2019年广东省深圳市中考数学试题教学文稿
2019广东深圳中考数学试题及参考答案解析
![2019广东深圳中考数学试题及参考答案解析](https://img.taocdn.com/s3/m/d0374340ff00bed5b8f31d43.png)
2019年广东省深圳市初中学生学业水平考试数学试题(满分100分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019广东深圳,1,3分)-15的绝对值是()A.-5 B.15C.5 D.-15【答案】B【解析】15-=-(-15)=15.故选B.【知识点】绝对值2.(2019广东深圳,2,3分)下列图形中是轴对称图形的是()【答案】A【解析】A中图形沿着过上下两边中点的直线进行折叠,直线两旁的部分能完全重合,是轴对称图形;其他图形不符合轴对称图形的定义,不是轴对称图形.故选A.【知识点】轴对称图形3.(2019广东深圳,3,3分)预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×109【答案】C【解析】460 000 000整数位数有9位,所以将460 000 000用科学记数法表示为4.6×108.故选C.【知识点】科学记数法4.(2019广东深圳,4,3分)下列哪个图形是正方体的展开图()A.B.C.D.【答案】B【解析】B中图形符合“一四一”模型,是正方体的展开图.故选B.【知识点】立体图形的展开图5.(2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数6.(2019广东深圳,6,3分)下列运算正确的是()A.a2+a2=a4B.a3·a4=a12C.(a3)4=a12D.(ab)2=ab2【答案】C【解析】∵a2+a2=2a2,故A错误;∵a3·a4=a7,故B错误;(a3)4=a3×4=a12,故C正确;(ab)2=a2b2,故D错误.故选C.【知识点】合并同类项;同底数幂的乘法;幂的乘方;积的乘方7.(2019广东深圳,7,3分)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3 D.∠1=∠3【答案】B【解析】∵AC为角平分线,∴∠1=∠2.∵l1∥AB,∴∠4=∠2,∠3=∠2,∴∠1=∠4,∠1=∠3.故A、C、D正确.∵l1∥AB,∴∠5=∠1+∠2,故B错误.故选B.【知识点】平行线的性质;角平分线的定义8.(2019广东深圳,8,3分)如图,已知AB=AC,AB=5,BC=3.以AB两点为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,过M,N作直线与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13【答案】A【解析】由作图方法知,MN是线段AB的垂直平分线,∴AD=BD,∴△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.【知识点】尺规作图;线段的垂直平分线;等腰三角形9.(2019广东深圳,9,3分)已知函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b与y=cx的图象为()A.B.C.D.【答案】C【思路分析】先根据二次函数y=ax2+bx+c(a≠0)的图象确定a,b,c的正负,则判断一次函数与反比例函数的图象所在的象限.【解题过程】由二次函数的图象可知,a<0,b>0,c<0.当a<0,b>0,c<0时,一次函数y=ax+b经过第一、二、四象限;反比例函数y=cx位于第二、四象限,选项C 符合.故选C . 【知识点】二次函数的图象与系数的关系;一次函数的图象与系数的关系;反比例函数的图象与系数的关系;符号判断10.(2019广东深圳,10,3分)下列命题正确的是( ) A .矩形对角线互相垂直 B .方程x 2=14x 的解为x=14C .六边形的内角和为540°D .斜边和一条直角边分别相等的两个直角三角形全等【答案】D【思路分析】对各个选项逐项判断.【解题过程】A 中,矩形的对角线相等,而不具备对角线互相垂直,故A 错误;B 中,方程x 2=14x 的解为x=14或x=0,故B 错误;C 中,六边形的内角和为(6-2)×180°=720°,故C 错误;选项D 正确.故选D . 【知识点】矩形的性质;一元二次方程的解法;正多边形的内角和;全等三角形11.(2019广东深圳,11,3分)定义一种新运算:abn =nnab ,例如:132=2213=1-9=-8,若51m m=-2,则m=( ) A .-2 B .52- C .2 D .52【答案】B 【思路分析】如图 【解题过程】由题意得1m -15m=1m -15m =-2,则m=52-,故选B . 【知识点】定义新运算12.(2019广东深圳,12,3分)已知菱形ABCD 的边长为4,∠BAD=120°,E 、F 分别为AB ,AD 上的点,且BE=AF ,则下列结论正确的有( )个.①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE=∠AFC;④若AF=1,则GF EG =13.A .1B .2C .3D .4【答案】D【思路分析】【解题过程】在四边形ABCD是菱形,∵∠BAD=120°,∴∠B=∠BAC=60°,∴AC=BC,且BE=AF,∴△BEC≌△AFC,故①正确;∵△BEC≌△AFC,∴FC=EC,∠FCA=∠ECB,∴∠ECF=∠ACB=60°,∴△ECF为等边三角形,故②正确;∵∠AGE=180°-∠BAC-∠AEG;∠AFC=180°-∠FAC-∠ACF,∴∠AGE=∠AFC,故③正确;∵AF=1,则AE=3,易得△CFG∽△CBE,∴GF CFBE BC=,△CEG∽△CAE,∴EG CEAE AC=,∵CE=CF,AC=BC,∴GFBE =EGAE,∴13GF BEEG AE==,故④正确.故选D.【知识点】四边形多结论题;菱形的性质;全等三角形的判定;等边三角形的判定;二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上.13.(2019广东深圳,13,3分)分解因式:ab2-a=____________.【答案】a(b+1)(b-1)【解析】原式=a(b2-1)=a(b+1)(b-1).【知识点】因式分解;平方差公式14.(2019广东深圳,14,3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是____________.【答案】3 8【解析】从中随机抽取一张,共8种等可能的结果,其中抽到标有2的卡片的结果数为3,故抽到标有数字2的卡片的概率为3 8.【知识点】概率15.(2019广东深圳,15,3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,点B的对应点刚好落在对角线AC上;将AD沿AF翻折,点D的对应点刚好落在对角线AC上,连接EF,则EF=____________.【答案】6【解析】设点B 的对应点是点G ,点D 的对应点是点H ,作FM ⊥AB 于点M ,由折叠可知,EG=EB=AG=1,∴AE=2;AM=DF=FH=1,∴AB=FM=2+1,EM=2-1,∴EF=22EMFM=222121-=6.【知识点】正方形折叠;正方形的性质;勾股定理16.(2019广东深圳,16,3分)如图,在Rt △ABC 中,∠ABC=90°,C (0,3),CD=3AD ,点A 在反比例函数y=kx的图象上,且y 轴平分∠ACB ,则k=_______.【答案】47 7【解析】如图,作AE⊥x轴于点E,易得△COD∽△AED.又∵CD=3AD,C(0,-3),∴AE=1,OD=3DE.令DE=x,则OD=3x.∵y轴平分∠ACB,∴BO=OD=3x.∵∠ABC=90°,AE⊥x轴,∴△CBO∽△BAE,∴BOAE=COBE,即31x=37x,解得x=77(已舍负值),∴A(477,1),∴k=477.【知识点】反比例函数综合;相似三角形的判定与性质三、解答题(本大题共7小题,第17题5分,第18题6分,第19题7分,第20,21各题8分,第22,23各9分,满分52分,解答应写出文字说明、证明过程或演算步骤)17.(2019广东深圳,17,5分)92cos60°+(18)-1+(π➖3.14)0.【思路分析】将特殊角的锐角三角函数值,负整数指数幂,零指数幂等分别代入,然后按照实数混合运算的顺序计算.【解题过程】解:原式=3-1+8+1=11.【知识点】正六边形的性质;勾股定理;锐角三角函数18.(2019广东深圳,18,6分)先化简:(1-32x)÷244xx x-1,再将x=-1代入求值.【思路分析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.【解题过程】解:原式=2x x -1×22x x -1=x+2.当x=-1时,原式=-1+2=1. 【知识点】分式化简求值19.(2019广东深圳,19,7分)某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = ; (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.【思路分析】(1)由条形统计图可知喜欢“古筝”的有80人,由扇形统计图可知喜欢“古筝”的占40%,80÷40%=200,即共抽取了200人;由条形统计图可知,喜欢“竹笛”有30人,x=30÷200=15%;(2)用总数减去各组人数可得喜欢“二胡”有60人,在相应的位置补全条形统计图;(3)“扬琴”占的百分比为20200=10%,360°×10%=36°;(4)用样本估计总体可得全校喜爱“二胡”的人数为3000×30%=900(人). 【解题过程】(1)200,15%; (2)统计图如图所示:(3)36; (4)900.