自动控制理论第七章 非线性系统

合集下载

(优选)自动控制原理第七章非线性系统

(优选)自动控制原理第七章非线性系统

1, x 0 signx 1, x 0
0
xa
y k( x asignx) x a
3 滞环特性
滞环特性表现为正向与反向特性不是重叠在一起,而是
在输入--输出曲线上出现闭合环路。其静特性曲线如图7-3
所示。其数学表达式为:
y
b
y
k(
x asignx) bsignx
y0 y0
-a
0a
x
(优选)自动控制原理第七章 非线性系统
7.1 典型非线性特性
在控制系统中,若控制装置或元件其输入输出间的静 特性曲线,不是一条直线,则称为非线性特性。如果这 些非线性特性不能采用线性化的方法来处理,称这类非 线性为本质非线性。为简化对问题的分析,通常将这些 本质非线性特性用简单的折线来代替,称为典型非线性 特性。 7.1.1 典型非线性特性的种类
描述函数法是非线性系统的一种近似分析方法。首先利用描 述函数将非线性元件线性化,然后利用线性系统的频率法对系统 进行分析。它是线性理论中的频率法在非线性系统中的推广,不 受系统阶次的限制。
分析内容主要是非线性系统的稳定性和自振荡稳态,一 般不给出时域响应的确切信息。 7.2.1 描述函数的定义
1.描述函数的应用条件
2.死区特性
死区又称不灵敏区,在死区内虽有输入信号,但其输
出为零,其静持性关系如图7-2所示。
y
其数学表达式为
k -a
0a
x
0,| x | a
y
k(x
a),
x
a
k( x a), x a
若引入符号函数
图7-2 死区特性
死区小时,可忽略;大 时,需考虑。工程中,为抗 干扰,有时故意引入。比如 操舵系统。

自动控制原理第7章

自动控制原理第7章
而重要关心其时域响应的性质,如:稳定性、自持 振荡。
7.2 描述函数法
一、描述性函数的定义
非线性元件的输入为正弦波时,将其输出的非正弦波的一次谐波(基
波) 与输入正弦波的复数比,定义为非线环节的描述函数。
分析:
设 输入为:
x(t) Asint
则输出:

y(t) A0 (An cos nt Bn sin nt) n1
见图示说明:
但非线性系统则不然,它的稳定性不仅与系 统的结构和参数有关,还与输入信号及初始 条件有关。因此不能笼统地泛指某个非线性 系统是否稳定,而必须指明不同条件下系统 的稳定性。
3.非线性系统的自激振荡
线性系统只在阻尼比为零时,产生周期性的 等幅振荡;而且这样情况极少出现,极易变 化。但是在非线性系统中,常会出现具有一 定频率、一定振幅的稳定的等幅振荡,即自 激振荡。
二、改变非线性特性
1、改变非线性元件的参数
例如,在例7.1中,当线性部分参数不变(k=15)时,改变非线性部分的参 数a或b,可以使负倒描述函数曲线往左移,从而使两特性曲线不相交,即使 原有自持振荡的系统变为稳定。
2、对非线性元件采用某种并联校正
例如,一个饱和非线性元件并入一合适的死区非线性元件后,变成了线性 比例元件。
An

1

2 0
y(t) cosntdt
Bn

1

2 0
y(t ) sin
ntdt
假设输出为对称奇函数,则 A0 0 ;假设具有低通滤波特性,高次谐波
可忽略。
则非线性环节输出可认为
y(t) y1(t) A1 cost B1 sin t
Y1 sin(t 1) Y1e j1

(优选)自动控制理论第七章非线性系统

(优选)自动控制理论第七章非线性系统

-2
Ⅰ区
e
23
1、系统的相轨迹收敛于A点,是稳定的,奇点为稳定
焦点。e是单调衰减的。
2、相轨迹最后没有到达原
点,即 lime(t) 0 ,说明 t
系统在阶跃信号输入下,存 在稳态误差,引起稳态误差 的原因是死区继电器特性。 系统线性部分的传递函数表 明,系统是Ⅰ型系统,对阶 跃响应的稳态误差应为0,可 见死区继电器非线性对稳态 精度的影响。
1、无阻尼运动 ( 0)
二阶系统的极点分布和相平面图如下

x
λ1 ×
0
λ2 ×
0
x
无阻尼运动时,二阶系统的相平面图是一族同心
椭圆,每个椭圆代表一个简谐运动。这样的奇点称 为中心点。
2、欠阻尼运动 (0 1)

