单级圆柱齿轮减速器设计.

合集下载

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书设计说明书:单级圆柱齿轮减速器引言:圆柱齿轮减速器作为一种常见的传动装置,广泛应用于机械设备中的减速传动系统中。

本设计说明书旨在详细介绍单级圆柱齿轮减速器的设计原理、结构特点、性能参数以及选型要点,为读者提供有关该减速器的全面指导和参考。

一、设计原理及结构特点:单级圆柱齿轮减速器是由一个输入轴和一个输出轴组成。

其中输入轴与电机相连,输出轴与被驱动机械设备相连。

通过齿轮传递动力,实现减速效果。

该减速器结构简单,耐久性强,承载能力较大,传动效率较高,对于大功率传动系统非常适用。

二、性能参数:1. 传动比:传动比是指减速器输入轴转速与输出轴转速之间的比值。

在设计中,通过合理选择齿轮模数、齿数等参数来确定传动比。

传动比的选择直接影响到输出扭矩和转速,需要根据实际应用需求进行优化设计。

2. 承载能力:减速器的承载能力是指其可以承受的最大轴向和径向力矩。

在设计中,需要考虑被驱动机械设备的扭矩要求,并确保减速器可以承受该扭矩而不损坏。

3. 效率:减速器的效率是指输入功率与输出功率之间的比值。

高效率的减速器能够最大程度地将电机输入的功率转化为机械设备需要的输出功率,减少能量损失。

三、选型要点:在选型过程中,需要综合考虑以下几个要点,以确保减速器的使用效果和寿命:1. 转速要求:根据被驱动机械设备的转速要求,选择合适的传动比,使得输出轴转速满足要求。

2. 扭矩要求:根据被驱动机械设备的扭矩要求,选择合适的减速器承载能力,保证减速器不会因为超负荷工作而损坏。

3. 空间限制:考虑被安装环境的空间限制,选择适当大小的减速器尺寸,以便于安装和维护。

4. 质量和可靠性:选择优质的材料和制造工艺,确保减速器的质量和可靠性,以减少故障概率和维修次数。

结论:单级圆柱齿轮减速器是一种可靠、高效的传动装置,广泛应用于各种机械设备中的减速传动系统。

通过本设计说明书的介绍,读者对单级圆柱齿轮减速器的设计原理、结构特点、性能参数以及选型要点有了更全面的了解,并可以根据实际需求进行合理的设计和选型,以满足各类机械设备的传动需求。

单级圆柱齿轮减速器课程设计说明书

单级圆柱齿轮减速器课程设计说明书

单级圆柱齿轮减速器课程设计说明书单级圆柱齿轮减速器课程设计说明书1.引言1.1 编写目的本文档旨在提供关于单级圆柱齿轮减速器的课程设计说明,深入介绍该减速器的结构、工作原理、制造要求和使用注意事项,为课程设计的开展提供参考和指导。

