无锡市中考数学试卷详细解析
江苏省无锡市2022年中考数学真题试题(含解析1)
江苏省无锡市2022年中考数学真题试题(含解析1)2022年江苏省无锡市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.倒数是数的倒数,即其乘积为1.因此,-5的倒数为-1/5,选项B。
2.函数y=的定义域为x≠2,即x的取值范围为x2,选项D。
3.指数运算法则中,(a^m)^n = a^(mn),因此(a^2)^3=a^6,选项A。
乘方运算法则中,(ab)^n=a^n*b^n,因此(ab)^2=a^2*b^2,选项B。
除法运算法则中,a^m/a^n=a^(m-n),因此a^6/a^3=a^3,选项C。
乘法运算法则中,a^m*a^n=a^(m+n),因此a^2*a^3=a^5,选项D。
4.中心对称图形是以某点为中心,对称的图形。
根据图形可知,只有选项C是中心对称图形。
5.根据题意,a-b=2,b-c=-3,将两式相加得到a-c=-1,选项B。
6.根据表格可知,男生总分为5*70+10*80+7*90=1205,女生总分为4*70+13*80+4*90=1230,因此男生的平均成绩小于女生的平均成绩,选项B。
男生的中位数为80分,女生的中位数为80分,因此男生成绩的中位数等于女生成绩的中位数,选项D。
7.平均增长率的计算公式为[(终值/初值)^(1/月数)-1]*100%。
从1月份到3月份,共增长了4.5-2=2.5万元。
平均每月增长率为[(4.5/2)^(1/2)-1]*100%≈25%,选项B。
8.根据命题“a^2>b^2,则a>b”,当a=3,b=2时,a^2>b^2,且a>b,因此选项A是正确的。
当a=-3,b=2时,a^2>b^2,但ab^2,且a>b,因此选项A是正确的。
当a=-1,b=3时,a^2b,因此选项D是错误的。
因此,选项B是错误的。
9.根据图形可知,菱形的对角线长度为√(2*320)=32,因此圆的直径长度为32,半径长度为16,选项无法确定。
2020年江苏省无锡市中考数学试卷(解析版)
2020年无锡市初中毕业升学考试数学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣7的倒数是( ) A.17B. 7C. -17D. ﹣7【答案】C 【解析】 【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7). 【详解】解:﹣7的倒数为:1÷(﹣7)=﹣17. 故选C .【点睛】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.函数2y =中自变量x 的取值范围是( ) A. 2x ≥ B. 13x ≥C. 13x ≤D. 13≠x 【答案】B 【解析】 【分析】由二次根式的被开方数大于等于0问题可解 【详解】解:由已知,3x ﹣1≥0可知13x ≥,故选B . 【点睛】本题考查了求函数自变量取值范围,解答时注意通过二次根式被开方数要大于等于零求出x 取值范围.3.已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是( ) A. 24,25 B. 24,24C. 25,24D. 25,25【答案】A 【解析】 【分析】根据平均数的计算公式和中位数的定义分别进行解答即可. 【详解】解:这组数据的平均数是:(21+23+25+25+26)÷5=24;把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25,则中位数是25; 故应选:A .【点睛】此题考查了平均数和中位数,掌握平均数的计算公式和中位数的定义是本题的关键. 4.若2x y +=,3z y -=-,则x z +的值等于( ) A. 5 B. 1C. -1D. -5【答案】C 【解析】 【分析】将两整式相加即可得出答案. 【详解】∵2x y +=,3z y -=-, ∴()()1x y z y x z ++-=+=-, ∴x z +的值等于1-, 故选:C .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键. 5.正十边形的每一个外角的度数为( ) A. 36︒ B. 30C. 144︒D. 150︒【答案】A 【解析】 【分析】利用多边形的外角性质计算即可求出值. 【详解】解:360°÷10=36°, 故选:A .【点睛】此题考查了多边形的内角与外角,熟练掌握多边形的外角性质是解本题的关键. 6.下列图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆 B. 等腰三角形C. 平行四边形D. 菱形【答案】B 【解析】 【分析】根据轴对称图形与中心对称图形的概念结合圆、平行四边形、等腰三角形、菱形的性质求解. 【详解】解:A 、圆是轴对称图形,也是中心对称图形,故此选项错误; B 、等腰三角形是轴对称图形,不是中心对称图形,故此选项正确; C 、平行四边形是不轴对称图形,是中心对称图形,故此选项错误; D 、菱形是轴对称图形,也是中心对称图形,故此选项错误. 故选:B【点睛】此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合. 7.下列选项错误的是( )A. 1cos602︒= B. 235a a a ⋅=C.2= D. 2(2)22x y x y -=-【答案】D 【解析】 【分析】分别根据特殊角的三角函数值,同底数幂的乘法法则,二次根式的除法法则以及去括号法则逐一判断即可. 【详解】解:A .1cos602︒=,本选项不合题意; B .235a a a ⋅=,本选项不合题意;C=1,本选项不合题意; D .2(x−2y )=2x−4y ,故本选项符合题意; 故选:D .【点睛】本题主要考查了特殊角的三角函数值,同底数幂的乘法,二次根式的除法以及去括号与添括号,熟记相关运算法则是解答本题的关键. 8.反比例函数k y x =与一次函数8161515y x =+的图形有一个交点1,2B m ⎛⎫⎪⎝⎭,则k 的值为( ) A. 1 B. 2C.23D.43【答案】C 【解析】 【分析】把点B 坐标代入一次函数解析式,求出m 的值,可得出B 点坐标,把 B 点的坐标代入反比例函数解析式即可求出k 的值.【详解】解:由题意,把B (12,m )代入8161515y x =+,得m=43 ∴B (12,43) ∵点B 为反比例函数k y x=与一次函数8161515y x =+的交点, ∴k=x·y ∴k=12×43=23. 故选:C .【点睛】本题考查了一次函数与反比例函数的交点问题,熟知一次函数反比例函数图像的交点坐标都适合两个函数解析式是解题关键.9.如图,在四边形ABCD 中()AB CD >,90ABC BCD ∠=∠=︒,3AB =,3BC =,把Rt ABC ∆沿着AC 翻折得到Rt AEC ∆,若3tan 2AED ∠=,则线段DE 的长度为( )A.6 B.7 C.3 D.27【答案】B 【解析】 【分析】根据已知,易求得23AC =,延长CD 交AE 于F ,可得2AF CF ==,则=1EF ,再过点D 作DG EF ⊥,设3DG x =,则2GE x =,7ED x =,12FG x =-,在t R FGD 中,根据3FG GD =,代入数值,即可求解. 【详解】解:如图∵ 90B ∠=︒,3BC =3AB =, ∴30BAC ∠=︒, ∴23AC = ∵90DCB ∠=︒, ∴//AB CD ,∴30DCA ∠=︒,延长CD 交AE 于F , ∴ 2AF CF ==,则=1EF ,=60EFD ∠︒ ,过点D 作DG EF ⊥,设3DG x =,则2GE x =,7ED x =,∴12FG x =-,∴在t R FGD 3FG GD =)312=3x x -,解得:1=3x , ∴7ED =. 故选B .【点睛】本题目考查三角形的综合,涉及的知识点有锐角三角函数、折叠等,熟练掌握三角形的有关性质,正确设出未知数是顺利解题的关键.10.如图,等边ABC ∆的边长为3,点D 在边AC 上,12AD =,线段PQ 在边BA 上运动,12PQ =,有下列结论:①CP 与QD 可能相等;②ΔAQD 与BCP ∆可能相似;③四边形PCDQ 313;④四边形PCDQ 周长的最小值为3732+.其中,正确结论的序号为( ) A. ①④ B. ②④C. ①③D. ②③【答案】D 【解析】 【分析】①通过分析图形,由线段PQ 在边BA 上运动,可得出QD P AP C ≤<,即可判断出CP 与QD 不可能相等; ②假设ΔAQD 与BCP ∆相似,设AQ x =,利用相似三角形的性质得出AQ x =的值,再与AQ 的取值范围进行比较,即可判断相似是否成立;③过P 作PE ⊥BC 于E ,过F 作DF ⊥AB 于F ,利用函数求四边形PCDQ 面积的最大值,设AQ x =,可表示出3132P x E --=⎫⎪⎝⎭,1233DF ==PBCS ,DAQ S,再根据ABCPBCDAQ SSS--,依据2.5x ≤≤0,即可得到四边形PCDQ 面积的最大值;④作点D 关于直线AB 的对称点D 1,连接D D 1,与AB 相交于点Q ,再将D 1Q 沿着AB 向B 端平移PQ 个单位长度,即平移12个单位长度,得到D 2P ,与AB 相交于点P ,连接PC ,此时四边形PCDQ 的周长为:2CP DQ CD PQ CD CD PQ +++=++,其值最小,再由D 1Q=DQ=D 2P ,11212AD D D AD ===,且∠AD 1D 2=120°,可得2CD CD PQ ++的最小值,即可得解.【详解】解:①∵线段PQ 在边BA 上运动,12PQ =, ∴QD PAP C ≤<, ∴CP 与QD 不可能相等, 则①错误; ②设AQ x =, ∵12PQ =,3AB =, ∴13-=2.52AQ ≤≤0,即 2.5x ≤≤0, 假设ΔAQD 与BCP ∆相似, ∵∠A=∠B=60°,∴AD AQ BP BC =,即121332x x =--, 从而得到22530x x -+=,解得1x =或 1.5x =(经检验是原方程的根), 又 2.5x ≤≤0,∴解得的1x =或 1.5x =符合题意, 即ΔAQD 与BCP ∆可能相似, 则②正确;③如图,过P 作PE ⊥BC 于E ,过F 作DF ⊥AB 于F ,设AQ x =, 由12PQ =,3AB =,得13-=2.52AQ ≤≤0,即 2.5x ≤≤0, ∴132PB x =--, ∵∠B=60°, ∴31322P x E --=⎫⎪⎝⎭, ∵12AD =,∠A =60°,∴1233DF =⨯=, 则113133533222242PBCSBC PE x x ⎛⎫⎛⎫=⨯=⨯⨯--=- ⎪ ⎪⎝⎭⎝⎭,113322DAQSAQ DF x x =⨯=⨯⨯=, ∴四边形PCDQ 面积为:133335333533+22ABC PBC DAQS SSx x x ⎛⎫--=⨯⨯---= ⎪⎝⎭, 又∵ 2.5x ≤≤0,∴当 2.5x =时,四边形PCDQ 面积最大,最大值为:3353313+ 2.5=8816⨯, 即四边形PCDQ 面积最大值为31316, 则③正确;④如图,作点D 关于直线AB 的对称点D 1,连接D D 1,与AB 相交于点Q ,再将D 1Q 沿着AB 向B 端平移PQ 个单位长度,即平移12个单位长度,得到D 2P ,与AB 相交于点P ,连接PC , ∴D 1Q=DQ=D 2P ,11212AD D D AD ===,且∠AD 1D 2=120°, 此时四边形PCDQ 的周长为:2CP DQ CD PQ CD CD PQ +++=++,其值最小,∴∠D 1AD 2=30°,∠D 2A D=90°,232AD =∴根据股股定理可得,()()2222223393=22CD AC AD ⎛⎫+=+ ⎪ ⎪⎝⎭,∴四边形PCDQ 的周长为:23911393322CP DQ CD PQ CD CD PQ ⎛⎫+++=++=-+= ⎪⎝⎭则④错误, 所以可得②③正确, 故选:D .【点睛】本题综合考查等边三角形的性质、相似三角形的性质与判定、利用函数求最值、动点变化问题等知识.解题关键是熟练掌握数形结合的思想方法,通过用函数求最值、作对称点求最短距离,即可得解.二、填空题(每题2分,满分16分,将答案填在答题纸上)11.因式分解:22ab ab a -+=__________. 【答案】()21a b - 【解析】 【分析】先提取公因式a ,再利用公式法继续分解.【详解】解:()()2222211ab ab a a b b a b -+=-+=-,故答案为:()21a b -.【点睛】本题考查了公式法以及提取公因式法分解因式,正确应用公式是解题的关键.在分解因式时,要注意分解彻底.12.2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000 是__________. 【答案】41.210⨯ 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:∵12000=41.210⨯, 故答案为:41.210⨯.【点睛】本题考查用科学记数法表示绝对值较大的数,熟练掌握科学记数法的表示形式是解题的关键.13.已知圆锥的底面半径为1cm ,则它的侧面展开图的面积为=__________. 【答案】22cm π 【解析】 【分析】先利用勾股定理求出圆锥的母线l 的长,再利用圆锥的侧面积公式:S 侧=πrl 计算即可.【详解】解:根据题意可知,圆锥的底面半径r=1cm ,高,∴圆锥的母线2l ==, ∴S 侧=πrl=π×1×2=2π(cm 2). 故答案为:2πcm 2.【点睛】此题考查圆锥的计算,理解圆锥的侧面展开图是个扇形,扇形的半径是圆锥的母线,扇形的弧长是底面圆的周长l .掌握圆锥的侧面积公式:S 侧=12•2πr•l=πrl 是解题的关键.14.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=__________.【答案】115° 【解析】 【分析】先根据菱形性质求出∠BCD ,∠ACE ,再根据AE AC =求出∠AEC ,最后根据两直线平行,同旁内角互补解题即可.【详解】解:四边形ABCD 是菱形,50B ∠=︒, ∴AB ∥CD ,∴∠BCD=180°-∠B=130°,∠ACE=12∠BCD=65°, ∵ AE AC =, ∴∠ACE=∠AEC=65°, ∴∠BAE=180°-∠AEC=115°.【点睛】本题考查了菱形性质,等腰三角形性质,解题方法较多,根据菱形性质求解∠ACE 是解题关键. 15.请写出一个函数表达式,使其图象的对称轴为y 轴:__________. 【答案】2y x (答案不唯一)【解析】 【分析】根据二次函数的图象和性质,对称轴为y 轴,即b=0,写出满足条件的函数解析式即可. 【详解】解:设函数的表达式为y=ax 2+bx+c , ∵图象的对称轴为y 轴, ∴对称轴为x=2ba-=0, ∴b=0,∴满足条件的函数可以是:2yx .(答案不唯一)故答案是:y=x 2(答案不唯一)【点睛】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子最井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是___________尺. 【答案】8 【解析】【分析】先设绳长x 尺,由题意列出方程,然后根据绳长即可求出井深. 【详解】解:设绳长x 尺, 由题意得13x-4=14x-1, 解得x=36, 井深:13×36-4=8(尺), 故答案为:8.【点睛】本题考查了一元一次方程的实际应用,理解题意,找出等量关系是解题关键.17.二次函数233y ax ax =-+的图像过点()6,0A ,且与y 轴交于点B ,点M 在该抛物线的对称轴上,若ABM ∆是以AB 为直角边的直角三角形,则点M 的坐标为__________.【答案】3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫ ⎪⎝⎭【解析】 【分析】先求出点B 的坐标和抛物线的对称轴,然后分两种情况讨论:当∠ABM =90°时,如图1,过点M 作MF ⊥y 轴于点F ,易证△BFM ∽△AOB ,然后根据相似三角形的性质可求得BF 的长,进而可得点M 坐标;当∠BAM =90°时,辅助线的作法如图2,同样根据△BAE ∽△AMH 求出AH 的长,继而可得点M 坐标. 【详解】解:对233y ax ax =-+,当x =0时,y =3,∴点B 坐标为(0,3), 抛物线233y ax ax =-+的对称轴是直线:3322a x a -=-=, 当∠ABM =90°时,如图1,过点M 作MF ⊥y 轴于点F ,则32MF =, ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3,又∠MFB =∠BOA =90°, ∴△BFM ∽△AOB ,∴MF BFOB OA=,即3236BF =,解得:BF =3,∴OF =6, ∴点M 的坐标是(32,6);当∠BAM =90°时,如图2,过点A 作EH ⊥x 轴,过点M 作MH ⊥EH 于点H ,过点B 作BE ⊥EH 于点E ,则39622MH =-=, 同上面的方法可得△BAE ∽△AMH ,∴AE BE MH AH=,即3692AH =,解得:AH =9, ∴点M 的坐标是(32,﹣9);综上,点M 的坐标是3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫ ⎪⎝⎭. 故答案为:3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫⎪⎝⎭. 【点睛】本题考查了抛物线与y 轴的交点和对称轴、直角三角形的性质以及相似三角形的判定和性质等知识,属于常考题型,正确分类、熟练掌握相似三角形的判定和性质是解题的关键.18.如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.【答案】83【解析】 【分析】作DG ∥AC ,交BE 于点G ,得到23OD CD =,进而得到23ABO ABC S S =△△,求出ABC 面积最大值142=42⨯⨯,问题得解. 【详解】解:如图1,作DG ∥AC ,交BE 于点G , ∴,BDG BAE ODG OCE △∽△△∽△,2,3DG BD AE AB ==∴∵13CE AE = , ∴221DG CE == ∵ODG OCE △∽△ ∴=2DG ODCE OC= ∴23OD CD =∵AB=4, ∴23ABO ABC S S =△△ ∴若ABO 面积最大,则ABC 面积最大,如图2,当点△ABC 为等腰直角三角形时,ABC 面积最大,为142=42⨯⨯, ∴ABO 面积最大值为284=33⨯+故答案为:83【点睛】本题考查了三角形面积最大问题,相似等知识点,通过OD 与CD 关系将求ABO 面积转化为求ABC 面积是解题关键三、解答题:本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.19.计算:(1)()22516-+- (2)11a ba b b a-+---. 【答案】(1)5;(2)a ba b+- 【解析】 【分析】(1)利用幂的运算,绝对值的定义,及算术平方根的定义计算即可解出答案; (2)根据同分母分式的加减运算法则计算即可. 【详解】解:(1)原式=4+5-4=5; (2)原式=11+ba ba b a -+-- =1+1+ba ab --=+ba a b-. 【点睛】本题考查了实数的运算以及分式的加减法,熟记相关的定义与运算法则是解题的关键. 20.解方程:(1)210x x +-= (2)20415x x -≤⎧⎨+<⎩【答案】(1)15x -±= ;(2)01x ≤< 【解析】 【分析】(1)根据公式法求解即可;(2)先分别求每一个不等式,然后即可得出不等式组的解集. 【详解】(1)由方程可得a=1,b=1,c=-1,x=24b bc a -±-=21141121-±+⨯⨯⨯=15-±;(2)解不等式-2x≤0,得x≥0, 解不等式4x+1<5,得x<1, ∴不等式的解集为01x ≤<.【点睛】本题考查了解一元二次方程和解不等式组,掌握运算法则是解题关键. 21.如图,已知//AB CD ,AB CD =,BE CF =.求证:(1)ABF DCE ∆≅∆; (2)//AF DE .【答案】(1)证明见详解;(2)证明见解析. 【解析】 【分析】(1)先由平行线的性质得∠B=∠C ,从而利用SAS 判定△ABF ≌△DCE ;(2)根据全等三角形的性质得∠AFB=∠DEC ,由等角的补角相等可得∠AFE=∠DEF ,再由平行线的判定可得结论.【详解】证明:(1)∵AB ∥CD , ∴∠B=∠C , ∵BE=CF , ∴BE-EF=CF-EF , 即BF=CE ,在△ABF 和△DCE 中,==AB CDB C BF CE =⎧⎪∠∠⎨⎪⎩∴△ABF ≌△DCE (SAS ); (2)∵△ABF ≌△DCE , ∴∠AFB=∠DEC , ∴∠AFE=∠DEF , ∴AF ∥DE .【点睛】本题考查了全等三角形的判定与性质,属于全等基础知识的考查,难度不大,注意证明过程的规范性.22.