λ1 ×
0
λ2 ×
x
x
系统的自由运动是衰减振荡。相轨迹是对数螺 旋线,收敛于原点。奇点称为稳定焦点。
描述函数法主要用于分析非线性系统稳定性、自 振荡特性及消除自振荡的方法。虽然是一种近似方 法,但对常见实际非线性系统而言,分析结果基本满 足工程需要,在非线性系统分析及设计中得到了广泛 应用。
re
x
+ G1(S)
N
y
C
G2 (S)
C
设非线性环节的输入为:
x(t) X sin t
其输出的稳定分量y是与x同周期的非正弦周 期信号,可用傅氏级数表示:
(优选)自动控制理论第七章 非线性系统
3、在正弦输入下,线性系统的输出是同频率正 弦信号。
非线性系统在正弦输入下,输出是周期和输入相 同、含有高次谐波的非正弦信号。
4、线性系统分析可用迭加原理,在典型输入信 号下系统分析的结果也适用于其它情况。

自动控制原理课件 第7章 非线性控制系统

自动控制原理课件 第7章 非线性控制系统
描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。

自动控制原理第七章非线性控制系统的分析

自动控制原理第七章非线性控制系统的分析
X X
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e

自动控制原理课件 第七章 非线性系统

自动控制原理课件 第七章 非线性系统
2
从(2)式看出:线性化以后的系
统其特性与线性系统的特性一样,
可是(1)式表示的非线性系统的
将上式写成二个一阶方程组:
x1 (t ) x2 (t )
平衡点为:
x2 (t ) x1 (t ) 2 1 x12 (t ) x2 (t )


(1) 特性为:
当参量
x2 0, x1 0
一、相平面、相轨迹和平衡点 x f ( x , x)
将二阶系统常微分方程写成两个一阶微分方程表示如下:
..
.
x1 (t ) f1 t , x1 (t ), x2 (t ) x2 (t ) f 2 t , x1 (t ), x2 (t )
1、相平面:以横坐标表示X,以纵坐标 x 构成一个直角坐标 系,则该
则:
2 x2 n x1 2n x2
dx1 x2 2 dx2 n x1 2n x2
从二阶线性系统的特征方程中解出
1 , 2 n n 2 1
(1)当 0时
方程为:
1,2为虚根
x1 x2
2 x2 n x1
dx1 x2 2 dx2 n x1 x (
2 1
n
x2
)2 R 2
表示系统的相轨迹是一族同心的椭圆
当不同的
,我们得到不同的相轨迹如下图:
根与相轨迹
j λ 2 λ1 0 j 0 λ λ 1 2
稳定节点
j
不稳定节点
j 0
0
稳定焦点
j 0
不稳定焦点
j λ1 0 λ2
中心
鞍点
三、二阶非线性系统的特征
解析法:
(1)

自动控制原理 第七章 非线性系统

自动控制原理 第七章 非线性系统

实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A

M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M

sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。

自动控制原理课件 第7章 非线性控制系统

自动控制原理课件 第7章 非线性控制系统

伺服电机的死区电压(启动电压),测量元件的不灵敏 区等都属于死区非线性特性。
由于有死区特性存在,将使系统产生静态误差,特别是 测量元件的不灵敏区影响最为突出。
2020年11月17日
EXIT
第7章第8页
3. 间隙特性
k e(t)
y(t)
k
e(t
)
b sgn e(t)
e(t) 0 e(t) 0 e(t) 0
2020年11月17日
EXIT
第7章第11页
5.变放大系数特性
y
(t
)
k1e(t
)
k2e(t )
e(t) a e(t) a
变放大系数特性使系统在大误差信号时具有较大的 放大系数,系统响应迅速。而在小误差信号时具有较 小的放大系数,使系统响应既缓且稳。
具有这种特性的系统,其动态品质较好。
2020年11月17日
fv
dy t
dt
k
y
y t
F
式中:fv——粘性摩擦系数
k(y)——弹性系数,是 y(t)的函数
2020年11月17日
EXIT
第7章第4页
描述大多数非线性物理系统的数学模型是n阶非线性 微分方程
d
ny dt
t
n
h
t,
y
t
,
dy t
dt
,
,
d
n1
dt
y
n1
t
,
u
t
式中,u(t)为输入函数, y(t)为输出函数
描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法

