桥梁专业英语

合集下载

桥梁工程专业英语100词

桥梁工程专业英语100词

1、桥梁施工节段法施工segmental construction method无支架施工erection without scaffolding顶推法施工Incremental launching method转体法施工construction by swing纵向拖拉法erection by longitudinal pulling浮运架桥法bridge erection by floating平衡悬臂施工balanced cantilever construction悬臂浇筑法free cantilever casting method cast-in-place cantilever method导梁launching nose架桥机bridge-erection crane2、桥梁结构横梁cross beam纵梁stringerlongitudinal beam桥头搭板transition slab桥面板bridge deck slab桥面系bridge floor system盖梁bent cap单向推力墩single direction thrusted pier低承台桩基low capped pile foundation沉井open caisson刃脚cutting edge桥梁类型人行桥pedestrian bridge跨线桥over crossing bridge立交桥grade separation bridge轻轨交通桥rapid transit bridge施工便桥service bridge简支梁桥simply supported bridge刚架拱桥tied arch bridge斜腿刚架桥rigid frame bridge单索面斜拉桥cable-stayed bridge with singe cable plane斜拉-悬索组合体系桥hybrid cable-supported bridge system上承式桥deck bridge中承式桥half-through bridge下承式桥through bridge梁式桥girder bridge公铁两用桥rail-cum-road bridge《公路桥梁抗风设计规范》(JTG/TD60-01-2004)《Wind-resistent design specification for highway bridges》基本风速basic wind speed设计基本风速design standard wind speed风攻角wind attack angle静阵风系数static gust factor地表粗糙度terrain roughness空气静力系数aerostatic factor静力扭转发散aerostatic torsional divergence静力横向屈曲aerostatic lateral buckling颤振flutter驰振galloping抖振buffeting涡激共振vortex resonance颤振检验风速flutter checking wind speed静力三分力aerostatic force节段模型试验sectional model testing风振控制wind-induced vibration control《公路桥梁铅芯橡胶支座》(JT/T822-2011)《Lead rubber bearing isolator for highway bridge》设计压应力design compressive stress屈服前刚度pre-yield stiffness屈服后刚度post-yield stiffness第一形状系数1st shape factor第二形状系数2nd shape factor等效阻尼比equivalent damping ratio水平等效刚度shear equivalent stiffness弹性储能elastic strain energy铅芯屈服力lead-yield force《公路桥梁摩擦摆式减隔震支座》(JT/T852-2013)《Friction pendulum seismic isolation bearing for highway bridges》减隔震起始力bolt broken force隔震周期oscillation period竖向转角vertical rotation减隔震位移the maximum displacement capacity of the bearing减隔震转角the maximum rotation capacity of the bearing回复力re-centring force《公路桥涵设计通用规范》(JTGD60-2015)《General specifications for design of highway bridges and culverts》设计基准期design reference period设计使用年限design woking lifedesign service life极限状态limit states承载能力极限状态ultimate limit states正常使用极限状态serviceability limit states设计状况design situations结构耐久性structural durability永久作用permanent action偶然作用accidental action作用的标准值characteristic value of an action作用的代表值representive value of an action可变作用的伴随值accompanying value of a variable action可变作用的组合值quasi-permanent value of a variable action作用效应effect of action作用组合combination of actions荷载组合load combination作用基本组合fundamental combination of actions分项系数partial safety factor结构重要性系数factorfor importance of structure《公路桥梁加固设计规范》(JTG/T J22-2008)《Specifications for strengthing design of highway bridges》桥梁加固strengthing of existing bridges原构件existing structure member主要承重构件main structure member纤维复合材料fiberrein forced polymer植筋bonded rebars锚栓anchor bolt结构胶黏剂structural adhesives聚合物砂浆polymer mortar环氧混凝土epoxy resin concrete阻锈剂corrosion inhibitor for reinforcing steel in concrete增大截面加固法structure member strengthing with R.C&P.C粘贴钢板加固法structure member strengthing with bonded steel plate粘贴纤维复合材料加固法structure member strengthing with FRP体外预应力加固法structure member strengthing with external prestressing改变结构体系加固法strengthing by changing structure system注:本文所列词汇除了摘自具体规范的外,其余摘自《土木工程名词》(科学出版社,2003年)。

桥梁工程专业英语

桥梁工程专业英语
有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN
有限元法
finite element method
有限元法: FInite Element|finite element method
积有限元法:CVFEM线性有限元法: Linear Finite Element Method
等效荷载原理:principle of equivalent loads
等效负载等效荷载等值负载: equivalentload
模型
matrixmodelmouldpattern
承载能力极限状态
承载能力极限状态: ultimate limit states
正常使用极限状态
serviceability limit state
安全系数
safety factor
标准值
standard value标准值:standard value,|reference value
作用标准值: characteristic value of an action重力标准值:gravity standard
设计值
value of calculationdesign value
单墩
单墩: single pier单墩尾水管: single-pier draught tube
单墩肘形尾水管: one-pier elbow draught tube
结构优化设计
结构优化设计: optimal structure designing
扩结构优化设计:Optimal Struc ture Designing
液压机结构优化设计软件包: HYSOP
连续多跨
多跨连续梁: continuous beam on many supports

桥梁工程英语专业词汇

桥梁工程英语专业词汇

℃上承式拱桥‎deck arch bridg‎e(3)扣索buckl‎e cable‎人群荷载crowd‎load拱轴系数arch-axis coeff‎icien‎t拱脚区段arch foot secti‎o n跨中区段mid-span secti‎o n立柱colum‎n盖梁copin‎g合力作用点‎a ctio‎n point‎of resul‎t ant force‎上缘upper‎margi‎n下缘lower‎margi‎n形心轴centr‎oidal‎ axisSelf-climb‎i ng formw‎o rk 爬模In situCanti‎l ever‎const‎r ucti‎o n 悬臂施工中心线cente‎r line立面图eleva‎t ion伸缩缝expan‎s ion joint‎水流方向flow direc‎t ion起拱线标高‎ sprin‎g line eleva‎t ion黄海高程yello‎w sea heigh‎t最高通航水‎位highe‎st navig‎able water‎level‎设计洪水位‎ desig‎n flood‎level‎强弱风化分‎界线Divid‎i ng line of stron‎g and weak weath‎e ring‎立柱colum‎n底座base作用效应基‎本组合Funda‎m enta‎l combi‎n atio‎n for actio‎n effec‎t 上弦杆top chord‎下弦杆botto‎m chord‎预制桥道板‎p reca‎s t deck后浇带late poure‎d band合拢段closu‎r e segme‎n t示意图schem‎atic diagr‎a m变形协调defor‎m atio‎n compa‎t ibil‎i ty一致质量法‎c onsi‎s t ent‎ m ass metho‎d最小势能原‎理princ‎i ple of minim‎u m poten‎t ial energ‎y 变分法va‎riati‎o nal metho‎d虚功vir‎t ual work正定矩阵posit‎ive defin‎ite matri‎x振型 vibra‎t ion mode结构动力方‎程gener‎a l dynam‎i c equat‎i on特征值方程‎ e igen‎value‎equat‎i on透视图pe‎r spec‎t ive view侧面图side eleva‎t ion俯视图top view立面图el‎e v ati‎o n抗侧刚度later‎a l s tiff‎n ess引桥app‎r oach‎ bridg‎e幅度 ampli‎t ude抗扭刚度torsi‎o nal stiff‎n ess振型叠加法‎m ode super‎p osit‎ion metho‎d ;刚度突变r‎igidi‎t y abrup‎t chang‎e可行性feasi‎b ilit‎y连续钢构桥‎c onti‎n uous‎r idge‎d bridg‎e托架:brack‎et模型建立:creat‎e实施研究:Study‎carri‎e d outThe caps and colum‎n s were coupl‎e d to each other‎using‎ridge‎d links‎。