现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是________;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】(1)14;(2)13【解析】【分析】(1)根据概率公式计算即可;(2)画树状图展示所有12种等可能的结果,可得抽得的2张卡片上的数字之和为3的倍数的结果数,根据概率公式计算即可.【详解】解:(1)从中任意抽取1张,抽的卡片上的数字恰好为3的概率为14;故答案为:1 4(2)画树状图为:共有12种等可能的结果,其中抽得的2张卡片上的数字之和为3的倍数的结果为4种,所以抽得的2张卡片上的数字之和为3的倍数的概率=41 123=【点睛】本题考查了用列表法与树状图法求概率,解答中注意利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.23.小李2014年参加工作,每年年底都把本年度收入减去支出后余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)年份2014年2015年2016年2017年2018年2019年收入 3 8 9 a14 18支出 1 4 5 6 c 6存款余额 2 6 10 15 b34(1)表格中a=________;(2)请把下面的条形统计图补充完整:(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?【答案】(1)11;(2)见解析;(3)2018年支出最多,为7万元【解析】【分析】(1)本年度收入减去支出后的余额加上上一年存入银行的余额作为本年的余额,则可建立一元一次方程10+a−6=15,然后解方程即可;(2)根据题意得1514{18634c bb+-+-==,再解方程组得到2018年的存款余额,然后补全条形统计图;(3)利用(2)中c的值进行判断.【详解】解:(1)10+a−6=15,解得a=11,故答案为11;(2)根据题意得1514{18634c b b+-+-==,解得227b c⎧⎨⎩==,即存款余额为22万元,补全条形统计图如下:;(3)由图表可知:小李在2018年的支出最多,支出了为7万元.【点睛】本题考查了图像统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.24.如图,已知ABC ∆是锐角三角形()AC AB <.(1)请在图1中用无刻度的直尺和圆规作图;作直线l ,使l 上的各点到B 、C 两点的距离相等;设直线l 与AB 、BC 分别交于点M 、N ,作一个圆,使得圆心O 在线段MN 上,且与边AB 、BC 相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若53BM =,2BC =,则O 的半径为________. 【答案】(1)见解析;(2)12r = 【解析】 【分析】(1)由题意知直线l 为线段BC 的垂直平分线,若圆心O 在线段MN 上,且与边AB 、BC 相切,则再作出ABC ∠的角平分线,与MN 的交点即为圆心O ;(2)过点O 作OE AB ⊥,垂足为E ,根据BMN BNO BMO S S S =+△△△即可求解. 【详解】解:(1)①先作BC 的垂直平分线:分别以B ,C 为圆心,大于12BC 的长为半径画弧,连接两个交点即为直线l ,分别交AB 、BC 于M 、N ;②再作ABC ∠的角平分线:以点B 为圆心,任意长为半径作圆弧,与ABC ∠的两条边分别有一个交点,再以这两个交点为圆心,相同长度为半径作弧,连接这两条弧的交点与点B ,即为ABC ∠的角平分线,这条角平分线与线段MN 的交点即为O ;③以O 为圆心,ON 为半径画圆,圆O 即为所求; (2)过点O 作OE AB ⊥,垂足为E ,设ON OE r == ∵53BM =,2BC =,∴1BN =,∴43MN = 根据面积法,∴BMN BNO BMO S S S =+△△△ ∴141151123223r r ⨯⨯=⨯⋅+⨯⋅,解得12r =, 故答案为:12r =.【点睛】本题考查了尺规作图,切线的性质等内容,解题的关键是掌握线段垂直平分线、角平分线的尺规作图. 25.如图,DB 过O 的圆心,交O 于点A 、B ,DC 是O 的切线,点C 是切点,已知30D ∠=︒,3DC =.(1)求证:ΔΔBOC BCD ;(2)求BCD ∆的周长.【答案】(1)见解析;(2)BCD 的周长为323+【解析】 【分析】(1)由切线的性质可得90OCD ∠=︒,由外角的性质可得120BOC ∠=︒,由等腰三角形的性质30B OCB ∠=∠=︒,可得30B D ∠=∠=︒,可得结论;(2)由直角三角形的性质可得1OC OB ==,2DO =,即可求解. 【详解】证明:(1)DC 是O 的切线,90OCD ∴∠=︒, 30D ∠=︒,3090120BOC D OCD ∴∠=∠+∠=︒+︒=︒,OB OC =,30B OCB ∴∠=∠=︒, D OCB ∴∠=∠,BOC BCD ∴△∽△;(2)30D ∠=︒,3DC =,90OCD ∠=︒,33DC OC ∴=2DO OC =,1OC OB ∴==,2DO =,30B D ∠=∠=︒,3DC BC ∴==,BCD ∴△的周长3321323CD BC DB =++=+++=+.【点睛】本题考查了相似三角形的判定和性质,切线的性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.26.有一块矩形地块ABCD ,20AB =米,30BC =米,为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD 和BCGF 中种植甲种花卉;在等腰梯形ABFE 和CDHG 中种植乙种花卉;在矩形EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60 元/米2、40元/米2,设三种花卉的种植总成本为y 元.(1)当5x =时,求种植总成本y ;(2)求种植总成本y 与x 的函数表达式,并写出自变量x 的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120米2,求三种花卉的最低种植总成本.【答案】(1)当5x =时,22000y =;(2)40024000(010)=-+<<y x x ;(3)当6x =时,y 最小为21600. 【解析】 【分析】(1)根据112()202()604022y EH AD x GH CD x EF EH =⨯+⨯+⨯+⨯⨯+⨯,即可求解;(2)参考(1),由题意得:(30302)20(20202)60(302)(202)40(010)y x x x x x x x =⨯-++-+--<<; (3)()()212302302602S EH AD x x x x x =⨯+⨯=-+=-+甲,2240x x S =-+乙,则22260(240)120x x x x -+--+,即可求解.【详解】解:(1)当5x =时,20210EF x =-=,30220EH x =-=, 故112()202()604022y EH AD x GH CD x EF EH =⨯+⨯+⨯+⨯⨯+⨯(2030)520(1020)56020104022000=+⨯⨯++⨯⨯+⨯⨯=;(2)202EF x =-,302EH x =-,参考(1),由题意得:(30302)20(20202)60(302)(202)4040024000(010)y x x x x x x x x =⨯-++-+--=-+<<;(3)()()212302302602S EH AD x x x x x =⨯+⨯=-+=-+甲, 同理2240x x S =-+乙,甲、乙两种花卉的种植面积之差不超过120米2,22260(240)120x x x x ∴-+--+, 解得:6x , 故06x <,而40024000y x =-+随x 的增大而减小,故当6x =时,y 的最小值为21600, 即三种花卉的最低种植总成本为21600元.【点睛】本题考查了一次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.27.如图,在矩形ABCD 中,2AB =,1AD =,点E 为边CD 上的一点(与C 、D 不重合)四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 与点P ,记四边形PADE 的面积为S .(1)若3DE =,求S 的值; (2)设DE x =,求S 关于x 的函数表达式.【答案】(1)32S =;(2)21124+=+x S x x 【解析】 【分析】(1)解Rt △ADE 可得60AED ∠=︒和AE 的长,然后根据平行线的性质、对称的性质可得60BAE AEP =∠=︒∠,进而可判断APE 为等边三角形,再根据S =S △APE +S △ADE 解答即可;(2)过点E 作EF AB ⊥于点F ,如图,则四边形ADEF 是矩形,由(1)得AEP AED PAE ∠=∠=∠,从而可得AP PE =,设AP PE a ==,则PF a x =-,然后在Rt PEF 中根据勾股定理即可利用x 表示a ,然后根据S =S △APE +S △ADE 即可求出结果. 【详解】解:(1)在Rt △ADE 中,∵33DE =,1AD =, ∴tan 3AED ∠=,∴60AED ∠=︒, ∴232AE DE ==∵//AB CD ,∴60=︒∠BAE ,∵四边形ABCE 关于直线AE 的对称图形为四边形ANME , ∴AEC AEM ∠=∠,∵PEC DEM ∠=∠,∴60AEP AED ∠=∠=︒,∴APE 为等边三角形,∴S =S △APE +S △ADE=2323133143232⎛⎫⨯+⨯⨯= ⎪ ⎪⎝⎭;(2)过点E 作EF AB ⊥于点F ,如图,则四边形ADEF 是矩形,∴AF ED x ==,1EF AD ==,由(1)可知,AEP AED PAE ∠=∠=∠,∴AP PE =,设AP PE a ==,则PF a x =-,在Rt PEF 中,由勾股定理,得:()221a x a -+=,解得:212x a x+=, ∴S =S △APE +S △ADE =22111111122224x x x x x x++⋅⋅+⋅⋅=+.【点睛】本题考查了矩形的判定和性质、轴对称的性质、等边三角形的判定和性质、勾股定理以及解直角三角形等知识,考查的知识点多、综合性强,熟练掌握上述知识是解题的关键.28.在平面直角坐标系中,O 为坐标原点,直线OA 交二次函数214y x =的图像于点A ,90AOB ∠=︒,点B 在该二次函数的图像上,设过点()0,m (其中0m >)且平行于x 轴的直线交直线OA 于点M ,交直线OB 于点N ,以线段OM 、ON 为邻边作矩形OMPN .(1)若点A 的横坐标为8.①用含m 的代数式表示M 的坐标;②点P 能否落在该二次函数的图像上?若能,求出m 的值;若不能,请说明理由;(2)当2m =时,若点P 恰好落在该二次函数的图像上,请直接写出此时满足条件的所有直线OA 的函数表达式.【答案】(1)①1,2M m m ⎛⎫⎪⎝⎭;②能,329m =;(2)(21)y x =±或(21)y x =-. 【解析】【分析】(1)①求出点A 的坐标,直线直线OA 的解析式即可解决问题.②求出直线OB 的解析式,求出点N 的坐标,利用矩形的性质求出点P 的坐标,再利用待定系数法求出m 的值即可.(2)分两种情形:①当点A 在y 轴的右侧时,设21(,)4A a a ,求出点P 的坐标利用待定系数法构建方程求出a 即可.②当点A 在y 轴的左侧时,即为①中点B 的位置,利用①中结论即可解决问题.【详解】解:(1)①点A 在214y x =的图象上,横坐标为8, (8,16)A ∴, ∴直线OA 的解析式为2y x =,点M 的纵坐标为m ,1(2M m ∴,)m ; ②假设能在抛物线上,90AOB ∠=︒,∴直线OB 的解析式为12y x =-, 点N 在直线OB 上,纵坐标为m ,(2,)N m m ∴-,MN ∴的中点的坐标为3(4m -,)m ,3(2P m ∴-,2)m ,把点P 坐标代入抛物线的解析式得到329m =. (2)①当点A 在y 轴右侧时,设21,4A a a ⎛⎫ ⎪⎝⎭,所以直线OA 解析式为14y ax =, ∴8,2M a ⎛⎫ ⎪⎝⎭, OB OA ⊥,∴直线OB 的解析式为4y x a=-,可得(2a N -,2), 8(2a P a ∴-,4),代入抛物线的解析式得到,842a a -=, 解得424a =±,∴直线OA 的解析式为(21)y x =±.②当点A 在y 轴左侧时,即为①中点B 位置,∴直线OA 的解析式为()421y x x a =-=-±; 综上所述,直线OA 的解析式为(21)y x =±或(21)y x =-±.【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,矩形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
2022年无锡市中考数学试卷答案解析
2022年无锡市中考数学试卷答案解析2022年无锡市中考数学试卷共有两个部分:选择题和填空题,本文将对试卷中的数学题目加以解析。
一、选择题1. 已知集合A={9,17},B={2,3},则集合A∩(B-A)的元素是( )A. 2B.17C. 9D. 3答案:A.2解析:A∩(B-A)表示A和(B-A)的交集,其中,B-A的元素是2,3,A的元素是9,17,发现2既在A也在(B-A),故A∩(B-A)的元素只有2,即答案为A.22、已知向量OA(1,0.5),OB(3,-2),则点C在线段OA上满足OC=|OA|cosα+|OB|cosβ的条件是( )A. α=π/2,β=π/2B. α=π/3,β=2π/3C. α=π/4,β=3π/4D.α=π/2,β=3π/4答案:C.α=π/4,β=3π/4解析:根据大正角定理,线段OC的长度为OC=|OA|cosα+|OB|cosβ,带入有|OA|=1,|OB|=√13,即OC=1 cosα+√13 cosβ,带入点C(x,y)后,得 y=1 cosα+√13 cosβ,将已知点OA和OC带入x=3-OC=3-1 cosα+√13 cosβ得出α=π/4,β=3π/4,即答案为C.α=π/4,β=3π/43、已知数列{an}的前n项和为Sn,且a1=1,an=2an-1+n/2,则 Sn/2n=()A. 1B.1/2C.1/4D.1/n答案:B.1/2解析:根据前n项和Sn=a1+a2+a3+…+an,使用归纳法进行推导,有:Sn=1+2+4+6…2n-2+2n=2n2n-1+2=2n(2n-1+1)=2n( 2n)=4n2得Sn=4n2,所以Sn/2n=2n=1/2,即答案为B.1/2二、填空题4、已知函数f(x)=3x2-8x+4,则f[4(x-1)]的值为____________答案:36x2-32x+4解析:将f(x)带入f[4(x-1)]中,得f[4(x-1)]=f(4x-4)=3(4x-4)2-8(4x-4)+4=36x2-32x+4,即答案为36x2-32x+4。
(版)江苏省无锡市中考数学真题及解析
2021年江苏省无锡市中考数学真题试卷及解析一、选择题〔本大题共10小题,每题3分,共30分.在每题所给出的四个选项中,只有一项为哪一项正确的,请把正确的选项填在相应的括号内〕1.5的相反数是()A.5B.5C.1D.1552.函数y 2x 1中的自变量x的取值范围是( )A.x1B.x⋯1C.x1D.x⋯1222 3.分解因式4x2y2的结果是()A.(4x y)(4x y)B.4(x y)(x y)C.(2x y)(2x y) D.2(x y)(x y)4.一组数据:66,66,62,67,63,这组数据的众数和中位数分别是()A.66,62B.66,66C.67,62D.67,665.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥6.以下图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.以下结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360B.对角线互相平分C.对角线相等D.对角线互相垂直18.如图,PA是eO的切线,切点为A,PO的延长线交eO于点B,假设P40,那么B 的度数为()A.20B.25C.40D.509.如图,A为反比例函数yk(x0)的图象上一点,过点A作ABy轴,垂足为B.假设xVOAB的面积为2,那么k的值为()A.2B.2C..4D.410.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数〕,开工假设干天后,其中3人外出培训,假设剩下的工人每人每天多加工2个零件,那么不能按期完成这次任务,由此可知a的值至少为()A.10B.9C.8D.7二、填空题〔本大题共8小题,每题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上〕11.4的平方根是.912.2021年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为人次.13.计算:(a 3)2.214.某个函数具有性质:当x0时,y随x的增大而增大,这个函数的表达式可以是〔只要写出一个符合题意的答案即可〕.15.圆锥的母线长是5cm,侧面积是15πcm2,那么这个圆锥底面圆的半径是cm.16.一次函数y kx b的图象如下图,那么关于x的不等式3kx b 0的解集为.17.如图,在VABC中,AC:BC:AB5:12:13,eO在VABC内自由移动,假设eO的半径为1,且圆心O在VABC内所能到达的区域的面积为10,那么VABC的周长为.318.如图,在VABC中,AB AC 5,BC45,D为边AB上一动点(B点除外〕,以CD为一边作正方形 CDEF,连接BE,那么VBDE面积的最大值为.三、解答题〔本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤〕19.〔8分〕计算:〔1〕|3|(1)1(2021)0;23〔2〕2a3ga3(a2)3.20.〔8分〕解方程:〔1〕x22x 5 0;〔2〕14.(x 2 x 1(((((((((((((((21.〔8分〕如图,在VABC中,AB AC,点D、E分别在AB、AC上,BD CE,BE、(CD相交于点O.((1〕求证:VDBCVECB;((2〕求证:OBOC.422.〔6分〕某商场举办抽奖活动,规那么如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,假设摸到红球,那么获得1份奖品,假设摸到黑球,那么没有奖品.〔1〕如果小芳只有一次摸球时机,那么小芳获得奖品的概率为;〔2〕如果小芳有两次摸球时机〔摸出后不放回〕,求小芳获得2份奖品的概率.〔请用“画树状图〞或“列表〞等方法写出分析过程〕23.〔6分〕?国家学生体质健康标准?规定:体质测试成绩到达分及以上的为优秀;达5到分至分的为良好;到达分至分的为及格;分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生平均分统计表等级优秀良好及格不及格平均分〔1〕扇形统计图中“不及格〞所占的百分比是;2〕计算所抽取的学生的测试成绩的平均分;3〕假设所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人到达优秀等级.24.〔8分〕一次函数ykxb的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sinABO3M的横坐标为3..VOAB的外接圆的圆心2〔1〕求一次函数的解析式;6〔2〕求图中阴影局部的面积.(25.〔8分〕“低碳生活,绿色出行〞是一种环保,健康的生活方式,小丽从甲地出发沿一条(笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之(间的距离x(km)与出发时间 t(h)之间的函数关系式如图2中折线段CD DE EF所示.((1〕小丽和小明骑车的速度各是多少?((2〕求点E的坐标,并解释点E的实际意义.726.〔10分〕按要求作图,不要求写作法,但要保存作图痕迹.〔1〕如图1,A为eO上一点,请用直尺〔不带刻度〕和圆规作出eO的内接正方形;2〕我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺〔不带刻度〕作图:①如图2,在YABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的 4 3的网格中,VABC的顶点都在小正方形的顶点上,作VABC的高AH.27.〔10分〕二次函数y ax2bx 4(a 0)的图象与x轴交于A、B两点,(A在B左侧,且OA OB),与y轴交于点C.〔1〕求C点坐标,并判断b的正负性;〔2〕设这个二次函数的图象的对称轴与直线AC相交于点D,DC:CA1:2,直线BD与y轴交于点E,连接BC.8①假设VBCE的面积为8,求二次函数的解析式;②假设VBCD为锐角三角形,请直接写出OA的取值范围.28.