自动控制原理 第七章 非线性

自动控制原理  第七章 非线性

x x x 0 , x(t0 ) x0 , x (t0 ) x0
将它写成微分方程组:
dx
.
x
dt.
dx
x
.
x
dt
容易求出奇点为(0,0)。
图 例7-2的根轨迹
ABCDO对应.初始条件为
x(0) 2, x(0) 7
EFO对应初.始条件为:
x(0) 0, x(0) 10
从相轨迹图可以直观地看到: 所有的相轨迹都最终收敛到 奇点(0,0),这说明系统 是渐近稳定的;可以证明, 每一条相轨迹都是向心螺旋 线,这说明系统的运动过程 是衰减振荡的。
3)相轨迹图形特征
如果微分方程满足解的存在性和唯一性条件, 那么,相轨迹(场)图一定有如下基本特征:
1)任一普通点有且只有一条相轨迹通过(解 的存在性和唯一性);
2)相轨迹必垂直通过轴; 3)轴上方的相轨迹从左向右运动,轴下方的 相轨迹从右向左运动。
Байду номын сангаас
例7-2 作出下列二阶系统的相轨迹
.. .
..
线性系统如果某系统在某初始条件下的响应 过程为衰减振荡,则其在任何输入信号及初始条 件下该系统的暂态响应均为衰减振荡形式。例:
x& x x2 x(0) x0
(1)当初始条件xo <1时,1-xo>0,上式 x(t) 具有负的特征根,其暂 态过程按指数规律衰 减,该系统稳定。
( 2 ) 当 xo=1 时 ,1xo=0,上式的特征根为 o 零,其暂态过程为一常 量。
x a xa x a
此处: x 输入 y 输出 k 比例系数
y
ym
a
k
x
0a
ym
饱和非线性对系统的影响:

自动控制理论第七章 非线性系统

自动控制理论第七章 非线性系统

-a
常见于齿轮传动机构、铁磁 元件的磁滞现象。可使系统 的稳态误差增大,也使系统 的动态特性变差。
4、继电器特性
y b -a -ma 0 ma -b a x
继电器特性中包含了死区、 回环和饱和特性,因此对 系统的稳态性能、暂态性 能和稳定性都有不利影响。
三、非线性系统的分析方法
1、相平面法 2、描述函数法 时域方法 频域方法
谐波,用基波分量表示其输出。 描述函数法主要用于分析非线性系统稳定性、自 振荡特性及消除自振荡的方法。虽然是一种近似方 法,但对常见实际非线性系统而言,分析结果基本满 足工程需要,在非线性系统分析及设计中得到了广泛 应用。
r

e
G1 ( S )
x
y
N
G2 (S )
C
C
设非线性环节的输入为:
x(t ) X sin t
其输出的稳定分量y是与x同周期的非正弦周 期信号,可用傅氏级数表示:
y
式中
A0 ( An cos nt B n sin nt )
n 1

A0 Y n sin(nt n)
n 1
An y (t ) cos nt d (t )
借助Matlab等软件工具可以方便地绘制非线性系统的相平面图。 例1:有死区继电器非线性的系统框图如下
二、非线性系统的相平 面分析
r 常数


e
1 -1 1
系统线性部分的传递函数 G ( S )
1 ,该二阶系统的无 S ( S 1)
s 阻尼自然振荡角频率 n 1rad /,阻尼比 0.5,根据 前面对奇点的分类,可知为稳定焦点。