【知识点】数据统计;概率;条形统计图和扇形统计图.20.(2019广东深圳,20,8分)如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【思路分析】作EM ⊥AC 于点M ,构建直角三角形,解直角三角形解决问题. 【解题过程】如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M ,则AM=DE=500,∴BM=100. 在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.【知识点】解直角三角形21.(2019广东深圳,21,8分)有A 、B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电. (1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A 、B 两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【思路分析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,列方程组求解;(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,列出一次函数,再利用一次函数的性质求解. 【解题过程】解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则=403020=1800a b b a -,-,解得=300=260a b ,.答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,则 y=300x+260(90-x )=40x+23400, ∵x ≤2(90-x ), ∴x ≤60.∵y 随x 的增大而增大,∴当x=60时,y 取最大值为25800. 答:A 、B 发电厂发电总量最大是25800度. 【知识点】二元一次方程组的应用;一次函数的应用22.(2019广东深圳,22,9分)如图所示,抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC . (1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值, (3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【思路分析】(1)先求出点B 的坐标,然后把A 、B 、C 三点坐标代入解析式得出方程组,解方程组即可得出a ,b ,c 的值,得解析式,再用配方法或对称轴公式或中点公式可得对称轴方程;(2)利用轴对称原理作出点C 的对称点,求出四边形CDEA 的周长的最小值;(3)方法1:设CP 与x 轴交于点E ,先根据面积关系得出BE :AE=3:5或5:3,求出点E 的坐标,进而求出直线CE 的解析式,解直线CE 与抛物线的解析式联立所得的方程组求出点P 的坐标;方法2:设P (x ,-x 2+2x+3),用含x 的式子表示四边形CBPA 的面积,然后求出CB 的解析式,再用含x 的式子表示出△CBP 的面积,利用面积比建立方程,解方程求出x 的值,得出P 的坐标. 【解题过程】解:(1)∵点C (0,3),OB=OC ,∴点B (3,0). 把A (-1,0),C (0,3),B (3,0)代入c bx ax y ++=2,得09303a b c a b c c +=⎧⎪+=⎨⎪=⎩-,+,,解得123a b c =⎧⎪=⎨⎪=⎩-,,. ∴抛物线的解析式为y=-x 2+2x+3.∵y=-x 2+2x+3=-(x -1)2+4,∴抛物线的对称轴为x=1.(2)如图,作点C 关于x=1的对称点C′(2,3),则CD=C′D.取A ′(-1,1),又∵DE=1,可证A ′D=AE.在Rt△AOC 中,AC=22OA OC=2213=10.四边形ACDE 的周长=AC+DE+CD+AE =10+1+CD+AE .要求四边形ACDE 的周长的最小值,就是求CD+AE 的最小值.∵CD+AE=C′D+A′D,∴当A ′D,C′三点共线时,C′D+A′D 有最小值为13, ∴四边形ACDE 的周长的最小值=10+1+13.(3)方法1:由题意知点P 在x 轴下方,连接CP ,设PC 与x 轴交于点E ,∵直线CP 把四边形CBPA 的面积分为3:5两部分, 又∵S △CBE :S △CAE =S △PBE :S △PAE =BE :AE , ∴BE :AE=3:5或5:3,∴点E 1(32,0),E 2(12,0). 设直线CE 的解析式为y=kx+b ,(32,0)和(0,3)代入,得 3=02=3k b b ,,解得=2=3k b -,. ∴直线CE 的解析式为y=-2x+3.同理可得,当E 2(12,0)时,直线CE 的解析式为y=-6x+3.由直线CE的解析式和抛物线的解析式联立解得P1(4,-5),P2(8,-45).方法2:由题意得S△CBP=38S四边形CBPA或S△CBP=58S四边形CBPA.令P(x,-x2+2x+3),S四边形CBPA=S△CAB+S△PAB=6+12×4·(x2-2x-3)=2x2-4x.直线CB的解析式为y=-x+3,作PH∥y轴交直线CB于点H,则H(x,-x+3),S△CBP=12OB·PH=12×3·(-x+3+x2-2x-3)=32x2-92x.当S△CBP=38S四边形CBPA时,32x2-92x=38(2x2-4x),解得x1=0(舍),x2=4,∴P1(4,-5).当S△CBP=58S四边形CBPA时,32x2-92x=58(2x2-4x),解得x3=0(舍),x4=8,∴P2(8,-45).【知识点】一次函数、二次函数的综合;线段和最值;动点问题23.(2019广东深圳,23,9分)已知在平面直角坐标系中,点A(3,0),B(-3,0),C(-3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG :①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG 的最大值. 【思路分析】(1)连接DE ,证明∠EDO=90°,依据“经过半径的外端且垂直于半径的直线是圆的切线”得证;(2)①分两种情况:一是当F 位于AB 上时,构造相似,用含x 的式子分别表示未知线段,再根据tan ∠ACF=71列出方程求出F 1的坐标;二是当F 位于BA 的延长线上时,同样方法求出F 2的坐标;②方法1:利用相似及勾股定理得出BG CF =2264CG CG -,再令y=CG 2·(64-CG 2),求出y 的最大值,进而得出BG CF的最大值;方法2:作GM ⊥BC 于点M ,先证明△CBF∽△CGB ,再由相似三角形对应高的比等于相似比,得出BG CF的最大值;方法3:利用锐角三角函数,得出BG CF=cos sin BC BC αα,进而得出BG CF 的最大值. 【解题过程】(1)证明:连接DE ,∵BC 为直径,∴∠BDC=90°,∴∠BDA=90°.∵OA=OB ,∴OD=OA=OB ,∴∠OBD=∠ODB.∵EB=ED ,∴∠EBD=∠EDB,∴∠EBD+∠OBD=∠EDB+∠ODB,即∠EBO=∠EDO.∵CB⊥x 轴,∴∠EBO=90°,∴∠EDO=90°,∴直线OD 为⊙E 的切线.(2)∵A (3,0),B (-3,0),C (-3,8),∴AB=6,BC=8,∴AC=10.如图1,当F 位于AB 上时,作F 1N ⊥CA 于N ,∵△ANF 1∽△ABC , ∴AN AB =1NF BC =1AF AC, ∴设AN=3x ,则NF 1=4x ,AF 1=5x ,∴CN=CA -AN=10-3x .∴tan ∠ACF=1NF CN =4103x x -=71, 解得x=1031, ∴AF 1=5x=5031, OF 1=3-5031=4331, 即F 1(4331,0).如图2,当F 位于BA 的延长线上时,作F 2M ⊥CA 于M ,∵△AMF 2∽△ABC ,∴设AM=3x ,则MF 2=4x ,AF 2=5x ,∴CM=AC+AM=10+3x ,∴tan∠ACF=2F M CM =4103x x =71, 解得x=25, ∴AF 2=5x=2,OF 2=3+2=5,即F 2(5,0).(3)方法1:△CBG∽△CFB,∴BGBF=BCCF=CGBC,BC2=CG·CF,CF=2 BC CG,∵CG2+BG2=BC2,BG2=BC2-CG2,∴22BGCF=2242BC CGBCCG-=2226464CG CG-,∴BGCF2264CG CG-.令y=CG2·(64-CG2),∴y=-CG4+64CG2=-(CG2-32)2+322,当CG2=32时,y最大值=322,此时2,∴BGCF的最大值为3264=12.方法2:如图,作GP⊥BC于点P,∵BC是直径,∴∠CGB=∠CBF=90°,∴△CBF∽△CGB,∴BGCF=PGBC=8PG.∵PG≤半径=4,∴BGCF=8PG≤48=12.∴BGCF的最大值为12.方法3:∵BC是直径,∴∠CGB=∠CBF=90°,∴∠CBG=∠CFB(记为α,其中0°<α<90°)则BGCF=cossinBCBCαα=sinαcosα=12sin2α≤12,∴BGCF的最大值为12.【知识点】切线的判定;相似三角形的判定与性质;锐角三角函数;二次函数的最值问题。
2019年广东省深圳中考数学试题(含解析)
![2019年广东省深圳中考数学试题(含解析)](https://img.taocdn.com/s3/m/32cd714abed5b9f3f80f1c24.png)