1.2 背景单级圆柱齿轮减速器是一种常用的传动装置,广泛应用于各种机械设备中,具有结构简单、传动效率高等优点。

本课程设计的目标是通过深入研究单级圆柱齿轮减速器实现对其工作原理的理解和对其设计参数的分析。

2.减速器概述2.1 结构组成单级圆柱齿轮减速器主要由输入轴、输入齿轮、输出齿轮和输出轴组成。

输入轴与输入齿轮相连,输出齿轮与输出轴相连。

2.2 工作原理当输入轴转动时,通过输入齿轮的旋转将动力传递到输出齿轮上,从而将输入轴的高速运动转变为输出轴的低速运动。

3.设计要求3.1 传动比计算根据实际应用需求确定所需的传动比,结合输入轴的转速和输出轴的转速计算减速器的传动比。

3.2 齿轮尺寸设计根据所需的传动比和减速器的工作负载,设计合适的齿轮模数、齿数、齿形等参数。

3.3 轴承选择根据输入轴和输出轴的负载以及转速要求,选择适当的轴承以保证减速器的稳定运行。

4.使用注意事项4.1 安装与调试减速器安装前应检查各部件是否完好无损,安装过程中要注意对各部件进行正确的组装和配合,调试时应确保齿轮的啮合状态和轴线的对中度。

4.2 运行与维护在正常运行期间,应监测减速器的运行状态,定期检查润滑油的情况,及时更换和补充润滑油。

5.附件本文档涉及的附件包括:齿轮图、尺寸图、工程计算表格等。

6.法律名词及注释6.1 法律名词1:根据《机械传动设计规范》,减速器是一种通过齿轮和其他传动装置进行能量传递和转换的机械装置。

6.2 法律名词2:传动比是指输入轴转速与输出轴转速之间的比值,通常用N表示。

6.3 注释1:齿轮模数是一个用来描述齿轮尺寸的参数,是每毫米齿宽上的齿数。

6.4 注释2:齿形是用来描述齿轮对齿轮啮合的牙形形状,决定齿轮的传动效率和噪音水平。

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书

设计
项目
计算公式及说明主要结果
1.设计任务
(1)设计带式传送机的传动系统,采用单级圆柱齿轮减速器和开式圆柱齿轮传动。

(2)原始数据
输送带的有效拉力 F=4000N
输送带的工作转速 V=s(允许误差 5%)
输送带滚筒的直径 d=380mm
减速器的设计寿命为5年
(3)工作条件
两班工作制,空载起动,载荷平稳,常温下连续单向运转,工作环境多尘;三相交流电源,电压为380V/220V。

2.传动方案的拟定
带式输送机传动系统方案如下所示:
带式输送机由电动机驱动。

电动机1通过联轴器2将动
力传入减速器3,再经联轴器4及开式齿轮5将动力传至输送
机滚筒6,带动输送带7工作。

传动系统中采用单级圆柱齿轮
减速器,其结构简单,齿轮相对于轴位置对称,为了传动的
平稳及效率采用斜齿圆柱齿轮传动,开式则用圆柱直齿传动。

传动系统方
案图见附图(一)
参考文献
[1] 诸文俊主编,机械原理与设计,机械工业出版社,2001
[2] 任金泉主编,机械设计课程设计,西安交通大学出版社,2002
[]3朱文俊钟发祥主编,机械原理及机械设计,西安交通大学城市学院,2009
马小龙
2009年6月30日。

单级单级圆柱齿轮减速器

单级单级圆柱齿轮减速器

单位代码学号12341801444分类号密级毕业设计(论文)(单级圆柱齿轮减速器)学习中心名称泰州专业名称机械工程及自动化学生姓名钱伟锋指导教师2014年 3 月 1 日摘要:减速器的结构随其类型和要求不同而异。

单级圆柱齿轮减速器按其轴线在空间相对位置的不同分为:卧式减速器和立式减速器。

前者两轴线平面与水平面平行,如图1-2-1a所示。

后者两轴线平面与水平面垂直,如图1-2-1b所示。

一般使用较多的是卧式减速器,故以卧式减速器作为主要介绍对象。

单级圆柱齿轮减速器可以采用直齿、斜齿或人字齿圆柱齿轮。

一.主要特性由于减速器已成为一种通用的传动部件,因此,圆柱齿轮减速器多数已经标准化,ZD (JB1130-70)为单级圆柱齿轮减速器的标准型号。

其主要参数均已标准化和规格化。

单级圆柱齿轮减速器的主要性能参数为:传递功率P(标准ZD型减速器P=1~2000KW)传动比i为避免减速器的外廓尺寸过大,一般i〈6,其最大传动比imax=8~10,高速轴转速n1,中心距a(标准ZD型减速器a=100~700mm )工作类型及装配型式机械零件课程设计,可以根据任务书的要求参考标准系列产品进行设计,也可自行设计非标准的减速器。