1 N(X )

自动控制原理第七章

自动控制原理第七章

条件下的时间响应曲线如图所示。
四、非线性控制系统的特点
3.稳定性 3.稳定性 从曲线及方程中可以看出, 系统有两个平衡状态,即 x=0和 x=1 。 按稳定性的定义对平衡状 态 x=1来说,系统只要有一 个很小的偏离,就再也不会 回到这一平衡状态上来。 因此,x=1的平衡状态是一个不稳定的平衡状态。
第七章 非线性系统的分析
§7
非线性系统的分析
教学内容:
§7-1 非线性控制系统概述 §7-2 描述函数法 §7-3 相平面法
§7-1 非线性控制系统概述
一、引言 二、研究非线性系统的一般方法 三、典型非线性特性 四、非线性控制系统的特点
一、引言
包含一个或一个以上非线性元件或环节的系统为非线性系 统。 实际上自动控制系统的各个环节不可避免的带有某种程度 的非线性,线性系统只是非线性系统的近似。 非线性系统程度不严重时,在一定范围内或特定条件下, 可采用微偏法进行线性化,这种非线性称为非本质非线性。 如果系统的非线性具有间断点、折断点,称为本质非线性。 这时采用线性系统分析方法去研究会引起很大的误差甚至导 致错误的结论。
四、非线性控制系统的特点
3.稳定性 3.稳定性
线性系统的稳定性取决于系统的结构与参数,与起始 状态无关。 非线性系统的稳定性不仅仅和系统的结构与参数有关, 还和起始状态有直接关系。 一个非线性系统,他的某些平衡状态可能是稳定的, 某些平衡状态可能是不稳定的。因此对于非线性系统, 不存在系统是否稳定的笼统概念,要研究的是非线性系 统平衡状态的稳定性。
2 n
A +B
2 n
An ϕn = arctan Bn
一 描述函数的基本概念
非线性特性为奇对称,则直流分量 A0= 0; 同时,各谐波分量的幅值与基波相比一般都比较小; 因此,可以忽略式中的高次谐波分量,只考虑基波分量, 这种近似也称为谐波线性化。则

第7章 非线性控制系统分析(《自动控制原理》课件)

第7章 非线性控制系统分析(《自动控制原理》课件)

• • •
••

得等倾线方程为: 令 d x/ dx = α , 得等倾线方程为 x = − x /(1 + α ) (15 ) • 若令 α = 1, x = − x / 2 , 则等倾线如下图所示 如 α = − 2 则等倾线如下图所示. • • x 则 x = x 等倾线如图中蓝线 等倾线如图中蓝线. α =1 依此类推, 依此类推 取不同的α 值, 由 x 式(15)画出足够密的一簇等倾 画出足够密的一簇等倾 0 线, 然后按各条等倾线所表示 的相轨迹在该条等倾线上的斜率将各点连 成一条光滑的曲线, 如左上图所示. 成一条光滑的曲线 如左上图所示 α = −2


设下图为式(1)在初始条件 设下图为式 在初始条件 x = x0 , x = x0 情况下的 x (t ) 与 x (t ) 的关系曲线. 平面上的点随时间的增大, 的关系曲线 当 t ∈ [ 0, ∞ ) 时, 平面上的点随时间的增大 • • 将沿曲线移动 当初始条件确定后 x A( x0 , x0 ) 将沿曲线移动. 当初始条件确定后, 曲线也确定, 曲线也确定 则曲线上任何一点的 • x 坐标也确定 当 x, x 的值确定后 由 的值确定后, 坐标也确定. 0 式(1)可知 x = f ( x , x ) 的值也唯一确 可知 从而系统的整个运动状态也完全确定. 定, 从而系统的整个运动状态也完全确定 整条曲线就清楚地描述了系统在某一初始条件下的运动 性质. 上图中的平面叫相平面, 性质 上图中的平面叫相平面 曲线叫系统在某一初始 条件下的相轨迹. 由于系统的初始条件可有无穷多个, 条件下的相轨迹 由于系统的初始条件可有无穷多个 因此相应的相轨迹也有无穷多条, 因此相应的相轨迹也有无穷多条 这无穷多条相轨迹构 成的相轨迹簇叫相平面图. 成的相轨迹簇叫相平面图 因为

自动控制原理第七章

自动控制原理第七章

特点
常见于放大器中,在大信 号作用下,放大倍数小,因而 降低了稳态精度。
a
k
K
0
a
e
4
2、死区特性
0 e(t ) a
x
a
0
k
x
k e (t ) a k e (t ) a
e(t ) > a e (t ) < a
a
e
特点
常见于测量、放大元件中。死区非线性特性导致系 统产生稳态误差,且用提高增益的方法也无法消除。
0 A
a

