为准静态过程,也叫平衡过程。平衡过 程是无限缓慢地进行的极限过程。
③、分子的平均转动动能的总和 N2 2kT 0.66 178 0J
④、分子的平均动能的总和
NkT 1.6 710J 5 2
8
第26页,本讲稿共40页
§6.5 气体分子按速率分布规律
伽尔顿板实验
粒子落入其中一 格是一个偶然事件, 大量粒子在空间的 分布服从统计规律。
.......................................................................................................................................

06_第六章 气体动力循环

06_第六章 气体动力循环

6-2 活塞式内燃机的混合加热循环

预胀比 表示定压燃烧时气体比体积增大的倍率。
(6-3)

2)循环热效率

混合加热循环在温熵图中如图6-3所示。它的热效率为 (a)
6-2 活塞式内燃机的混合加热循环

假定工质是定比热容理想气体,则 (b)
将式(b)代入式(a)得 (c)
6-2 活塞式内燃机的混合加热循环

6-4 活塞式内燃机各种循环的比较
2、在迚气状态以及最高温度(Tmax)和最高压 力(pmax)相同的条件下迚行比较
图6-13示出了三种理论循:

123451为循环加热循环


12’451为定容加热循环
12”451为定压加热循环
三种循环放出的热量相同: q2p = q2 = q2v = 面积 71567
图 6-7
6-3 活塞式内燃机的定容 加热循环和定压加热循环
1、活塞式内燃机定容加热循环分析

有些活塞式内燃机 (如煤气机和汽油机) , 燃料是预先和空 气混合好再迚入气缸的 , 然后在压缩终了时用点火花点燃。 一经点燃, 燃烧过程迚行得非常迅速,几乎在一瞬间完成, 活塞基本上提留在上止点未动, 因此这一燃烧过程可以看 作定容加热过程。其它过程则和混合加热循环相同。 定容加热循环(又称奥托循环)在热力学分析上可以看作 混合加热循环当预胀比 时的特例。
6-3 活塞式内燃机的定容 加热循环和定压加热循环
图 6-8
图 6-9
6-3 活塞式内燃机的定容 加热循环和定压加热循环
2、活塞式内燃机定压加热循环分析

有些柴油机的燃烧过程主要在活塞离开上止点的一段行 程中迚行,一面燃烧, 一面膨胀,气缸内气体的压力基本保 持不变,相当于定压加热。这种定压加热循环(又称狄塞 尔循环)也可以看作混合加热循环的特例。 状态3和状态2重合,混合加热循环便成 了定压加热循环(图6-10、图6 -11)。令式(6-4)中 , 即可得定压加 热循环的理论热效率计算式:

大学物理:第六章 气体分子运动论

大学物理:第六章 气体分子运动论
3. 对大量分子组成的气体系统的统计假设
(1)气体处在平衡态时,分子在容器中的空间分布 平均来说是均匀的
n dN N dV V
dV——体积元 (宏观小,微观大)
上海交通大学 物理系
道尔顿分压定律 表明混合理想气体
分压强:混合气体中某种组分的气体在相同温 度下单独占有混合气体原有体积时的压强。
对于m种组分的混合气体 数密度 n n1 n2 ni nm
N
t 驰豫时间
t
上海交通大学 物理系
四、分子动理论的基本假设 1、分子数大量,作不停的杂乱运动。
实验依据:扩散现象、布朗运动
2、分子间存在相互作用,不断地作相互碰撞,碰撞频 率较高。 分子直线运动路程不大 没有碰撞就没有杂乱运动
3、从整体看,大量分子运动满足统计规律。
上海交通大学 物理系
热力学第零定律 温度和温标
若定义
vxi
vx
i
N
v
2 xi
vx2
i
N
上海交通大学 物理系
理想气体的压强公式
大量分子通过与壁的碰撞,形成压强
把所有分子按速度分类:
第 i 组分子的速度在 vi ~ vi dvi 区间
ni 为该组的分子数密度
考虑第 i 组分子与 dS 面碰撞的分子动量增量
pi (mvix ) (mvix ) 2mvix
i
dI
m ni vi2x dt dS
i(vix 0)
上海交通大学 物理系
理想气体的压强公式
dI
m ni vi2x dt dS
i(vix 0)
dI
dtdS
m ni vi2x
i(vix 0)
nivi2x