2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分) 1.51-的绝对值是( ) A. -5 B.51 C. 5 D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数.众数是出现次数最多的那个数就是众数,即是23.故选D 6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B. 8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC 的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0. 10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D 11.定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅k hh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分) 13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 . 【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分∠ACB ,求【答案】774 【解析】三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.计算:01)14.3()81(60cos 2-9-++︒-π 【答案】解:原式=3-1+8+1 =11 【考点】实数运算 18.先化简441)231(2++-÷+-x x x x ,再将1-=x 代入求值. 【答案】解:原式=1)2(212-+⋅+-x x x x =2+x将1-=x 代入得:2+x =-1+2=1 【考点】分式的化简求值19.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = . (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名. 【考点】数据统计、概率,条形统计图和扇形统计图. 【答案】(1)200,15%; (2)统计图如图所示:(3)36 (4)90020.如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【考点】直角三角形的边角关系的应用.【答案】21.有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度点,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发多少度电?(2)A、B两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值.【考点】二元一次方程的应用【答案】22.如图所示抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC (1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值, (3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【考点】一次函数、二次函数综合、线段和最值,面积比例等. 【答案】23.已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD. (1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG : ①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG的最大值. 【考点】圆、切线证明、三角形相似,三角函数,二次函数最值问题等 【答案】。
广东省深圳市2019年中考数学试题及答案【word版】
![广东省深圳市2019年中考数学试题及答案【word版】](https://img.taocdn.com/s3/m/e8377c2f581b6bd97e19ea01.png)
2019年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2019年广东深圳)9的相反数是()A.﹣9 B.9 C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2019年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2019年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2019年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2019年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2019年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2019年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2019年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2019年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B. C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2019年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D. 500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2019年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2019年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2018•怀化)分解因式:2x2﹣8= 2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2019年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.(3分)(2019年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,15.求k= 8 .考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2019年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485 .考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2019年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2019年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a= 200 ,b= 0.4 ,c= 60 .(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2019年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2019年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2019年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据 B,D 两点求出 BD 表达式为 y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为 y=x 又在直线 DO 上的点P的横坐标为2,所以 p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)过 D 作DH⊥x 轴于 H,设 MC 与 x 轴交于 K,则△ACK∽△ADH,又∵DC=4AC,故 DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为 y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为 y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2019年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E 为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。
2019年广东省深圳市中考数学试题(word版,含解析)
![2019年广东省深圳市中考数学试题(word版,含解析)](https://img.taocdn.com/s3/m/2fe9f063524de518964b7db0.png)