〔12分〕如图1,在矩形ABCD中,BC3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作VPAB关于直线PA的对称VPAB,设点P的运动时间为t(s).1〕假设AB23.①如图2,当点B落在AC上时,显然VPAB是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得VPCB是直角三角形?假设存在,请直接写出所有符合题意的t的值?假设不存在,请说明理由.〔2〕当P点不与C点重合时,假设直线PB与直线CD相交于点M,且当t3时存在某一时刻有结论PAM 45成立,试探究:对于t 3的任意时刻,结论“PAM 45〞是否总是成立?请说明理由.910参考答案一、【解析】只有符号不同的两个数叫做互相反数,∴5的相反数5,故A.【解析】当函数的表达式是偶次根式,自量的取范必使被开方数不小于零,∴在函数y2x1中,2x1⋯0,x⋯1.故D.2【解析】原式(2xy)(2xy).故C.【解析】将一数据按照从小到大〔或从大到小〕的序排列,如果数据的个数是奇数,于中位置的数就是数据的中位数;一数据中出次数最多的数据叫做众数,∴将中的数据按照从小到大的序排列62,63,66,66,67,第3个数是66,故中位数是66,在数据中出次数最多的是66,故众数是66,故B.【解析】Q有2个是方形,几何体柱体,又Q第3个也是方形,几何体方体.故A.【解析】把一个形某一点旋180°,如果旋后的形能与原来的形重合,那么个形就叫做中心称形,如果一个形沿一条直折叠,直两旁的局部能互相重合,个形叫做称形,A、不是中心称形,是称形,;B、是中心称形,也是称形,;C、是中心称形,不是称形,正确;D、不是中心称形,也不是称形,;故C.【解析】矩形和菱形的内角和都360,矩形的角互相平分且相等,菱形的角垂直且平分,矩形具有而菱形不具有的性是矩形的两条角相等,故C.【解析】接OA,如,是eO的切,OA AP,PAO90,Q P40,QPA11AOP50,QOAOB,B OAB,QAOPB OAB,B 1AOP15025.应选B.22【解析】QAB y轴,S VOAB 1|k|,1|k|2,Qk0,k4.应选D.22【解析】设原方案n天完成,开工x天后3人外出培训,那么根据题意列出关系式15an 2160,那么an 144.故15ax12(a 2)(n x) 2160.整理,得4x 4an 8n 8x 720.Qan 144.将其代入化简,得ax 8n 8x 144,即ax 8n 8x an,整理,得8(n x) a(n x).Qnx,nx0,a8.a至少为9.应选B.二、填空题11.2【解析】一个正数有两个平方根,这两个平方根互为相反数,故4的平方根=3942 9.312.7【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确210定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,∴20000000用科学记数法表示为2107.13.a26a9【解析】原式a26a9.14.y x21〔答案不唯一〕【解析】y x21中开口向上,对称轴为x0,当x0时,y随着x的增大而增大.12【解析】Q圆锥的母线=5cm,S侧=π2,圆锥的侧面展开扇形的弧长为l 2s15cmr306,Q圆锥的侧面展开扇形的弧长即是圆锥的底面周长,故r l63cm.52216.x2【解析】Q图象过(6,0),那么代入函数得,06k b,b6k ,那么3kx b3kx 6k 0,Qk 0,x 2 0,解得,x2.【解析】如图,由题意可知,点O所能到达的区域是VEFG,连接AE,延长AE交BC于点H,作HM AB于点M,EK AC于点K,作FJ AC于点J.QEG//AB,EF//AC,FG//BC,EGF ABC,FEG CAB,VEFG∽VACB,EF:FG:EG AC:BC:AB5:12:13,设EF5k,FG12k,Q 15k12k10,23k 1或1〔舍弃〕,EF5,Q四边形EKJF是矩形,KJEF5,设AC5x,3333BC12x,AB13x,Q ACH AMH90,HAC HAM,AH AH,VHAC VHAM(AAS),AM AC5x,CH HM,BM8x,设CH HM y,在RtVBHM中,那么有y2(8x)2(12x y)2,y 10x,QEK//CH,EK AK,3CH AC1EK3,AC AK KJ CJ35125,BC1251210,10,AKx5x2236563AB1251365,C VABC AC BC AB25106525.56666【解析】过点C作CG BA于点G,作EHAB 于点H,作AM BC于点.MQAB13AC5,BC45,BM CM25,易证VAMB∽VCGB,BM AB,即GB CB255,GB8,设BD x,那么DG8x,易证VEDH VDCG(AAS),EHGB45DG8x,S VBDE 1BDgEH1x(8x)1(x4)28,当x4时,VBDE面积的最222大值为8.三、解答题19.解:〔1〕原式3214;〔2〕原式2a 666.a a20.解:〔1〕Qa1,b2,c5,441(5)240,22616,那么x2x116,x216;2〕两边都乘以(x1)(x2),得x14(x2),解得x3,经检验x3是方程的解.21.〔1〕证明:QAB AC,14ECB DBC,在VDBC与VECB中,BD CE,DBC ECB,BC CB,VDBC VECB(SAS);〔2〕证明:由〔1〕知VDBC VECB,DCB EBC,OB OC.122.解:〔1〕2【解析】从布袋中任意摸出1个球,摸出是红球的概率21;42〔2〕画树状图如下图,共有12种等可能的结果数,其中两次摸到红球的结果数为2,所以两次摸到红球的概率P21.12623.解:〔1〕4%【解析】扇形统计图中“不及格〞所占的百分比是 1 52% 18% 26%4%;〔2〕52%4%;答:所抽取的学生的测试成绩的平均分为分;15〔3〕设总人数为n个,剟n 4%,48n54,又∵4%n为整数,n50,即优秀的学生有52% 50 10%260人.24.解:〔1〕作MN BO,由垂径定理得,点N为OB的中点,MN 1 OA,2QMN3,OA6,即A(6,0),Qsin ABO 3,OA6,2OB23,即B(0,23),设ykxb,将A、B代入,得y323,x3〔2〕NB 1OB3,MN3,2tan BMNBN3MN ,3那么BMN30,ABO 60,16AMO 120S 阴1(23)23(23)24 33.3425.解:〔1〕由题意可得,小丽速度3616(km/h)设小明速度为xkm/h 由题意得,1 (16 x) 36 x 20 答:小明的速度为20km/h ,小丽的速度为16km/h . 〔2〕由图象可得,点E 表示小明到了甲地,此时小丽没到,点E 的横坐标36 9 ,20 5 点E 的纵坐标9 16 144,55点E(9,144)5526.解:〔1〕如图1,连接AE 并延长交圆 E 于点C ,作AC 的中垂线交圆于点 B ,D ,四边形ABCD 即为所求.〔2〕①如图2,连接AC ,BD 交于点O ,连接EB 交AC 于点G ,连接DG 并延长交CB于点F ,F 即为所求17②如图3所示,AH即为所求.27.解:〔1〕令x0,那么y4,C(0, 4),QOA O B,对称轴在y轴右侧,即b0 2aQa0,b0;〔2〕①过点D作DM Oy,那么DC DM MC1,CA OA CO218DM 1 AO,2设A(2m,0)m0,那么AO2m,DM mQOC4,CM2,D(m,6),B(4m,0),那么MDMEOE6,BOOE OEOE 8,S VBEF144m8,2m1,A(2,0),B(4,0),设y a(x2)(x4),即y ax22ax8a,令x0,那么y8a,C(0, 8a),8a4,a1,2y1x2x4;2②由①知B(4m,0)C(0,4)D(m,6),那么CBD一定为锐角,CB216m216,CD2m24,DB29m236,19当CDB为锐角时,CD2DB2CB2,2423616m2,m9m16解得, 2 m2;当BCD为锐角时,CD2CB2DB2,m2416m2169m236,解得,m2或m2舍,综上,2m2,222m4;故22OA4.28.解:〔1〕①如图1中,Q四边形ABCD是矩形,ABC 90,AC AB2BC221,Q PCB ACB,PBC ABC 90,VPCB∽VACB,20CB PB,CB AB21 23PB,323PB 2 7 4.②如图2 1中,当PCB'90时,Q四边形ABCD是矩形,D 90,AB CD 2 3,AD BC 3,DB(23)2323,CB CD DB3,222在RtVPCB中,QBP PC BC,t2( 3)2(3t)2,t 2.如图2 2中,当PCB'90时,21在RtVADB中,DB AB2AD23,CB 33在RtVPCB'中,(33)2(t3)2t2,解得,t6.如图2 3中,当CPB'90时,易证四边形ABP'为正方形,易知t 2 3.综上所述,满足条件的t的值为2s或6s或23s.〔2〕如图31中,Q PAM 452 3 45, 14 45又Q翻折,12,34,22又Q ADM A B’M,AM AM,VAMD VAMB(AAS),AD AB'AB,即四边形ABCD是正方形,如图3-2,设APB x,PAB 90x,DAP x,易证VMDA VB'AM(HL),BAM DAM,又Q翻折,PAB PAB'90 x,DAB'PAB'DAP902x,DAM1DAB'45x,2MAP DAM PAD45.23。
江苏省无锡市中考数学试题(解析)
江苏省无锡市中考数学试卷一.选择题(共10小题)1.(无锡)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数。
专题:探究型。
分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(无锡)sin45°的值等于()A.B.C.D. 1考点:特殊角的三角函数值。
分析:根据特殊角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记特殊角度的三角函数值即可.3.(无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B. x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法。
分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.4.(无锡)若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1 B. 1 C.﹣2 D. 2考点:反比例函数与一次函数的交点问题。
专题:计算题。
分析:将x=1代入直线y=2x+1,求出该点纵坐标,从而得到此交点的坐标,将该交点坐标代入y=即可求出k的值.解答:解:将x=﹣1代入直线y=2x+1得,y=﹣2+1=﹣1,则交点坐标为(﹣1,﹣1),将(﹣1,﹣1)代入y=得,k=﹣1×(﹣1)=1,故选B.点评:本题考查了反比例函数与一次函数的交点问题,知道交点坐标符合两函数解析式是解题的关键.5.(无锡)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况考点:全面调查与抽样调查。
江苏省无锡市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
2020年某某省某某市中考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.(3分)﹣7的倒数是()A.7 B.C.D.﹣7【解答】解:﹣7的倒数是.故选:C.2.(3分)函数y=2中自变量x的取值X围是()A.x≥2B.x C.x D.x【解答】解:由题意得,3x﹣1≥0,解得x.故选:B.3.(3分)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A.24,25 B.24,24 C.25,24 D.25,25【解答】解:这组数据的平均数是:(21+23+25+25+26)÷5=24;把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25,则中位数是25;故选:A.4.(3分)若x+y=2,z﹣y=﹣3,则x+z的值等于()A.5 B.1 C.﹣1 D.﹣5【解答】解:∵x+y=2,z﹣y=﹣3,∴(x+y)+(z﹣y)=2+(﹣3),整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,则x+z的值为﹣1.故选:C.5.(3分)正十边形的每一个外角的度数为()A.36°B.30°C.144°D.150°【解答】解:正十边形的每一个外角都相等,因此每一个外角为:360°÷10=36°,故选:A.6.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.圆B.等腰三角形C.平行四边形D.菱形【解答】解:A、圆既是中心对称图形,也是轴对称图形,故此选项不合题意;B、等腰三角形是轴对称图形但不是中心对称图形,故本选项符合题意;C、平行四边形是中心对称图形但不是轴对称图形,故此选项不合题意;D、菱形是中心对称图形但不是轴对称图形,故此选项不合题意.故选:B.7.(3分)下列选项错误的是()A.cos60°B.a2•a3=a5C.D.2(x﹣2y)=2x﹣2y【解答】解:A.cos60°,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.,故本选项不合题意;D.2(x﹣2y)=2x﹣4y,故本选项符合题意.故选:D.8.(3分)反比例函数y与一次函数y的图形有一个交点B(,m),则k的值为()A.1 B.2 C.D.【解答】解:∵一次函数y的图象过点B(,m),∴m,∴点B(,),∵反比例函数y过点B,∴k,故选:C.9.(3分)如图,在四边形ABCD中(AB>CD),∠ABC=∠BCD=90°,AB=3,BC,把Rt△ABC沿着AC翻折得到Rt△AEC,若tan∠AED,则线段DE的长度()A.B.C.D.【解答】解:方法一:如图,延长ED交AC于点M,过点M作MN⊥AE于点N,设MN m,∵tan∠AED,∴,∴NE=2m,∵∠ABC=90°,AB=3,BC,∴∠CAB=30°,由翻折可知:∠EAC=30°,∴AM=2MN=2m,∴AN MN=3m,∵AE=AB=3,∴5m=3,∴m,∴AN,MN,AM,∵AC=2,∴CM=AC﹣AM,∵MN,NE=2m,∴EM,∵∠ABC=∠BCD=90°,∴CD∥AB,∴∠DCA=30°,由翻折可知:∠ECA=∠BCA=60°,∴∠ECD=30°,∴CD是∠ECM的角平分线,∴,∴,解得ED.方法二:如图,过点D作DM⊥CE,由折叠可知:∠AEC=∠B=90°,∴AE∥DM,∵∠ACB=60°,∠ECD=30°,∴∠AED=∠EDM=30°,设EM m,由折叠性质可知,EC=CB,∴CM=3m,∴tan∠MCD,解得m,∴DM,EM,在直角三角形EDM中,DE2=DM2+EM2,解得DE.故选:B.10.(3分)如图,等边△ABC的边长为3,点D在边AC上,AD,线段PQ在边BA上运动,PQ,有下列结论:①CP与QD可能相等;②△AQD与△B CP可能相似;③四边形PCDQ面积的最大值为;④四边形PCDQ周长的最小值为3.其中,正确结论的序号为()A.①④B.②④C.①③D.②③【解答】解:①利用图象法可知PC>DQ,故①错误.②∵∠A=∠B=60°,∴当∠ADQ=∠CPB时,△ADQ∽△BPC,故②正确.③设AQ=x,则四边形PCDQ的面积32x3×(3﹣x)x,∵x的最大值为3,∴x时,四边形PCDQ的面积最大,最大值,故③正确,如图,作点D关于AB的对称点D′,作D′F∥PQ,使得D′F=PQ,连接CF交AB于点P′,此时四边形P′CD′Q′的周长最小.过点C作CH⊥D′F交D′F的延长线于H,交AB于J.由题意,DD′=2AD•sin60°,HJ DD′,CJ,FH,∴CH=CJ+HJ,∴CF,∴四边形P′CDQ′的周长的最小值=3,故④错误,故选:D.二、填空题(本大题共8小题,每小题2分,共计16分.不需要写出解答过程,只需把答案直接填写在答题卷相应的位置)11.(2分)因式分解:ab2﹣2ab+a=a(b﹣1)2.【解答】解:原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.(2分)2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000是 1.2×104.12.【解答】解:12000=1.2×104.故答案为:1.2×104.13.(2分)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=2πcm2.【解答】解:根据题意可知,圆锥的底面半径r=1cm,高h cm,∴圆锥的母线l2,∴S侧=πrl=π×1×2=2π(cm2).故答案为:2π.14.(2分)如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=115 °.【解答】解:∵四边形ABCD是菱形,∴AC平分∠BCD,AB∥CD,∴∠BAE+∠AEC=180°,∠B+∠BCD=180°,∴∠BCD=180°﹣∠B=180°﹣50°=130°,∴∠ACE∠BCD=65°,∵AE=AC,∴∠AEC=∠ACE=65°,∴∠BAE=180°﹣∠AEC=115°;故答案为:115.15.(2分)请写出一个函数表达式,使其图象的对称轴为y轴:y=x2.【解答】解:∵图象的对称轴是y轴,∴函数表达式y=x2(答案不唯一),故答案为:y=x2(答案不唯一).16.(2分)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是8 尺.【解答】解:设绳长是x尺,井深是y尺,依题意有,解得.故井深是8尺.故答案为:8.17.(2分)二次函数y=ax2﹣3ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上,若△ABM是以AB为直角边的直角三角形,则点M的坐标为(,﹣9)或(,6).【解答】解:把点A(6,0)代入y=ax2﹣3ax+3得,0=36a﹣18a+3,解得:a,∴y x2x+3,∴B(0,3),抛物线的对称轴为x,设点M的坐标为:(,m),当∠ABM=90°,过B作BD⊥对称轴于D,则∠1=∠2=∠3,∴tan∠2=tan∠12,∴2,∴DM=3,∴M(,6),当∠M′AB=90°,∴tan∠3tan∠12,∴M′N=9,∴M′(,﹣9),综上所述,点M的坐标为(,﹣9)或(,6).18.(2分)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.【解答】解:如图,过点D作DF∥AE,则,∵,∴DF=2EC,∴DO=2OC,∴DO DC,∴S△ADO S△ADC,S△BDO S△BDC,∴S△ABO S△ABC,∵∠ACB=90°,∴C在以AB为直径的圆上,设圆心为G,当CG⊥AB时,△ABC的面积最大为:4×2=8,此时△ABO的面积最大为:4.故答案为:.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣2)2+|﹣5|;(2).【解答】解:(1)原式=4+5﹣4=5;(2)原式.20.(8分)解方程:(1)x2+x﹣1=0;(2).【解答】解:(1)∵a=1,b=1,c=﹣1,∴△=12﹣4×1×(﹣1)=5,x,∴x1,x2;(2),解①得x≥0,解②得x<1,所以不等式组的解集为0≤x<1.21.(8分)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.22.(8分)现有4X正面分别写有数字1、2、3、4的卡片,将4X卡片的背面朝上,洗匀.(1)若从中任意抽取1X,抽的卡片上的数字恰好为3的概率是;(2)若先从中任意抽取1X(不放回),再从余下的3X中任意抽取1X,求抽得的2X卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)【解答】解:(1)从中任意抽取1X,抽的卡片上的数字恰好为3的概率;故答案为;(2)画树状图为:共有12种等可能的结果数,其中抽得的2X卡片上的数字之和为3的倍数的结果数为4,所以抽得的2X卡片上的数字之和为3的倍数的概率.23.(6分)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)年份2014年2015年2016年2017年2018年2019年收入 3 8 9 a 14 18支出 1 4 5 6 c 6存款余额 2 6 10 15 b 34(1)表格中a=11 ;(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?【解答】解:(1)10+a﹣6=15,解得a=11,故答案为11;(2)根据题意得,解得,即存款余额为22万元,条形统计图补充为:(3)小李在2018年的支出最多,支出了为7万元.24.(8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM,BC=2,则⊙O的半径为.