桥梁工程英语词汇

桥梁工程英语词汇

桥梁工程英语词汇结构控制structural controlstructure control结构控制: structural control结构控制: structural control结构控制剂: constitution controller裂缝宽度容许值裂缝宽度容许值: allowable value of crack width装配式预制装配式预制: precast装配式预制的: precast-segmental装配式预制混凝土环: precast concrete segmental ring安装预应力安装预应力: prestressed最优化optimization最优化: Optimum Theory|optimization|ALARA 使最优化: optimized次最优化: suboptimization空心板梁空心板梁: hollow slab beam主梁截面主梁截面: girder section边、中跨径边、中跨径: side span &middle spin主梁girder主梁: girder|main beam|king post 桥主梁: bridge girder主梁翼: main spar单墩单墩: single pier单墩尾水管: single-pier draught tube单墩肘形尾水管: one-pier elbow draught tube结构优化设计结构优化设计: optimal structure designing扩结构优化设计: Optimal Struc ture Designing 液压机结构优化设计软件包: HYSOP连续多跨多跨连续梁: continuous beam on many supports拼接板splice barsplice plate拼接板: splice bar|scab|splice plate 端头拼接板: end matched lumber销钉拼接板: pin splice裂缝crack crevice跨越to step acrossstep over跨越: stride leap|across|spanning跨越杆: cross-over pole|crossingpole 跨越点: crossing point|crossover point刚构桥rigid frame bridge刚构桥: rigid frame bridge形刚构桥: T-shaped rigid frame bridge连续刚构桥: continuous rigid frame bridge刚度比stiffness ratioratio of rigidity刚度比: ratio of rigidity|stiffness ratio 动刚度比: dynamic stiffenss ratio刚度比劲度比: stiffnessratio等截面粱uniform beam等截面粱: uniform beam|uniform cross-section beam桥梁工程bridge constructionbridgework桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering 桥梁工程师: Bridge SE铁路桥梁工程: railway bridge engineering悬索桥suspension bridge悬索桥: suspension bridge|su e io ridge 悬索桥: Suspension bridge|Puente colgante 加劲悬索桥: stiffenedsuspensionbridge预应力混凝土prestressed concrete预应力混凝土: prestressed concrete|prestre edconcrete 预应力混凝土梁: prestressed concrete beam预应力混凝土管: prestressed concrete pipe预应力钢筋束预应力钢筋束: pre-stressing tendon|pre-stre ingtendon 抛物线型钢丝束(预应力配钢筋结构用): parabolic cable最小配筋率minimum steel ratio轴向拉力axial tensionaxial tensile force轴向拉力: axial tension|axial te ion 轴向拉力, 轴向拉伸: axial tension轴向拉力轴向张力: axialtensileforce承台cushion cap承台: bearing platform|cushioncap|pile caps 桩承台: pile cap|platformonpiles低桩承台: low pile cap拱桥arch bridge拱桥: hump bridge|arch bridge|arched bridge 拱桥: Arch bridge|Puente en arco|Pont en arc 鸠拱桥: Khājū强度intensitystrength强度: intensity|Strength|Density刚强度: stiffness|stiffne|westbank stiffness 光强度: light intensity|intensity箍筋hooping箍筋: stirrup|reinforcement stirrup|hooping 箍筋柱: tied column|hooped column形箍筋: u stirrup u预应力组件预应力组件: prestressed element等效荷载equivalent load等效荷载: equivalent load等效荷载原理: principle of equivalent loads 等效负载等效荷载等值负载: equivalentload模型matrix model mould pattern承载能力极限状态承载能力极限状态: ultimate limit states正常使用极限状态serviceability limit state正常使用极限状态: serviceability limit state正常使用极限状态验证: verification of serviceability limit states弹性elasticityspringinessspringgiveflexibility弹性: elasticity|Flexibility|stretch 弹性: Elastic|Elasticidad|弾性弹性体: elastomer|elastic body|SPUA平截面假定plane cross-section assumption平截面假定: plane cross-section assumption抗拉强度intensity of tension tensile strength安全系数safety factor标准值standard value标准值: standard value,|reference value作用标准值: characteristic value of an action 重力标准值: gravity standard设计值value of calculationdesign value设计值: design value|value|designed value 作用设计值: design value of an action荷载设计值: design value of a load可靠度confidence levelreliabilityfiduciary level可靠度: Reliability|degree of reliability 不可靠度: Unreliability高可靠度: High Reliability几何特征geometrical characteristic几何特征: geometrical characteristic配位几何特征: coordinated geometric feature 流域几何特征: basin geometric characteristics塑性plastic nature plasticity应力图stress diagram应力图: stress diagram|stress pattern 谷式应力图: Cremona's method机身应力图: fuselage stress diagram压应力crushing stress压应力: compressive stress|compression stress 抗压应力: compressive stress|pressure load内压应力: internal pressure stress配筋率ratio of reinforcement reinforcement ratioreinforcement percentage配筋率: reinforcement ratio平均配筋率: balanced steel ratio纵向配筋率: longitudinal steel ratio有限元分析finite element analysis有限元分析: FEA|finite element analysis (FEA)|ABAQUS 反有限元分析: inverse finite element analysis有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN有限元法finite element method有限元法: FInite Element|finite element method 积有限元法: CVFEM线性有限元法: Linear Finite Element Method裂缝控制裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement检查,核对,抑制,控制,试验,裂缝,支票,账单,牌号,名牌: check应力集中stress concentration应力集中: stress concentration应力集中点: hard spot|focal point of stress 应力集中器: stress concentrators主拉应力principal tensile stress主拉应力: principal tensile stress非线性nonlinearity非线性振动nonlinear oscillationsnonlinear vibration非线性振动: nonlinear vibration非线性振动理论: theory of non linear vibration 非线性随机振动: Nonlinear random vibration弯矩flexural momentment of flexion (moment of flexure) bending momentflexural torque弯矩: bending moment|flexural moment|kN-m 弯矩图: bending moment diagram|moment curve 双弯矩: bimoment弯矩中心center of momentsmoment center弯矩中心: center of moments|momentcenter弯矩分配法moment distributionmomentdistribution弯矩分配法: hardy cross method|cross method弯矩图bending moment diagrammoment curvemoment diagram弯矩图: bending moment diagram|moment curve 最终弯矩图: final bending moment diagram最大弯矩图: maximum bending moment diagram剪力shearing force剪力: shearing force|shear force|shear剪力墙: shear wall|shearing wall|shear panel 剪力钉: shear nails|SHEAR CONCRETE STUD弹性模量elasticity modulus young's modulus elastic modulus modulus of elasticity elastic ratio剪力图shear diagram剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams绘制剪力和弯矩图的图解法: Graphical Method for Constructing Shear and Moment Diagrams剪力墙shear wall剪力墙: shear wall|shearing wall|shear panel 抗剪力墙: shearwall剪力墙结构: shear wall structure轴力轴力: shaft force|axial force螺栓轴力测试仪: Bolt shaft force tester 轴向力: axial force|normal force|beam框架结构frame construction等参单元等参数单元等参元: isoparametricelement板单元板单元: plate unit托板单元: pallet unit骨板骨单元: lamella/lamellaeosteon梁(surname) beam of roof bridge桥梁bridge曲率curvature材料力学mechanics of materials结构力学structural mechanics结构力学: Structural Mechanics|theory of structures 重结构力学: barodynamics船舶结构力学: Structual Mechamics for Ships弯曲刚度flexural rigiditybending rigidity弯曲刚度: bending stiffness|flexural rigidity 截面弯曲刚度: flexural rigidity of section弯曲刚度,抗弯劲度: bending stiffness钢管混凝土结构encased structures钢管混凝土结构: encased structures极限荷载ultimate load极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load极限荷载设计limit load designultimate load analysisultimate load design极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load板壳力学mechanics of board shell板壳力学: Plate Mechanics板壳非线性力学: Nonlinear Mechanics of Plate and Shell本构模型本构模型: constitutive model体积本构模型: bulk constitutive equation 本构模型屈服面: yield surface主钢筋main reinforcing steelmain reinforcement主钢筋: main reinforcement|Main Reinforcing Steel 钢筋混凝土的主钢筋: mainbar悬臂梁socle beam悬臂梁: cantilever beam|cantilever|outrigger 悬臂梁长: length of cantilever双悬臂梁: TDCB悬链线catenary悬链线: Catenary,|catenary wire|chainette 伪悬链线: pseudocatenary悬链线长: catenary length加劲肋ribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener 短加劲肋: short stiffener支承加劲肋: bearing stiffener技术标准technology standard水文水文: Hydrology水文学: hydrology|hydroaraphy|すいもんがく水文图: hydrograph|hydrological maps招标invite public bidding投标(v) submit a bid bid for连续梁through beam连续梁: continuous beam|through beam多跨连续梁: continuous beam on many supports 悬臂连续梁: gerber beam加劲梁stiff girder加劲梁: stiffening girder|buttress brace 加劲梁节点: stiff girder connection支撑刚性梁,加劲梁,横撑: buttress brace水文学hydrology水文学: hydrology|hydroaraphy|すいもんがく水文学: Hydrologie|水文学|??? ??????古水文学: paleohydrology桥梁抗震桥梁抗震加固: bridge aseismatic strengthening抗风wind resistance抗风: Withstand Wind|Wtstan Wn|wind resistance 抗风锚: weather anchor抗风性: wind resistance基础的basal桥梁控制测量bridge construction control survey桥梁控制测量: bridge construction control survey桥梁施工桥梁施工控制综合程序系统: FWD桥梁最佳施工指南: Bridge Best Practice Guidelines桥梁工程施工技术咨询: Bridge Construction Engineering Service总体设计overall designintegrated design总体设计: Global|overall design|general arrangement 总体设计概念: totaldesignconcept工厂总体设计图: general layout scheme初步设计predesign preliminary plan技术设计technical design技术设计: technical design|technical project 技术设计员: Technical Designer|technician技术设计图: technical drawing施工图设计construction documents design施工图设计: construction documents design施工图设计阶段: construction documents design phase基本建设项目施工图设计: design of working drawing of a capital construction project桥台abutment bridge abutment基础foundation basebasis结构形式structural style结构形式: Type of construction|form of structure 表结构形式: list structure form屋顶结构形式: roof form地震earthquake地震活动earthquake activityseismic activityseismic motionseismicity地震活动: Seismic activity|seismic motion 地震活动性: seismicity|seismic地震活动图: seismicity map支撑体系支撑体系: bracing system|support system 物流企业安全平台支撑体系: SSOSP公路桥涵公路施工手册-桥涵: Optimization of Road Traffic Organization-Abstract引道approach roadramp wayapproach引道: approach|approach road引道坡: approach ramp|a roachramp 引道版: Approach slab装配式装配式桥: fabricated bridge|precast bridge 装配式房屋: Prefabricated buildings装配式钢体: fabricated steel body耐久性wear耐久性: durability|permanence|endurance不耐久性: fugitiveness耐久性试验: endurance test|life test|durability test持久状况持久状况: persistent situation 短暂状况短暂状况: transient situation 偶然状况偶然状况: accidental situation永久作用永久作用: permanent action永久作用标准值: characteristic value of permanent action可变作用可变作用: variable action可变作用标准值: characteristic value of variable action 可变光阑作用: iris action偶然作用偶然作用: accidental action偶然同化(作用): accidental assimilation作用效应偶然组合: accidental combination for action effects作用代表值作用代表值: representative value of an action作用标准值作用标准值: characteristic value of an action地震作用标准值: characteristic value of earthquake action 可变作用标准值: characteristic value of variable action作用频遇值作用频遇值 Frequent value of an action安全等级safe class安全等级: safety class|Security Level|safeclass 生物安全等级: Biosafety Level生物安全等级: Biosafety Level作用actionactivity actionsactseffectto play a role设计基准期design reference period设计基准期: design reference period作用准永久值作用准永久值: quasi-permanentvalueofanaction作用效应作用效应: effects of actions|effect of an action 互作用效应: interaction effect质量作用效应: mass action effect作用效应设计值作用效应设计值 Design value of an action effect分项系数分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合作用效应组合: combination for action effects作用效应基本组合: fundamental combination for action effects 作用效应偶然组合: accidental combination for action effects结构重要性系数结构重要性系数Coefficient for importance of a structure桥涵桥涵跟桥梁比较类似,主要区别在于:单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁公路等级公路等级: highway classification标准:公路等级代码: Code for highway classification标准:公路路面等级与面层类型代码: Code for classification and type of highway pavement顺流fair current设计洪水频率设计洪水频率: designed flood frequency水力water powerwater conservancyirrigation works水力: hydraulic power|water power|water stress水力学: Hydraulics|hydromechanics|fluid mechanics 水力的: hydraulic|hydrodynamic|hyd河槽river channel河槽: stream channel|river channel|gutter 古河槽: old channel河槽线: channel axis河岸riversidestrand河岸: bank|riverside|river bank 河岸林: riparian forest河岸权: riparian right河岸侵蚀stream bank erosion河岸侵蚀: bank erosion|stream bank erosion 河岸侵蚀河岸侵食: bank erosion河岸侵蚀, 堤岸冲刷: bank erosion高架桥桥墩高架桥桥墩: viaduct pier桥梁净空高潮时桥梁净空高度: bridge clearance行车道lane行车道: carriageway|traffic lane|Through Lane 快行车道: fast lane西行车道: westbound carriageway一级公路A roadarterial roadarterial highway一级公路: A road arterial road arterial highway 一级公路网: primaryhighwaysystem二级公路b roadsecondary road二级公路: B road, secondary road涵洞culvert涵洞: culvert梁涵洞: Beam Culverts 木涵洞: timber culvert河床riverbedrunway河床: river bed|bed|stream bed冰河床: glacier bed型河床: oxbow|horseshoe bend|meander loop河滩flood plainriver beach河滩: river shoal|beach|river flat 河滩地: flood land|overflow land 河滩区: riffle area高级公路high-type highway高级公路: high-typehighway高架桥trestleviaduct高架桥: viaduct|overhead viaduct 高架桥: Viadukt|Viaducto|高架桥高架桥面: elevated deck洪水流量volume of floodflood dischargeflooddischarge洪水流量: flood discharge|flood flow|peak discharge 洪水流量预报: flooddischargeforecast平均年洪水流量: average annual flood设计速度design speed设计速度: design speed|designed speed|design rate设计速度,构造速度: desin speed|desin speed <haha最大阵风强度的设计速度: VB Design Speed for Maximum Gust Intension跨度span紧急停车emergency shutdown (cut-off)emergency cut-off紧急停车: abort|panic stop|emergency stop 紧急停车带: lay-by|emergency parking strip 紧急停车阀: emergency stop valve减速gear downretardment speed-down deceleration slowdown车道traffic lane路缘带side tripmarginal stripmargin verge路缘带: marginal strip|side strip|margin verge路肩shoulder of earth body路肩: shoulder|verge|shoulder of road 硬路肩: hard shoulder|hardened verge 软路肩: Soft Shoulder最小值minimum value最小值: minimum|Min|least value 求最小值: minimization找出最小值: min最大值max.最大值原理principle of the maximummaximum principlemaximal principle最大值原理: maximum principle,|maximal principle 离散最大值原理: discrete maximum principle极大值原理,最大值原理: maximum principle车道宽度车道宽度: lane-width自行车道cycle-track自行车道: bicycle path|cycle path|cycle track旗津环岛海景观光自行车道: Cijin Oceanview Bike Path 自行车道专供自行车行驶的车道。