2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分) 1.51-的绝对值是( ) A. -5 B.51 C. 5 D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数.众数是出现次数最多的那个数就是众数,即是23.故选D 6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B. 8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC 的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0. 10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D 11.定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅k hh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【答案】D【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分) 13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 . 【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分脚ACB ,求k= 。
2019广东省深圳中考数学试题(含解析)
![2019广东省深圳中考数学试题(含解析)](https://img.taocdn.com/s3/m/6d951661172ded630b1cb6d8.png)
2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分) 1.51-的绝对值是( ) A. -5 B.51 C. 5 D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数.众数是出现次数最多的那个数就是众数,即是23.故选D 6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B. 8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC 的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0. 10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D 11.定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅k hh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分) 13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 . 【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分∠ACB ,求【答案】774 【解析】三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.计算:01)14.3()81(60cos 2-9-++︒-π 【答案】解:原式=3-1+8+1 =11 【考点】实数运算 18.先化简441)231(2++-÷+-x x x x ,再将1-=x 代入求值. 【答案】解:原式=1)2(212-+⋅+-x x x x =2+x将1-=x 代入得:2+x =-1+2=1 【考点】分式的化简求值19.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = . (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名. 【考点】数据统计、概率,条形统计图和扇形统计图. 【答案】(1)200,15%; (2)统计图如图所示:(3)36 (4)90020.如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【考点】直角三角形的边角关系的应用.【答案】21.有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度点,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发多少度电?(2)A、B两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值.【考点】二元一次方程的应用【答案】22.如图所示抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC (1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值, (3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【考点】一次函数、二次函数综合、线段和最值,面积比例等. 【答案】23.已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD. (1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG : ①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG的最大值. 【考点】圆、切线证明、三角形相似,三角函数,二次函数最值问题等 【答案】。
完整word版,广东省深圳市2019年中考数学试题及答案【word版】,推荐文档
![完整word版,广东省深圳市2019年中考数学试题及答案【word版】,推荐文档](https://img.taocdn.com/s3/m/0e2819ce2b160b4e767fcffe.png)
2019年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2019年广东深圳)9的相反数是()A.﹣9 B.9 C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2019年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2019年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2019年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2019年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2019年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2019年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2019年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2019年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B. C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2019年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D. 500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2019年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2019年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2018•怀化)分解因式:2x2﹣8= 2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2019年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.(3分)(2019年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,15.求k= 8 .考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2019年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485 .考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2019年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2019年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a= 200 ,b= 0.4 ,c= 60 .(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2019年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2019年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2019年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据 B,D 两点求出 BD 表达式为 y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为 y=x 又在直线 DO 上的点P的横坐标为2,所以 p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)过 D 作DH⊥x 轴于 H,设 MC 与 x 轴交于 K,则△ACK∽△ADH,又∵DC=4AC,故 DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为 y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为 y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2019年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E 为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。