二.组成图1-2-2和图1-2-3所示分别为单级直齿圆柱齿轮减速器的轴测投影图和结构图。

减速器一般由箱体、齿轮、轴、轴承和附件组成。

箱体由箱盖与箱座组成。

箱体是安置齿轮、轴及轴承等零件的机座,并存放润滑油起到润滑和密封箱体内零件的作用。

箱体常采用剖分式结构(剖分面通过轴的中心线),这样,轴及轴上的零件可预先在箱体外组装好再装入箱体,拆卸方便。

箱盖与箱座通过一组螺栓联接,并通过两个定位销钉确定其相对位置。

为保证座孔与轴承的配合要求,剖分面之间不允许放置垫片,但可以涂上一层密封胶或水玻璃,以防箱体内的润滑油渗出。

为了拆卸时易于将箱盖与箱座分开,可在箱盖的凸缘的两端各设置一个起盖螺钉(参见图1-2-3),拧入起盖螺钉,可顺利地顶开箱盖。

单级直齿圆柱齿轮减速器课程设计说明书

单级直齿圆柱齿轮减速器课程设计说明书

江苏大学工程图学课程设计单级直齿圆柱齿轮减速器设计说明书专业机械设计制造及其自动化班级学号姓名指导教师答辩日期2013年6月28号目录第一章绪论一、减速器的简介 (3)二、减速器的种类 (3)第二章单级直齿圆柱齿轮减速器的工作原理与结构介绍一、减速器的工作原理 (5)二、减速器的结构介绍 (6)三、减速器的拆卸顺序 (9)第三章减速器各组成部分分析一、整体描述 (9)二、减速装置 (9)第四章壳体部分一、底座和箱盖 (11)二、销的定位形式、螺纹连接形式及特殊结构 (11)三、润滑方式 (11)第五章主要零件工作示意图一、箱盖 (12)二、箱体 (12)三、大端盖 (13)第六章减速器中的特殊装置一、油面指示器 (13)二、视孔装置 (14)三、螺栓连接装置 (14)四、清油装置 (14)五、齿轮啮合 (15)第七章小结及改进意见一、小结 (15)二、改进意见 (15)第一章绪论一、减速器的简介减速器是一种动力传递机构,利用齿轮的速度转换器,将电机的每分钟回转数(转速)减速到所需要的工作转速。

如果以一对齿轮传动为例,减速比=N1/N2=Z2/Z1,其中N1和N2分别表示两啮合齿轮的转速,Z1、Z2分别为两齿轮的齿数,这就是说,减速比等于两齿轮齿数的反比。

二、减速器的种类减速器的种类很多。

常用的齿轮及蜗杆减速器按其传动及结构特点,大致可分为三类:1.齿轮减速器(图1-2-1)主要有圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器三种。

(1)圆柱齿轮减速器:当传动比在8以下时,可采用单级圆柱齿轮减速器。

大于8时,最好选二级以上的减速器。

单级减速器的传动比如果过大,则其外廓尺寸将很大。

二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。

展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。

(2)圆锥齿轮减速器:它用于输入轴和输出轴位置布置成相交的场合。

单级圆柱齿轮减速器 设计书

单级圆柱齿轮减速器 设计书

单级圆柱齿轮减速器设计书课程设计题目:设计带式运输机传动装置1已知条件:运输带工作拉力 F = 3200 N。

运输带工作速度 v= 2 m/s滚筒直径 D = 375 mm工作情况两班制,连续单向运转,载荷较平稳。

,室,工作,水分和灰度正常状态,环境最高温度35℃。

要求齿轮使用寿命十年。

一、传动装置总体设计一、传动方案1)外传动用v带传动2)减速器为单级圆柱齿轮齿轮减速器3)方案如图所示二、该方案的优缺点:该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。

减速器部分单级渐开线圆柱齿轮减速器。

轴承相对于齿轮对称,要求轴具有较大的刚度。

原动机部分为Y系列三相交流异步电动机。

总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。

计算与说明(一)电机的选择工作机所需要的功率 P w =F ×v=6400w =6.4 kw m in .110134.014.36.1•-=⨯==R D V n π 传动装置总效率:η总=η带轮×η齿轮×η轴承×η轴承×η联轴器=0.95×0.97×0.99×0.99×0.99=0.89电机输出功率 P =P w/η总= 7.11 kw所以取电机功率P =7.5kw技术数据: 额定功率 7.5 kw 满载转速 970 R/min额定转矩 2.0 n •m 最大转矩 2.0 n •m选用Y160 M-6型外形查表19-2(课程设计书P 174)A:254 B:210 C:108 D:42 E:110 F:12 G:37H:160 K:15 AB:330 AC:32 AD:255 HD:385 BB:270 L:600二、 V 带设计总传动比 6.959.9101970≈===n i nm 定 V 带传动比i 1=3.2定 齿轮传动比i 2=3外传动带选为V 带由表12-3(P 216)查得K a =1.2P ca =K a ×P = 1.1×7.5=9KW所以 选用B 型V 带设小轮直径d 1=125 d 1/2<Hs m d n V a ⋅-=⨯⨯⨯=⨯⋅⋅=11116100060125970100060ππ大带轮直径 d 2=i 1×d 1=3.2×125=439.6所以取d 2=400所以 i 1=d 2/d 1=3.2所以大带轮转速n 2=n 1/i 1=303(R/min)确定中心距a 和带长L 00.7(d 1+d 2)≤a ≤2(d 1+d 2)367.5≤a ≤1050 所以初选中心距 a 0=5002)()(22221210d d d d L a ++++=π=1861 查表12-2(P 210)得L 0 =2000 中心距mm a L L a d 5.569218612000500200=-+=-+= 中心距调整围a max =a+0.03l d =629.5a min =a -0.015l d =539.5小带轮包角 ︒≥︒=︒⨯--︒≈1207.1663.57180121a d d α确定V 带根数Z 参考12-27 取P 0=1.32KW由表12-10 查得△P 0=0.11Kw由查表得12-5 查得包角系数K ≈0.96由表12-2(P 210)查得长度系数K L =1.06计算V 带根数Z ,由式(5-28机设)97.413.195.0)3.013.2(75.9)(00≈⨯⨯+=∇+≥K K P P PL caZ α 取Z=5根计算单根V 带初拉力F0,由式(12-22)机设。