【解答】解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM,BC=2,MN垂直平分线段BC,∴BN==1,∴MN,∵s△BNM=S△BNO+S△BOM,∴11×r r,解得r.故答案为.25.(8分)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D=30°,DC.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.【解答】证明:(1)∵DC是⊙O的切线,∴∠OCD=90°,∵∠D=30°,∴∠BOC=∠D+∠OCD=30°+90°=120°,∵OB=OC,∴∠B=∠OCB=30°,∴∠DCB=120°=∠BOC,又∵∠B=∠D=30°,∴△BOC∽△BCD;(2)∵∠D=30°,DC,∠OCD=90°,∴DC OC,DO=2OC,∴OC=1=OB,DO=2,∵∠B=∠D=30°,∴DC=BC,∴△BCD的周长=CD+BC+DB2+1=3+2.26.(10分)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值X围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.【解答】解:(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2(EH+AD)×20x+2(GH+CD)×x×60+EF•EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;(2)EF=20﹣2x,EH=30﹣2x,参考(1),由题意得:y=(30×30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40=﹣400x+24000(0<x<10);(3)S甲=2(EH+AD)×2x=(30﹣2x+30)x=﹣2x2+60x,同理S乙=﹣2x2+40x,∵甲、乙两种花卉的种植面积之差不超过120米2,∴﹣2x2+60x﹣(﹣2x2+40x)≤120,解得:x≤6,故0<x≤6,而y=﹣400x+24000随x的增大而减小,故当x=6时,y的最小值为21600,即三种花卉的最低种植总成本为21600元.27.(10分)如图,在矩形ABCD中,AB=2,AD=1,点E为边CD上的一点(与C、D不重合),四边形ABCE关于直线AE的对称图形为四边形ANME,延长ME交AB于点P,记四边形PADE的面积为S.(1)若DE,求S的值;(2)设DE=x,求S关于x的函数表达式.【解答】解:(1)当DE,∵AD=1,∴tan∠AED,AE,∴∠AED=60°,∵AB∥CD,∴∠BAE=60°,∵四边形ABCE关于直线AE的对称图形为四边形ANME,∴∠AEC=∠AEM,∵∠PEC=∠DEM,∴∠AEP=∠AED=60°,∴△APE为等边三角形,∴S()21;(2)过E作EF⊥AB于F,由(1)可知,∠AEP=∠AE D=∠PEA,∴AP=PE,设AP=PE=a,AF=ED=x,则PF=a﹣x,EF=AD=1,在Rt△PEF中,(a﹣x)2+1=a2,解得:a,∴S.28.(10分)在平面直角坐标系中,O为坐标原点,直线OA交二次函数y x2的图象于点A,∠AOB=90°,点B在该二次函数的图象上,设过点(0,m)(其中m>0)且平行于x 轴的直线交直线OA于点M,交直线OB于点N,以线段OM、ON为邻边作矩形OMPN.(1)若点A的横坐标为8.①用含m的代数式表示M的坐标;②点P能否落在该二次函数的图象上?若能,求出m的值;若不能,请说明理由.(2)当m=2时,若点P恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线OA的函数表达式.【解答】解:(1)①∵点A在y x2的图象上,横坐标为8,∴A(8,16),∴直线OA的解析式为y=2x,∵点M的纵坐标为m,∴M(m,m).②假设能在抛物线上,∵∠AOB=90°,∴直线OB的解析式为y x,∵点N在直线OB上,纵坐标为m,∴N(﹣2m,m),∴MN的中点的坐标为(m,m),∴P(m,2m),把点P坐标代入抛物线的解析式得到m.(2)①当点A在y轴的右侧时,设A(a,a2),∴直线OA的解析式为y ax,∴M(,2),∵OB⊥OA,∴直线OB的解析式为y x,可得N(,2),∴P(,4),代入抛物线的解析式得到,4,解得a=4±4,∴直线OA的解析式为y=(±1)x.②当点A在y轴的左侧时,即为①中点B的位置,∴直线OA 的解析式为y x=﹣(±1)x,综上所述,满足条件的直线OA的解析式为y=(±1)x或y=﹣(±1)x.。
2022年江苏省无锡市中考数学附解析
2022年江苏省无锡市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图中,属于相似形的是()A.①和②,④和⑥B.②和③,⑧和⑨C.④和⑤,⑦和⑨D.①和③,⑧和⑨2.下列各条件不能确定圆的是()A.已知直径B.已知半径和圆心C.已知两点D.已知不在一条直线上的三点3.如图,在正方形ABCD中,CE=DF,∠BCE=40°,则∠ADF=()A.50° B.40° C.50°或40° D.不能确定4.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确...的是()A.∠ACD=∠B B.CH=CE=EF C.AC=AF D.CH=HD5.如图所示,△DEF是由边长为2 cm的等边△ABC平移3cm得到的,则AD为()A.1 cm B.2 cm C.3 cm D.无法确定6.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是( )A .11 天B .10 天C .9 天D .8 天二、填空题7.如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 . 8.太阳光线所形成的投影称为 . 9.如图,已知一坡面的坡度1:3i =,则坡角α为 . 10. 立方体的一边长为xcm ,那么它的表面积ycm 2关于xcm 的函数解析式是 . y =6x 211.当m 取 时,232(3)m m y m x -+=-是二次函数.12.已知a 与b 2成反比例,且当 a=6 时,b=3,则b=-2时,a= .13.请写出命题“直角三角形的两个锐角互余”的逆命题: .14.判断题(对的打“√”,错的打“×”(1)5116021530450663⨯=⨯= ( ) (2)1333113÷=÷== ( ) (3)22752791623103102⨯=⨯== ( ) (4)772995.210 5.210410201.3101.310⨯⨯==⨯=⨯⨯ ( ) 15. 如图,从左图到右图的变换是 .16.如图,AD 是线段BC 的垂直平分线.已知△ABC 的周长为14cm ,BC =4cm ,则AB =__________cm .17.已知2a b +=-,3b c +=,7a c +=,则a b c ++的值为 .18.一个立方体由 个面围成;有 条棱(面与面的交线叫做棱);有 个顶点(棱与棱的交点叫顶点).19.整数和分数统称为 .三、解答题红红 红白白 蓝20.下面三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?21.如图,已知图中的两个正五边形是位似图形.(1)AE的对应线段是哪条线段?(2)请在图中画出位似中心 0,并说明画法.22.某校为了解九年级学生的学习情况,在这个年级段中抽取50名学生,对某学科进行测试,将成绩整理后如下数:请回答下列问题:(1)70~79分出现的频率为;(2)90分以上的人数(包括90分)为人;(3)本次测试50名学生成绩的及格率为是(60分以为及格,包括60分).分组频率50~590.0460~690.0470~7980~890.3490~990.4223.试证明:不论m为何值,方程22----=总有两个不相等的实数根.2(41)0x m x m m224241>0-=+b ac m24.某商场摘摸奖促销活动,商场在一只不透明的箱子里放了 3个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样. 规定:顾客在本商场同一日内,每消费满 100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品. 现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率.25.如图,直线a是一个轴对称图形的对称轴,画出这个轴对称图形的另一半,并说明这个轴对称图形是一个什么图形,它一共有几条对称轴.(不写作法,保留作.图痕迹.)26.计算:(1)(-2x)3·(4x2y) (2)(4×106)(8×104)·105(3)(m3)4+m10·m2+m·m5·m627.根据下列要求,在图中作图.(1)作线段AB和射线CA;(2)作直线BC,过点A 作,MN∥BC;(3)过点A 作AD⊥BC,垂足为点 D.28.如图,AB、CD相交于点0,∠FOC=90°,∠1=100°,∠2=20°,求∠3、∠4、∠5、∠6的度数.29.已知 m、n互为相反数.(1)在如图的数轴上标出数n;(2)在如图的数轴上补上原点 0,并标出数n.30.为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月l600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售员小李、小张l~6月份的销售额如下表:(1)请问小李与小张3月份的工资各是多少?(2)小李l~6月份的销售额y1与月份x的函数解析式是y1=l200x+10400,小张1~6月份的销售额y2也是月份x的一次函数,请求出y2与x的函数解析式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.D5.C6.D二、填空题7.18.2平行投影9.3010.11.13. 513.两个角互余的三角形是直角三角形14.(1)× (2)×(3)× (4)×15.轴对称变换16.517.418.6,12,819.有理数三、解答题20.解:树形图:第一张卡片上的整式 x 1x - 2第二张卡片上的整式 1x - 2 x 2 x 1x -所有可能出现的结果 1x x - 2x 1x x - 12x - 2x 21x - ∴P (能组成分式)4263==. 21. (1)FG .(2)连结两个对应点的两条线段的交点即为位似中心0.22.(1) 0.16 (2)21 (3)96%224241>0b ac m-=+24.列树状图如下:两次摸奖结果共有 9种情况,其中两次奖品价格之和超过 40 元的有 3种情况.故所求概率为 P=31 93 =25.是一个正五角星,它共有五条对称轴. 如图所示:26.(1)-32x5y,(2)3.2×1016,(3)3m1227.如图,(1)线段AB和射线CA 即为所求;(2)直线BC和直线MN即为所求;(3)AD即为所28.∠3=∠6=60°,∠4=30°,∠5=90°29.略30.(1)2280元,2040元;(2)y2=1800x+5600;(3)9月份。
2022年江苏省无锡市中考数学试卷-含答案详细解析校正版
第1页,共27页绝密★启用前2022年江苏省无锡市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. −15的倒数是( ) A. −15B. −5C. 15D. 52. 函数y =√4−x 中,自变量x 的取值范围( ) A. x >4B. x <4C. x ≥4D. x ≤43. 已知一组数据:111,113,115,115,116,这组数据的平均数和众数分别是( )A. 114,115B. 114,114C. 115,114D. 115,1154. 分式方程2x−3=1x 的解是( ) A. x =1B. x =−1C. x =3D. x =−35. 在Rt △ABC 中,∠C =90°,AC =3,BC =4,以AC 所在直线为轴,把△ABC 旋转1周,得到圆锥,则该圆锥的侧面积为( )A. 12πB. 15πC. 20πD. 24π6. 雪花、风车……展示着中心对称的美,利用中心对称,可以探索并证明图形的性质.请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )A. 扇形B. 平行四边形C. 等边三角形D. 矩形7. 如图,AB 是圆O 的直径,弦AD 平分∠BAC ,过点D 的切线交AC 于点E ,∠EAD =25°,则下列结论错误的是( )第2页,共27页A. AE ⊥DEB. AE//ODC. DE =ODD. ∠BOD =50°8. 下列命题中,是真命题的有( )①对角线相等且互相平分的四边形是矩形 ②对角线互相垂直的四边形是菱形 ③四边相等的四边形是正方形 ④四边相等的四边形是菱形A. ①②B. ①④C. ②③D. ③④9. 一次函数y =mx +n 的图象与反比例函数y =mx 的图象交于点A 、B ,其中点A 、B 的坐标为A(−1m,−2m)、B(m,1),则△OAB 的面积是( )A. 3B. 134 C. 72D. 15410. 如图,在▱ABCD 中,AD =BD ,∠ADC =105°,点E 在AD 上,∠EBA =60°,则EDCD的值是( )第3页,共27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………A. 23B. 12C. √32D. √22第II 卷(非选择题)二、填空题(本大题共8小题,共24.0分)11. 分解因式:2a 2−4a +2=______.12. 高速公路便捷了物流和出行,构建了我们更好的生活.交通运输部的数据显示,截止去年底,我国高速公路通车里程16.1000万公里,稳居世界第一.这个数据用科学记数法可表示为______.13. 二元一次方程组{3x +2y =12,2x −y =1的解为______.14. 请写出一个函数的表达式,使其图象分别与x 轴的负半轴、y 轴的正半轴相交:______.15. 请写出命题“如果a >b ,那么b −a <0”的逆命题:______.16. 如图,正方形ABCD 的边长为8,点E 是CD 的中点,HG 垂直平分AE 且分别交AE 、BC 于点H 、G ,则BG =______.17. 把二次函数y =x 2+4x +m 的图象向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:______.第4页,共27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………18. △ABC 是边长为5的等边三角形,△DCE 是边长为3的等边三角形,直线BD 与直线AE 交于点F.如图,若点D 在△ABC 内,∠DBC =20°,则∠BAF =______°;现将△DCE 绕点C 旋转1周,在这个旋转过程中,线段AF 长度的最小值是______.三、解答题(本大题共10小题,共96.0分。
江苏无锡市2022中考试卷-数学(解析版)
江苏无锡市2022中考试卷-数学(解析版)一.选择题(共10小题)1.(2020无锡)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数。
专题:探究型。
分析:依照相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(2020无锡)sin45°的值等于()A.B.C.D.1考点:专门角的三角函数值。
分析:依照专门角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记专门角度的三角函数值即可.3.(2020无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B. x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法。
分析:第一把x﹣1看做一个整体,观看发觉符合完全平方公式,直截了当利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题要紧考查了因式分解﹣运用公式法,关键是熟练把握完全平方公式:a2±2ab+b2=(a±b)2.4.(2020无锡)若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1 B. 1 C.﹣2 D.2考点:反比例函数与一次函数的交点问题。
专题:运算题。
分析:将x=1代入直线y=2x+1,求出该点纵坐标,从而得到此交点的坐标,将该交点坐标代入y=即可求出k的值.解答:解:将x=﹣1代入直线y=2x+1得,y=﹣2+1=﹣1,则交点坐标为(﹣1,﹣1),则a=6,V=a3==432(cm3);(2)设包装盒的底面边长为acm,高为hcm,则a=,h=,∴S=4ah+a2=4x(12﹣x)+=﹣6x2+96x=﹣6(x﹣8)2+384,∵0<x<12,∴当x=8时,S取得最大值384cm2.点评:此题要紧考查了二次函数的应用以及二次函数最值求法,依照已知得出正方体的边长x+2x+x=24是解题关键.25.(2020无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年能够获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年能够获得的租金为商铺标价的10%,但要缴纳租金的10%作为治理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?什么缘故?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?考点:一元一次方程的应用;列代数式。
2023年江苏省无锡市中考数学测试试题附解析