气体动理论

气体动理论

2 x
2 y
2 z
1 2
3
二、理想气体的压强公式
对压强的统计解释
气体的压强是由大量分子 在和器壁碰撞中不断给器 壁以力的作用所引起的, 压强是气体分子给容器壁 冲量的统计平均量。
例: 雨点对伞的持续作用。
压强公式的推导:
单位时间内分子a作用在A面上的作用力:
l3 l2 z
y
v a vx A
Fa 2mvx vx 2l
§1 气体的微观图像
一、原子(atom)
“假如在一次浩劫中所有的科学知识都被摧毁, 只剩下一句话留给后代,什么语句可用最少的 词包含最多的信息?我相信,这是原子假说,即 万物由原子(微小粒子)组成.”——费曼
道尔顿确立 了原子概念
原子是化学元素的基本单元
现代的仪器已可以观察和测量原子的大小 以及它们在物体中的排列情况, 例如 X 光 分析仪,电子显微镜, 扫描隧道显微镜等.
引言
气体动理论是从气体分子热运动的观点出发, 运用统计方法研究大量气体分子的宏观性质和统 计规律的科学,它是统计物理学最基本的内容。 本章将根据气体分子模型,研究气体的压强与温 度等宏观性质和分子速率分布规律与能量分布规 律等统计规律,从微观角度揭示这些性质和规律 的本质,同时穿插介绍这些理论的一些应用.
2 x
2 y
2 z
v y
o
vv x
2
2 x
2 y
2 z
v z
12
2 1x
12y
12z
22
2 2x
22y
2 2z
……
N112 N112x N112y N112z N222 N222x N222y N222z
……

气体动理论知识点总结

气体动理论知识点总结

气体动理论知识点总结简介气体动理论是研究气体分子运动和相应的宏观性质的一门学科,它为气体力学、热力学、物理化学等学科提供了理论基础。

本文将从气体分子运动、状态方程、麦克斯韦速度分布定律、运动学理论、能量分配等方面进行详细阐述。

气体分子运动气体分子运动是气体动理论研究的核心内容,它是气体宏观性质的微观基础。

气体分子的运动状态大致可以由速度、位置、能量和运动方向等参数确定。

其中,气体分子的平均速度和平均动能是气体动理论所研究的重要内容。

气体的平均速度可以通过麦克斯韦速度分布定律求解,它描述了气体分子速度在不同方向上的分布情况。

麦克斯韦速度分布定律表明,气体分子的速度服从麦克斯韦-波尔兹曼分布,即$$f(v)=4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}v^2e^{-\frac{mv^2}{2kT}},$$其中,$f(v)$表示速度为$v$的气体分子在速度空间中的密度,$m$为分子质量,$k$为玻尔兹曼常数,$T$为温度。

气体分子的平均速度可以用麦克斯韦速度分布定律求算,它的表达式为$$\bar{v}=\sqrt{\frac{8kT}{\pi m}}.$$气体分子的平均动能同样可以用温度、分子质量和玻尔兹曼常数表示为$$\bar{E_k}=\frac{3}{2}kT.$$状态方程状态方程是气体动理论研究的另一个重要内容,它描述了气体在不同温度、压强下的状态。

热力学气体状态方程的一般形式为$$PV=nRT,$$其中,$P$表示气体压强,$V$为气体体积,$n$表示气体摩尔数,$T$为气体温度,$R$为气体常数。

可以通过研究气体微观特性,推导出不同热力学气体状态方程。

对于理想气体,由于气体分子之间没有相互作用力,可以用下列状态方程来描述$$PV=nRT,$$其中,$P$表示气体压强,$V$表示气体体积,$n$为摩尔数,$R$为气体常数,$T$为气体的热力学温度。

麦克斯韦速度分布定律麦克斯韦速度分布定律是描述气体分子运动速度分布的定律,在研究气体分子运动性质、气体热力学性质等方面有重要的应用。

第6章 气体动理论

第6章 气体动理论

第六章 气体动理论问题6-1 你能从理想气体物态方程出发,得出玻意耳定律、查理定律和盖吕萨克定律吗?解 对于一定质量的理想气体气体物态方程m pv RT M = 得 pV C T=(C 为常数)当气体温度保持不变,有pv =恒量,即温度不变,压强与体积成反比,即玻意耳定律。

当气体体积保持不变,有p T =恒量,即查理定律。

当气体压强保持不变时,有V T =恒量,即盖吕萨克定律。

6-2 道尔顿分压定律指出:在一个容器中,有几种不发生化学反应的气体,当它们处于平衡态时,气体的总压强等于各种气体的压强之和,你能用气体动理论对该定律予以说明吗?证明 设容器中所装的几种不同的气体分子数密度分别为11N n V =,22Nn V=,……,则单位体积中总分子数为 1212N N n n n V++⋅⋅⋅==++⋅⋅⋅处于平衡态时,气体温度一定,分子的平均平动动能也一定,并且有2k 1322mv kT ε== 由气体压强的统计公式可得气体总压强为()k 1212223332p n n n kT p p =ε=++⋅⋅⋅=++其中1p 、2p 、…是各个气体的压强。