桥梁建筑英语

桥梁建筑英语

桥梁建筑专用英语整合AAdjustable anchor headAmbient temperatureAnchor blockAnchor earAnchor headAnchor holeAnchor plateAnchorage, grip and coupler for prestressing tendons Anchored sectionAnchoringAnti-corrosion greaseAnti-loose deviceAnti-oxidantAnti-skiddingAnti-vibrationpotbearingAntiwearApparatusApplied forceApproach spansArm braceAutomatic continuous lifting jackAuxiliary cableAxeBBack plateBare strandBargeBase metalBeam-slab structureBearing plateBending testBiasBoltBolt distanceBowstring arch bridgeBox girder deckBreak rate of steel wireBreakage loadBridge bearingBridge deck systemBridge pier and abutmentBulb machineBundle of monostrands with corrosion protection Bearing ringCCable formingCable hoopCable saddleCable support towerCable wind ropeCable-stayed bridgeCalibrationCapCast-in-situ beamCavity sleeveCode for bridgeCold weldingConeConnecting deviceConstruction processConstruction siteCouplerCoupler blockCross-sectionCyclic loading testCylinderContinuous lifting jackCircular prestressing systemCircular beam bracing systemDDamping deviceDamping measuresDead load/static loadDead-end anchorageDead-end anchorage sectionDistribution box/boardDuctEEarthingEfficiency coefficientElectircalhydraulicpumpEmbeded steel plateEpoxy iron oreEpoxy mortarEpoxy resinous protective membraneEpoxy-coatingExpansion jointExtended socketExternal cableExternal diameterExtra-dosed bridgeExternal prestressingFFatigue resistance performanceFatigue testFiber grating (FBG) intelligent cableFinished cableFirst-term dead loadFixed pot rubber bearingFixing holeFlat jackFlatjackFloor areaForkliftFreedom sectionFriction-coefficientFront anchoring jackGGalvanizationGirderGreaseGrouting machineGrouting portGuy derrickHHDPE stay pipeHalf pipeHaploporeHDPE sheathHigh density polyethylene compounds for construction cableHigh presure electircal hydraulic pumpHighway Project Evaluation Standard for Quality Inspection Hoist/windlassHoisting loadingHot-dip galvanized steel wires for bridge cables Hydraulic jackHydraulic pressure sensor intelligent cableHydraulic pressure transmitterHydraulicpumpHydro cylinderIIdler wheelImpact testIndustrial property rightInner anchoring jack IntelligentcenterholeloadsensorInternal dampingInternational Federation of PrestressingIsolation facilityJJackJack for flat anchorageJack for ring anchorageJack system for turningJib/davit armJigLLateral wireLifting deviceLightweight equipmentLive-end anchorageLive-end anchorage sectionLoadLoad sensorLower damperLower stressMMagnetic particle testMagnetic load sensorMENAModular expansion joint Modulus of elasticityMortarMortar pumpMotor of hydraulic pump Multi-anchorNNominal areaNominal diameterNominal outside diameterNutOOblique impactOil channelOil pressureOil pumpOne-way pot rubber bearing OrthotropicOverall contractor Overstressing pedestalPParallel wire stay cable system ParameterPistonPlastic ductPlate type expansion jointPot bearingPouringPre-embedded pipePrecast beam Prefabrication tolerance Pressure reducer Prestressingprestressing force prestressing tendons Protective cap/cover Protective connect to earth Protective connect to neutral PTFE plate bearingPulleyPumps tation for turing jackPylonPrestressing lossPrestressing tendonsPrestressing effectQQuality of steel forgingsR(Running) riggingReducing valveReinforcing ribReserved lengthResolutionRestraining ringReverse-drawingRibRollerRound plate bearingRubber bearingSSalt spray testScrewSealing ringSealssensing technologyService partSheathSlabSlabbearingplateSlanting load effectSlidingplatebearingSocketSocket on dead-endspacerSpannerSpecification for Highway Bridges and Culverts Construction Spherical bearingSpherical nutSpherical washerSpiral reinforcementSpringStatic load testStay cableStay cable consisted of strands with individual corrosion protection Stay cable systemSteel expansion jointSteel strand for prestressed concreteSteel wires for the prestressing of concreteStrandStrand Cable with integralswaging anchorageStrand rollsStress amplitudeStress relaxation rateStressing chair for jackStressing end bearing plateStressing jackSubcontractorsSupport socketSupporting frameSuspenderSuspendersuspension bridgeSwaged endSwaging machineSwitchboardSecond-prestressingTThermoplastic polyethylene high-strength steel cableTechnical conditions for hot-extruding PE protection high strength wire cable of cable-stayed bridgeTechnical definitude/disclosureTechnique conditions of PPWS for main cable of the suspension bridge Technology transferTemperature durability testTender-inviting/bidding documentTensile strengthTensioningThermal shrink sleeveThread accuracyThrottleTie barTool wedgeTool wedge for inner anchoring jackTool-anchorageTower craneTractionTraction apparatus/equipment Trade marksTransducer/sensorTransition sectionUUltimate elongationUnbonded prestressing steel strand Unbonded tendonUplifting jackUpper damperUpper stressVVentViaductWWarehousingWater-proof capWater-proof transition device Wearing partsWedgeWelderWeldingWelding arcWelding spotWelding torchWinch/windlassWire-separate saddleWooden scaffold boardWrenchYYield stressZzero drift循环:circular预张力释放:releasing of prestressing force体外预应力:external prestressing force预应力钢板箍:prestressing steel plate hoop预应力度:partial prestressing ratio(PPR)群锚间距:the loss of prestressing force永存预应力:existing prestressing force有粘结预应力:bonded prestressing自动配束:automatic distribution of the prestressing cables 预应力网架:The prestressing force net frame预应力技术:The technique of prestressing预应力加固:strengthening by prestressing可调端锚板环境温度地锚抱箍锚板锚孔锚板GB/T14370-2007《预应力筋用锚具、夹具和连接器》锚固段锚固防腐油脂防松装置抗氧化防滑抗震盆式支座抗磨损的,耐磨的仪表作用力引桥撑脚,支架自动连续提升千斤顶辅助索轴线挡板裸钢绞线舶船母材,基材梁板结构锚垫板弯曲试验偏压螺栓安装孔间距系杆拱桥箱梁桥面板断丝率破断(损)荷载桥梁墩台压花机单根防护钢绞线束垫环成缆索箍索鞍索塔缆风绳斜拉桥标定盖、罩现浇梁穿心套桥涵规范冷焊锥形筒,锥体连接装置施工工艺工地连接器连接体截面循环荷载试验油缸自动连续提升千斤顶环向预应力体系环梁支护结构减震装置减震措施静载固定端锚具固定端锚固段配电箱波纹管接地预埋钢板环氧铁砂环氧树脂砂浆环氧树脂保护膜环氧喷涂伸缩缝延长筒体外索外径矮塔斜拉桥体外预应力疲劳性能疲劳试验光纤光栅(FBG)智能索成品索一期恒载固定盆式橡胶支座安装孔扁形千斤顶扁锚千斤顶建筑面积叉车自由段摩擦系数前卡式千斤顶镀锌梁退锚灵灌浆机灌浆孔牵索起重机HDPE外套管哈弗护套管单孔HDPE护层CJ/T3078-1998《建筑缆索用高密度聚乙烯塑料》高压电动油泵《公路工程质量评定标准》(JTGF80/1—2004)卷扬机吊装GB/T 17101-1997《桥梁缆索用热镀锌钢丝》液压千斤顶液压传感器智能索液压变送器油泵油缸滚轮冲击试验工业产权内卡式千斤顶智能穿心力传感器内部阻尼国际预应力协会(FIP)隔离设施千斤顶扁锚用千斤顶环锚千斤顶转体千斤顶系统吊臂夹具边丝吊具轻型设备张拉端锚具张拉端锚固段荷载传感器下减振体应力下限磁粉探伤检验磁通量传感器middle east and north africa 中东和北非模数式伸缩缝弹性模量砂浆灰浆泵油泵电机预应力群锚公称截面积公称直径公称外径螺母倾斜碰撞油路油压油泵单向盆式橡胶支座正交各项异性(板面),正交的总承包单位超张拉台座平行钢丝拉索体系参数活塞塑料波纹管板式伸缩缝盆式支座浇注预埋管预制梁预制误差减压器预应力预应力预应力筋保护罩保护接地保护接零四氟板支座滑车转体千斤顶泵站塔柱,桥塔预应力损失预应力筋预应力效应锚具钢锻件质量索具减压阀加强筋预留长度分辨率约束圈反拉肋、纹路滚筒圆板支座橡胶支座盐雾试验螺钉、拧螺纹密封圈密封件传感技术使用部位护套路(桥)面板扁形锚垫板偏载作用移动板式支座锚杯(筒)固定端锚杯(筒)限位板扳手《公路桥涵施工技术规范》球形支座球形螺母球形垫板螺旋筋弹簧单根防护钢绞线斜拉索拉索体系钢伸缩缝GB/T5224-2003《预应力混凝土用钢绞线》GB/T5223-2002《预应力混凝土用钢丝》钢绞线钢绞线整束挤压锚索钢绞线盘应力幅应力松弛率千斤顶撑脚张拉端锚垫板张拉千斤顶分包单位(商)支承筒张拉支架吊杆吊杆悬索桥挤压头挤压机配电板二次预应力热挤聚乙烯高强钢丝拉索GB/T18365-2001《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》技术交底JT/T395-1999《悬索桥预制主缆索股技术条件》技术转让耐温度试验招标/投标书抗拉强度张拉热缩套螺纹精度节流阀系杆工具夹片/提升夹片内卡式千斤顶工具夹片牵引牵引设备注册商标传感器过渡段极限延伸率JG161-2004《无粘结预应力钢绞线》无粘结筋顶伸千斤顶上减震体应力上限排气管高架桥入库防水罩防水过度装置易损件夹片焊机焊接焊弧焊点焊枪卷扬机分丝管脚手板扳手屈服应力零漂。

桥梁工程专业英语2

桥梁工程专业英语2

1、加词法 2+1=2(加词不加意) Exam. 1 Matter can be changed into energy, and energy into matter.(„and energy can be changed into matter.) 汉译:物质可以转化为能量,能量也可以转化为物质。
3、 一句拆成两句 Exam. You must grasp the concept of “work” which is very important in physics. 译文:你必须掌握“功”的概念,因为它在物理学中很重要。 Exam. Einstein, who worked out the famous Theories of Relativity, won the Nobel Prize in 1921. 译文:由于爱因斯坦提出了著名的“相对论”,因此,他于1921年获得了诺贝尔奖 金。 Exam. The enemy tried in vain to capture our stronghold for several times. 译文:敌人曾几次试图拿下我们的阵地,但都失败了。
Exercises: 1. Illogically, she had expected some kind of miracle solution. 2. His failure in observing the safety regulations resulted in an accident to the machinery. puters having many advantages can’t do creative work, never can they replace man. 4.He insisted on building another house, which he had no use for. 译文:1、她曾期待某种奇迹般的解决方法,这是不合逻辑的。 2、他不遵守安全规则,因而导致了机械故障。 3、计算机虽然有许多优点,但它不能做创造性的工作, 更不能替代人。 4、他坚持要再造一栋房子,尽管他不需要。

土木工程桥梁专业英语

土木工程桥梁专业英语
and shorter than suspension bridges.
Cable-Stayed Bridge
• The Russky Bridge, the world's longest cablestayed bridge
• The bridge was completed in July 2012, Russia • with a 1104 m long central span
distributes stresses Natural concrete
made from mud and straw
History of Bridge Development
Zhaozhou Bridge 安济桥 600 A.D. CHINA Chinese oldest standing stone bridge Low bridge, shallow arch, allows boats and
water to pass through
History of Bridge Development
Covered bridge(廊 桥)
17th Europe timber-truss bridge • Protect wooden
structural
History of Bridge Development
Thank you
• Bridge roadway twisted and vibrated violently under 40-mile-per-hour (64 km/h) winds on the day of the collapse
Bridge Appreciation
Ruck-A-Chucky Bridge

桥梁工程专业英语

桥梁工程专业英语
就像图1所示的那样,这个闭环系统中有一个反馈元件。
2.1 Grammar Features
3) The device includes an instrument transformation and a relay system which has two circuits in it.
The device includes an instrument transformation and a relay system with two circuits in it.
科技英语(English for Science and Technology)
专业英语(English for Special Science and Technology)
隶属于科技英语 是科技英语的一部分,以表达科技概念、理论与事实为主要 目的。遵守科技英语的语法体系和翻译方法;特别注重客观事实和真理,表达准 确、精练和正式。 是结合各自专业的科技英语 有很强的专业性,涉及的面更加狭窄,与专业内 容配合更为密切。
1) The arch bridge, which is shown in Fig.1, is a fixed arch.
The arch bridge shown in Fig.1 is a fixed arch. 图1中表示的拱是无铰拱。
2.1 Grammar Features
2) FEM, as it was pointed out above, is a useful tools for structure analysis.
这个装置包括一个互感器和一个有两个电路的继电器系统。
其他常用的省略形式:
As alreHale Waihona Puke dy discussed 前已讨论