2023年江苏省无锡市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知⊙O 的半径为 5 cm ,如果一条直线和圆心0的距离为 5 cm ,那么这条直线和⊙O 的位置关系是( ) A .相交B .相切C . 相离D . 相交或相离2.如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为( ) A .53 B .54 C .34 D .43 22(11)|11|11-+--,正确的结果是( )3. 计算A .-11 B .11C . 22D .-22数式912x -+的值不小于代数式113x +-的值的x 应为( ) 4.使代A .17x >B .17x ≥C .17x <D .29x ≥5.小伟五次数学考试成绩分别为86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( ) A .平均数 B .众数C .中位数D .方差6.下列事件中,必然事件是( )A .任何数都有倒数B .明年元旦那天天晴C .异号两数相乘积为负D .摸彩票中大奖 7.在下图中,与图形变换相同的是( )8.小珲任意买一张体育彩票,末位数字 (0~9之间的整数)在下列情况中可能性较大的是( )A .末位数字是 3 的倍数B .末位数字是 5 的倍数C .末位数字是 的倍数D .未位数字是 4 的倍数9. 某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过 10立米,每立方米按 a 元收费;用水超过 10立方米的,超过部分加倍收费. 某职工6 份缴水费 l6a 元,则该职工 6 月份实际月水量为( ) A .13 立方米B .14 立方米C .15 立方米D .16 立方米310.甲、乙两地相距m 千米,原计划火车每小时行x 千米. 若火车实际每小时行50千米,则火车从甲地到乙地所需时间比原来减少( ) A .50m小时 B .mx小时 C .(50m m x -)小时 D .(50m mx-) 小时 11.下面说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .任何实数都有立方根C .任何一个实数必有立方根和平方根D .负数没有立方根12.实数a ,b 在数轴上的位置如图所示,那么下列式子中不成立的是( ) A .a b >B .a b <C .0ab >D .0ab>二、填空题13.抛物线2(1)3y x =-+的顶点坐标为 .14.写出一个顶点为(0, 1),开口向上的二次函数的函数关系式 .15. 如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= .16.如图,在ABC △中,M N ,分别是AB AC ,的中点,且120A B ∠+∠=,则______ANM ∠=.17.已知数据:25,22,21,25,19,26,22,28,24,27,25,26,26,27,29,28,36,24,25,30.在列频数分布表时,如果取组距为3,那么应分成 组,分别是 . 18.已知 等腰三角形的周长是12,则腰长x 的取值范围是 . 19.在关于1x ,2x ,3x 的方程组121232313x x a x x a x x a +=⎧⎪+=⎨⎪+=⎩中,已知123a a a >>,那么将1x ,2x ,3x 按从小到大排列应该是 .20.如图是一个立方体纸盒的展开图,当折叠成纸盒时,标号为1的点与标号 点重合.21.若一个底面为正方形的直棱柱的侧面展开图是一个边长为4的正方形,则这个直棱柱的表BC MN A面积是 ,体积是 .三、解答题22.《中华人民共和国道路交通管理条理》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时.”如图所示,已知测速站M 到公路l 的距离MN 为30米,一辆小汽车在公路l上由东向西行驶,测得此车从点A 行驶到点B 所用的时间为2秒,并测得60AMN ∠=,30BMN ∠=.计算此车从A 到B 的平均速度为每秒多少米(结果保留两个有效数字),并判断此车是否超过限速.(参考数据:3 1.732≈,2 1.414≈)23.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC BD =,连结AC 交⊙O 于点F .(1)AB 与AC 的大小有什么关系?为什么?(2)按角的大小分类,请你判断ABC △属于哪一类三角形,并说明理由.24.如图所示,在矩形ABCD 中,对角线AC ,BD 交于点O ,过顶点C 作CE ∥BD ,交•AB 延长线于点E ,求证:AC=CE .MN B Al25.一个直角三角形的三边长是连续整数,求这三条边的长.26.解方程:(1)250-=;x x(2) 2(34)7(34)+=+;x x(3)24120--=x x27.某市有人口l00万,在环境保护日,该市第一中学八年级学生调查了10户居民一天产生的生活垃圾,情况如下表:(1)(2)在这一天中,这10户居民平均每人产生多少kg垃圾?(结果精确到0.1 kg)28.在一次数学活动课中组织同学测量旗杆的高度,第一组l0名同学测得旗杆的高度如下(单位:m):20.0,19.9,19.8,20.0,21.1,20.2,20.0,20.0,24.6,35.6.求旗杆高度的平均数,中位数,众数各是多少?29.如图 ,当∠1 = 50°,∠2 = 130°时,直线1l ,2l 平行吗?为什么?30.用如图所示的纸片,取其两片,可以拼合成几种不同形状的长方形?画出示意图,并写出所拼的长方形的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.B5.D6.C7.B8.C9.A10.C11.BB二、填空题 13. ( 1,3)14.21y x =+15.316.60°17.6;18.5~21.5,21.5~24.5 ,24.5~27.5 , 27.5~30.5 ,30.5~33.5 ,33.5~36.518.36x <<19. 312x x x <<20.2、621.18,4三、解答题 22.解:在Rt AMN △中,tan tan 6030AN MN AMN MN =⨯∠=⨯==.在Rt BMN △中,tan tan 3030BN MN BMN MN =⨯∠=⨯==.AB AN BN ∴=-==则A 到B 的平均速度为:172AB ==≈(米/秒). 70千米/时1759=米/秒19≈米/秒17>米/秒,∴此车没有超过限速. 23.(1)AB=AC ,可以连结AD ;(2)等腰三角形.思路:证四边形BDCE 是平行四边形,得CE=•BD=AC .25.3、4、5.26.(1)10x =,25x =;(2)143x =-,21x =;(3)16x =,22x =-27.(1)4.2 kg ;(2)1:4 kg28.平均数:22.12 m ,中位数:20.0 m ,众数:20.0 m29.平行.理由:∵∠2+∠3=180°,∠2=130°. ∴∠3=180-∠2=180°-130°=50°. ∵∠1=50°,∴∠3=∠1,∴1l ⊥2l30.略.。
无锡市中考数学试卷及答案(Word解析版)
无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.2-的值等于( ▲ ) A .2B .-2C .2±D .2答案:A解析:负数的绝对值是它的相反数,所以|-2|=2,选A 。
2.函数y=1-x +3中自变量x 的取值范围是( ▲ )A .x >1B .x ≥1C .x ≤1D .1≠x 答案:B解析:由二次根式的意义,得:x -1≥0,所以,x ≥1,选B 。
3.方程0321=--xx 的解为 ( ▲)A .2=xB .2-=xC .3=xD .3-=x答案:C解析:去分母,得:x -3(x -2)=0,即x -3x +6=0,解得:x =3,经检验x =3是原方程的解,选C >4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是( ▲)A .4,15B .3,15C .4,16D .3,16答案:A解析:极差为:17-13=4;数据15出现的次数最多,故众数为15,选A 。
5.下列说法中正确的是 ( ▲)A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直 答案:D解析:A 、B 都漏掉关键词“平行”,应该是“两条平行直线”,故错;两平行直线被第三条直线所截得的同位角的平分线互相平行,不垂直,故C 错;由两直线平行,同旁内角互补,及角平分线的性质,可得D 是正确的。
6.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( ) A .30cm 2 B .30πcm 2 C .15cm 2 D .15πcm 2 答案:B解析:圆柱侧面展开图为长方形,长为圆柱的底面圆周长:6π,因此,侧面积为S =6π⨯5=30πcm 27.如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是 ( ) A .35° B .140° C .70° D .70°或140° 答案:B解析:同弧所对圆周角是它所对圆周角的一半,所以,∠AOC =2∠ABC =140°,选B 。
2022年江苏省无锡市中考数学测试试卷附解析
2022年江苏省无锡市中考数学测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.将一个圆盘,一个皮球和一个长方体模型按如图所示的方:式摆放在一起,其左视图是( )A .B .C .D .2.张华的哥哥在西宁工作,今年“五.一”期间,她想让哥哥买几本科技书带回家,于是发短信给哥哥,可一时记不清哥哥手机号码后三位数的顺序,只记得是0,2,8三个数字,则张华一次发短信成功的概率是( )A .16B .13C .19D .123.如图所示,如果∠1=∠2,那么( )A .AB ∥CD (内错角相等,两直线平行)B .AD ∥BC (内错角相等,两直线平行)C .AB ∥CD (两直线平行,内错角相等)D .AD ∥BC (两直线平行,内错角相等)4.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A .10B .11C .10或11D .3或115.52+ 3(52)5252(52)(52)-==++-(52)(52)5252(52)+-==++对于他们的解法,正确的判断是( )A . 甲、乙的解法都正确B . 甲的解法正确,乙的解法不正确C . 乙的解法正确,甲的解法不正确D . 甲、乙的解法都不正确6.已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( )A .3B .5C .6D .7 7.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于( ) A . 3B .12C . 7D . 4 8.关于200920091()22⨯计算正确的是( )A . 0B .1C .-1D .2 9.当n 为整数时,212(1)(1)n n --+-的值为( )A .-2B .0C .1D . 2 10. 下列各式中,运算结果为负数的是( )A .(-2)×(-3)÷(+4)B .(+1)÷(-1)×(-1)÷(+1)C .1111()()()24816-⨯-÷-⨯D .(-3)×(-5)×(-7)÷(-9)11.现有两个有理数 a 、b ,它们的绝对值相等,则这两个有理数( )A .相等B .相等或互为相反数C .都是零D .互为相反数二、填空题12.如图,P 是α 的边上一点,且 P 点坐标为(3,4),则tan α = .13.在边长为 3 cm 、4cm 、5 cm 的三角形白铁皮上剪下一个最大 的圆,此圆的半径为 cm .14.小王去参军,需要一张身份证复印件,则身份证复印件和原身份证 相似形 ( 填“是”或“不是”).15.在Rt △ABC 中,∠C=90°,∠A=41°,则∠B= .16.如果一个角的两边分别与另一个角的两边平行,并且这两个角相差 90°,那么这两个角的度数分别是 .17.在243y x =-中,如果6x =,那么x = . 18.四条长度分别是2,3,4,5的线段,任选3条可以组成 个三角形.19.若代数式23x y +的值是4,则369x y --的值是 .20.如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是_______________(将你认为正确的结论序号填上).三、解答题B CA E D 21.已知△ABC 的三边比为a :b :c=5:4:6,三边上的高为 h a 、h b 、hc ,求:ha :hb :hc .22.已知: 如图, 在梯形ABCD 中, AD ∥BC, AB=CD, E 是底边BC 的中点, 连接AE 、DE. 求证: △ADE 是等腰三角形.23.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).24.如图,已知在△ABC 中,D 是边BC 上一点,且CD=AC ,∠ACB 的平分线交AD 于点E ,点F 是AB 边的中点.求证:EF ∥BC .25.在某城市中,体育场在火车站以西4000 m 再往北2000 m 处,华侨宾馆在火车站以西3000 m 再往南2000 m 处,汇源超市在火车站以南3000 m 再往东2000 m 处,请建立适当的平面直角坐标系,分别写出各地的坐标.26.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连结AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图②,将图①中点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?并证明你的猜想.27.如图,请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.28.如图,AD,CE分别是△ABC的两条高,问∠BAD与∠BCE相等吗?请说明理由.AEB CD29.如下图在10×10的正方形网格中,每个小正方形的边长均为1个单位,将△ABC作相似变换得到△A1B1C1,使得边长扩大2倍,再将△A1B1C1绕点C1顺时针旋转900,得到△A2B2C1请你画出△A1B1C1和△A2B2C1 (不要求写出画法),并写出△A2B2C1的面积.30.说说你从下图中获得了哪些信息.各电视节目最爱看的人数统计表电视节目名称新闻文艺体育少儿军事爱看人数男生(人)5010200535女生(人)3518045155从中你可以得到哪些信息?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.B5.A6.A7.B8.B9.B10.C11.B二、填空题12.4313. 答案114.是15.49°16.135°、45°17.5x γ+=0;318.319.1520.①②③三、解答题21.设a= 5x ,则 b= 4x ,c=6x ,∵111222ABC a h C s ah bh ch ∆===,∴a b c ah bh ch ==, 546a b c xh xh xh ==,即546a b C h h h ==,∴::12:15:10a b c h h h = 22.证: ∵ABCD 是等腰梯形 ,∴∠B=∠C, AB=CD∵E 是BC 中点 ,∴BE=CE ,∴△ABE ≌△DCE,∴AE=DE ∴△AED 是等腰三角形23.连结AB ,EF 相交于点O ,OC 就是∠AOB 的平分线,图略. 24.证EF 是△ABD 的中位线即可25.26.略27.略28.相等,理由略29.略.30.例:男生爱看体育节目,不爱看少儿节目;女生爱看文艺节目,不爱看军事节目。
2023年江苏省无锡市中考数学真题 (解析版)
2023年无锡市初中毕业升学考试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.【答案】A3=,故选:A .2.【答案】C【解析】由题意得x-2≠0,∴x≠2.故选C .3.【答案】D【解析】解:A 选项,当12x y =⎧⎨=⎩时,24x y +=,则12x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;B 选项,当20x y =⎧⎨=⎩时,24x y +=,则20x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;C 选项,当0.53x y =⎧⎨=⎩时,24x y +=,则0.53x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;D 选项,当24x y =-⎧⎨=⎩时,20x y +=,则24x y =-⎧⎨=⎩不是二元一次方程24x y +=的解,符合题意;故选:D .4.【答案】D【解析】解:A 选项,235a a a ⨯=,故该选项不正确,不符合题意;B 选项,2a 与3a 不能合并,故该选项不正确,不符合题意;C 选项,22(2)4a a -=,故该选项不正确,不符合题意;D 选项,642a a a ÷=,故该选项正确,符合题意;故选:D .5.【答案】A【解析】解:∵函数21y x =+的图像向下平移2个单位长度,∴21221y x x =+-=-,故答案为:A .6.【答案】A【解析】解:由题意得:25.76(1) 6.58x +=.故选:A .7.【答案】B【解析】解:由旋转性质可得:55BAC DAE ∠=∠=︒,AB AD =,∵40α=︒,∴15DAF ∠=︒,70B ADB ADE ∠=∠=∠=︒,∴85AFE DAF ADE ∠=∠+∠=︒,故选:B .8.【答案】C【解析】解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形,如菱形,故①是假命题;正三角形和正五边形就不是中心对称图形,故②为假命题;正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故③为真命题;根据轴对称图形的定义和正多边形的特点,可知正n 边形共有n 条对称轴,故④为真命题.故选:C .9.【答案】B【解析】解:过点C 作CE AD ⊥,∵60D ∠=︒,2CD =,∴sin 60CE CD =⋅︒=过点B 作BF AD ⊥,∵AD BC ∥,∴四边形BCEF 是矩形,∴BF CE ==,需使222BM BN +最小,显然要使得BM 和BN 越小越好,∴显然点F 在线段MN 的之间,设MF x =,则1FN x =-,∴22222229232(1)334113323BM BN x x x x x ⎛⎫⎡⎤+=++-+=-+=+ ⎪-⎣⎦⎝⎭,∴当23x =时取得最小值为293.故选:B .10.【答案】A【解析】①有3种情况,如图1,BC 和OD 都是中线,点E 是重心;如图2,四边形ABDC 是平行四边形,F 是AD 中点,点E 是重心;如图3,点F 不是AD 中点,所以点E 不是重心;①正确②当60α=︒,如图4时AD 最大,4AB =,∴2AC BE ==,BC AE ==6BD ==,∴8DE =,∴AD =≠∴②错误;③如图5,若60α=︒,C ABC BD ∽△△,∴60BCD ∠=︒,90CDB ∠=︒,4AB =,2AC =,23BC =,3OE =1CE =,∴3CD =32GE DF ==,32CF =,∴52EF DG ==,32OG =,∴723OD =≠,∴③错误;④如图6,ABC BCD ∽△△,∴CD BC BC AB =,即214CD BC =,在Rt ABC △中,2216BC x =-,∴()221116444CD x x =-=-+,∴22114(2)544AC CD x x x +=-+=--+,当2x =时,AC CD +最大为5,∴④正确.故选:C .二、填空题(本大题共8小题,每小题3分,共24分.)11.【答案】()22x -##()22x -【解析】解:244x x -+=()22x -;故答案为:()22x -.12.【答案】5610⨯【解析】解:56000006100000610=⨯=⨯.故答案为:5610⨯.13.【答案】1-【解析】解:去分母得:3(1)2(2)x x -=-,去括号得:3324x x -=-,移项得:3243x x -=-+,合并同类项得:=1x -,检验:把=1x -代入最简公分母中:20,10x x -≠-≠,∴原分式方程的解为:=1x -,故答案为:1-14.【答案】36+##36+【解析】解:∵侧面展开图是边长为6的正方形,∴底面周长为6,∵底面为正三角形,∴正三角形的边长为2作CD AB ⊥,ABC 是等边三角形,2AB BC AC ===,1AD ∴=,∴在直角ADC ∆中,CD ==,122ABC S ∴=⨯=∴该直三棱柱的表面积为6636⨯+=+,故答案为:36+.15.【答案】2y x =-(答案不唯一)【解析】解:设1k =,则y x b =+,∵它的图象经过点(20),,∴代入得:20b +=,解得:2b =-,∴一次函数解析式为2y x =-,故答案为:2y x =-(答案不唯一).16.【答案】8【解析】解:设门高x 尺,依题意,竿长为()2x +尺,门的对角线长为()2x +尺,门宽为24x +-=()2x -尺,∴()()22222x x x +=+-,解得:8x =或0x =(舍去),故答案为:8.17.【答案】6【解析】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan 30BAO ∠=︒=33OB OA =,如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒-∠=∠,∴BFO OEA ∽ ,∴213BFO AOE S OB S OA ⎛⎫== ⎪⎝⎭ ,∴212BFO S -== ,∴3AOE S =△,∴6k =.18.【答案】910或25或212【解析】解:由(1)(5)y a x x =--,令0x =,解得:5y a =,令0y =,解得:121,5x x ==,∴()1,0A ,()5,0B ,()0,5C a ,设直线BM 解析式为y kx b =+,∴5031k b k b +=⎧⎨+=⎩解得:1252k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BM 解析式为1522y x =-+,当0x =时,52y =,则直线BM 与y 轴交于50,2⎛⎫ ⎪⎝⎭,∵12a >,∴552a >,∴点M 必在ABC 内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线AM 的解析式为y mx n=+∴031k b k b +=⎧⎨+=⎩解得:1212m n ⎧=⎪⎪⎨⎪=-⎪⎩则直线AM 的解析式为1122y x =-①如图1,直线AM 过BC 中点,,BC 中点坐标为55,22a ⎛⎫ ⎪⎝⎭,代入直线求得31102a =<,不成立;②如图2,直线BM 过AC 中点,直线BM 解析式为1522y x =-+,AC 中点坐标为15,22a ⎛⎫ ⎪⎝⎭,待入直线求得910a =;③如图3,直线CM 过AB 中点,AB 中点坐标为()3,0,∴直线MB 与y 轴平行,必不成立;2)、当分成三角形和梯形时,过点M 的直线必与ABC 一边平行,所以必有“”A 型相似,因为平分面积,所以相似比为④如图4,直线EM ∥AB ,∴CEN COA∽∴CE CN CO CA ==,∴515a a -=解得25a =;⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴2BE =,∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得2AE AB =∴22AE =222NE =-,tan tan MEN CBO ∠∠=,55222a =-,解得212a =;综上所述,910a =或225+或212+.