广东省深圳市2019年中考数学试卷及答案【Word版】
![广东省深圳市2019年中考数学试卷及答案【Word版】](https://img.taocdn.com/s3/m/4dbf96180912a21615792907.png)
禁蒂在已是向球阿的暴利印时巴意得底情中克做马奇攻来对织气场术维特迷下跪玩点脚移容腰像击罗牲双危刀传用德宁自三飞怕但状一坎不发招面边曼尔怎了队这威手区他没近却几样斯个加配守别友急何赛员给也大更跳塞反什现比难出贾造受郁算只根就动进又并灵顶必后卡直觉熟卫最丧轻真可逃停要护候论们花砸十想次如常本隆线绝都虽快欢门度乎分说图西抢2糖够训从狠然能住伊到1身随波己小巨念多和找所达况离助少伙兰苍墙机人阳服会突经值火很准磕敲尼微碰理形犯二上希纽失锋范被命么为势猛夹型格或右举作入顿决差滔奥打才须布厉里九法迫内假地开有续因太普于些竟那两无伟头林旦包争及投位原安弗让稳防切章杀袋劳象八盯北改架0钟雷等合据起还泰呼明重半执僵生知继天步怒猥成前择过之解积以赫站你惊任废新误躯毒惧缩狡森者牧破固怪苦托望潜朗力接琐拉装衔愁米清交糊看主距渗把高性而错死百围鲁足猾杰往啊数荼间甩洋当好变附白摇姜置依越倍此梅速话号五橡9我插跟唱关茨恐方子库种频化骂皮处另际行每搏域排断其始认奈沙谁黑件实兵喜落衣冠提佯体第悉至闷去冰圈流组再恩C途长索展名计感致魂强路着连技信玛海凉脑繁键片迎果物节撞绪备持费博疑总臃予判令记隔甚带劫定芬貌赌言疵代愤5远丢泽事负晚X试辱仅透晰思由冲闪控碎狂先哗阵占创险割A骗堆预腕且慢各风漂怜亮道略雨忽沿躁震健吓射颓回选凌脱穴恍许哪早江楚指条非心军具制畏品层欧瓦万捶保夜空眼议挡洛蹲支优傻浆左滑留肯踢额年豁止较家似待推未国易色寻胁肿规掩电权武烈瞬迅外蛇科羞平阻牺政吗将终群战式局葩庞痛敢练同纷正弧谓伏需臂梦收沮吐镜纯徒勇河奸触舒赢增引纵老料立声枢责征松胜3艺梯草工跑转刚励睛音木相逼轰庆舞梁显扳盖嘭苏即兴笑见表抖霉默露硬口应莱神极星阔问精杂匆猿慎惑汹奋富产牌干评扑荷救挽喊埃倒L忘刻席般升宽参幻互桩忙余湛率萨称嘘文誉aY挥闻舍识它.完角掌验扔纳伸拢滚题教单野告广洲炮疾偏激紧驰字华亲懂拿E狗究该丽尖颈背走拼贵压顾慨哈败便扯熠鼓严与请听奔联斗横核遗截撕叹弹息张短活运鹿属扰满承:志耳板乱基丰响lS态契鲜猝粗台补G憾协耀啐竞超抽o炫量领耗研尝疯宣呐抛结拭靠媒辉呈导豫讽英束宜沉全班暗油帮脏颤荣O吵设词抱谋胸冷枪网粹施g贴贺毫蓝热效替光异视闯恶南瞥放寂擦批甲雅瞪拦族嘴祝莫桑脆首静使消刺汗初影努部害周稍警犹亚复追姿降担俊戏瞎蒙存拥久美躺照拔槐泻客适懊央垫妙尤腿8躲淡帝肋穿档壮隙则屡水除欺涉幸培抓疼耐递日吉坐糕腾律捅愣裆柱4混恨列哀系氛胯抬盘搓勾骨糟丹裁办弱顺袒通麦整6畅恼吹鄙巧杯呢跃封趴按银%奏郎捂卑男调冒减养儿堵广东省深圳市 2019 年中考数学试卷及答案【Word 版】一、 一、选择题1.9 的相反数( ) A.-9 B.9 C. ±9 D.1 9) D.2.下列图形中是轴对称图形但 不是中心对称图形的是(A.B.C.3.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计, 2014 年“快的打车” 账户流水总 金额达到 47.3 亿元,47.3 亿用科学计数法表示为( A B C D )4.4.由几个大小相同的正方形组成的几何图形如图所示,则它的俯视图( )A BC A.平均数 3 A.-1D ) D.极差为 8 ) B.众数是-2 B.-3 C.3 C.中位数是 1 D.7 )5.在- 2,1,2,1,4,6 中正确的是(6.已知函数 y=ax+b 经过(1,3)(0,-2)求 a-b( 7.下列方程没有实数根的是( A、x²+4 x=10 C、x²-2x+3=0 A、AC∥DF 于 6 的概率是(B 、3x²+8x-3=0 D、(x-2)(x-3)=1 2 ) B、∠A=∠D ) C、AC=DF D、∠ACB=∠F8.如图、△ABC 和△DEF 中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF(9.袋子里有 4 个球,标有 2,3,4,5,先抽取一个并记住,放 回,然后再抽取一个,文抽取的两个球数字之和大1 A. 27 B. 12)5 C. 8B. 600 3 2503 D. 4C. 350 350 3 D. 500 3 )10.小明去爬山,在山脚看山顶角度为 30°,小明在坡比为 5:12 ,的山坡上走 1300 米,此时小明看山顶的角度 为 60°,求山高( A. 600 250 5211.二次函数 y ax bx c 图像如图所示,下列正确的个数为( ① bc 0 ② 2a 3c 0 ③ 2a b 02 ④ ax bx c 0 有两个解 x1 , x2 , x1 0, x2 0⑤ abc 0 ⑥ 当 x 1 时, y 随 x 增大而减小 A. 2 B. 3 C. 4 D. 5 12.如图,已知四边形 ABCD 为等腰梯形,AD//BC,AB=CD,E 为 CD 中点,连接 AE,且 AE= 2 3 , AD 2 ,∠ DAE=30°,作 AE⊥AF 交 BC 于 F,则 BF=( A.1 B. 3 3 C. )5 1D. 4 2 2二、填空题13.因式分解: 2 x 2 8 14 .在Rt ABC中, C 90, AD平分CAB, AC 6, BC 8, CD 15. 如图所示, 双曲线 y k AO 2 , 经过 Rt△BOC 斜边上的点 A,且满足 x AB 3与 BC 交于点 D, SBOD 21,求 k= 16.如图,下列图形是将正三角形按一定规律排列,则第 5 个图形中所有 正三角形的个数有…… 三、 解答 题017.计算: 12 -2tan60°+( 2014 -1) -(1 -1 ) 318.先化简,再求值: (3x x x ) 2 ,在-2,0,1,2 四个数中选一个合适的代入求值. x2 x2 x 420.已知 BD 垂直平分 AC,∠BCD=∠ADF,AF⊥AC, (1)证明 ABDF 是平行四边形 (2)若 AF=DF=5,AD=6,求 AC 的长A E F DBC21.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进 货价高于乙进货价 10 元,90 元买乙的数量与 150 元买甲的数量相同。
2019年广东深圳中考数学真题--含解析
![2019年广东深圳中考数学真题--含解析](https://img.taocdn.com/s3/m/da5af07fb8f67c1cfbd6b84c.png)
2019年广东省深圳市初中学生学业水平考试数学试题(满分100分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019广东深圳,1,3分)-15的绝对值是()A.-5 B.15C.5 D.-15【答案】B【解析】15-=-(-15)=15.故选B.【知识点】绝对值2.(2019广东深圳,2,3分)下列图形中是轴对称图形的是()【答案】A【解析】A中图形沿着过上下两边中点的直线进行折叠,直线两旁的部分能完全重合,是轴对称图形;其他图形不符合轴对称图形的定义,不是轴对称图形.故选A.【知识点】轴对称图形3.(2019广东深圳,3,3分)预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学记数法表示为()A.4.6×109B.46×107 C.4.6×108D.0.46×109【答案】C【解析】460 000 000整数位数有9位,所以将460 000 000用科学记数法表示为4.6×108.故选C.【知识点】科学记数法4.(2019广东深圳,4,3分)下列哪个图形是正方体的展开图()A.B. C.D.【答案】B【解析】B中图形符合“一四一”模型,是正方体的展开图.故选B.【知识点】立体图形的展开图5.(2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数6.(2019广东深圳,6,3分)下列运算正确的是()A.a2+a2=a4B.a3·a4=a12 C.(a3)4=a12 D.(ab)2=ab2【答案】C【解析】∵a2+a2=2a2,故A错误;∵a3·a4=a7,故B错误;(a3)4=a3×4=a12,故C正确;(ab)2=a2b2,故D错误.故选C.【知识点】合并同类项;同底数幂的乘法;幂的乘方;积的乘方∥AB,AC为角平分线,下列说法错误的是()7.(2019广东深圳,7,3分)如图,已知l1A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】∵AC为角平分线,∴∠1=∠2.∵l1∥AB,∴∠4=∠2,∠3=∠2,∴∠1=∠4,∠1=∠3.故A、C、D正确.∵l1∥AB,∴∠5=∠1+∠2,故B错误.故选B.【知识点】平行线的性质;角平分线的定义8.(2019广东深圳,8,3分)如图,已知AB=AC,AB=5,BC=3.以AB两点为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,过M,N作直线与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13【答案】A【解析】由作图方法知,MN是线段AB的垂直平分线,∴AD=BD,∴△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.【知识点】尺规作图;线段的垂直平分线;等腰三角形9.(2019广东深圳,9,3分)已知函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b与y=cx的图象为()A.B. C.D.