桥梁工程英语词汇

桥梁工程英语词汇

弹性
平截面假定
抗拉强度 安全系数
标准值
设计值
value of calculation design value 设计值: design value|value|designed value 作用设计值: design value of an action 荷载设计值: design value of a load confidence level reliability fiduciary level 可靠度: Reliability|degree of reliability 不可靠度: Unreliability 高可靠度: High Reliability
配筋率
有限元分析
finite element analysis 有限元分析: FEA|finite element analysis (FEA)|ABAQUS 反有限元分析: inverse finite element analysis 有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN
最小配筋率
轴向拉力
承台
拱桥
强度
箍筋
预应力组件
等效荷载
模型
承载能力极限状态
正常使用极限状态
serviceability limit state 正常使用极限状态: serviceability limit state 正常使用极限状态验证: verification of serviceability limit states elasticity springiness spring give flexibility 弹性: elasticity|Flexibility|stretch 弹性: Elastic|Elasticidad|弾性 弹性体: elastomer|elastic body|SPUA plane cross-section assumption 平截面假定: plane cross-section assumption intensity of tension tensile strength safety factor standard value 标准值: standard value,|reference value 作用标准值: characteristic value of an action 重力标准值: gravity standard

桥梁工程英语词汇

桥梁工程英语词汇
桥梁工程英语词汇
结构控制
structural control
structure control
结构控制: structural control
结构控制: structural control
结构控制剂: constitution controller
裂缝宽度容许值
裂缝宽度容许值: allowable value of crack width
最大弯矩图: maximum bending moment diagram
桥主梁: bridge girder
主梁翼: main spar
单墩
单墩: single pier
单墩尾水管: single-pier draught tube
单墩肘形尾水管: one-pier elbow draught tube
结构优化设计
结构优化设计: optimal structure designing
内压应力: internal pressure stress
配筋率
ratio of reinforcement
reinforcement ratio
reinforcement percentage
配筋率: reinforcement ratio
平均配筋率: balanced steel ratio
纵向配筋率: longitudinal steel ratio
配位几何特征: coordinated geometric feature
流域几何特征: basin geometric characteristics
塑性
plastic nature
plasticity
应力图
stress diagram

桥梁土木工程专业英语(道桥方向)

桥梁土木工程专业英语(道桥方向)

土木工程英语词汇(桥梁)Girder 梁, 钢桁的支架cross girder 横梁main girder 主梁guide vane 风嘴rail for inspection vehicle 检修小车轨道key diagram 原理草图, 工作图access opening 检修孔, 人孔view 视图front elevation 正面图, 前视图side elevation(=side view) 侧视图REQUEST FOR QUOTATION 询价单Customer 客户Main truss 主桁架High Strength Tensile Bolts 高强螺栓Welding wires 焊丝permissible Stress 容许应力Fatigue stress 疲劳应力friction face 磨擦面friction factor 摩擦系数Calculated span length 计算跨径Bridge deck system 桥面系Supplementary specification 补充规范expoxy zinc rich 环氧富锌polyurethame 聚亚氨酯primer 底漆barriar 中间漆finish 面漆external surface 外表面internal surface 内表面expoxy sealer coat 环氧封闭层cable-stayed bridge 斜拉桥(DFT)dry film thickness 干膜厚度surface preparation 表面预处理micron(um)微米thermal sprayed aluninium 热喷铝street furniture 道路附属设施场地||Field ground仓库||Warehouse涂装||Draw to pack露天||Open-air轮机||Round machine厕所||Toilet滑道||滑 way区域||District趸船||趸 ship房间||Room喷砂||Spray the sand组装||Assemble预拼装||Prepare the 拼 to pack办公楼||Transact the floor楼房||Several-storied building食堂||Dining room宿舍||Dormitory综合||Synthesize大门||Front door空压机||The air presses the machine房||Building办公室||Office锌||Zinc铝||Aluminum油漆||Varnish车队||Car brigade礼堂||Hall变电站||Transformer substation长江||Yangtze RiverMHI||MHI重型工程有限责任公司||Company of heavy type engineering limited liability厂区平面图||Factory area plane chart制造氧气站||The manufacturing oxygen plant办公楼||Transact the floor下料场地||维修车间||Maintain plant放样lofting划线score预处理pretreatment100t门座式吊机 100t gate seat-type crane 装配assembly行走式起重机 Auto Lift下水船架 Lauching shipwayn.[建]吊桥suspension bridge。

桥梁英语词汇

桥梁英语词汇

下部结构 substructure桥墩 pier 墩身 pier body墩帽 pier cap, pier coping台帽 abutment cap, abutment coping盖梁 bent cap又称“帽梁”。

重力式[桥]墩 gravity pier实体[桥]墩 solid pier空心[桥]墩 hollow pier柱式[桥]墩 column pier, shaft pier单柱式[桥]墩 single-columned pier, single shaft pier 双柱式[桥]墩 two-columned pier, two shaft pier排架桩墩 pile-bent pier丫形[桥]墩 Y-shaped pier柔性墩 flexible pier制动墩 braking pier, abutment pier单向推力墩 single direction thrusted pier抗撞墩 anti-collision pier锚墩 anchor pier辅助墩 auxiliary pier破冰体 ice apron防震挡块 anti-knock block, restrain block桥台 abutment台身 abutment body前墙 front wall又称“胸墙”。

翼墙 wing wall又称“耳墙”。

U形桥台 U-abutment八字形桥台 flare wing-walled abutment一字形桥台 head wall abutmentT形桥台 T-abutment箱形桥台 box type abutment拱形桥台 arched abutment重力式桥台 gravity abutment埋置式桥台 buried abutment扶壁式桥台 counterfort abutment, buttressed abutment 衡重式桥台 weight-balanced abutment锚碇板式桥台 anchored bulkhead abutment支撑式桥台 supported type abutment又称“轻型桥台”。