6-3 阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关,你能用气体动理论予以说明吗?解 由气体动理论可知 p nkT =,即分子数密度只与气体的温度和压强有关,与气体种类并无关系。

6-4 为什么说温度具有统计意义?讲一个分子具有多少温度,行吗?解 气体的温度是气体分子平均平动动能的量度,气体温度越高,分子平均平动动能越大;分子的平均平动动能越大,分子热运动的程度越激烈。

因此,可以说温度是表征大量分子热运动激烈程度的宏观物理量,是对大量分子热运动的统计平均结果。

对于个别分子而言,它的动能可能大于气体分子平均平动动能,也可能小于平均平动动能,对于个别分子,说它的温度是多少是没有意义的。

6-5 速率分布函数()f v 的物理意义是什么?试说明下列各式的物理意义:(1)()f v dv ;(2)()Nf v dv ;(3)()21v v f v dv ⎰;(4)()21v v N f v dv ⎰ 解 速率分布函数()f v 表示气体分子速率处于v 附近单位速率区间的概率。

气体动理论ppt课件

气体动理论ppt课件

一 自由度
kt
1 mv2 2
3 kT 2
v
2 x
v
2 y
v2z
1 v2 3
z
oy
x
1 2
m
v
2 x
1 2
mv2y
1 2
mv2z
1 kT 2
28
第六章 气体动理论
单原子分子平均能量
3 1 kT
2
刚性双原子分子
分子平均平动动能
kt
1 2
mvC2 x
1 2
mvC2 y
1 2
mvC2 z
29
第六章 气体动理论
摩尔热容比
E m i RT M2
dE m i RdT M2
CV ,m
i 2
R
C p,m
i
2 2
R
Cp,m i 2
CV ,m i
36
第六章 气体动理论
7-6 麦克斯韦气体分子速率分布律
一 测定气体分子速率分布的实验
实验装置
接抽气泵
2
l v vl
Hg
金属蒸汽 狭缝
l
显 示

37
第六章 气体动理论 分子速率分布图
12
第六章 气体动理论
二 分子力
现主为要当斥表力 现r; 为当 引r力0r时.,r分0时子,力分主子要力表
F
o
r 109 m, F 0
r0 ~ 1010 m
r0
r
分子力
三 分子热运动的无序性及统计规律
热运动:大量实验事实表明分子都在作永不停止的
无规运动 . 例 : 常温和常压下的氧分子
v 450m/s ~ 107 m; z ~ 1010次 / s

第六章 气体动理论 (Kinetic theory of gases)

第六章 气体动理论 (Kinetic theory of gases)
第六章 气体动理论
(Kinetic theory of gases)
从分子热运动观点出发,依赖微观 粒子的力学规律,运用统计方法研究气 体分子热运动的宏观性质和变化规律。 寻求宏观量与微观量之间的关系,揭示 气体宏观热现象及其规律的微观本质。
§ 6 . 1 状态、过程与理想气体 States, Process and Ideal gas
•二、气体的状态参量 State parameter of gas • 把描述系统状态的变量称为状态参量。 状态参量分为宏观量与微观量
1. 宏观量 macro variable 从整体上描述系统的状态量,一般可以直接测量。 如 M、V、E 等----可以累加,称为广延量 extensive variable P、T 等----不可累加,称为强度量 intensity variable 2. 微观量 microcosmic variable 描述系统内微观粒子的物理量。 如分子的质量m、 直径 d 、速度 v、动量 p、能量 等。 微观量与宏观量有一定的内在联系。 例如,气体的压强是大量分子撞击器壁的平均效果, 它与大量分子对器壁的冲力的平均值有关。
p nkT
混合气体
n...
p p1 p 2 p 3 ...
• 四、理想气体状态方程
State equation of ideal gas • 1、理想气体:是一种理想化的物理模型。 • 2、理想气体的状态方程:(克拉珀龙方程)
M pV vRT RT M mol
( =M / Mmol : 摩尔数)
3、实际气体:压强不太大(与大气压相比),温 度不太低(与室温相比)的条件下,可近似地看成 理想气体。
• 三、平衡态与平衡过程
• Equilibrium state and equilibrium process • 1、平衡态:在没有外界影响的条件下,系统各个 部分的宏观性质长时间内不发生变化的状态。 (系统与外界没有作功或传热等方式的能量交换) • 2、热动平衡:热力学中的平衡是一种热动平衡, 系统的分子作永不停息的热运动,而且因为碰撞, 每个分子的速度经常在变,但是系统的宏观量不 随时间改变。宏观上表现为平衡态。 • 3、平衡态是一个理想化的概念,实际上不存在完 全不受外界影响的系统,也就不存在宏观性质绝 对不变化的系统。