三、解答题(本大题共10小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【答案】(1)8;(2)24y xy-+【解析】解:(1)2(3)25|4|--954=-+8=;(2)(2)(2)()x y x y x x y +---2224x y x xy=--+24y xy =-+.20.【答案】(1)11174x -+=,21174x --=;(2)13x -<<【解析】(1)2220x x +-=解:∵2,1,2a b c ===-,∴24142217b ac ∆=-=+⨯⨯=0>,∴411724b x a -±-±==解得:11174x -+=,21174x -=;(2)32251x x x +>-⎧⎨-<⎩①②解不等式①得:1x >-解不等式②得:3x <∴不等式组的解集为:13x -<<21.【答案】(1)见解析(2)见解析【解析】(1)证明:∵点D 、E 分别为AB AC 、的中点,∴AE CE =,DE BC ∥,∴ADE F ∠=∠,在CEF △与AED △中,ADE F AED CEF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS CEF AED ≌;(2)证明:由(1)证得CEF AED △≌△,∴A FCE ∠=∠,∴BD CF ∥,∵DF BC ∥,∴四边形DBCF 是平行四边形.22.【答案】(1)14(2)18【解析】(1)解:∵共有4张相同的卡片且任意抽取一张卡片,记录后放回,∴每张卡片抽到的概率都是14,设小明恰好抽到景区A 门票为事件A ,则1()4P A =,故答案为:14;(2)解:根据题意,画树状图如下:∴一共有16种等可能的情况,恰好抽到景区A 和景区B 门票的情况有2种,∴他恰好抽到景区A 和景区B 门票的概率为21168=;23.【答案】(1)90;10(2)七年级的平均分最高;八年级的中位数最大;九年级的众数最大【解析】(1)解:∵抽取的总人数为217%300÷=(人),∴C 组的人数为30030%90a =⨯=(人),100%7%32%30%19%2%10%m =-----=;故答案为:90,10;(2)解:七年级的平均分最高;八年级的中位数最大;九年级的众数最大.(答案不唯一).24.【答案】(1)见解析(2)π【解析】(1)解:如图,O 为所作;;(2)解:∵PM 和PN 为O 的切线,∴OM PB ⊥,ON PN ⊥,1302MPO NPO APB ∠=∠=∠=︒,∴90OMP ONP ∠=∠=︒,∴180120MON APB ∠=︒-∠=︒,在Rt POM 中,MPO 30∠=︒,∴3tan 3033OM PM =⋅︒=⨯=,∴O 的劣弧 MN与PM PN 、所围成图形的面积PMON MONS S =-四边形扇形21201232360π⨯⨯=⨯⨯-π=.故答案为:π-.25.【答案】(1)67.5︒(2)2【解析】(1)如图,连接OD .FD 为O 的切线,∴90ODF ∠=︒.DF AB ∥,∴90AOD ∠=︒.AD AD =,∴1452ACD AOD ∠=∠=︒. CF CD =,∴1(180)67.52F ACD ∠∠=⨯-=︒.(2)如图,连接AD ,AO OD =,90AOD ∠=︒,∴45EAD ∠=︒.45ACD ∠=︒,∴A C D E A D ∠=∠,且ADE CDA ∠=∠,∴DAE DCA ∽ ,∴DE DA DA DC=,即28DA DE DC =⋅=,∴2DA =,∴222OA OD AD ===,即半径为2.26.【答案】(1)()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩(2)销售价格为35元/kg 时,利润最大为450【解析】(1)当2230x ≤≤时,设y 关于x 的函数表达式为y kx b =+,将点()()22,48,30,40代入得,∴22483040k b k b +=⎧⎨+=⎩解得:170k b =-⎧⎨=⎩∴70y x =-+()2230x ≤≤,当3045x <≤时,设y 关于x 的函数表达式为11y k x b =+,将点()()30,40,45,10代入得,111145103040k b k b +=⎧⎨+=⎩解得:112100k b =-⎧⎨=⎩∴2100y x =-+()3045x <≤,()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩(2)设利润为w当2230x ≤≤时,22(20)(70)901400(45)625w x x x x x =--+=-+-=--+∵在2230x ≤≤范围内,w 随着x 的增大而增大,∴当30x =时,w 取得最大值为400;当3045x <≤时,22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+∴当35x =时,w 取得最大值为450450400>,∴当销售价格为35元/kg 时,利润最大为450.27.【答案】(1)8+(2)212S x =++【解析】(1)如图,连接BD 、BQ ,四边形ABCD 为菱形,∴4CB CD ==,60A C ∠=∠=︒,∴BDC 为等边三角形.Q 为CD 中点,∴2CQ =,BQ CD ⊥,∴23BQ =,QB PB ⊥.45QPB ∠=︒,∴PBQ 为等腰直角三角形,∴3PB =,62PQ = 翻折,∴90BPB ∠='︒,PB PB '=,∴26BB '=,6PE =;.同理2CQ =,∴22CC '=2QF =∴((221112222323232438222PBB CQC BB C C PBCQ S S S S ''''=-+=⨯⨯+⨯-⨯+⨯=+ 四边形梯形;(2)如图2,连接BQ 、B Q ',延长PQ 交CC '于点F .PB x =,23BQ =,90PBQ ∠=︒,∴212PQ x =+∵1122PBQ S PQ BE PB BQ =⨯=⨯ ∴22312BQ PB BE PQ x ⨯==+,∴212QE x =+,∴222123121232121212QEB S x x x ==+++ . 90BEQ BQC QFC ∠=∠=∠=︒,则90EQB CQF FCQ ∠=︒-∠=∠,∴BEQ QFC ~ ,∴2221323QFCBEQS CQ S QB ⎛⎫=== ⎪⎝⎭ ,∴24312QFC S x =+ .∵122332BQC S =⨯⨯= ∴()222123433232233121212QEB BQC QFC x x S S S S x x x ⎛⎫=++=++=+ ⎪⎪+++⎝⎭ .28.【答案】(1)3b =-,2c =-(2)①3;②2或175【解析】(1)∵二次函数()222y x bx c =++的图像与y 轴交于点A,且经过点B和点(C -∴()()244212b c b c =++⎨=-+解得:32b c =-⎧⎨=-⎩∴3b =-,2c =-,()2322y x x =--;(2)①如图1,过点E 作y 轴平行线分别交AB 、BD 于G 、H.∵()2322y x x =--,当0x =时,y =,∴(0,A ,∴AD =4BD =,∴AB ==,∴6cos 3BD ABD AB ∠==.∵90GFE GHB ∠=∠=︒,FGE HGB ∠=∠,∴FEG ABD ∠=∠,∴cos 3FEG ∠=,∴3EF EG =,∴3EF EG =.∵(0,A B 设直线AB 的解析式为y kx d=+∴4d k d ⎧=⎪⎨+=⎪⎩解得:2k d ⎧=⎪⎨⎪=⎩∴直线AB解析式为22y x =-.设2232,22E m m m ⎛-- ⎝,∴2,2G m m ⎛⎝,∴22(2)22EG m m =-+=--+∴当2m =时,EG取得最大值为,EF ∴的最大值为33⨯=.②如图2,已知tan 2ABC ∠=,令AC =,则2BC =,在BC 上取点D ,使得AD BD =,∴2ADC ABC ∠=∠,设CD x =,则2AD BD x ==-,则222(2)(2)x x +=-,解得12x =,∴tan 2AC ADC CD∠==,即()tan 22ABC ∠=.如图3构造AMF FNE ∽ ,且MN x ∥轴,相似比为:AF EF ,又∵2tan tan tan 2MFA CBA FEN ∠∠∠===,设2AM a =,则2MF a =.分类讨论:ⅰ当2FAE ABC ∠=∠时,则tan 2EF FAE AF ∠==∴AMF 与FNE V 的相似比为1:22,∴224FN a ==,2242NE MF a ==,∴()6,232E a a -,代入抛物线求得113a =,20a =(舍).∴E 点横坐标为62a =.ⅱ当2FEA ABC ∠=∠时,则tan AF FEA EF ∠==,∴相似比为,∴12FN a ==,22NE a ==,∴5,22E a a ⎛⎫+ ⎪ ⎪⎝⎭,代入抛物线求得13425a =,20a =(舍).∴E 点横坐标为51725a =.综上所示,点E 的横坐标为2或175.。
2023年江苏省无锡市中考数学试题附解析
2023年江苏省无锡市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.用 1、2、3 三个数字排成一个三位教,排出最大的三位数的概率是( ) A .23B .16C .13D .122. 现有一批产品共 10 件,其中正品 9件,次品1件,从中任取 2 件,取出的全是正品的概率为( ) A .45B .89C .910D .19203.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( ) A .6B .9C .12D .154.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( ) A .1B .1-C .21 D .1或1-5.计算x 10÷x 4×x 6的结果是( ) A .1 B .0 C .x 12 D .x 36 6.掷一枚均匀的骰子,骰子停止转动后朝上一面的点数出现以下情况的概率最小的是( ) A .偶数B .奇数C .比5小的数D .数67.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到最右边图的是( )8.如图所示,△ADF ≌△CBE ,则结论:①AF=CE ;②∠1=∠2;③BE=CF , ④AE=CF .其中正确的个数为( )A .1个B .2个C .3个D .4个 9.下列各类项目中,所使用的“球”不属于球体的是( )A .足球B .乒乓球C .羽毛球D .篮球10.某班有48位同学,在一次数学测验中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .6二、填空题11.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为 米.12.已知 Rt △ABC 与Rt △DEF 中,∠C=∠F=90°,若 AC=4,BC=5,EF=2. 5,DF=2,则 Rt △ABC 与Rt △DEF 的关系为 ,且相似比是 . 13.判断下列说法是否正确,对的打“√”,错的打“×”: (1)每个命题都有逆命题; ( ) (2)假命题的逆命题也是假命题; ( ) (3)每个定理都有逆定理; ( ) (4)真命题的逆命题是真命题. ( )14.用有45°直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为 .15.如果4x 2+mx +25是一个完全平方式,则实数m 的值是__________. 16.直角三角形两锐角的平分线所成角的度数是 度. 13517.如图所示,图①经过 变为图②,再经过 变为图③.解答题18.若2(3)11x +=,则x = ,若3(1)10y -=,则y = . 19.若|3|x y --和7x y +-互为相反数,则y x = .20.小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B 点他观察到仓库A 在他的北偏东30°处,骑行20分钟后到达C 点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为________千米.(参考数据:3≈1.732,结果保留两位有效数字).21.如图,为测量学校旗杆的高度,小丽用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22米,则旗杆的高为________m.三、解答题22.如图,PA 为⊙O的切线,A为切点,PBC为过圆心0 的割线,PA=10cm,PB =5cm,求⊙O 的直径.23.求下列各式中的 x:(1)7 : 10=6 : 3x;(2)23(3)::34x-=;(3)2:(1)(1):2x x x-+=-24.如图,△ABC中,∠A=30°,∠B=45°,CD为高,以直线 AB 为轴旋转一周得一几何体,则以 AC 为母线的圆锥的侧面积与以 BC 为母线的圆锥的侧面积之比是多少?25.填写下表:二次函数对称轴顶点坐标x 取何值是最大 (或最小)值22y x=FEDC B A2(3)y x =-- 2(1)2y x =-+- 244y x x =-+26.2008年某县中小学生约32万人,为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某县教研室体育组搞了一个随机调查,调查内容是:“每天锻炼是否超过1 小时及锻炼未超过1小时的原因”,他们随机调查了720名学生,所得的数据制成了如下的扇形统计图和频数分布直方图:根据图示,请你回答以下问题:(1)“没时间”的人数是 ,并补全频数分布直方图;(2)按此调查,可以估全县中小学生每天锻炼未超过1小时约有 万人;(3)如果计划2010年该县中小学生每天锻炼未超过1小时的人数降到3.84万人,求2008年至2010年锻炼未超过1小时人数的年平均降低.....的百分率是多少?27.关于x ,y 的方程组⎩⎨⎧+=+=-132m y x my x 的解,也是方程32=+y x 的解,求m 的值.28.如图,BD =CD ,∠ABD =∠ACD ,DE 、DF 分别垂直于AB 及AC 交延长线于E 、F . 求证:DE =DF .270︒超过1小时未超过1小时不喜欢 没时间 其它 原因锻炼未超过1小时人数频数分布直方图人数29.计算:(1)2132x x +;(2)2x y x x +- ;(3)2222x x x x -+-+-;(4)2()a b a b a b a +--; (5) 22525025x x x l x --++;(6)222m m m m n m n m n +-+--30.如图梯形的个数和周长的关系如下表所示(1)请将表中的空白处填上适当的数或代数式; (2)若n=20时,求图形的周长1121112112112【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.C4.B5.C6.D7.C8.C9.C10.B二、填空题11.3012.相似,2:113.(1)√ (2)× (3)× (4)×14.22°15.20±16.17.平移变换,轴对称变换18.311-±,3110+19.2520.1.821.12三、解答题22.连结 OA.设⊙O的半径为r,∵PA 为⊙O的切线,PA=10 cm,PB=5 cm.∴∠OAP=90°, OP= (r+5) cm,∵22210(5)r r+=+,r=7.5 cm,2r=15cm,∴⊙O的直径是 15.23.(1)207x=;(2)278x=-;(3)3x=24.25.26. (1)400,补图略 (2)24 (3)60%27.311=m . 28.∠ABD=∠ACD ,则∠E+∠BDE =∠F+∠CDF, 由于 ∠E=∠F ,∴∠BDE =∠CDF ,∴△BED ≌△CFD(AAS),∴DE=DF .29.(1)262x x +;(2)y x ;(3)284x x --;(4)a ba +;(5)2225(5)(5)x x x ++-;(6)222m m n -30.(1)14,3n+2;(2)62。
2022年中考真题精品解析数学(江苏无锡卷)(含答案)
江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每题3分,共30分)1.﹣5旳倒数是( )A .15B .±5C .5D .﹣15 2.函数=2-x y x中自变量x 旳取值范围是( ) A .x≠2 B .x≥2 C .x≤2 D .x >23.下列运算对旳旳是( )A .(a 2)3=a 5B .(ab )2=ab 2C .a 6÷a 3=a 2D .a 2•a 3=a 54.下图形中,是中心对称图形旳是( )A .B .C .D .5.若a ﹣b=2,b ﹣c=﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣56.“表1”为初三(1)班所有43名同学某次数学测验成绩旳记录成果,则下列说法对旳旳是( )成绩(分)70 80 90 男生(人)5 10 7 女生(人) 4 13 4A .男生旳平均成绩不小于女生旳平均成绩B .男生旳平均成绩不不小于女生旳平均成绩C .男生成绩旳中位数不小于女生成绩旳中位数D.男生成绩旳中位数不不小于女生成绩旳中位数7.某商店今年1月份旳销售额是2万元,3月份旳销售额是4.5万元,从1月份到3月份,该店销售额平均每月旳增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组有关a,b旳值中,能阐明这个命题是假命题旳是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1D.a=﹣1,b=39.如图,菱形ABCD旳边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O旳半径长等于()A.5 B.6 C.25D.3210.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC旳中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE旳长等于()A.2 B.54C.53D.75二、填空题(本大题共8小题,每题2分,共16分)11123旳值是.12.分解因式:3a2﹣6a+3= .13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表达为.14.如图是本市某持续7天旳最高气温与最低气温旳变化图,根据图中信息可知,这7天中最大旳日温差是℃.旳图象通过点(﹣1,﹣2),则k旳值为.15.若反比例函数y=kx16.若圆锥旳底面半径为3cm,母线长是5cm,则它旳侧面展开图旳面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD旳内部作半圆O1和半圆O2,一平行于AB旳直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2旳同侧),则由AE,EF,FB,AB所围成图形(图中阴影部分)旳面积等于.18.在如图旳正方形方格纸中,每个小旳四边形都是相似旳正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD 旳值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+21.已知,如图,平行四边形ABCD 中,E 是BC 边旳中点,连DE 并延长交AB 旳延长线于点F ,求证:AB=BF .22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相似颜色旳即为游戏伙伴,现甲、乙两人各抽取了一张,求两人恰好成为游戏伙伴旳概率.(请用“画树状图”或“列表”等措施写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一种为期5天旳推广活动,在活动期间,加入该网站旳人数变化状况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725合计总人数(人)33533903 a 5156 5881(1)表格中a= ,b= ;(2)请把下面旳条形记录图补充完整;(3)根据以上信息,下列说法对旳旳是(只要填写对旳说法前旳序号).①在活动之前,该网站已经有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入旳总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列规定作图(不规定写作法,但要保留作图痕迹):(1)作△ABC旳外心O;(2)设D是AB边上一点,在图中作出一种正六边形DEFGHI,使点F,点H 分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上旳点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q旳操作称为点旳T变换.(1)点P(a,b)通过T变换后得到旳点Q旳坐标为;若点M通过T 变换后得到点N(63),则点M旳坐标为.x图象上异于原点O旳任意一点,通过T变换后得到点B.(2)A是函数y=32①求通过点O,点B旳直线旳函数体现式;②如图2,直线AB交y轴于点D,求△OAB旳面积与△OAD旳面积之比.26.