1 N ( A)
(2)交点 b
外界干扰 外界干扰
G ( j )
A↑ A↓
该交点产生自持振荡
24
总结
G ( j ) 1 N ( A)
A b
Im
Re
1 R e G ( j ) R e N ( A) 1 Im G ( j ) Im N ( A)
G ( j ) 1 N ( A)
1 N ( A) 1 2
Im
1 R e G ( j ) R e N ( A) 1 Im G ( j ) Im 0 N ( A)
Re
A 1
0
28
G ( j )

Im G ( j ) 0
0 .3 K 4 .5

50 rad / s
G(jw)与负实轴 相交处的幅值
R e G ( j )
50
系统临界稳定
0 .3 K c 4 .5

1 2
K c 7 .5

自动控制原理第七章

自动控制原理第七章

解:1.将继电特性的参数代入相应公式得到:
4B 12 a 1 N ( A) 1 1 A A A A
2 2
1 πA N(A) 12 1 - 1 2 A
根据
( N (1A) ) ( )
a A
0,求得

1 π 的极值为 6 N ( A)
7.4.2 非线性系统结构的简化
非线性环节串联 若两个非线性环节串联,可将两个环节 的特性归化为一个特性,即以第一个非线性 环节的输入和第二个非线性环节的输出分别 作为归化后非线性特性的输入和输出,从而 作出等效非线性特性。注意,若两个非线性 特性的描述函数分别为 N1 ( A)和 N 2 ( A,等效非 ) 线性的描述函数为 N ( A)绝不等于 N1 ( A和 的 ) ) N2 (A 乘积,并且串联非线性环节的次序不可交换。 对于多个非线性环节串联,其处理方法可以 按照串联的次序,先归化前两个非线性环节, 等效后的非线性特性再与第三个环节进行归 化变换。 非线性环节并联 若两个并联的非线性环节其描述 函数分别为 和 N ( A) ,则并联后的 N 2 ( A) 1 等效非线性环节的描述函 数 。
7.2 典型非线性特性及其对系统的影响
间隙特性
也称回环,机械传动中为保证齿轮转动灵活不卡齿,主动轮、从动 轮齿轮之间必须有适当的间隙存在,使得两者不能同步运转,即从 动轮滞后主动轮。含有间隙特性的系统,其输出相位滞后于输入相 位,从而减小了系统的相稳定裕度,使系统的稳定性变坏,同时增 大了系统的稳差。
7.3 描述函数法
7.3.2 非线性特性的描述函数
非线性特性 描 述 函 数
7.3 描述函数法 描 述 函 数
非线性特性
7.4 用描述函数法分析非线性控制系统

自动控制原理第七章非线性系统分析

自动控制原理第七章非线性系统分析
或者非线性不严重的准线性系统,常常采用线性化的方 法进行处理,然后在线性分析的基础上加以修正。而对 于包括像继电特性那样根本不存在线性区的非线性特性, 工程上常用相平面方法和描述函数方法进行研究。
7-2 常见非线性因素对系统 运动特性的影响
一.不灵敏区
不灵敏区又叫 死区,系统中
的死区是由测量元件的死区、 放大器的死区以及执行机构的 死区所造成的。
x
(7-14)
(1)无阻尼运动 ( 0)
由方程(7-14),相轨迹方程为:
x2
(t)
x2 (t)
n2
A2
其中
A
x02
x02
2 n
(7-16)
相轨迹如图7-24所示,在相平面上是为一族同心 的椭圆。 每个椭圆相当于一个简谐振动。
图7-24 系统无阻尼运动时的相轨迹
相轨迹的方向如 图7-24中箭头所示。 相轨迹垂直穿过 横轴。 坐标原点处相轨 迹的斜率不能由该 点的坐标唯一地确 定,这种点叫做奇 点。
第7章 非线性系统分析
基本要求 7-1 非线性问题概述 7-2 常见非线性因素对系统运动特性的影响 7-3 相平面法基础 7-4 非线性系统相轨迹分析 7-5 描述函数 7-6 用描述函数分析非线性系统
返回主目录
基本要求
① 明确非线性系统动态过程的本质特征。掌握系 统中非线性部分、线性部分结构归化的方法。
若继电系统的方框图如图7—41 所示
图7-41
• 研究图中继电特性为图7-40(b) 的情况
e c时
KM c h
Tc(t)
c(t)
0
| c | h
KM c h
• 很明显,相平面以直线c h为界被分成
三个不同的区域,在每个区域里,系统的 相轨迹完全由一个线性微分方程所确定