桥梁工程英语词汇

桥梁工程英语词汇

结构控制structural controlstructure control结构控制: structural control結構控制: structural control结构控制剂: constitution controller裂缝宽度容许值裂缝宽度容许值: allowable value of crack width装配式预制装配式预制: precast装配式预制的: precast-segmental装配式预制混凝土环: precast concrete segmental ring安装预应力安装预应力: prestressed最优化optimization最优化: Optimum Theory|optimization|ALARA 使最优化: optimized次最优化: suboptimization空心板梁空心板梁: hollow slab beam主梁截面主梁截面: girder section边、中跨径边、中跨径: side span &middle spin主梁girder主梁: girder|main beam|king post 桥主梁: bridge girder主梁翼: main spar单墩单墩: single pier单墩尾水管: single-pier draught tube单墩肘形尾水管: one-pier elbow draught tube结构优化设计结构优化设计: optimal structure designing扩结构优化设计: Optimal Struc ture Designing 液压机结构优化设计软件包: HYSOP连续多跨多跨连续梁: continuous beam on many supports拼接板splice barsplice plate拼接板: splice bar|scab|splice plate 端头拼接板: end matched lumber销钉拼接板: pin splice裂缝crack crevice跨越to step acrossstep over跨越: stride leap|across|spanning跨越杆: cross-over pole|crossingpole 跨越点: crossing point|crossover point刚构桥rigid frame bridge刚构桥: rigid frame bridge形刚构桥: T-shaped rigid frame bridge连续刚构桥: continuous rigid frame bridge刚度比stiffness ratioratio of rigidity刚度比: ratio of rigidity|stiffness ratio 动刚度比: dynamic stiffenss ratio刚度比劲度比: stiffnessratio等截面粱uniform beam等截面粱: uniform beam|uniform cross-section beam桥梁工程bridge constructionbridgework桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering 桥梁工程师: Bridge SE铁路桥梁工程: railway bridge engineering悬索桥suspension bridge悬索桥: suspension bridge|su e io ridge 懸索橋: Suspension bridge|Puente colgante 加劲悬索桥: stiffenedsuspensionbridge预应力混凝土prestressed concrete预应力混凝土: prestressed concrete|prestre edconcrete 预应力混凝土梁: prestressed concrete beam预应力混凝土管: prestressed concrete pipe预应力钢筋束预应力钢筋束: pre-stressing tendon|pre-stre ingtendon 抛物线型钢丝束(预应力配钢筋结构用): parabolic cable最小配筋率minimum steel ratio轴向拉力axial tensionaxial tensile force轴向拉力: axial tension|axial te ion 轴向拉力, 轴向拉伸: axial tension轴向拉力轴向张力: axialtensileforce承台cushion cap承台: bearing platform|cushioncap|pile caps 桩承台: pile cap|platformonpiles低桩承台: low pile cap拱桥arch bridge拱桥: hump bridge|arch bridge|arched bridge 拱橋: Arch bridge|Puente en arco|Pont en arc 鸠拱桥: Khājū强度intensitystrength强度: intensity|Strength|Density刚强度: stiffness|stiffne|westbank stiffness 光强度: light intensity|intensity箍筋hooping箍筋: stirrup|reinforcement stirrup|hooping 箍筋柱: tied column|hooped column形箍筋: u stirrup u预应力元件预应力元件: prestressed element等效荷载equivalent load等效荷载: equivalent load等效荷载原理: principle of equivalent loads 等效负载等效荷载等值负载: equivalentload模型matrix model mould pattern承载能力极限状态承载能力极限状态: ultimate limit states正常使用极限状态serviceability limit state正常使用极限状态: serviceability limit state正常使用极限状态验证: verification of serviceability limit states弹性elasticityspringinessspringgiveflexibility弹性: elasticity|Flexibility|stretch 彈性: Elastic|Elasticidad|弾性弹性体: elastomer|elastic body|SPUA平截面假定plane cross-section assumption平截面假定: plane cross-section assumption抗拉强度intensity of tension tensile strength安全系数safety factor标准值standard value标准值: standard value,|reference value作用标准值: characteristic value of an action 重力标准值: gravity standard设计值value of calculationdesign value设计值: design value|value|designed value 作用设计值: design value of an action荷载设计值: design value of a load可靠度confidence levelreliabilityfiduciary level可靠度: Reliability|degree of reliability 不可靠度: Unreliability高可靠度: High Reliability几何特征geometrical characteristic几何特征: geometrical characteristic配位几何特征: coordinated geometric feature 流域几何特征: basin geometric characteristics塑性plastic nature plasticity应力图stress diagram应力图: stress diagram|stress pattern 谷式应力图: Cremona's method机身应力图: fuselage stress diagram压应力crushing stress压应力: compressive stress|compression stress 抗压应力: compressive stress|pressure load内压应力: internal pressure stress配筋率ratio of reinforcement reinforcement ratioreinforcement percentage配筋率: reinforcement ratio平均配筋率: balanced steel ratio纵向配筋率: longitudinal steel ratio有限元分析finite element analysis有限元分析: FEA|finite element analysis (FEA)|ABAQUS 反有限元分析: inverse finite element analysis有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN有限元法finite element method有限元法: FInite Element|finite element method 积有限元法: CVFEM线性有限元法: Linear Finite Element Method裂缝控制裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement检查,核对,抑制,控制,试验,裂缝,支票,账单,牌号,名牌: check应力集中stress concentration应力集中: stress concentration应力集中点: hard spot|focal point of stress 应力集中器: stress concentrators主拉应力principal tensile stress主拉应力: principal tensile stress非线性nonlinearity非线性振动nonlinear oscillationsnonlinear vibration非线性振动: nonlinear vibration非线性振动理论: theory of non linear vibration 非线性随机振动: Nonlinear random vibration弯矩flexural momentment of flexion (moment of flexure) bending momentflexural torque弯矩: bending moment|flexural moment|kN-m 弯矩图: bending moment diagram|moment curve 双弯矩: bimoment弯矩中心center of momentsmoment center弯矩中心: center of moments|momentcenter弯矩分配法moment distributionmomentdistribution弯矩分配法: hardy cross method|cross method弯矩图bending moment diagrammoment curvemoment diagram弯矩图: bending moment diagram|moment curve 最终弯矩图: final bending moment diagram最大弯矩图: maximum bending moment diagram剪力shearing force剪力: shearing force|shear force|shear剪力墙: shear wall|shearing wall|shear panel 剪力钉: shear nails|SHEAR CONCRETE STUD弹性模量elasticity modulus young's modulus elastic modulus modulus of elasticity elastic ratio剪力图shear diagram剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams绘制剪力和弯矩图的图解法: Graphical Method for Constructing Shear and Moment Diagrams剪力墙shear wall剪力墙: shear wall|shearing wall|shear panel 抗剪力墙: shearwall剪力墙结构: shear wall structure轴力轴力: shaft force|axial force螺栓轴力测试仪: Bolt shaft force tester 轴向力: axial force|normal force|beam框架结构frame construction等参单元等参数单元等参元: isoparametricelement板单元板单元: plate unit托板单元: pallet unit骨板骨单元: lamella/lamellaeosteon梁(surname) beam of roof bridge桥梁bridge曲率curvature材料力学mechanics of materials结构力学structural mechanics结构力学: Structural Mechanics|theory of structures 重结构力学: barodynamics船舶结构力学: Structual Mechamics for Ships弯曲刚度flexural rigiditybending rigidity弯曲刚度: bending stiffness|flexural rigidity 截面弯曲刚度: flexural rigidity of section弯曲刚度,抗弯劲度: bending stiffness钢管混凝土结构encased structures钢管混凝土结构: encased structures极限荷载ultimate load极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load极限荷载设计limit load designultimate load analysisultimate load design极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load板壳力学mechanics of board shell板壳力学: Plate Mechanics板壳非线性力学: Nonlinear Mechanics of Plate and Shell本构模型本构模型: constitutive model体积本构模型: bulk constitutive equation 本构模型屈服面: yield surface主钢筋main reinforcing steelmain reinforcement主钢筋: main reinforcement|Main Reinforcing Steel 钢筋混凝土的主钢筋: mainbar悬臂梁socle beam悬臂梁: cantilever beam|cantilever|outrigger 悬臂梁长: length of cantilever双悬臂梁: TDCB悬链线catenary悬链线: Catenary,|catenary wire|chainette 伪悬链线: pseudocatenary悬链线长: catenary length加劲肋ribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener 短加劲肋: short stiffener支承加劲肋: bearing stiffener技术标准technology standard水文水文: Hydrology水文学: hydrology|hydroaraphy|すいもんがく水文图: hydrograph|hydrological maps招标invite public bidding投标(v) submit a bid bid for连续梁through beam连续梁: continuous beam|through beam多跨连续梁: continuous beam on many supports 悬臂连续梁: gerber beam加劲梁stiff girder加劲梁: stiffening girder|buttress brace 加劲梁节点: stiff girder connection支撑刚性梁,加劲梁,横撑: buttress brace水文学hydrology水文学: hydrology|hydroaraphy|すいもんがく水文學: Hydrologie|水文学|??? ??????古水文学: paleohydrology桥梁抗震桥梁抗震加固: bridge aseismatic strengthening抗风wind resistance抗风: Withstand Wind|Wtstan Wn|wind resistance 抗风锚: weather anchor抗风性: wind resistance基础的basal桥梁控制测量bridge construction control survey桥梁控制测量: bridge construction control survey桥梁施工桥梁施工控制综合程序系统: FWD桥梁最佳施工指南: Bridge Best Practice Guidelines桥梁工程施工技术咨询: Bridge Construction Engineering Service总体设计overall designintegrated design总体设计: Global|overall design|general arrangement 总体设计概念: totaldesignconcept工厂总体设计图: general layout scheme初步设计predesign preliminary plan技术设计technical design技术设计: technical design|technical project 技术设计员: Technical Designer|technician技术设计图: technical drawing施工图设计construction documents design施工图设计: construction documents design施工图设计阶段: construction documents design phase基本建设项目施工图设计: design of working drawing of a capital construction project桥台abutment bridge abutment基础foundation basebasis结构形式structural style结构形式: Type of construction|form of structure 表结构形式: list structure form屋顶结构形式: roof form地震earthquake地震活动earthquake activityseismic activityseismic motionseismicity地震活动: Seismic activity|seismic motion 地震活动性: seismicity|seismic地震活动图: seismicity map支撑体系支撑体系: bracing system|support system 物流企业安全平台支撑体系: SSOSP公路桥涵公路施工手册-桥涵: Optimization of Road Traffic Organization-Abstract引道approach roadramp wayapproach引道: approach|approach road引道坡: approach ramp|a roachramp 引道版: Approach slab装配式装配式桥: fabricated bridge|precast bridge 装配式房屋: Prefabricated buildings装配式钢体: fabricated steel body耐久性wear耐久性: durability|permanence|endurance不耐久性: fugitiveness耐久性试验: endurance test|life test|durability test持久状况持久状况: persistent situation 短暂状况短暂状况: transient situation 偶然状况偶然状况: accidental situation永久作用永久作用: permanent action永久作用标准值: characteristic value of permanent action可变作用可变作用: variable action可变作用标准值: characteristic value of variable action 可变光阑作用: iris action偶然作用偶然作用: accidental action偶然同化(作用): accidental assimilation作用效应偶然组合: accidental combination for action effects作用代表值作用代表值: representative value of an action作用标准值作用标准值: characteristic value of an action地震作用标准值: characteristic value of earthquake action 可变作用标准值: characteristic value of variable action作用频遇值作用频遇值 Frequent value of an action安全等级safe class安全等级: safety class|Security Level|safeclass 生物安全等级: Biosafety Level生物安全等級: Biosafety Level作用actionactivity actionsactseffectto play a role设计基准期design reference period设计基准期: design reference period作用准永久值作用准永久值: quasi-permanentvalueofanaction作用效应作用效应: effects of actions|effect of an action 互作用效应: interaction effect质量作用效应: mass action effect作用效应设计值作用效应设计值 Design value of an action effect分项系数分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合作用效应组合: combination for action effects作用效应基本组合: fundamental combination for action effects 作用效应偶然组合: accidental combination for action effects结构重要性系数结构重要性系数Coefficient for importance of a structure桥涵桥涵跟桥梁比较类似,主要区别在于:单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁公路等级公路等级: highway classification标准:公路等级代码: Code for highway classification标准:公路路面等级与面层类型代码: Code for classification and type of highway pavement顺流fair current设计洪水频率设计洪水频率: designed flood frequency水力water powerwater conservancyirrigation works水力: hydraulic power|water power|water stress水力学: Hydraulics|hydromechanics|fluid mechanics 水力的: hydraulic|hydrodynamic|hyd河槽river channel河槽: stream channel|river channel|gutter 古河槽: old channel河槽线: channel axis河岸riversidestrand河岸: bank|riverside|river bank 河岸林: riparian forest河岸权: riparian right河岸侵蚀stream bank erosion河岸侵蚀: bank erosion|stream bank erosion 河岸侵蚀河岸侵食: bank erosion河岸侵蚀, 堤岸冲刷: bank erosion高架桥桥墩高架桥桥墩: viaduct pier桥梁净空高潮时桥梁净空高度: bridge clearance行车道lane行车道: carriageway|traffic lane|Through Lane 快行车道: fast lane西行车道: westbound carriageway一级公路A roadarterial roadarterial highway一级公路: A road arterial road arterial highway 一级公路网: primaryhighwaysystem二级公路b roadsecondary road二级公路: B road, secondary road涵洞culvert涵洞: culvert梁涵洞: Beam Culverts 木涵洞: timber culvert河床riverbedrunway河床: river bed|bed|stream bed冰河床: glacier bed型河床: oxbow|horseshoe bend|meander loop河滩flood plainriver beach河滩: river shoal|beach|river flat 河滩地: flood land|overflow land 河滩区: riffle area高级公路high-type highway高级公路: high-typehighway高架桥trestleviaduct高架桥: viaduct|overhead viaduct 高架橋: Viadukt|Viaducto|高架橋高架桥面: elevated deck洪水流量volume of floodflood dischargeflooddischarge洪水流量: flood discharge|flood flow|peak discharge 洪水流量预报: flooddischargeforecast平均年洪水流量: average annual flood设计速度design speed设计速度: design speed|designed speed|design rate设计速度,构造速度: desin speed|desin speed <haha最大阵风强度的设计速度: VB Design Speed for Maximum Gust Intension跨度span紧急停车emergency shutdown (cut-off)emergency cut-off紧急停车: abort|panic stop|emergency stop 紧急停车带: lay-by|emergency parking strip 紧急停车阀: emergency stop valve减速gear downretardment speed-down deceleration slowdown车道traffic lane路缘带side tripmarginal stripmargin verge路缘带: marginal strip|side strip|margin verge路肩shoulder of earth body路肩: shoulder|verge|shoulder of road 硬路肩: hard shoulder|hardened verge 软路肩: Soft Shoulder最小值minimum value最小值: minimum|Min|least value 求最小值: minimization找出最小值: min最大值max.最大值原理principle of the maximummaximum principlemaximal principle最大值原理: maximum principle,|maximal principle 离散最大值原理: discrete maximum principle极大值原理,最大值原理: maximum principle车道宽度车道宽度: lane-width自行车道cycle-track自行车道: bicycle path|cycle path|cycle track旗津环岛海景观光自行车道: Cijin Oceanview Bike Path 自行车道专供自行车行驶的车道。

桥梁工程英语专业词汇

桥梁工程英语专业词汇
轴向拉力: axial tension|axial te ion
轴向拉力, 轴向拉伸: axial tension
轴向拉力 轴向张力: axialtensileforce
承台
cushion cap
承台: bearing platform|cushioncap|pile caps
桩承台: pile cap|platformonpiles
弹性
elasticity
springiness
spring
give
flexibility
弹性: elasticity|Flexibility|stretch
彈性: Elastic|Elasticidad|弾性
弹性体: elastomer|elastic body|SPUA
平ቤተ መጻሕፍቲ ባይዱ面假定
plane cross-section assumption
主梁
主梁: girder|main beam|king post
桥主梁: bridge girder
主梁翼: main spar
单墩
单墩: single pier
单墩尾水管: single-pier draught tube
单墩肘形尾水管: one-pier elbow draught tube
结构优化设计
刚强度: stiffness|stiffne|westbank stiffness
光强度: light intensity|intensity
箍筋
hooping
箍筋: stirrup|reinforcement stirrup|hooping
箍筋柱: tied column|hooped column

桥梁术语英语词汇(简洁版)

桥梁术语英语词汇(简洁版)

桥梁工程英语专业词汇 bridge layout in plan bridge lighting bridge site bridge site engineering survey plan profile bridge site bridge site topographic map bridge tower broken joint budget of working-drawings of a project buried abutment buried river burlap cofferdam bybrid overflow pavement critical gradient cable stayed bridge cable stayed bridge of multi-cable system a single central cable plane cable stayed bridge with continuous girder cable stayed bridge with continuous rigid frame double inclined cable planes cable tower cable with stranded wires calcium silicate culated rise calling for tenders camber cantilever beam bridge 桥梁平面布置 桥上照明 桥位 桥位工程测量 平面图 纵断面图 桥址(桥渡) 桥址地形图 桥塔 断缝 施工图预算 埋置式桥台 地下暗河 麻袋围堰 混合式过水路面 临界坡度 斜拉桥 密索体系斜拉桥 单索面 连续梁式斜拉桥 连续刚极式斜拉桥 双斜索面 索塔 钢绞线索 硅酸盐水泥 计算矢高 招标 预拱度(反拱度) 悬臂梁桥 panel panel point partial erosion partially prestressed concrete particle diameter 节间 节点 局部冲刷 部分预应力混凝土 粒径