气体动理论知识点总结

气体动理论知识点总结

气体动理论知识点总结气体动理论是研究气体的微观运动状态及宏观性质的一门物理学理论,是现代物理学中较为重要的分支之一。

气体动理论不仅对实际问题的探究有着重要的作用,它的理论体系及方法也为其他学科提供了有力的支持。

下面将围绕着气体运动状态、气体的性质以及气体的热力学定律三个方面,介绍气体动理论中的相关知识点。

一、气体运动状态气体动理论认为,气体分子的运动状态决定了气体的宏观控制状态。

因此,研究气体分子的运动状态对于了解气体的性质及可控性具有重要的意义。

1.分子移动气体分子无序地、自由地运动,并且分子的速度是高度非一致性的。

分子的速度与温度、分子的种类有关。

分子受温度影响,速度随温度的升高而增加。

2.分子运动轨迹气体分子在空间中做无规则运动,但可以将其平均运动速度视为直线运动。

分子的运动具有随机性,在时间、位置上无法精确定位。

3.分子碰撞气体分子之间存在碰撞,碰撞时能量和动量都会发生变化,同时碰撞前和碰撞后分子的速度方向也会发生改变。

二、气体的性质气体的性质不仅涉及气体的物理状态,还涉及气体的化学性质,气体与其他物质的相互作用,气体的电学性质等方面,其中,最为重要的性质包括以下几个方面:1.流动性:气体具有流动性,能够流动并具有一定的流动性质。