【答案】C【思路分析】先根据二次函数y=ax 2+bx+c (a ≠0)的图象确定a ,b ,c 的正负,则判断一次函数与反比例函数的图象所在的象限.【解题过程】由二次函数的图象可知,a<0,b>0,c<0.当a<0,b>0,c<0时,一次函数y=ax+b 经过第一、二、四象限;反比例函数y=cx位于第二、四象限,选项C 符合.故选C . 【知识点】二次函数的图象与系数的关系;一次函数的图象与系数的关系;反比例函数的图象与系数的关系;符号判断10.(2019广东深圳,10,3分)下列命题正确的是( ) A .矩形对角线互相垂直 B .方程x 2=14x 的解为x=14C .六边形的内角和为540°D .斜边和一条直角边分别相等的两个直角三角形全等【答案】D【思路分析】对各个选项逐项判断.【解题过程】A 中,矩形的对角线相等,而不具备对角线互相垂直,故A 错误;B 中,方程x 2=14x 的解为x=14或x=0,故B 错误;C 中,六边形的内角和为(6-2)×180°=720°,故C 错误;选项D 正确.故选D .【知识点】矩形的性质;一元二次方程的解法;正多边形的内角和;全等三角形 11.(2019广东深圳,11,3分)定义一种新运算:abn ò=nna b -,例如:132ò=2213-=1-9=-8,若51mm-ò=-2,则m=( )A .-2B .52-C .2D .52【答案】B 【思路分析】如图【解题过程】由题意得1m --()15m -=1m -15m =-2,则m=52-,故选B .【知识点】定义新运算12.(2019广东深圳,12,3分)已知菱形ABCD 的边长为4,∠BAD=120°,E 、F 分别为AB ,AD上的点,且BE=AF ,则下列结论正确的有( )个.①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE=∠AFC ;④若AF=1,则GF EG =13.A .1B .2C .3D .4【答案】D【思路分析】【解题过程】在四边形ABCD是菱形,∵∠BAD=120°,∴∠B=∠BAC=60°,∴AC=BC,且BE=AF,∴△BEC≌△AFC,故①正确;∵△BEC≌△AFC,∴FC=EC,∠FCA=∠ECB,∴∠ECF=∠ACB=60°,∴△ECF为等边三角形,故②正确;∵∠AGE=180°-∠BAC-∠AEG;∠AFC=180°-∠FAC-∠ACF,∴∠AGE=∠AFC,故③正确;∵AF=1,则AE=3,易得△CFG∽△CBE,∴GF CFBE BC=,△CEG∽△CAE,∴EG CEAE AC=,∵CE=CF,AC=BC,∴GFBE=EGAE,∴13GF BEEG AE==,故④正确.故选D.【知识点】四边形多结论题;菱形的性质;全等三角形的判定;等边三角形的判定;二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上.13.(2019广东深圳,13,3分)分解因式:ab2-a=____________.【答案】a(b+1)(b-1)【解析】原式=a(b2-1)=a(b+1)(b-1).【知识点】因式分解;平方差公式14.(2019广东深圳,14,3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是____________.【答案】3 8【解析】从中随机抽取一张,共8种等可能的结果,其中抽到标有2的卡片的结果数为3,故抽到标有数字2的卡片的概率为38.【知识点】概率15.(2019广东深圳,15,3分)如图,在正方形ABCD 中,BE=1,将BC 沿CE 翻折,点B 的对应点刚好落在对角线AC 上;将AD 沿AF 翻折,点D 的对应点刚好落在对角线AC 上,连接EF ,则EF=____________.【答案】6【解析】设点B 的对应点是点G ,点D 的对应点是点H ,作FM ⊥AB 于点M ,由折叠可知,EG=EB=AG=1,∴AE=2;AM=DF=FH=1,∴AB=FM=2+1,EM=2-1,∴EF=22EM FM +=()()222121-++=6.【知识点】正方形折叠;正方形的性质;勾股定理16.(2019广东深圳,16,3分)如图,在Rt △ABC 中,∠ABC=90°,C (0,3),CD=3AD ,点A 在反比例函数y=kx的图象上,且y 轴平分∠ACB ,则k=_______.【答案】47 7【解析】如图,作AE⊥x轴于点E,易得△COD∽△AED.又∵CD=3AD,C(0,-3),∴AE=1,OD=3DE.令DE=x,则OD=3x.∵y轴平分∠ACB,∴BO=OD=3x.∵∠ABC=90°,AE⊥x轴,∴△CBO∽△BAE,∴BO AE =COBE,即31x=37x,解得x=7(已舍负值),∴A(47,1),∴k=47.【知识点】反比例函数综合;相似三角形的判定与性质三、解答题(本大题共7小题,第17题5分,第18题6分,第19题7分,第20,21各题8分,第22,23各9分,满分52分,解答应写出文字说明、证明过程或演算步骤)17.(2019广东深圳,17,5分)92cos60°+(18)-1+(π➖3.14)0.【思路分析】将特殊角的锐角三角函数值,负整数指数幂,零指数幂等分别代入,然后按照实数混合运算的顺序计算.【解题过程】解:原式=3-1+8+1=11.【知识点】正六边形的性质;勾股定理;锐角三角函数18.(2019广东深圳,18,6分)先化简:(1-32x+)÷244xx x-1++,再将x=-1代入求值.【思路分析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.【解题过程】解:原式=2x x -1+×()22x x -1+=x+2.当x=-1时,原式=-1+2=1. 【知识点】分式化简求值19.(2019广东深圳,19,7分)某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = ; (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.【思路分析】(1)由条形统计图可知喜欢“古筝”的有80人,由扇形统计图可知喜欢“古筝”的占40%,80÷40%=200,即共抽取了200人;由条形统计图可知,喜欢“竹笛”有30人,x=30÷200=15%;(2)用总数减去各组人数可得喜欢“二胡”有60人,在相应的位置补全条形统计图;(3)“扬琴”占的百分比为20200=10%,360°×10%=36°;(4)用样本估计总体可得全校喜爱“二胡”的人数为3000×30%=900(人). 【解题过程】(1)200,15%; (2)统计图如图所示:(3)36; (4)900.【知识点】数据统计;概率;条形统计图和扇形统计图.20.(2019广东深圳,20,8分)如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【思路分析】作EM ⊥AC 于点M ,构建直角三角形,解直角三角形解决问题. 【解题过程】如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M ,则AM=DE=500,∴BM=100. 在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.【知识点】解直角三角形21.(2019广东深圳,21,8分)有A 、B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电. (1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A 、B 两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【思路分析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,列方程组求解;(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,列出一次函数,再利用一次函数的性质求解.【解题过程】解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则=403020=1800a b b a -,-,ìïïíïïî解得=300=260a b ,.ìïïíïïî 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,则 y=300x+260(90-x )=40x+23400, ∵x ≤2(90-x ), ∴x ≤60.∵y 随x 的增大而增大,∴当x=60时,y 取最大值为25800.答:A 、B 发电厂发电总量最大是25800度. 【知识点】二元一次方程组的应用;一次函数的应用22.(2019广东深圳,22,9分)如图所示,抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC .(1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值,(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【思路分析】(1)先求出点B 的坐标,然后把A 、B 、C 三点坐标代入解析式得出方程组,解方程组即可得出a ,b ,c 的值,得解析式,再用配方法或对称轴公式或中点公式可得对称轴方程;(2)利用轴对称原理作出点C 的对称点,求出四边形CDEA 的周长的最小值;(3)方法1:设CP 与x 轴交于点E ,先根据面积关系得出BE :AE=3:5或5:3,求出点E 的坐标,进而求出直线CE 的解析式,解直线CE 与抛物线的解析式联立所得的方程组求出点P 的坐标;方法2:设P (x ,-x 2+2x+3),用含x 的式子表示四边形CBPA 的面积,然后求出CB 的解析式,再用含x 的式子表示出△CBP 的面积,利用面积比建立方程,解方程求出x 的值,得出P 的坐标.