桥梁工程英语词汇

桥梁工程英语词汇

结构控制structural controlstructure control结构控制: structural control結構控制: structural control结构控制剂: constitution controller裂缝宽度容许值裂缝宽度容许值: allowable value of crack width装配式预制装配式预制: precast装配式预制的: precast-segmental装配式预制混凝土环: precast concrete segmental ring安装预应力安装预应力: prestressed最优化optimization最优化: OptimumTheory|optimization|ALARA 使最优化: optimized次最优化: suboptimization空心板梁空心板梁: hollow slab beam主梁截面主梁截面: girder section边、中跨径边、中跨径: side span &middle spin主梁girder主梁: girder|main beam|king post桥主梁: bridge girder 主梁翼: main spar单墩单墩: single pier单墩尾水管: single-pier draught tube 单墩肘形尾水管: one-pier elbow draught tube结构优化设计结构优化设计: optimal structure designing 扩结构优化设计: Optimal Struc ture Designing液压机结构优化设计软件包: HYSOP连续多跨多跨连续梁: continuous beam on many supports拼接板splice barsplice plate拼接板: splice bar|scab|splice plate 端头拼接板: end matched lumber销钉拼接板: pin splice裂缝crack crevice跨越to step acrossstep over跨越: stride leap|across|spanning跨越杆: cross-over pole|crossingpole 跨越点: crossing point|crossover point刚构桥rigid frame bridge刚构桥: rigid frame bridge形刚构桥: T-shaped rigid frame bridge 连续刚构桥: continuous rigid frame bridge刚度比stiffness ratioratio of rigidity刚度比: ratio of rigidity|stiffness ratio 动刚度比: dynamic stiffenss ratio刚度比劲度比: stiffnessratio等截面粱uniform beam等截面粱: uniform beam|uniform cross-section beam桥梁工程bridge constructionbridgework桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering桥梁工程师: Bridge SE铁路桥梁工程: railway bridge engineering悬索桥suspension bridge悬索桥: suspension bridge|su e io ridge 懸索橋: Suspension bridge|Puente colgante 加劲悬索桥: stiffenedsuspensionbridge预应力混凝土prestressed concrete预应力混凝土: prestressedconcrete|prestre edconcrete预应力混凝土梁: prestressed concrete beam 预应力混凝土管: prestressed concrete pipe预应力钢筋束预应力钢筋束: pre-stressingtendon|pre-stre ingtendon抛物线型钢丝束(预应力配钢筋结构用): parabolic cable最小配筋率minimum steel ratio轴向拉力axial tensionaxial tensile force轴向拉力: axial tension|axial te ion 轴向拉力, 轴向拉伸: axial tension轴向拉力轴向张力: axialtensileforce承台cushion cap承台: bearing platform|cushioncap|pile caps桩承台: pile cap|platformonpiles 低桩承台: low pile cap拱桥arch bridge拱桥: hump bridge|arch bridge|arched bridge拱橋: Arch bridge|Puente en arco|Pont en arc鸠拱桥: Khājū强度intensitystrength强度: intensity|Strength|Density 刚强度: stiffness|stiffne|westbank stiffness光强度: light intensity|intensity箍筋hooping箍筋: stirrup|reinforcementstirrup|hooping箍筋柱: tied column|hooped column 形箍筋: u stirrup u预应力元件预应力元件: prestressed element等效荷载equivalent load等效荷载: equivalent load等效荷载原理: principle of equivalent loads等效负载等效荷载等值负载: equivalentload模型matrix model mould pattern承载能力极限状态承载能力极限状态: ultimate limit states正常使用极限状态serviceability limit state正常使用极限状态: serviceability limit state正常使用极限状态验证: verification of serviceability limit states弹性elasticityspringinessspringgiveflexibility弹性: elasticity|Flexibility|stretch彈性: Elastic|Elasticidad|弾性弹性体: elastomer|elastic body|SPUA平截面假定plane cross-section assumption 平截面假定: plane cross-section assumption抗拉强度intensity of tension tensile strength安全系数safety factor标准值standard value标准值: standard value,|reference value 作用标准值: characteristic value of an action重力标准值: gravity standard设计值value of calculationdesign value设计值: design value|value|designed value 作用设计值: design value of an action荷载设计值: design value of a load可靠度confidence levelreliabilityfiduciary level可靠度: Reliability|degree of reliability 不可靠度: Unreliability高可靠度: High Reliability几何特征geometrical characteristic几何特征: geometrical characteristic 配位几何特征: coordinated geometric feature流域几何特征: basin geometric characteristics塑性plastic nature plasticity应力图stress diagram应力图: stress diagram|stress pattern 谷式应力图: Cremona's method机身应力图: fuselage stress diagram压应力crushing stress压应力: compressive stress|compression stress抗压应力: compressive stress|pressureload内压应力: internal pressure stress配筋率ratio of reinforcement reinforcement ratioreinforcement percentage配筋率: reinforcement ratio平均配筋率: balanced steel ratio纵向配筋率: longitudinal steel ratio有限元分析finite element analysis有限元分析: FEA|finite element analysis (FEA)|ABAQUS反有限元分析: inverse finite element analysis有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN有限元法finite element method有限元法: FInite Element|finite element method积有限元法: CVFEM线性有限元法: Linear Finite Element Method裂缝控制裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement检查,核对,抑制,控制,试验,裂缝,支票,账单,牌号,名牌: check应力集中stress concentration应力集中: stress concentration应力集中点: hard spot|focal point of stress应力集中器: stress concentrators主拉应力principal tensile stress主拉应力: principal tensile stress非线性nonlinearity非线性振动nonlinear oscillationsnonlinear vibration非线性振动: nonlinear vibration非线性振动理论: theory of non linear vibration非线性随机振动: Nonlinear random vibration弯矩flexural momentment of flexion (moment of flexure) bending momentflexural torque弯矩: bending moment|flexural moment|kN-m 弯矩图: bending moment diagram|moment curve双弯矩: bimoment弯矩中心center of momentsmoment center弯矩中心: center of moments|momentcenter弯矩分配法moment distribution momentdistribution弯矩分配法: hardy cross method|cross method弯矩图bending moment diagrammoment curvemoment diagram弯矩图: bending moment diagram|moment curve最终弯矩图: final bending moment diagram 最大弯矩图: maximum bending momentdiagram剪力shearing force剪力: shearing force|shear force|shear 剪力墙: shear wall|shearing wall|shear panel剪力钉: shear nails|SHEAR CONCRETE STUD弹性模量elasticity modulus young's modulus elastic modulus modulus of elasticity elastic ratio剪力图shear diagram剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams 绘制剪力和弯矩图的图解法: Graphical Method for Constructing Shear and Moment Diagrams剪力墙shear wall剪力墙: shear wall|shearing wall|shear panel抗剪力墙: shearwall剪力墙结构: shear wall structure轴力轴力: shaft force|axial force螺栓轴力测试仪: Bolt shaft force tester 轴向力: axial force|normal force|beam框架结构frame construction等参单元等参数单元等参元: isoparametricelement板单元板单元: plate unit托板单元: pallet unit骨板骨单元: lamella/lamellaeosteon梁(surname) beam of roof bridge桥梁bridge曲率curvature材料力学mechanics of materials结构力学structural mechanics结构力学: Structural Mechanics|theory of structures重结构力学: barodynamics船舶结构力学: Structual Mechamics for Ships弯曲刚度flexural rigiditybending rigidity弯曲刚度: bending stiffness|flexural rigidity截面弯曲刚度: flexural rigidity of section弯曲刚度,抗弯劲度: bending stiffness钢管混凝土结构encased structures钢管混凝土结构: encased structures极限荷载ultimate load极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design设计极限荷载: designlimitloadDLL|design ultimate load极限荷载设计limit load designultimate load analysisultimate load design极限荷载设计: limit load design|ultimateload design设计极限荷载: designlimitloadDLL|design ultimate load板壳力学mechanics of board shell板壳力学: Plate Mechanics板壳非线性力学: Nonlinear Mechanics of Plate and Shell本构模型本构模型: constitutive model体积本构模型: bulk constitutive equation 本构模型屈服面: yield surface主钢筋main reinforcing steelmain reinforcement主钢筋: main reinforcement|Main Reinforcing Steel钢筋混凝土的主钢筋: mainbar悬臂梁socle beam悬臂梁: cantileverbeam|cantilever|outrigger悬臂梁长: length of cantilever 双悬臂梁: TDCB悬链线catenary悬链线: Catenary,|catenary wire|chainette伪悬链线: pseudocatenary 悬链线长: catenary length加劲肋ribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener短加劲肋: short stiffener支承加劲肋: bearing stiffener技术标准technology standard水文水文: Hydrology水文学: hydrology|hydroaraphy|すいもんがく水文图: hydrograph|hydrological maps招标invite public bidding投标(v) submit a bid bid for连续梁through beam连续梁: continuous beam|through beam 多跨连续梁: continuous beam on many supports悬臂连续梁: gerber beam加劲梁stiff girder加劲梁: stiffening girder|buttress brace 加劲梁节点: stiff girder connection支撑刚性梁,加劲梁,横撑: buttress brace水文学hydrology水文学: hydrology|hydroaraphy|すいもんがく水文學: Hydrologie|水文学|??? ?????? 古水文学: paleohydrology桥梁抗震桥梁抗震加固: bridge aseismatic strengthening抗风wind resistance抗风: Withstand Wind|Wtstan Wn|wind resistance抗风锚: weather anchor抗风性: wind resistance基础的basal桥梁控制测量bridge construction control survey桥梁控制测量: bridge construction controlsurvey桥梁施工桥梁施工控制综合程序系统: FWD桥梁最佳施工指南: Bridge Best Practice Guidelines桥梁工程施工技术咨询: Bridge Construction Engineering Service总体设计overall designintegrated design总体设计: Global|overall design|general arrangement总体设计概念: totaldesignconcept工厂总体设计图: general layout scheme初步设计predesign preliminary plan技术设计technical design技术设计: technical design|technical project技术设计员: TechnicalDesigner|technician技术设计图: technical drawing施工图设计construction documents design施工图设计: construction documents design 施工图设计阶段: construction documents design phase基本建设项目施工图设计: design of working drawing of a capital construction project桥台abutment bridge abutment基础foundation basebasis结构形式structural style结构形式: Type of construction|form of structure表结构形式: list structure form屋顶结构形式: roof form地震earthquake地震活动earthquake activityseismic activityseismic motionseismicity地震活动: Seismic activity|seismic motion地震活动性: seismicity|seismic 地震活动图: seismicity map支撑体系支撑体系: bracing system|support system 物流企业安全平台支撑体系: SSOSP公路桥涵公路施工手册-桥涵: Optimization of Road Traffic Organization-Abstract引道approach roadramp wayapproach引道: approach|approach road引道坡: approach ramp|a roachramp 引道版: Approach slab装配式装配式桥: fabricated bridge|precast bridge装配式房屋: Prefabricated buildings 装配式钢体: fabricated steel body耐久性wear耐久性: durability|permanence|endurance 不耐久性: fugitiveness耐久性试验: endurance test|lifetest|durability test持久状况持久状况: persistent situation 短暂状况短暂状况: transient situation 偶然状况偶然状况: accidental situation永久作用永久作用: permanent action永久作用标准值: characteristic value of permanent action可变作用可变作用: variable action可变作用标准值: characteristic value of variable action可变光阑作用: iris action偶然作用偶然作用: accidental action偶然同化(作用): accidental assimilation 作用效应偶然组合: accidental combination for action effects作用代表值作用代表值: representative value of an action作用标准值作用标准值: characteristic value of an action地震作用标准值: characteristic value ofearthquake action可变作用标准值: characteristic value ofvariable action作用频遇值作用频遇值 Frequent value of an action安全等级safe class安全等级: safety class|Security Level|safeclass生物安全等级: Biosafety Level 生物安全等級: Biosafety Level作用actionactivity actionsactseffectto play a role设计基准期design reference period设计基准期: design reference period作用准永久值作用准永久值: quasi-permanentvalueofanaction作用效应作用效应: effects of actions|effect of an action互作用效应: interaction effect质量作用效应: mass action effect作用效应设计值作用效应设计值 Design value of an action effect分项系数分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合作用效应组合: combination for action effects作用效应基本组合: fundamental combination for action effects作用效应偶然组合: accidental combination for action effects结构重要性系数结构重要性系数Coefficient for importance of a structure桥涵桥涵跟桥梁比较类似,主要区别在于:单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁公路等级公路等级: highway classification标准:公路等级代码: Code for highway classification标准:公路路面等级与面层类型代码: Code for classification and type of highway pavement顺流fair current设计洪水频率设计洪水频率: designed flood frequency水力water powerwater conservancyirrigation works水力: hydraulic power|water power|water stress水力学: Hydraulics|hydromechanics|fluid mechanics水力的: hydraulic|hydrodynamic|hyd河槽river channel河槽: stream channel|river channel|gutter 古河槽: old channel河槽线: channel axis河岸riverside strand河岸: bank|riverside|river bank 河岸林: riparian forest河岸权: riparian right河岸侵蚀stream bank erosion河岸侵蚀: bank erosion|stream bank erosion河岸侵蚀河岸侵食: bank erosion 河岸侵蚀, 堤岸冲刷: bank erosion高架桥桥墩高架桥桥墩: viaduct pier桥梁净空高潮时桥梁净空高度: bridge clearance行车道lane行车道: carriageway|traffic lane|Through Lane快行车道: fast lane西行车道: westbound carriageway一级公路A roadarterial roadarterial highway一级公路: A road arterial road arterial highway一级公路网: primaryhighwaysystem二级公路b roadsecondary road二级公路: B road, secondary road涵洞culvert涵洞: culvert梁涵洞: Beam Culverts 木涵洞: timber culvert河床riverbedrunway河床: river bed|bed|stream bed冰河床: glacier bed型河床: oxbow|horseshoe bend|meander loop河滩flood plainriver beach河滩: river shoal|beach|river flat 河滩地: flood land|overflow land 河滩区: riffle area高级公路high-type highway高级公路: high-typehighway高架桥trestleviaduct高架桥: viaduct|overhead viaduct高架橋: Viadukt|Viaducto|高架橋高架桥面: elevated deck洪水流量volume of floodflood dischargeflooddischarge洪水流量: flood discharge|flood flow|peak discharge洪水流量预报: flooddischargeforecast平均年洪水流量: average annual flood设计速度design speed设计速度: design speed|designedspeed|design rate设计速度,构造速度: desin speed|desin speed <haha最大阵风强度的设计速度: VB Design Speed for Maximum Gust Intension跨度span紧急停车emergency shutdown (cut-off)emergency cut-off紧急停车: abort|panic stop|emergency stop 紧急停车带: lay-by|emergency parkingstrip紧急停车阀: emergency stop valve减速gear downretardment speed-down deceleration slowdown车道traffic lane路缘带side tripmarginal stripmargin verge路缘带: marginal strip|side strip|margin verge路肩shoulder of earth body路肩: shoulder|verge|shoulder of road 硬路肩: hard shoulder|hardened verge 软路肩: Soft Shoulder最小值minimum value最小值: minimum|Min|least value 求最小值: minimization找出最小值: min最大值max.最大值原理principle of the maximummaximum principlemaximal principle最大值原理: maximum principle,|maximal principle离散最大值原理: discrete maximum principle极大值原理,最大值原理: maximum principle车道宽度车道宽度: lane-width自行车道cycle-track自行车道: bicycle path|cycle path|cycle track旗津环岛海景观光自行车道: Cijin Oceanview Bike Path自行车道专供自行车行驶的车道。