机械设计之单级圆柱齿轮减速器

机械设计之单级圆柱齿轮减速器

# 机械设计之单级圆柱齿轮减速器简介单级圆柱齿轮减速器是一种常见的机械设备,用于将输入转速减小并增加输出扭矩。

它由两个或多个齿轮组成,在传动过程中,通过齿轮的啮合,实现输入和输出轴的动力传递。

单级圆柱齿轮减速器的设计和选择对于机械设备的正确运行和性能至关重要。

本文将探讨单级圆柱齿轮减速器的设计原理、参数计算和选型过程。

设计原理1. 齿轮的基本性质齿轮是单级圆柱齿轮减速器的核心组件。

通过齿轮的啮合,输入轴的运动能量被传递给输出轴,实现转速和扭矩的转换。

在设计齿轮减速器时,需要考虑以下几个重要的齿轮性质:•齿轮模数(Module):齿轮模数是齿轮的重要几何参数,定义为每个齿轮齿数与齿轮的分度圆直径的比值。

模数越大,齿轮的尺寸越大,传递能力也越强。

•齿数(Number of teeth):齿数是齿轮的重要几何参数,决定了齿轮啮合时的传动比。

齿数较多的齿轮输出转矩较大,转速较小,齿数较少的齿轮输出转矩较小,转速较大。

•压力角(Pressure angle):压力角是指齿轮齿面法线与齿轮轴线之间的夹角,常见的压力角有20度和14.5度两种。

较大的压力角有利于提高齿轮的啮合性能和传力能力。

•齿宽(Face width):齿宽是齿轮上齿部与间隙部分的长度,决定了齿轮的传力能力。

齿宽越大,齿轮传力能力越强。

•啮合角(Pressure angle):啮合角是指两个相互啮合的齿轮之间的接触面的夹角,常见的啮合角有20度和14.5度两种。

较小的啮合角有利于减小齿轮啮合时的摩擦损失和噪音。

2. 减速比计算减速比是单级圆柱齿轮减速器设计中的重要参数,它是输入轴转速与输出轴转速的比值。

减速比的计算公式如下:减速比 = (输出轴转速) / (输入轴转速) = (输入轮齿数) / (输出轮齿数)根据减速比的计算公式,可以通过给定输入轮的齿数和输出轮的齿数,来确定减速比。