自动控制理论第7章 非线性系统分析

自动控制理论第7章 非线性系统分析

知识要点
非线性系统与线性系统的区别,相平面的基 本概念,相轨迹,极限环,描述函数的基本思想 ,描述函数的定义和求取,描述函数法分析非线 性系统的自持振荡,非线性系统的校正。
第7章 非线型系统分析

§7.1
§7.2

常见非线性特性
相平面法
§7.3
§7.4
线性系统的相轨迹
非线性系统的相平面分析
第7章 非线性系统分析
内容提要
控制系统在不同程度上都存在着非线性。有 些系统可通过在工作点附近线性化来处理,但当 系统包含有本质非线性特性时,就不能用线性化 的方法处理。非线性系统与线性系统有本质的差 别,非线性系统不满足叠加原理,它的稳定性不 仅取决于控制系统的固有结构和参数,而且与系 统的初始条件与输入信号有关。
第7章 非线型系统分析
非线性系统的瞬态响应有一种特殊运动 — 自持振荡,它是一种稳定的周期运动,振荡频 率和幅值由系统结构和参数确定。非线性系统 的分析方法有相平面法和描述函数法,相平面 法是一种图解分析法,描述函数法是一种近似 分析法。最后介绍了基于SIMULINK 的非线性 系统分析方法。
第7章 非线型系统分析
EFO对应初始条件为。
.
x(0) 2, x(0) 7
从相轨迹图可以直观地看到: 所有的相轨迹都最终收敛到 奇点(0,0),这说明系统 是渐近稳定的;可以证明, 每一条相轨迹都是向心螺旋 线,这说明系统的运动过程 是衰减振荡的。
返回
.
图7-6 例7-2的根轨迹
第7章 非线型系统分析
§7.3
§7.5

描述函数法

第7章 非线型系统分析
§7.1 常见非线性特性

自动控制原理第七章非线性系统分析

自动控制原理第七章非线性系统分析

02
非线性系统的分析方法
相平面法
相平面法是一种通过绘制系统的 相图来分析非线性系统的动态行
为的方法。
它通过将系统的状态变量绘制在 二维平面上,显示系统的平衡状 态、周期运动和混沌运动等不同
状态。
相平面法可以用于分析非线性系 统的稳定性、分岔和混沌等现象。
描述函数法
描述函数法是一种通过引入描 述函数来分析非线性系统的频 率特性的方法。
滑模控制是一种变结构控制方法,通过设计滑模面和滑模控制器,使 得系统状态在滑模面上滑动,以达到控制系统的目的。
非线性系统的设计方法
相平面法
通过分析非线性系统的相轨迹,了解系统的动态行为,并 设计适当的控制器来控制系统状态。
描述函数法
通过分析非线性系统的频率特性,了解系统的动态行为, 并设计适当的控制器来控制系统状态。
它通过将非线性系统近似为线 性系统,并利用频率响应函数 来描述系统的频率特性。
描述函数法可以用于分析非线 性系统的谐振、倍周期分岔等 现象。
逆系统法
逆系统法是一种通过构建逆系统来补偿非线性系 统的非线性特性的方法。
它通过设计一个逆系统来抵消原系统的非线性, 从而将非线性系统转化为线性系统进行处理。
根轨迹法
根轨迹法是通过绘制系统的根轨迹图来分析系统的稳定性,根轨迹是指系统的极点随参数变化而变化 的轨迹。
劳斯稳定判据
劳斯稳定判据是判断线性系统稳定性的重要方法之一,其基本思想是通过 计算系统的极点,判断极点是否位于复平面的左半部分。
劳斯稳定判据的优点是简单易行,适用于多变量系统,可以同时考虑系统 的所有极点。
03
非线性系统的稳定性分析
定义与特点
定义
非线性系统的稳定性是指系统在受到 扰动后,能否恢复到原来的平衡状态 。