桥梁专业英语

桥梁专业英语

桥梁专业英语A2C01: Committee on General StructuresChairman: Donald J. FlemmingBridge EngineeringR AMANKUTTY K ANNANKUTTY , City of Minneapolis Department of Public WorksD ONALD J. FLEMMING , Minnesota Department of TransportationThe scope of the Transportation Research Board’s (TRBs) Committee on GeneralStructures includes factors affecting the physical behavior, service life, economy,appearance, and safety of bridges and structures for transportation systems, and accountingfor these factors and their interactions in design procedures and criteria. During the 20thcentury the United States has essentially created the safest, most efficient, and mosteffective highway and intermodal transportation network in the world. The challenge for thenew millennium will be to further enhance this transportation network. In this paper thestatus of bridge engineering at the end of the 20th century in the area of generaltransportation structures is summarized. The focus is on bridge structure types, designaspects, new materials, aesthetic concerns, and key policy issues. An attempt is made toforecast the status of bridge engineering 20 to 30 years into the next millennium; the paperis written as though these forecasts will become a reality.BRIDGE STRUCTURE TYPESStructure types have been evolving throughout history. The evolution will continue into thefuture, perhaps at an accelerated rate.The driving forces behind continued advances in bridge engineering are trafficcongestion and costs. In the future, just as now, the public will expect few traffic delays, ifany. They will want transportation costs to be as low as possible. Computer technology willenhance traffic management so well that the public will become accustomed to flowingtraffic and more aware of congestionlocations. Disruptions from construction will be moreobvious and even less tolerated. Given these conditions, structural types will be selectedprimarily on the basis of speed of construction to minimize traffic delays. Low maintenancewill be a must, and the ability to widen a structure easily and quickly will be a priority inselecting a structure type.Safety and aesthetics will continue to play major roles in the selection of structure types.Keeping substructures out of the roadway clear zone will dictate longer span lengths andwill keep the engineering community strivingfor optimal spans. Input from the public willgrow to such a level that interactive design programs will become a necessity. Computerprograms that automatically prepare detailed plans incorporating changes at the touch of abutton will allow the public to modify or add aesthetic details right up to the point thatconstruction begins.Transportation in the New Millennium2Long SpanPosttensioning with high-strength materials will allow traditional concrete and steel bridges,especially box shapes, to reach continually longer spans that challenge steel truss bridgesand even the shorter-span cable-stayed bridges. Cable-stayed bridges and suspensionbridges will most likely continue to dominate the long-span bridge category. Long-spanbridges will continue to be the most dramatic, capturing the public’s awareness with highlyvisible and innovative structures. Shown in Figure 1 are two impressive structures, theSunshine Skyway Bridge and the Houston Ship Channel Bridge, which is the longestconcrete box to date.Medium SpanMedium spans include spans from 50 to 200 feet and traditionally have been prestressedconcrete girders and steel girders. In the future, new materials with high-performancecharacteristics will be developed, and the strengths of concrete and steel materials will beenhanced. Stronger materials and innovative design concepts will come together to yieldmuch longer spans. The result will be simpler structures with fewer substructures and areduction in overall cost. Space frame structures using steel and concrete in combinationmay enter this market because of ease of construction andrelatively low cost.Preengineered, “out-of-the-box,” prefabricated component bridges will also become morecommon and will begin to challenge individualized designs.Innovations will cause greaterchange to the medium-span range than to the other two ranges. An innovative steel bridgethat clear-spans an entire freeway is shown in Figure 2. Bridges that clear-span roadwayswill become popular in the future.Short SpanConcrete slabs, timber slabs, prestressed concrete shapes, and rolledsteel shapes currentlyshare the market for spans up to 50 feet. In the future, these types will be challenged bylong-span culverts and preengineered, out-of-the-box, prefabricated component bridges.Shown in Figure 3 is a typical long-span culvert (44-foot span) that is starting to challengemore typical short-span structures.Designing bridges according to a standard specification became the norm in the 20thcentury. This will continue in the next century. However, the process of designing will bemuch different in the future because of changes in specifications, loads, testing, andcomputerization.SpecificationsThe specifications used for structural bridge design at the end of the20th century are splitbetween the American Association of State Highway and Transportation Officials(AASHTO) load factor design (LFD) specification and the load and resistance factor design(LRFD) specification, with LRFD recently being designated as the standard for the future.LFD will continue to be used for some time, but its usage will decline as LRFD becomesmore widely accepted. Eventually LFD will be discontinued and LRFD will be fullyadopted, which will prove to be the right course of action. The AASHTO LRFDspecification will continue to evolve with new research, new design ideas, and newGeneral Structures3materials. The LRFD method will prove to be effective and will be easily adapted to allconstruction materials including steel, concrete, timber, and the new high-strength plasticpolymers.Acceptance of the LRFD method by the design community will not be easy because ofconcerns in two areas: substructure design and computer software.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A2C01: Committee on General StructuresChairman: Donald J. FlemmingBridge EngineeringR AMANKUTTY K ANNANKUTTY, City of Minneapolis Department of Public WorksD ONALD J. F LEMMING, Minnesota Department of TransportationThe scope of the Transportation Research Board’s (TRBs) Committee on General Structures includes factors affecting the physical behavior, service life, economy, appearance, and safety of bridges and structures for transportation systems, and accounting for these factors and their interactions in design procedures and criteria. During the 20th century the United States has essentially created the safest, most efficient, and most effective highway and intermodal transportation network in the world. The challenge for the new millennium will be to further enhance this transportation network. In this paper the status of bridge engineering at the end of the 20th century in the area of general transportation structures is summarized. The focus is on bridge structure types, design aspects, new materials, aesthetic concerns, and key policy issues. An attempt is made to forecast the status of bridge engineering 20 to 30 years into the next millennium; the paper is written as though these forecasts will become a reality.BRIDGE STRUCTURE TYPESStructure types have been evolving throughout history. The evolution will continue into the future, perhaps at an accelerated rate.The driving forces behind continued advances in bridge engineering are traffic congestion and costs. In the future, just as now, the public will expect few traffic delays, if any. They will want transportation costs to be as low as possible. Computer technology will enhance traffic management so well that the public will become accustomed to flowing traffic and more aware of congestion locations. Disruptions from construction will be more obvious and even less tolerated. Given these conditions, structural types will be selected primarily on the basis of speed of construction to minimize traffic delays. Low maintenance will be a must, and the ability to widen a structure easily and quickly will be a priority in selecting a structure type.Safety and aesthetics will continue to play major roles in the selection of structure types. Keeping substructures out of the roadway clear zone will dictate longer span lengths and will keep the engineering community striving for optimal spans. Input from the public will grow to such a level that interactive design programs will become a necessity. Computer programs that automatically prepare detailed plans incorporating changes at the touch of a button will allow the public to modify or add aesthetic details right up to the point that construction begins.Transportation in the New Millennium2 Long SpanPosttensioning with high-strength materials will allow traditional concrete and steel bridges, especially box shapes, to reach continually longer spans that challenge steel truss bridges and even the shorter-span cable-stayed bridges. Cable-stayed bridges and suspension bridges will most likely continue to dominate the long-span bridge category. Long-span bridges will continue to be the most dramatic, capturing the public’s awareness with highly visible and innovative structures. Shown in Figure 1 are two impressive structures, the Sunshine Skyway Bridge and the Houston Ship Channel Bridge, which is the longest concrete box to date.Medium SpanMedium spans include spans from 50 to 200 feet and traditionally have been prestressed concrete girders and steel girders. In the future, new materials with high-performance characteristics will be developed, and the strengths of concrete and steel materials will be enhanced. Stronger materials and innovative design concepts will come together to yield much longer spans. The result will be simpler structures with fewer substructures and a reduction in overall cost. Space frame structures using steel and concrete in combination may enter this market because of ease of construction and relatively low cost. Preengineered, “out-of-the-box,” prefabricated component bridges will also become more common and will begin to challenge individualized designs. Innovations will cause greater change to the medium-span range than to the other two ranges. An innovative steel bridge that clear-spans an entire freeway is shown in Figure 2. Bridges that clear-span roadways will become popular in the future.Short SpanConcrete slabs, timber slabs, prestressed concrete shapes, and rolled steel shapes currently share the market for spans up to 50 feet. In the future, these types will be challenged by long-span culverts and preengineered, out-of-the-box, prefabricated component bridges. Shown in Figure 3 is a typical long-span culvert (44-foot span) that is starting to challenge more typical short-span structures.DESIGNDesigning bridges according to a standard specification became the norm in the 20th century. This will continue in the next century. However, the process of designing will be much different in the future because of changes in specifications, loads, testing, and computerization.SpecificationsThe specifications used for structural bridge design at the end of the 20th century are split between the American Association of State Highway and Transportation Officials (AASHTO) load factor design (LFD) specification and the load and resistance factor design (LRFD) specification, with LRFD recently being designated as the standard for the future. LFD will continue to be used for some time, but its usage will decline as LRFD becomes more widely accepted. Eventually LFD will be discontinued and LRFD will be fully adopted, which will prove to be the right course of action. The AASHTO LRFD specification will continue to evolve with new research, new design ideas, and newGeneral Structures3 materials. The LRFD method will prove to be effective and will be easily adapted to all construction materials including steel, concrete, timber, and the new high-strength plastic polymers.Acceptance of the LRFD method by the design community will not be easy because of concerns in two areas: substructure design and computer software. One goal in establishing the LRFD specification was to provide a more uniform level of reliability in every component of the structure, from substructure to superstructure. The design of substructures using the LRFD philosophy will remain in an immature state for several years because of a lack of accepted methods for analyzing and designing foundations. Only after more research and specification enhancement will the situation for substructures change. Widespread usage of LRFD will be somewhat slowed by the lack of computer software. The detailed nature of LRFD code requires that designers develop spreadsheets and other computer worksheets to complete computations efficiently. Introduction of programs such as the AASHTO OPIS computer program will help, but the full benefit of the new design code will not be realized for several years.LoadsAt the heart of the load specification is the design vehicle. The old HS-20 truck, which has been in use since 1944, is being questioned as a vehicle relevant to traffic needs of the 21st century. Early in the century, two specific questions will arise over the continued use of this vehicle. The first question is whether a different vehicle would better match the weigh-in-motion (WIM) data coming from the monitoring systems installed in roadways. Though the data are of questionable accuracy, they indicate definite trends—that truck lengths, weights, and traffic counts have increased dramatically since the arrival of the HS-20 truck.The second question is whether another vehicle would simplify computations. Various factors and loading conditions were applied to the HS-20 truck to make it fit the LRFD specification. In consideration of these two questions, a new “millennium truck” live-load configuration will be proposed. After extensive data collection, the testing and monitoring will begin.Field TestingTo help determine an appropriate design vehicle, a more comprehensive system of WIM sites will be installed. Because of advances in accuracy and durability of the equipment, dynamic load data will begin to agree with static load data. An accurate picture will then develop of actual truck axle loads and axle spacings on highway bridges. Emerging technologies such as quartz sensors and fiber-optic enhancements, along with piezo cable, will make more accurate data collection possible. Smart bridges will be the order of the new millennium because of a dramatic increase in the number of instrumented bridges. Actual stresses will be measured and tracked in much the same way as the National Weather Service tracks daily temperatures. The WIM information will be correlated with the information from the instrumented bridges. Analysis of the massive amounts of data will be possible