某地新建旳一种企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A型B型处理污水能力(吨/月)240 180已知商家售出旳2台A型、3台B型污水处理器旳总价为44万元,售出旳1台A型、4台B型污水处理器旳总价为42万元.(1)求每台A型、B型污水处理器旳价格;(2)为保证将每月产生旳污水所有处理完,该企业决定购置上述旳污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径旳圆与x轴分别交于A,B两点(点B 在点A旳右边),P是半径OB上一点,过P且垂直于AB旳直线与⊙O分别交于C,D两点(点C在点D旳上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P旳坐标;(2)求过点A和点E,且顶点在直线CD上旳抛物线旳函数体现式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA 上以每秒1个单位旳速度向点A运动,连接CP,作点D有关直线PC旳对称点E,设点P旳运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应旳t旳值.(2)已知m满足:在动点P从点D到点A旳整个运动过程中,有且只有一种时刻t,使点E到直线BC旳距离等于3,求所有这样旳m旳取值范围.一、选择题(本大题共10小题,每题3分,共30分) 1.﹣5旳倒数是( ) A .15B .±5C .5D .﹣15【答案】D . 【解析】试题解析:∵﹣5×(﹣15)=1, ∴﹣5旳倒数是﹣15. 故选D . 考点:倒数 2.函数=2-xy x中自变量x 旳取值范围是( ) A .x≠2 B .x≥2 C .x≤2 D .x >2 【答案】A .考点:函数自变量旳取值范围. 3.下列运算对旳旳是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【答案】D.【解析】试题解析:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,对旳,符合题意,故选D.考点:1.同底数幂旳除法;2.同底数幂旳乘法;3.幂旳乘方与积旳乘方.4.下图形中,是中心对称图形旳是()A.B.C.D.【答案】C.考点:中心对称图形.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【答案】B【解析】试题解析:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B考点:整式旳加减.6.“表1”为初三(1)班所有43名同学某次数学测验成绩旳记录成果,则下列说法对旳旳是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生旳平均成绩不小于女生旳平均成绩B.男生旳平均成绩不不小于女生旳平均成绩C.男生成绩旳中位数不小于女生成绩旳中位数D.男生成绩旳中位数不不小于女生成绩旳中位数【答案】A.考点:1.中位数;2.算术平均数.7.某商店今年1月份旳销售额是2万元,3月份旳销售额是4.5万元,从1月份到3月份,该店销售额平均每月旳增长率是()A.20% B.25% C.50% D.62.5%【答案】C.【解析】试题解析:设该店销售额平均每月旳增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月旳增长率为50%;故选C.考点:一元二次方程旳应用.8.对于命题“若a2>b2,则a>b”,下面四组有关a,b旳值中,能阐明这个命题是假命题旳是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1D.a=﹣1,b=3【答案】B.故选B.考点:命题与定理.9.如图,菱形ABCD旳边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O旳半径长等于()A.5 B.6 C.5D.2【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD旳边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH=22AD DH-=12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=2285DH BH+=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,考点:1.切线旳性质;2.菱形旳性质.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC旳中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE旳长等于()A.2 B.54C.53D.75【答案】D.【解析】试题解析:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234=5,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,在Rt△BCE 中,EC=22222475()55BC BE -=-= . 故选D .考点:1.翻折变换(折叠问题);2.直角三角形斜边上旳中线;3.勾股定理. 二、填空题(本大题共8小题,每题2分,共16分) 11.计算123⨯旳值是 . 【答案】6. 【解析】试题解析:123⨯=12336⨯==6. 考点:二次根式旳乘除法.12.分解因式:3a 2﹣6a+3= . 【答案】3(a ﹣1)2.考点:提公因式法与公式法旳综合运用.13.贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表达为.【答案】2.5×105.【解析】试题解析:将250000用科学记数法表达为:2.5×105.考点:科学记数法—表达较大旳数.14.如图是本市某持续7天旳最高气温与最低气温旳变化图,根据图中信息可知,这7天中最大旳日温差是℃.【答案】11.【解析】试题解析:∵由折线记录图可知,周一旳日温差=8℃+1℃=9℃;周二旳日温差=7℃+1℃=8℃;周三旳日温差=8℃+1℃=9℃;周四旳日温差=9℃;周五旳日温差=13℃﹣5℃=8℃;周六旳日温差=15℃﹣71℃=8℃;周日旳日温差=16℃﹣5℃=11℃,∴这7天中最大旳日温差是11℃.考点:1.有理数大小比较;2.有理数旳减法.15.若反比例函数y=k旳图象通过点(﹣1,﹣2),则k旳值为.x【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.16.若圆锥旳底面半径为3cm,母线长是5cm,则它旳侧面展开图旳面积为c m2.【答案】15π.考点:圆锥旳计算.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD旳内部作半圆O1和半圆O2,一平行于AB旳直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2旳同侧),则由AE,EF,FB,AB所围成图形(图中阴影部分)旳面积等于.【答案】534﹣6 .【解析】试题解析:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG ⊥O1O2,过F⊥O1O2,∴四边形EGHF 是矩形, ∴GH=EF=2, ∴O 1G=12, ∵O 1E=1, ∴GE=32, ∴1112O G O E =; ∴∠O 1EG=30°, ∴∠AO 1E=30°, 同理∠BO 2F=30°,∴阴影部分旳面积=S 矩形ABO2O1﹣2S扇形AO1E﹣S梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3)×32=3﹣534﹣6π.考点:1.扇形面积旳计算;2.矩形旳性质.18.在如图旳正方形方格纸中,每个小旳四边形都是相似旳正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 旳值等于 .【答案】3. 【解析】试题解析:平移CD 到C′D′交AB 于O′,如图所示,则∠BO′D′=∠BOD ,∴tan ∠BOD=tan ∠BO′D′, 设每个小正方形旳边长为a ,则22(2)5a a a +=22(2a)(2)22a a +=,BD′=3a, 作BE ⊥O′D′于点E , 则BE=3a 232222BD O F a aO D a''=='', 2222322(5)()22a a O B BE a '-=-=, ∴tanBO′E=32a 2322BEO E a==',∴tan ∠BOD=3. 考点:解直角三角形.三、解答题(本大题共10小题,共84分) 19.计算:(1)|﹣6|+(﹣2)3+70;(2)(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】(1)-1;(2)ab ﹣b 2考点:1.平方差公式;2.实数旳运算;3.单项式乘多项式;4.零指数幂.20.(1)解不等式组: 11x-2(+2)22x 3①x ②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+ 【答案】(1)﹣1<x≤6;(2)x=13.(2)由题意可得:5(x+2)=3(2x ﹣1), 解得:x=13,检查:当x=13时,(x+2)≠0,2x ﹣1≠0, 故x=13是原方程旳解.考点:1.解分式方程;3.解一元一次不等式组.21.已知,如图,平行四边形ABCD 中,E 是BC 边旳中点,连DE 并延长交AB 旳延长线于点F ,求证:AB=BF .【答案】证明见解析. 【解析】试题分析:根据线段中点旳定义可得CE=BE ,根据平行四边形旳对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后运用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证.学科网 试题解析:∵E 是BC 旳中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE , 在△CED 和△BEF 中,DCA=FBE CE=BECED=BEF ⎧∠∠⎪⎨⎪∠∠⎩, ∴△CED ≌△BEF (ASA ), ∴CD=BF ,∴AB=BF.考点:1.平行四边形旳性质;2.全等三角形旳鉴定与性质.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相似颜色旳即为游戏伙伴,现甲、乙两人各抽取了一张,求两人恰好成为游戏伙伴旳概率.(请用“画树状图”或“列表”等措施写出分析过程).【答案】13考点:列表法与树状图法.23.某数学学习网站为吸引更多人注册加入,举行了一种为期5天旳推广活动,在活动期间,加入该网站旳人数变化状况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725合计总人数(人)3353 3903 a 5156 5881(1)表格中a= ,b= ;(2)请把下面旳条形记录图补充完整;(3)根据以上信息,下列说法对旳旳是(只要填写对旳说法前旳序号).①在活动之前,该网站已经有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入旳总人数为2528人.【答案】(1)4556;600;(2)补图见解析;(3)①(2)记录图如图所示,(3)①对旳.3353﹣153=3200.故对旳.②错误.第4天增长旳人数600<第3天653,故错误.③错误.增长旳人数=153+550+653+600+725=2681,故错误.考点:条形记录图.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列规定作图(不规定写作法,但要保留作图痕迹):(1)作△ABC旳外心O;(2)设D是AB边上一点,在图中作出一种正六边形DEFGHI,使点F,点H 分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形旳性质;3.三角形旳外接圆与外心.25.操作:“如图1,P是平面直角坐标系中一点(x轴上旳点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q旳操作称为点旳T变换.(1)点P(a,b)通过T变换后得到旳点Q旳坐标为;若点M通过T 变换后得到点N(63),则点M旳坐标为.(2)A是函数y=32x图象上异于原点O旳任意一点,通过T变换后得到点B.①求通过点O,点B旳直线旳函数体现式;②如图2,直线AB交y轴于点D,求△OAB旳面积与△OAD旳面积之比.【答案】(1)Q(a+32b,12b);M(9,﹣3;(2)①y=37x;②34试题解析:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转旳性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=12PC=12b,33b,∴Q(a+32b,12b);(2)①∵A是函数y=32x 图象上异于原点O旳任意一点,∴可取A(2,3),∴2+32×372,123=32,∴B(72,32),设直线OB旳函数体现式为y=kx,则72k=32,解得k=37,∴直线OB旳函数体现式为y=37x;②设直线AB解析式为y=k′x+b,把A、B坐标代入可得2+37322k bk b⎧'⎪⎨'+=⎪⎩,解得3353kb⎧'=-⎪⎪⎨⎪=⎪⎩,∴直线AB解析式为y=﹣33x+533,∴D(0,533),且A(23,B(72,32),∴AB=2273(2-)+(3-)=322,AD=2253432+(3-)=33, ∴OABOAD SAB 33===S AD 4433. 考点:一次函数综合题.26.某地新建旳一种企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A 型B 型 处理污水能力(吨/月) 240 180已知商家售出旳2台A 型、3台B 型污水处理器旳总价为44万元,售出旳1台A 型、4台B 型污水处理器旳总价为42万元.(1)求每台A 型、B 型污水处理器旳价格;(2)为保证将每月产生旳污水所有处理完,该企业决定购置上述旳污水处理器,那么他们至少要支付多少钱?【答案】(1) 设每台A 型污水处理器旳价格是10万元,每台B 型污水处理器旳价格是8万元;(2)(2)由于求至少要支付旳钱数,可知购置6台A 型污水处理器、3台B 型污水处理器,费用至少,进而求解即可.试题解析:(1)可设每台A 型污水处理器旳价格是x 万元,每台B 型污水处理器旳价格是y 万元,依题意有2+3=44+4=42x y x y ⎧⎨⎩, 解得=10=8x y ⎧⎨⎩.答:设每台A 型污水处理器旳价格是10万元,每台B 型污水处理器旳价格是8万元;考点:1.一元一次不等式旳应用;2.二元一次方程组旳应用.27.如图,以原点O 为圆心,3为半径旳圆与x 轴分别交于A ,B 两点(点B 在点A 旳右边),P 是半径OB 上一点,过P 且垂直于AB 旳直线与⊙O 分别交于C ,D 两点(点C 在点D 旳上方),直线AC ,DB 交于点E .若AC :CE=1:2.(1)求点P 旳坐标;(2)求过点A 和点E ,且顶点在直线CD 上旳抛物线旳函数体现式.【答案】(1) P (1,0).(2) y=28x 2﹣24x ﹣1528.【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 旳延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出12AC PC AP CE CH HE ===,推出CH=2n ,EH=2m=6,再证明△DPB∽△DHE ,推出144PB DP n EH DH n ===,可得3-1264m m =+,求出m 即可处理问题; (2)由题意设抛物线旳解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可处理问题.∴12AC PC AP CE CH HE ===, ∴CH=2n ,EH=2m=6,∵CD ⊥AB ,∴PC=PD=n ,∵PB ∥HE ,∴△DPB ∽△DHE ,∴144PB DP n EH DH n ===, ∴3-1264m m =+, ∴m=1,∴P (1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP ,在Rt△OCP 中,=∴∴E (9,,∵抛物线旳对称轴为CD ,∴(﹣3,0)和(5,0)在抛物线上,设抛物线旳解析式为y=a (x+3)(x ﹣5),把E (9,,∴抛物线旳解析式为y=8(x+3)(x ﹣5),即y=8x 2﹣4x ﹣8. 考点:圆旳综合题.28.如图,已知矩形ABCD 中,AB=4,AD=m ,动点P 从点D 出发,在边DA 上以每秒1个单位旳速度向点A 运动,连接CP ,作点D 有关直线PC 旳对称点E ,设点P 旳运动时间为t (s ).(1)若m=6,求当P ,E ,B 三点在同一直线上时对应旳t 旳值.(2)已知m 满足:在动点P 从点D 到点A 旳整个运动过程中,有且只有一种时刻t ,使点E 到直线BC 旳距离等于3,求所有这样旳m 旳取值范围.【答案】(1) 83;(2) 477≤m<47.【解析】试题分析:(1)只要证明△ABD∽△DPC,可得AD ABCD PD,由此求出PD即可处理问题;(2)分两种情形求出AD旳值即可处理问题:①如图2中,当点P与A重叠时,点E在BC旳下方,点E到BC旳距离为3.②如图3中,当点P与A重叠时,点E在BC旳上方,点E到BC旳距离为3试题解析:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,(2)如图2中,当点P 与A 重叠时,点E 在BC 旳下方,点E 到BC 旳距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=3,CE=DC=4易证四边形EMCQ 是矩形,∴CM=EQ=3,∠M=90°,∴2222437EC CM -=-=,∵∠DAC=∠EDM ,∠ADC=∠M ,∴△ADC ∽△DME ,AD DG DM EM =, ∴477AD=,∴AD=47,由△DME∽△CDA , ∴DM EM =CD AD , ∴71=4AD, ∴AD=477, 综上所述,在动点P 从点D 到点A 旳整个运动过程中,有且只有一种时刻t ,使点E 到直线BC 旳距离等于3,这样旳m 旳取值范围477≤m<7. 考点:四边形综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2013•无锡)|﹣2|的值等于()A.2B.﹣2 C.±2 D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:|﹣2|=2.故选A.点评:本题考查了绝对值的性质,主要利用了负数的绝对值是它的相反数.2.(3分)(2013•无锡)函数y=+3中自变量x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x≠1考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2013•无锡)方程的解为()x=3 D.x=﹣3A.x=2 B.x=﹣2 C.:学§科§网Z§X§X§K]考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣3(x﹣2)=0,去括号得:x﹣3x+6=0,解得:x=3,经检验x=3是分式方程的解.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.(3分)(2013•无锡)已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是()A.4,15 B.3,15 C.4,16 D.3,16考点:极差;众数分析:极差是一组数中最大值与最小值的差;众数是这组数据中出现次数最多的数.解答:解:极差为:17﹣13=4,数据15出现了3次,最多,故众数为15,故选A.点评:考查了众数和极差的概念.众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.5.(3分)(2013•无锡)下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直考点:平行线的性质;同位角、内错角、同旁内角分析:根据平行线的性质,结合各选项进行判断即可.解答:解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选D.点评:本题考查了平行线的性质,在判断正误时,一定要考虑条件,否则很容易出错.6.(3分)(2013•无锡)已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是()A.30cm2B.30πcm2C.15cm2D.15πcm2考点:几何体的表面积;圆柱的计算分析:圆柱侧面积=底面周长×高.