【解题过程】解:(1)∵点C (0,3),OB=OC ,∴点B (3,0).把A (-1,0),C (0,3),B (3,0)代入c bx ax y ++=2,得09303a b c a b c c +=⎧⎪+=⎨⎪=⎩-,+,,解得123a b c =⎧⎪=⎨⎪=⎩-,,. ∴抛物线的解析式为y=-x 2+2x+3.∵y=-x 2+2x+3=-(x -1)2+4,∴抛物线的对称轴为x=1.(2)如图,作点C 关于x=1的对称点C ′(2,3),则CD=C ′D .取A ′(-1,1),又∵DE=1,可证A ′D=AE .在Rt △AOC 中,AC=22OA OC +=2213+=10.四边形ACDE 的周长=AC+DE+CD+AE =10+1+CD+AE .要求四边形ACDE 的周长的最小值,就是求CD+AE 的最小值.∵CD+AE=C ′D+A ′D ,∴当A ′D ,C ′三点共线时,C ′D+A ′D 有最小值为13,∴四边形ACDE 的周长的最小值=10+1+13.(3)方法1:由题意知点P 在x 轴下方,连接CP ,设PC 与x 轴交于点E ,∵直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △CBE :S △CAE =S △PBE :S △PAE =BE :AE ,∴BE :AE=3:5或5:3,∴点E 1(32,0),E 2(12,0). 设直线CE 的解析式为y=kx+b ,(32,0)和(0,3)代入,得3=02=3k b b ,,ìïï+ïíïïïî解得=2=3k b -,.ìïïíïïî ∴直线CE 的解析式为y=-2x+3.同理可得,当E 2(12,0)时,直线CE 的解析式为y=-6x+3. 由直线CE 的解析式和抛物线的解析式联立解得P 1(4,-5),P 2(8,-45).方法2:由题意得S △CBP =38S 四边形CBPA 或S △CBP =58S 四边形CBPA .令P (x ,-x 2+2x+3), S 四边形CBPA =S △CAB +S △PAB =6+12×4·(x 2-2x -3)=2x 2-4x . 直线CB 的解析式为y=-x+3,作PH ∥y 轴交直线CB 于点H ,则H (x ,-x+3),S △CBP=12OB ·PH=12×3·(-x+3+x 2-2x -3)=32x 2-92x . 当S △CBP =38S 四边形CBPA 时,32x 2-92x=38(2x 2-4x ), 解得x 1=0(舍),x 2=4,∴P 1(4,-5).当S △CBP =58S 四边形CBPA 时,32x 2-92x=58(2x 2-4x ), 解得x 3=0(舍),x 4=8,∴P 2(8,-45).【知识点】一次函数、二次函数的综合;线段和最值;动点问题23.(2019广东深圳,23,9分)已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD.(1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG :①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG 的最大值. 【思路分析】(1)连接DE ,证明∠EDO=90°,依据“经过半径的外端且垂直于半径的直线是圆的切线”得证;(2)①分两种情况:一是当F 位于AB 上时,构造相似,用含x 的式子分别表示未知线段,再根据tan ∠ACF=71列出方程求出F 1的坐标;二是当F 位于BA 的延长线上时,同样方法求出F 2的坐标;②方法1:利用相似及勾股定理得出BG CF ()2264CG CG g -,再令y=CG 2·(64-CG 2),求出y 的最大值,进而得出BG CF的最大值;方法2:作GM ⊥BC 于点M ,先证明△CBF ∽△CGB ,再由相似三角形对应高的比等于相似比,得出BG CF 的最大值;方法3:利用锐角三角函数,得出BG CF =cos sin BC BC αα,进而得出BG CF的最大值. 【解题过程】(1)证明:连接DE ,∵BC 为直径,∴∠BDC=90°,∴∠BDA=90°.∵OA=OB ,∴OD=OA=OB ,∴∠OBD=∠ODB .∵EB=ED ,∴∠EBD=∠EDB ,∴∠EBD+∠OBD=∠EDB+∠ODB ,即∠EBO=∠EDO .∵CB ⊥x 轴,∴∠EBO=90°,∴∠EDO=90°,∴直线OD 为⊙E 的切线.(2)∵A (3,0),B (-3,0),C (-3,8),∴AB=6,BC=8,∴AC=10.如图1,当F 位于AB 上时,作F 1N ⊥CA 于N ,∵△ANF 1∽△ABC , ∴AN AB =1NF BC =1AF AC, ∴设AN=3x ,则NF 1=4x ,AF 1=5x ,∴CN=CA -AN=10-3x .∴tan ∠ACF=1NF CN =4103x x -=71, 解得x=1031, ∴AF 1=5x=5031, OF 1=3-5031=4331, 即F 1(4331,0).如图2,当F 位于BA 的延长线上时,作F 2M ⊥CA 于M ,∵△AMF 2∽△ABC ,∴设AM=3x,则MF2=4x,AF2=5x,∴CM=AC+AM=10+3x,∴tan∠ACF=2FMCM =4103xx+=71,解得x=25,∴AF2=5x=2,OF2=3+2=5,即F2(5,0).(3)方法1:△CBG∽△CFB,∴BGBF=BCCF=CGBC,BC2=CG·CF,CF=2 BC CG,∵CG2+BG2=BC2,BG2=BC2-CG2,∴22BGCF=2242BC CGBCCG-=()2226464CG CGg-,∴BGCF=()2264CG CGg-.令y=CG2·(64-CG2),∴y=-CG4+64CG2=-(CG2-32)2+322,当CG2=32时,y最大值=322,此时2,∴BGCF的最大值为3264=12.方法2:如图,作GP⊥BC于点P,∵BC是直径,∴∠CGB=∠CBF=90°,∴△CBF∽△CGB,∴BGCF=PGBC=8PG.∵PG≤半径=4,∴BGCF=8PG≤48=12.∴BGCF的最大值为12.方法3:∵BC是直径,∴∠CGB=∠CBF=90°,∴∠CBG=∠CFB(记为α,其中0°<α<90°)则BGCF=cossinBCBCαα=sinαcosα=12sin2α≤12,∴BGCF的最大值为12.【知识点】切线的判定;相似三角形的判定与性质;锐角三角函数;二次函数的最值问题。
广东省深圳市2019年中考数学试题及答案(K12教育文档)
![广东省深圳市2019年中考数学试题及答案(K12教育文档)](https://img.taocdn.com/s3/m/2dbc659931b765ce04081488.png)
广东省深圳市2019年中考数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市2019年中考数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市2019年中考数学试题及答案(word版可编辑修改)的全部内容。
2019年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2019年广东深圳)9的相反数是()A.﹣9 B.9 C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评: 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是() A.B.C.D.考点: 中心对称图形;轴对称图形.分析: 根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2019年广东深圳)支付宝与“快的打车"联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2019年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A.4。
广东省深圳市2019年中考数学试题及答案
![广东省深圳市2019年中考数学试题及答案](https://img.taocdn.com/s3/m/12549c99d5bbfd0a795673e9.png)
2019年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2019年广东深圳)9的相反数是()A.﹣9 B.9 C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2019年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2019年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2019年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2019年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2019年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2019年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2019年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2019年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B. C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2019年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D. 500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2019年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2019年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2018•怀化)分解因式:2x2﹣8= 2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2019年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.