2.扩散性:气体分子具有无序运动状态,具有自由的运动方式。

在一定条件下,气体分子能够通过物质间的空隙扩散到其他区域。

3.压缩性:气体分子间的间隔较大,气体分子之间的相互作用力较弱,分子之间可以变形并发生相对位移,气体具有较好的压缩性。

4.热膨胀性:在一定温度下,气体分子具有较大的运动能,随着温度的升高,气体分子之间的反向作用力会减小,会引起体积的增加。

5.气体的状态方程:气体在不同温度下具有不同的压强、体积关系,可以利用理想气体状态方程(P V/ nRT)来描述气体的状态。

三、气体的热力学定律气体动理论依据物理实验,建立了气体的热力学学说体系,包括状态方程、热力学过程、热力学定律等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V MRT =0.10 8.31105 273 47m3
M mol p
0.032 10
8.31103 m3
理想气体状态方程
若漏气若干时间之后,压强减小到 p,温度降
到 T’。如果用M 表示容器中剩余的氧气的质量,
从状态方程求得
M
M
mol
pV=0.032
5 8
10
8.31103
RT 8.31105 273 47
1.分子热运动的基本特征
分子热运动的基本特征是永恒的运动与频繁 的相互碰撞。它与机械运动有本质的区别,故不 能简单应用力学定律来解决分子热运动问题。
(1)无序性 某个分子的运动,是杂乱无章的,无序的;
各个分子之间的运动也不相同,即无序性;这正 是热运动与机械运动的本质区别。
分子热运动的基本特征
(2)统计性 但从大量分子的整体的角度看,存在一定
3
2
1T1
5
2
2T2
R
联立求解可得
T
3 2
T2
5 2
T2
3T2 5
284(K)
2T1 2
§6-2 分子热运动和统计规律
分子热运动:大量分子做永不停19 个分子/cm3 = 3千 亿个分子/cm3 ;
•分子之间有一定的间隙,有一定的作用力; •分子热运动的平均速度约 v = 500m/s ; •分子的平均碰撞次数约 z = 1010 次/秒。 •布郎运动是杂乱运动的流体分子碰撞悬浮 其中的微粒引起的。
例题6-2 容器内装有氧气,质量为 0.10kg,压强为 10105 Pa ,温度为 470C。因为容器漏气, 经过若干时间后,压强降到原来的 5/8,温 度降到 270C。 问(1)容器的容积有多大? (2)漏去了多少氧气?
解:(1)根据理想气体状态方程, pV M RT M mol
求得容器的容积 V 为
例题6-1 某种柴油机的气缸容积为0.82710-3m3。 设压缩前其中空气的温度47ºC,压强为 8.5104 Pa。当活塞急剧上升时可把空气压 缩到原体积的1/17,使压强增加到4.2106Pa, 求这时空气的温度。 如把柴油喷入气缸,将会发生怎样 的情况?
(假设空气可看作理想气体。)
解: 本题只需考虑空气的初状态和末状态,并且把 空气作为理想气体。我们有
状态1到状态2是一个状态变化的过程。若此 过程足够缓慢,这个过程中每一状态都可近似看 作平衡态,则叫平衡过程。
平衡态1
非平衡态
平衡态2
平衡态和平衡过程
状态变化的过程 热力学系统(大量微观粒子组成的气体、固体、
液体)状态随时间变化的过程。
非静态过程
系统从平衡态1到平衡态2,经过一个过程,平衡态1 必首先被破坏,系统变为非平衡态,从非平衡态到新 的平衡态所需的时间为弛豫时间。
p1V1 p2V2
T1
T2
理想气体状态方程
已知 p1=8.5104Pa , p2=4.2106Pa, T1=273K+47K=320K
V2 1 ,所以 V1` 17
T2
p2V2 p1V1
T1
930K
这一温度已超过柴油的燃点,所以柴油喷入气 缸时就会立即燃烧,发生爆炸推动活塞作功。
理想气体状态方程
u
非平衡态到平衡态的过
渡时间,即弛豫时间,约
10 -3 秒 ,如果实际压缩一
次所用时间为 1 秒,就可
以说是平衡过程。
外界压强总比系统压强大一小量△P ,就可以缓慢压缩。
3.理想气体状态方程
T不变
玻—马定律 PV=constant
克拉伯龙方程 PV=nRT
n=1mol
PV/T=R
P不变 盖—吕萨克定律 V/T=constant
非静态过程:当系统宏观变化比弛豫更快时,这个过 程中每一状态都是非平衡态。
平衡态和平衡过程
平衡过程 在过程中每一时刻,系统都处于平衡态,这是一 种理想过程。 当系统弛豫比宏观变化快得多时,这个过程中每 一状态都可近似看作平衡态,该过程就可认为是平 衡过程。
例1:外界对系统做功, 过程无限缓慢,无摩擦。
He : p0V0 1RT1 O2 : p0V0 2RT2
1 2
T2 T1
总能量为 :
E1 E2
3
2
1
RT1
5
2
2 RT2
设混合后温度为T ,则总能量为:
O2 : p0V0 2RT2
E
3
2
1
RT
5
2
2
RT
因为混合过程很快,所以混合过程中能
量守恒,即E =E1+E2
3
2
1
5
2
2
RT
普通物理解题方法研究
质点(系)运动学 F m dv dp dt dt
刚体运动学
M J d
dt
热学
p,V ,T
§6-1 状态 过程 理想气体
1.气体状态参量
体积 V 气体分子所能到达的空间。1dm3=1L
压强 P 气体分子垂直作用于器壁单位面积上的 力,是大量气体分子与器壁碰撞的宏观 表现。 760 mmHg=1.01105Pa。
的统计规律,即统计性。 例如: 在平衡态下,气体分子的空间分布(密度)
是均匀的。(分子运动是永恒的) 可作假设:气体分子向各个方向运动的机
会是均等的,或者说沿各个方向运动的平均分 子数应相等且分子速度在各个方向的分量的统 计平均值也相等。
对大量分子体系的热平衡态,它是成立的。
分子热运动的基本特征
宏观量:表征大量分子的整体特征的量。如温度、 压强、热容等,是实验中能测得的量。
温度 T
反映物体冷热程度的物理量,其高低反 映内部分子热运动的剧烈程度。
热力学温标(T:K)与摄氏温标(t:℃):
t=T-273.15
2.平衡态和平衡过程
平衡态
热力学状态
非平衡态
平衡态:在不受外界影响的条件下,系统宏观性 质均匀一致、不随时间变化的状态,热动平衡态。 气体状态(P,V,T)就是指平衡态。
V不变
查理定律
P/T=constant
理想气体状态方程
P
P1 T1 T2 T3
T1 T2 T3
等温线
0 V1
V
根据状态方程,系统的压强、体积、温度中任两
个量一定,就可确定系统的状态,因此常用P-V 图中
的一条曲线来表示系统的准静态过程,曲线上任一点
都表示气体的一个平衡态,这种图叫状态图。
理想气体状态方程
m3
6.67 102 kg
所以漏去的氧气的质量为
M M M 0.10 6.67102 kg 3.33102kg
例. 一容器被中间的隔板分成相等的两半. 一半装有氦气,温度为250 K ;另一半装有氧 气,温度为310 K . 二者压强相等. 求去掉隔 板后两种气体混合后的温度.

混合前
相关文档
最新文档