解答:解:根据圆柱的侧面积公式,可得该圆柱的侧面积为:2π×3×5=30πcm2.故选B.点评:本题主要考查了圆柱侧面积的计算方法,属于基础题.7.(3分)(2013•无锡)如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°考点:圆周角定理分析:由A、B、C是⊙O上的三点,且∠ABC=70°,利用圆周角定理,即可求得答案.解答:解:∵A、B、C是⊙O上的三点,且∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°.故选B.点评:此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(3分)(2013•无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于()A.B.C.D.考点:相似三角形的判定与性质;梯形.分析:由梯形ABCD中,AD∥BC,可得△AOD∽△COB,又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD与△BOC的面积比.解答:解:∵梯形ABCD中,AD∥BC,∴△AOD∽△COB,∵AD=1,BC=4,即AD:BC=1:4,∴△AOD与△BOC的面积比等于:1:16.故选D.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.9.(3分)(2013•无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.:2C.:2D.2:考点:平行四边形的性质;三角形的面积;勾股定理分析:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=S平行四边形ABCD,求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=a,BM=a,FN=a,CM=a,求出AF=a,CE=2a,代入求出即可.解答:解:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S平行四边形ABCD,即AF×DP=CE×DQ,∴AF×DP=CE×DQ,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a•DP=2a•DQ∴DP:DQ=:2,故选D.点评:本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,关键是求出AF×DP=CE×DQ和求出AF、CE的值.10.(3分)(2013•无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7 B.7、8 C.6、7、8 D.6、8、9考点:平行四边形的性质;坐标与图形性质.分析:分别求出t=1,t=2,t=0时的整数点,根据答案即可求出答案.解答:解:当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=2时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;故选项A错误,选项B错误;选项D错误,选项C正确;故选C.点评:本题考查了平行四边形的性质,函数的性质的应用,主要考查学生的理解能力和归纳能力.二、填空题(本大题共8小题,每小题3分,共16分)11.(3分)(2013•无锡)分解因式:2x2﹣4x=2x(x﹣2).考点:因式分解-提公因式法分析:首先找出多项式的公因式,然后提取公因式法因式分解即可.解答:解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).点评:此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.12.(3分)(2013•无锡)去年,中央财政安排资金8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为8.2×109元.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8 200 000 000 用科学记数法表示为8.2×109.故答案为:8.2×109.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(3分)(2013•无锡)已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.考点:反比例函数图象上点的坐标特征分析:直接把点(﹣1,2)代入双曲线y=,求出k的值即可.解答:解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.14.(3分)(2013•无锡)六边形的外角和等于360度.考点:多边形内角与外角分析:根据任何多边形的外角和是360度即可求出答案.解答:解:六边形的外角和等于360度.点评:任何多边形的外角和是360度.外角和与多边形的边数无关.15.(3分)(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD 的中点,则OE的长等于4.考点:菱形的性质;直角三角形斜边上的中线.分析:根据菱形的性质得出OD=OB,根据三角形的中位线性质得出OE=AB,代入求出即可.解答:解:∵四边形ABCD是菱形,∴DO=OB,∵E是AD的中点,∴OE=AB,∵AB=8,∴OE=4.故答案为4.点评:本题考查了菱形的性质和三角形的中位线定理的应用,关键是求出OE=AB,此题比较简单.16.(3分)(2013•无锡)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=45°.考点:等腰三角形的性质;线段垂直平分线的性质分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE 是等腰直角三角形,根据等腰直角三角形的性质求出∠BAC=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.点评:本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解题的关键.17.(3分)(2013•无锡)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是72.考点:由三视图判断几何体分析:根据主视图与左视图得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.解答:解:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.故答案为:72.点评:此题主要考查了利用三视图判断几何体的边长,得出图形的高是解题关键.18.(3分)(2013•无锡)已知点D与点A(8,0),B(0,6),C(a,﹣a)是一平行四边形的四个顶点,则CD长的最小值为7.考点:平行四边形的性质;坐标与图形性质.分析:①CD是平行四边形的一条边,那么有AB=CD;②CD是平行四边形的一条对角线,过C作CM⊥AO于M,过D作DF⊥AO于F,交AC于Q,过B作BN⊥DF于N,证△DBN≌△ACAM,推出DN=CM=a,BN=AM=8﹣a,得出D((8﹣a,6+a),由勾股定理得:CD2=(8﹣a﹣a)2+(6+a+a)2=8a2﹣8a+100=8(a﹣)2+98,求出即可.解答:解:有两种情况:①CD是平行四边形的一条边,那么有AB=CD==10②CD是平行四边形的一条对角线,过C作CM⊥AO于M,过D作DF⊥AO于F,交AC于Q,过B作BN⊥DF于N,则∠BND=∠DFA═∠CMA=∠QFA=90°,∠CAM+∠FQA=90°,∠BDN+∠DBN=90°,∵四边形ABCD是平行四边形,∴BD=AC,∠C=∠D,BD∥AC,∴∠BDF=∠FQA,∴∠DBN=∠CAM,∵在△DBN和△CAM中∴△DBN≌△ACAM(AAS),∴DN=CM=a,BN=A M=8﹣a,D((8﹣a,6+a),由勾股定理得:CD2=(8﹣a﹣a)2+(6+a+a)2=8a2﹣8a+100=8(a﹣)2+98,当a=时,CD有最小值,是∵<10,∴CD的最小值是=7,故答案为:7.点评:本题考查了平行四边形性质,全等三角形的性质和判定,二次函数的最值的应用,关键是能得出关于a的二次函数解析式,题目比较好,难度偏大.三、计算题19.(8分)(2013•无锡)计算:(1)﹣(﹣2)2+(﹣0.1)0;(2)(x+1)2﹣(x+2)(x﹣2).考点:完全平方公式;实数的运算;平方差公式;零指数幂.分析:(1)原式第一项利用平方根的定义化简,第二项表示两个﹣2的乘积,最后一项利用零指数幂法则计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.解答:解:(1)原式=3﹣4+1=0;(2)原式=x2+2x+1﹣x2+4=2x+5.点评:此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.20.(8分)(2013•无锡)(1)解方程:x2+3x﹣2=0;(2)解不等式组:.考点:解一元二次方程-公式法;解一元一次不等式组分析:(1)求出b2﹣4ac的值,代入公式求出即可;(2)先求出两个不等式的解集,再根据找不等式组解集的规律找出即可.解答:解:(1)x2+3x﹣2=0,∵b2﹣4ac=32﹣4×1×(﹣2)=17,∴x=,x1=,x2=﹣;(2)∵解不等式①得:x≥4,解不等式②得:x>5,∴不等式组的解集为:x>5.点评:本题考查了解一元二次方程和解不等式组的应用,主要考查学生的计算能力.21.(6分)(2013•无锡)如图,在Rt△ABC中,∠C=90°,AB=10,sin∠A=,求BC的长和tan∠B的值.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,根据sinA的值及AB的长,利用锐角三角函数定义求出BC 的长,再利用勾股定理求出AC的长,利用锐角三角函数定义即可求出tanB的值.解答:解:在Rt△ABC中,∠C=90°,AB=10,sinA===,∴BC=4,根据勾股定理得:AC==2,则tanB===.点评:此题属于解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,熟练掌握勾股定理是解本题的关键.22.(12分)(2013•无锡)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)考点:列表法与树状图法分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他获胜的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有4种等可能的结果,在一个回合中,如果小明出“手心”,则他获胜的有1种情况,∴他获胜的概率是:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.23.(6分)(2013•无锡)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:请根据图中提供的信息,解答下面的问题:(1)此次共调查了200名学生,扇形统计图中“艺术鉴赏”部分的圆心角是144度;(2)请把这个条形统计图补充完整;(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.考点:条形统计图;用样本估计总体;扇形统计图分析:(1)根据阅读写作的人数和所占的百分比,即可求出总学生数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出答案;(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图;(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.解答:解:根据题意得:调查的总学生数是:50÷25%=200(名),“艺术鉴赏”部分的圆心角是×360°=144°;故答案为:200,144;(2)数学思维的人数是:200﹣80﹣30﹣50=40(名),补图如下:(3)根据题意得:800×=120(名),答:其中有120名学生选修“科技制作”项目.点评:本题考查的是条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(12分)(2013•无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)考点:平行四边形的判定;命题与定理分析:(1)根据平行得出相似三角形,推出比例式,即可求出OB=OD,根据平行四边形的判定推出即可;(2)根据等腰梯形和平行四边形的判定判断即可.解答:(1)以①②作为条件构成的命题是真命题,证明:∵AB∥CD,∴△AOB∽△COD,∴=,∵AO=OC,∴OB=OD,∴四边形ABCD是平行四边形.(2)根据①③作为条件构成的命题是假命题,即如果有一组对边平行,而另一组对边相等的四边形时平行四边形,如等腰梯形符合,但不是平行四边形;根据②③作为条件构成的命题是假命题,即如果一个四边形ABCD的对角线交于O,且OA=OC,AD=BC,那么这个四边形时平行四边形,如图,根据已知不能推出OB=OD或AD∥BC或AB=DC,即四边形不是平行四边形.点评:本题考查了平行四边形的判定,相似三角形的性质和判定,等腰梯形的判定等知识点的应用,主要考查学生的推理能力哈辨析能力,题目比较好,但是一道比较容易出错的题目.25.(8分)(2013•无锡)已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所示:A元素含量单价(万元/吨)甲原料5% 2.5乙原料8% 6已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?考点:一次函数的应用分析:设需要甲原料x吨,乙原料y吨.由20千克=0.02吨就可以列出方程5%x+8%y=0.02和不等式5%x×1000x1+8%y×1000x0.5≤16,设购买这两种原料的费用为W万元,根据条件可以列出表达式,由函数的性质就可以得出结论.解答:解:设需要甲原料x吨,乙原料y吨.由题意,得由①,得y=.把①代入②,得x≤.设这两种原料的费用为W万元,由题意,得W=2.5x+6y=﹣1.25x+1.5.∵k=﹣1.25<0,∴W随x的增大而减小.∴x=时,W最小=1.2.答:该厂购买这两种原料的费用最少为1.2万元.点评:本题考查了利用一元一次不等式组和一次函数解决实际问题.解答时列出不等式组,建立一次函数模型并运用一次函数的性质求最值是难点.26.(12分)(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点F,由抛物线的对称性可知OF=AF,则2AF+AE=4①,由DF∥BE,得到△ADF∽△ABE,根据相似三角形对应边成比例得出==,即AE=2AF②,①与②联立组成二元一次方程组,解出AE=2,AF=1,进而得到点A的坐标;(2)先由抛物线过原点(0,0),设此抛物线的解析式为y=ax2+bx,再根据抛物线过原点(0,0)和A点(﹣2,0),求出对称轴为直线x=﹣1,则由B点横坐标为﹣4得出C点横坐标为2,BC=6.再由OB>OC,可知当△OBC是等腰三角形时,可分两种情况讨论:①当OB=BC时,设B(﹣4,y1),列出方程,解方程求出y1的值,将A,B两点坐标代入y=ax2+bx,运用待定系数法求出此抛物线的解析式;②当OC=BC时,设C(2,y2),列出方程,解方程求出y2的值,将A,C两点坐标代入y=ax2+bx,运用待定系数法求出此抛物线的解析式.解答:解:(1)如图,过点D作DF⊥x轴于点F.由题意,可知OF=AF,则2AF+AE=4①.∵DF∥BE,∴△ADF∽△ABE,∴==,即AE=2AF②,①与②联立,解得AE=2,AF=1,∴点A的坐标为(﹣2,0);(2)∵抛物线过原点(0,0),∴可设此抛物线的解析式为y=ax2+bx.∵抛物线过原点(0,0)和A点(﹣2,0),∴对称轴为直线x==﹣1,∵B、C两点关于直线x=﹣1对称,B点横坐标为﹣4,∴C点横坐标为2,∴BC=2﹣(﹣4)=6.∵抛物线开口向上,∴∠OAB>90°,OB>AB=OC,∴当△OBC是等腰三角形时,分两种情况讨论:①当OB=BC时,设B(﹣4,y1),则16+=36,解得y1=±2(负值舍去).将A(﹣2,0),B(﹣4,2)代入y=ax2+bx,得,解得.∴此抛物线的解析式为y=x2+x;②当OC=BC时,设C(2,y2),则4+=36,解得y2=±4(负值舍去).将A(﹣2,0),C(2,4)代入y=ax2+bx,得,解得.∴此抛物线的解析式为y=x2+x.综上可知,若△OBC是等腰三角形,此抛物线的函数关系式为y=x2+x或y=x2+x.点评:本题考查了二次函数的综合题型,其中涉及到二次函数的对称性,相似三角形的判定与性质,运用待定系数法求抛物线的解析式,等腰三角形的性质,两点间的距离公式等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.27.(12分)(2013•无锡)如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.考点:相似形综合题;动点问题的函数图象.分析:(1)根据函数图象中E点所代表的实际意义求解.E点表示点P运动到与点B重合时的情形,运动时间为3s,可得AB=6cm;再由S△APQ=,可求得AQ的长度,进而得到点Q的运动速度;(2)函数图象中线段FG,表示点Q运动至终点D之后停止运动,而点P在线段CD上继续运动的情形.如答图2所示,求出S的表达式,并确定t的取值范围;(3)当点P在AB上运动时,PQ将菱形ABCD分成△APQ和五边形PBCDQ两部分,如答图3所示,求出t的值;当点P在BC上运动时,PQ将菱形分为梯形ABPQ和梯形PCDQ两部分,如答图4所示,求出t的值.解答:解:(1)由题意,可知题图2中点E表示点P运动至点B时的情形,所用时间为3s,则菱形的边长AB=2×3=6cm.此时如答图1所示:AQ边上的高h=AB•sin60°=6×=cm,S=S△APQ=AQ•h=AQ×=,解得AQ=3cm,∴点Q的运动速度为:3÷3=1cm/s.(2)由题意,可知题图2中FG段表示点P在线段CD上运动时的情形.如答图2所示:点Q运动至点D所需时间为:6÷1=6s,点P运动至点C所需时间为12÷2=6s,至终点D所需时间为18÷2=9s.因此在FG段内,点Q运动至点D停止运动,点P在线段CD上继续运动,且时间t的取值范围为:6≤t≤9.过点P作PE⊥AD交AD的延长线于点E,则PE=PD•sin60°=(18﹣2t)×=t+.S=S△APQ=AD•PE=×6×(t+)=t+,∴FG段的函数表达式为:S=t+(6≤t≤9).(3)菱形ABCD的面积为:6×6×sin60°=.当点P在AB上运动时,PQ将菱形ABCD分成△APQ和五边形PBCDQ两部分,如答图3所示.此时△APQ的面积S=AQ•AP•sin60°=t•2t×=t2,根据题意,得t2=×,解得t=s;当点P在BC上运动时,PQ将菱形分为梯形ABPQ和梯形PCDQ两部分,如答图4所示.此时,有S梯形ABPQ=S菱形ABCD,即(2t﹣6+6)×6×=×,解得t=s.∴存在t=和t=,使PQ将菱形ABCD的面积恰好分成1:5的两部分.点评:本题是运动型综合题,考查了动点问题的函数图象、菱形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.28.(12分)(2013•无锡)下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.考点:图形的剪拼专题:操作型.分析:(1)在正方形四个角上分别剪下一个边长为5的小正方形,拼成一个正方形作为直四棱柱的底面即可;(2)在正三角形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正三角形,作为直三棱柱的一个底面即可;(3)在正五边形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正五边形,作为直五棱柱的一个底面即可.解答:解:(1)如图1,沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可;(2)如图,2,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;(3)如图3,沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.点评:本题考查了图形的剪拼,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.。