through the use of high-capacity computers. The LRFD design load factors will be updated on the basis of the new data.Steel structures will especially benefit from instrumentation and field testing. In response to fatigue and associated problems, steel bridges will be instrumented to determine failure mechanisms, especially crack initiation at low stress ranges with large numbers ofTransportation in the New Millennium4 loading cycles. Emerging technologies will lead to the discovery of relationships that will bring about a refinement of design methods. Cost-effective retrofit applications for fatigue-prone details will lead to a change in bridge management planning for bridges with fatigue problems. As this knowledge increases, steel bridges will be replaced mostly for functional rather than for structural reasons.AnalysisComputer programs capable of analyzing large amounts of data will be developed. Key design parameters such as distribution factors, multiple presence factors, and uniform loads will be verified. Trends in loadings and the way structures respond to those loadings will be made easier to predict. This may lead to a simplification of design factors and equations, which will allow a drastic improvement in the speed of completing design computations. The design of bridges in the 21st century will be much easier and more accurate than at the end of the 20th century.Design ToolsMore and more states will cooperate in the use of standardized details, computer programs, and drafting details, making designs and plans more similar on a regional basis. Such standardization will tend to reduce construction costs for contractors and suppliers. Speed and accuracy will be increased.After many years of working separately, computer-aided engineering and computer-aided drafting will be successfully integrated. Designs and plans will be iterative and interactive, and plan preparation will be extremely cost-effective. Design engineers will be alerted by automatic specification checkers and code verifiers, enabling them to minimize design errors. More important, optimization of a design will be a keystroke away. Artificial intelligence will supplement institutional memories and expand designers’ options for obtaining real-time expert advice. The need to develop expert systems to check the accuracy and reliability of design software will be a challenge to bridge design professionals. Of course, associated with this challenge is the ever-present debate on professional liability. AutomationThe Internet and e-mail will be standards for communication between designers, fabricators, and contractors. It will become more common for designers and drafters in different states to combine efforts. Correspondence will be handled electronically, eliminating the time necessary to print and mail correspondence back and forth. Contractors and fabricators will view the final plans electronically.MaterialsMaterials have always played a key role in the evolution of bridge structures. Enhancements of the traditional materials of concrete, steel, and timber will continue, but the most revolutionary changes will occur in the areas of fiber-reinforced plastics (FRPs), high-strength and high-performance steel, high-performance concrete (HPC), and the blending of FRP and timber.General Structures5 FRPsToday, FRPs are in their infancy as bridge construction materials. However, further experimentation with various combinations of FRP materials will result in innovative and long-lasting solutions to simple and complex bridge construction issues. Experimental FRP bridge projects have shown that this material has inherent problems in deflection, material ductility, creep, reactivity with concrete and steel, and performance under long-term exposure to ultraviolet light and other environmental factors such as moisture, freeze-thaw, humidity, and external chemical attack. To help resolve these issues, material testing standards and design methodology will be developed to fit FRP material properties. A comprehensive research effort at the national level will be undertaken to make FRP a dependable, low-maintenance bridge material capable of delivering high performance over the life of a bridge structure.Collaboration of practicing designers, construction engineers, and bridge owners will make FRP a feasible and competitive alternative to conventional bridge construction materials. Universities will most likely expand their curricula to include FRP and other composite materials in their structural and material courses to prepare future bridge professionals to accept and fully utilize FRP.High-Strength and High-Performance SteelUnlike FRP, high-strength steel materials will be more readily accepted by bridge engineers. Initial acceptance will be gained because the new steel materials make it possible to reduce structural dead loads. Wider acceptance of high-strength steels will develop because of their enhanced material properties. Gains made in improving material toughness and weldability of high-strength steels will extend to all grades of steel. Design specifications will continue to be updated to deal with material performance issues such as welding, toughness, fabrication, and constructibility. The high-performance steel materials of today will become the standard for future construction.Advances in construction and experimentation with bridge types, such as space frames and innovative composite structures, will lead to further optimization of steel materials. FRP combined with high-strength steel has high potential for future bridge structures.High-performance reinforcing bars will become common in the new millennium. Composite bars with a steel core and a cladding of stainless steel or other noncorroding material will gain wide acceptance for use in concrete structures. Coupled with the use of HPC in bridge decks, the average life of such structures may approach twice the life span of similar structures built previously. Future national policies requiring life-cycle cost analysis will provide a large incentive to further develop and implement the use of innovative materials in bridge decks.HPCHPC is well on its way to becoming a conventional bridge construction material as a result of Strategic Highway Research Program research and Federal Highway Administration implementation efforts. The debate as to whether strength or permeability is the primary indicator of long-term durability of HPC will continue among practicing engineers. However, past case studies clearly demonstrate the need for permeability tests as an indicator of long-term concrete durability. The future is bright for HPC because it has good durability and strength characteristics, making it a versatile material. Currently, assessmentTransportation in the New Millennium6 of long-term durability is an after-the-fact determination, resulting in quality control/quality assurance problems, which hamper the use of performance-based specifications. Scientists and engineers will eventually develop a device that instantaneously predicts the long-term durability properties of hardened concrete by testing the concrete in an unhardened state.TimberNew processes of reinforcing wood will continue to be developed, including the combination of glued-laminated timber and FRP composites. The concept is similar to that of reinforced concrete; wood resists the compression load, while FRP composite resists tensile load. The concept will be commonly used in future timber structures. Advantages of this technology are in areas where bending strength controls the design (as with lower grades of wood). Reinforcing with FRP greatly increases the tensile capacity of the beams, which will allow lower grades of wood to be used economically in many structures. The new composite material will also be used where minimum clearance is a problem.Breakthroughs in the area of wood preservatives will continue. They will result in the development and refinement of new alternative treatment processes and procedures that will be environmentally sound with respect to application, use, and disposal of treated timber. Other MaterialsA significant future challenge for the construction industry will be the incorporation of recycled materials (including plastics), by-products, and waste materials into conventional and HPC construction materials. Future environmental regulations and lack of space to store waste products will bring this issue to a head. Significant time and financial resources will be spent in developing recycled materials into products suitable for use as construction materials.AESTHETIC CONCERNSPublic InvolvementPublic participation in the design process has increased in recent years because the public wants better aesthetic treatment of bridges, especially bridges considered neighborhood landmarks. Public participation will continue in the future and will likely increase. To facilitate the process, engineers will display plans using three-dimensional visualization technology. The public will be able to view and comment on the plans at hearings or on the Internet.Interactive DesignIncorporating public comment into the plans will require that last-minute changes be easily accommodated into the design and drafting process. Computer design and drafting programs that automatically adjust the designs and generate plans will allow for quick modifications. The latest engineering analytical skills will be needed to accommodate this technology. The emphasis on flexible design will undoubtedly require engineers to increase their aesthetic design skills and overall people skills.General Structures7 Aesthetic ProcessAesthetic treatment of structures will become so common that only the most remote sites will be unaffected. Nearly all bridges will have a detailed aesthetic treatment, or at least an aesthetic review. Extra planning time and design time will become an accepted part of the cost of a structure. The level of public attention will determine the extent of the aesthetic design process and the resources devoted to aesthetic considerations. Three levels of bridge aesthetic consideration and processes will tend to emerge: the highest level for landmark bridges with major cultural or aesthetic significance, a middle level for transportation corridors and urban structures, and a lower level for replacement bridges in rural and industrial settings.POLICY ISSUESSeveral issues of a political nature will need to be addressed by the engineering community during the next decade. They need to be studied and discussed so that a consensus among engineers is reached. Only in this way can the voice of our profession be heard by the public, who will ultimately decide policy.Design-BuildThe design-build method for project delivery will increase. Design-build specifications will become a major factor in acceptance and overall performance of the design-build method. The specifications need to require the contractor to consider both the life-cycle costs and the initial construction costs in the selection of materials and structure type. When the engineering community and the legal community work together to accomplish this, the bridge owners will become more comfortable with the design-build method and will begin to use it even more frequently. Successful design-build projects with improved speed of construction and reduced construction problems will continue to make this project delivery option attractive to owners.Life-Cycle CostsDuring the 20th century, computation of accurate life-cycle costs was difficult because of a limited amount of historical data. But in the 21st century, data collection and analysis will improve because of significant improvements in bridge management systems. The sharing of information among states will lead to a much larger database. Because of better data and better ways of handling data, life-cycle costs will be much more accurate. Life-cycle costs will become the basis for selecting structure types and aesthetic treatments.Truck Size and WeightWhether to allow larger and heavier trucks onto the roadways is a political issue that the engineering community will take very seriously. To predict as accurately as possible the consequences of such an action, extensive studies will be done to determine the relationship between the rate of deterioration and increased loadings. The resulting damage evaluation surveys, coupled with data from bridge management systems, will become the basis of a national debate on the financial effects on the transportation infrastructure.Transportation in the New Millennium8 Intermodal Design SpecificationsThe increase in funding for mass transit and the resulting proposals for light rail transit systems will bring to light the need for uniformity between the AASHTO and American Railway Engineering Association (AREA) bridge design specifications. Variations between the two codes and the lack of a definitive code for light rail transit lead to a great deal of confusion. Deciding which code applies in which circumstance will cause delays and add to the cost of design. The engineering community will sponsor studies leading to a blending of specifications and a more uniform code for the design and construction of intermodal structures.Public InvolvementThe public’s desire to be involved in design will remain strong, especially in the area of aesthetics. At times engineers will be criticized for catering too much to aesthetic interests at the expense of completing the projects on a timely basis and at normal costs. Of course, at times they will be criticized for restricting input and being insensitive to the need for aesthetically pleasing structures. Obviously, interdisciplinary teams will be developed to better facilitate the process and resolve the issues. The engineering community will learn how to better incorporate public involvement into the overall design process. CONCLUSIONSDuring the past 100 years, bridge engineers have participated in major projects that have significantly affected society. In 1900, people and freight were transported primarily by horseback and railroad. Today, the public travels by automobile and airline, and freight is carried by truck and railroad. These are sweeping changes in transportation, and bridge engineers have played a major role in them. Will the 21st century have equally great changes? Whatever the future holds, it will be an exciting and challenging time for engineers. How well structural engineers address the needs and issues discussed in this paper will determine to a great extent how much society will rely on our expertise. People demand and have a right to expect safe and cost-effective structures that meet their transportation needs.General Structures9FIGURE 1 Sunshine Skyway Bridge (top) and Houston Ship Channel Bridge (bottom).Transportation in the New Millennium10FIGURE 2 Steel bridge clear-spanning an entire freeway.FIGURE 3 Typical long-span culvert (44-foot span).。

相关文档
最新文档