自动控制原理课程第7章-非线性系统分析

自动控制原理课程第7章-非线性系统分析

有时从系统安全性的考虑,常常加入各种限幅装置,其
特性也属饱和特性。
3.间隙特性(回环特性)
y
b
a
k
0 a
x
bsign. y y K ( x asign y )
y0 y0


-b
间隙特性对系统的影响: 一般来说,间隙使系统输出相位滞后,降低了系统的稳 定裕量,控制系统的动态特性变坏,甚至使系统振荡; 间隙的存在使系统的稳态误差扩大,稳态特性变差。
M y M
(2)死区继电器特性
x0 x0
M y 0 M
x a x a xa
(3)回环继电器特性
x<a M M x>a y x<-a M x<-a M
(4)死区加回环继电器特性
0 M M y 0 M M a1 x a2 x a2 x a1 a2 x a1 x a1 x a2
7.3.1 相平面的基本概念 设二阶非线性系统的微分方程为:
f ( x, x ) 0 x
若令 x1 x, x2 x
则二阶系统可写成两个一阶微分方程,即
1 x2 x 2 f ( x1 , x2 ) x
dx2 f ( x1 , x2 ) dx1 x2
0 x
0 x
0 x
0 x
7.3 相平面分析法 相平面法是庞加莱(Poincare)提出的,它是一种求 解二阶非线性微分方程组的图解法,它比较直观、准
确地反映系统的稳定性、平衡状态的特性、不同初始
状态和输入信号下系统的运动形式。虽然相平面法适 用一阶、二阶非线性控制系统的分析,但它形成特定 的相平面法,它对弄清高阶非线性系统的稳定性、极 限环等特殊现象,也起到了直观形象的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据系统的相轨迹,可对 系统的性能分析如下:
e
Ⅰ区
e
1、系统的相轨迹收敛于A点,是稳定的,奇点为稳定 焦点。e是单调衰减的。
2、相轨迹最后没有到达原 点,即
Ⅲ区 Ⅱ区 2 1 A -1 -1 -2 1 2 3
lim
t
e(t ) 0 ,说明
e
Ⅰ区
系统在阶跃信号输入下,存 在稳态误差,引起稳态误差 的原因是死区继电器特性。 系统线性部分的传递函数表 明,系统是Ⅰ型系统,对阶 跃响应的稳态误差应为0,可 见死区继电器非线性对稳态 精度的影响。
7.2 非线性系统的相平面分析方法
相平面法是一种时域分析方法。设非线性系
统框图如图所示,其中N表示非线性环节,G(S)
是线性部分的传递函数。
r 常数

N
G(S )
C
用相平面法分析非线性系统,线性部分传递 函数G(S)必须是二阶。
一、线性二阶系统奇点的类型
线性二阶系统的齐次微分方程为:
e
例2:非线性系统框图如下
r 常数


e
a -M
M a
y
2 S ( S 1)
C
其中继电器回环特性的参数M=0.2,a=0.2。 系统的线性部分是欠阻尼情况,奇点是稳定焦点。非线性环节 的输入-输出关系为 0 e a, e M 或 e a, e 0 y= -M

0 e a, e 0 e a, e
一 、非线性系统的特点
1、线性系统的稳定性和零输入响应的性质只取决 于系统的结构、参数,而和系统的初始状态无关。 非线性系统的稳定性和零输入响应的性质不仅取 决于系统的结构、参数,而且还与输入信号及初始条 件有关。即可能在某个初始条件下稳定,而在另一个 初始条件下系统可能不稳定 。 2、线性系统只有两种基本运动形式:发散(不 稳定)和收敛(稳定)。 非线性系统除了发散和收敛两种运动形式外,即 使无外界作用,也可能会发生自持振荡。
平面分为二个区域。分别绘制初 根据上述关系,可将 e e (0) 0 的两 (0) 0 和 e(0) 0.1, e 始状态分别为 e(0) 0.5, e 条相轨迹。
从图知,无论从哪一组初始条件出发,相轨迹均收敛于极限 环,这是一个稳定的极限环,意味着系统产生自持振荡。 一般不希望系统有自持振荡。当振荡难以消除时,应尽量 将振荡限制在一个较小的、可以接收的范围内。实际上,对 于此系统,通过减少继电器回环的宽度a,可减小振荡。
3、过阻尼运动 ( 1)

x
×
×
λ2
λ1
0

x
系统的自由运动是非周期地趋向于原点。相轨迹 是趋于原点的抛物线,原点是奇点,称为稳定节点。
4、 (-1 0)