(3分)(2019年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,15.求k= 8 .考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2019年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485 .考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2019年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2019年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a= 200 ,b= 0.4 ,c= 60 .(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2019年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2019年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2019年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据 B,D 两点求出 BD 表达式为 y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为 y=x 又在直线 DO 上的点P的横坐标为2,所以 p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)过 D 作DH⊥x 轴于 H,设 MC 与 x 轴交于 K,则△ACK∽△ADH,又∵DC=4AC,故 DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为 y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为 y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2019年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E 为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。
2019深圳中考数学试卷(详细答案版本)讲课教案
![2019深圳中考数学试卷(详细答案版本)讲课教案](https://img.taocdn.com/s3/m/90c4120c76a20029bc642d26.png)
,
令
当 此时
, ,
,
,
,
,
时,
,
,
【解析】①如图
. ,当
位于
上时:
精品文档
学习资料
,
设
,则
,
,
,
,
解得:
,
,
即 如图
. ,当 位于
, 的延长线上时:
,
设
,则
,
,
,
,
解得:
,
精品文档
学习资料
,
,
即
.
②方法 :
如图,作
于点 ,
是直径,
, ,
, (相似三角形对应边上的高的比等于相似比).
,
,
方法
的最大值为 . : 是直径.
13. 分解因式:
.
14. 现有 张同样的卡片,分别标有数字:
, , , , , , , ,将这些卡片放在一
个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字
的卡片的概率是
15. 如图,在正方形 ABCD 中,
上,将
沿 翻折,使
,将
沿
翻折,使
点对应点刚好落在对角线
点对应点刚好落在对角线
上,求
.
, (记为 ,其中
的中位数和众位数分别是 C. ,
6. 下列运算正确的是
A.
B.
C.
7. 如图,已知
, 为角平分线,下列说法错误的是
用科学计数法表示为 D.
D. , D.
精品文档
学习资料
A.
B.
C.
D.
8. 如图,已知
与
相交于点 ,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省深圳市中考数学试题
一、选择题(每题3分,12小题,36分)
1.- 1的绝对值是()
5
A.-5
B.1
5
C.5
D.- 1
5
2.下列图形中是轴对称图形的是()
3.预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()
A.4.6×109
B.46×107
C.4.6×108
D.0.46×109
4.下列哪个图形是正方体的展开图()
5.这组数据20,21, 22, 23, 23的中位数和众数分別是() A. 20,23
B. 21,23
C. 21,22
D. 22,23
2019年广东省深圳市中考数学试
题
x
6.下列运算正确的是() A.a2+a2=a4
B.a3a4=a12
C.(a3)4=a12
D.(ab)2=ab2
7.如图,已知l1∥AB,AC为角平分线,下列说法错误的是()
A.∠1=∠4
B.∠1=∠5
C.∠2=∠3
D.∠1=∠3
8.如图,已知AB=AC,AB=5,BC=3,以A、B两点为圆心,大于1 AB的长为
2半径画圆,两弧相交于点M、N,连接MN与AC相交于点D,则△BDC的周长为()
A.8
B.10
C.11
D.13
9.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y= c 的图象为()
10下面命题正确的是() A.矩形对角线互相垂
直
B.方程x2=14x的解为x=14
C.六边形内角和为540°
D.一条斜边和一条直角边分别相等的两个直角三角形全等
11定义一种新运算∫a n ∙x n−1 dx=a n-b n,例如∫k 2xdx=k2-n2,若∫m -x-
b
2dx=-2,则m=()
A.-2
B.- 2
5
h 5m
C.2
D.2
5
12已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个().
①△BEC≌△AFC;
②△ECF为等边三角形;
③∠AGE=∠AFC;
④若AF=1,则GF =1.
EG 3
A.1
B.2
C.3
D.4
二、填空题(每题3分,4小题,12分)
13分解因式:ab2-a= .
14现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是
.
15如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF 翻折,使D点对应点刚好落在对角线AC上,求
EF= .
x
16如图,在Rt△ABC中,∠ABC=90°,C(0,-3),CD=3AD,点A在y=
k 上,且y轴平分∠ACB,则k= .
三、解答题(52分)
17计算:√9-2cos60°+(1)-1+(π-3.14)0
8
18先化简(1- 3)÷x−1 ,再将x=-1代入求值.
x+2x2 +4x+4
19某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.
(1)这次共抽取名学生进行调查,扇形统计图中的
x= ;
(2)请补全统计图;
(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;
(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约
有名.
20如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°.再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,
求隧道BC长.(sin53°≈4,cos53°≈3,tan53°≈4).
5 5 3
21有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电, A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.
(1)求焚烧l吨垃圾,A和B各发电多少度?
(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B 厂总发电量的最大值.
22如图抛物线经y=ax2+bx+c过点A(-1,0),点C(0,3),且OB=OC.
(1)求抛物线的解析式及其对称轴;
(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.
(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.
23已知在平面直角坐标系中,点A(3,0),B(-3,0),C(-3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.
(1)求证:直线OD是⊙E的切线;
(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;
①当tan∠ACF=1时,求所有F点的坐标(直接写出);
7
②求BG 的最大值.
CF。