× 0 ×
x

x
系统的自由运动是发散振荡。相轨迹是以原点 出发的螺旋线,原点处的奇点称为不稳定焦点。
5、 (-1 )
2 x 2n x n x 0
相平面图是在
)随时间t 变化 平面中,绘制 ( x, x xx
(0)) 。 的轨迹,称为相轨迹。相轨迹的起点是 ( x(0), x
dx 0 奇点是指 的点。根据奇点附近相轨迹的特征, dx 0 奇点有不同名称,据此可判断系统运动的性质。
3、在正弦输入下,线性系统的输出是同频率正 弦信号。 非线性系统在正弦输入下,输出是周期和输入相 同、含有高次谐波的非正弦信号。 4、线性系统分析可用迭加原理,在典型输入信 号下系统分析的结果也适用于其它情况。 非线性系统不能应用迭加原理,没有一种通用的 方法来处理各种非线性问题。 对非线性系统分析研究的重点是:(1)系统是否 稳定;(2)有无自持振荡;(3)若存在自持振荡, 确定自持振荡的频率和振幅;(4)研究消除或减 弱自持振荡的方法。
二、典型非线性系统及对系统性能的影响
1、死区非线性
y k 0 a x
-a k
常见于测量、放大元件中。 死区非线性特性导致系统产 生稳态误差,且用提高增量 的方法也无法消除。
2、饱和非线性
y k -a 0 a x
常见于放大器中,在大信号 作用下,放大倍数小,因而 降低了稳态精度。
3、间隙非线性
y k 0 a x

x
×
×
λ1 λ2

x
系统的运动是非周期发散运动。相轨迹是由原 点出发的发散型抛物线。原点处的奇点称为不稳定 节点。
6、
,
1
2
是对称于原点的实数

x
×
×
λ1
0
λ2

x
系统的自由运动是发散运动,原点处的奇点称为鞍点。
以上6种奇点,类似的奇点在非线性系统中也常见到。
二、非线性系统的相平面分析
1、无阻尼运动 ( 0) 二阶系统的极点分布和相平面图如下

x
λ1 ×
0

0
x
λ2 ×
无阻尼运动时,二阶系统的相平面图是一族同心 椭圆,每个椭圆代表一个简谐运动。这样的奇点称 为中心点。
2、欠阻尼运动 (0 1)

பைடு நூலகம்x
λ1 ×
0

x
λ2
×
系统的自由运动是衰减振荡。相轨迹是对数螺 旋线,收敛于原点。奇点称为稳定焦点。
继电器的输入-输出关系为
y f (e)
1, 0, 1,
e 1; 1 e 1; e 1 .
Ⅲ区 Ⅱ区 2 1 A -1 -1 -2 1 2 3
平面,根据继电器的 在 ee 非线性特性,可分为三个区域,
(0) 0 , 设初始状态 e(0) 3, e
绘制相轨迹如图所示,(设r=3)
-a
常见于齿轮传动机构、铁磁 元件的磁滞现象。可使系统 的稳态误差增大,也使系统 的动态特性变差。
4、继电器特性
y b -a -ma 0 ma -b a x
继电器特性中包含了死区、 回环和饱和特性,因此对 系统的稳态性能、暂态性 能和稳定性都有不利影响。
三、非线性系统的分析方法
1、相平面法 2、描述函数法 时域方法 频域方法
借助Matlab等软件工具可以方便地绘制非线性系统的相平面图。 例1:有死区继电器非线性的系统框图如下
二、非线性系统的相平 面分析
r 常数


e
1 -1 1 -1
y
1 S ( S 1)
C
1 系统线性部分的传递函数 G ( S ) ,该二阶系统的无 S ( S 1)
0.5,根据 s 阻尼自然振荡角频率n 1rad /,阻尼比 前面对奇点的分类,可知为稳定焦点。
相关文档
最新文档