3. 扭矩传递和效率计算在单级圆柱齿轮减速器中,扭矩的传递是通过齿轮的啮合实现的。

单级斜齿轮圆柱齿轮减速器设计

单级斜齿轮圆柱齿轮减速器设计

单级斜齿轮圆柱齿轮减速器设计随着工业化的发展,减速器的应用范围越来越广泛。

而在众多减速器中,单级斜齿轮圆柱齿轮减速器以其精度高、可靠性好、噪声低等特点,被广泛应用于各种机械传动中。

一、设计的目的本次设计旨在开发一种单级斜齿轮圆柱齿轮减速器,满足各种类型的机械传动的需求,同时使其具有高效、稳定的特点。

二、设计的基本结构单级斜齿轮圆柱齿轮减速器的基本结构包括输入轴、输出轴、斜齿轮、圆柱齿轮等部分。

其中,输入轴与斜齿轮的啮合传递动力,从而带动圆柱齿轮旋转,最终通过输出轴输出,实现将输入轴的高速转动转化为输出轴的低速高扭矩输出。

三、设计的优点1.高效:单级斜齿轮圆柱齿轮减速器的效率一般在90%以上,与其他减速器相比,其效率更高。

2.精度高:由于斜齿轮是通过直线与斜面的啮合传动动力,因此其传动精度更高,传动的力矩更平稳。

3.可靠性好:单级斜齿轮圆柱齿轮减速器采用模块化设计,各个部件之间配合精度高,制造质量稳定,因此其可靠性更高。

4.噪声低:单级斜齿轮圆柱齿轮减速器传动过程中,声音低,运转噪声小,使其在一些机械配置要求噪音小的场合得到了广泛应用。

四、设计注意事项在进行单级斜齿轮圆柱齿轮减速器的设计时,需要注意以下几点:1. 需要注意输入轴与斜齿轮的啮合处,要保证啮合精度。

2. 要保证圆柱齿轮的模数与斜齿轮的模数相同,从而保证两者的啮合传动效果。

3. 选择合适的材料,使其具有高硬度、耐磨性、抗腐蚀性等特点,从而保证其使用寿命长。

五、结论单级斜齿轮圆柱齿轮减速器具有高效、精度高、可靠性好、噪声低等特点,可应用于各种传动设备中。

在设计时需要注意输入轴与斜齿轮的啮合处,圆柱齿轮的模数与斜齿轮的模数要相同,并选择合适的材料。

在使用过程中,可加强润滑次数和强度,延长使用寿命。

单级圆柱齿轮减速器课程设计说明书

单级圆柱齿轮减速器课程设计说明书

三。

计算传动装置的总传动比和分配级的传动比。

1、总传动比:总I =n电机/n滚筒=960/55.2=17.39带传动设计1.选择常见的V带截面:根据教材P188表11.5,kA=1.2,PC=KAP功= 1.2× 5.5 = 6.6kw。

根据教材P188的图11.15:选择A型V带。

2.确定皮带轮的参考直径并检查皮带速度:根据教材P189的表11.6:D1 = 100毫米> dmin = 75毫米,D2=i波段D1(1-ε)= 3.48×100×(1-0.01)= 344.52mm,根据教材P179的表11.4:D2 = 355毫米,D1 = 100毫米。

实际从动轮转速nⅱ' = nⅰD1/D2 = 960×100/355 = 270.42 r/min转速误差为1-nⅱ'/nⅱ= 1-270.42/275.86 = 0.0197 < 0.05(允许)带速V =πD1 n1/60×1000 =π×100×960/60×1000 = 5.03m/s,带速在 5 ~ 25 m/s范围内为宜。

3.确定皮带长度和中心距离:0.65(D1+ D2)≤a0≤2(D1+ D2),即0.65(100+355)≤a0≤2×(100+355),所以是297.75mm≤a0≤910mm,初始中心距a0=650mm。

长度l0 = 2 A0+1.57(D1+D2)+(D2-D1)2/4a 0= 2×650+1.57(100+355)+(355-100)2/(4×650)= 2039.36mm根据教材P179的图11.4:Ld = 2000mm中心距离a≈a0+(Ld-L0)/2= 650+(2000-2039.36)/2 = 650-19.68 = 631毫米4.检查小滑轮的包角:α1 = 1800-57.30×(D2-D1)/a = 1800-57.30×(355-100)/631=156.840>1200(适用)5.确定皮带的根数:根据教材P191的表11.8:P0 = 0.97 kw根据教材P193的表11.10:△P0 = 0.11 kw。

设计一用于带式运输机上的单级圆柱齿轮减速器

设计一用于带式运输机上的单级圆柱齿轮减速器

机械设计基础课程设计设计人:班级:学号:指导老师:设计要求设计一用于带式运输机上的单级圆柱齿轮减速器,如图所示。

运输机连续工作,单向运转,载荷变化不大,空载起动。

减速器小批量生产。

使用期限10年,两班制工作。

运输带容许速度误差为5%。

原始数据(所给数据的第六小组)已知条件数据输送带工作拉力Fw=2800N 输送带速度Vw=1.4m/s 卷筒轴直径D=400mm目录一.确定传动方案二.选择电动机(1)选择电动机(2)计算传动装置的总传动比并分配各级传动比(3)计算传动装置的运动参数和动力参数三.传动零件的设计计算(1)普通V带传动(2)圆柱齿轮设计四.低速轴的结构设计(1)轴的结构设计(2)确定各轴段的尺寸(3)确定联轴器的型号(4)按扭转和弯曲组合进行强度校核五.高速轴的结构设计六.键的选择及强度校核七.选择轴承及计算轴承寿命八.选择轴承润滑与密封方式九.箱体及附件的设计(1)箱体的选择(2)选择轴承端盖(3)确定检查孔与孔盖(4)通气器(5)油标装置(6)骡塞(7)定位销(8)起吊装置十.设计小结十一.参考书目设计项目计算及说明主要结果一.确定传动方案二.选择电动机(1)选择电动机设计一用于带式运输机上的单级圆柱齿轮减速器,如图所示。

运输机连续工作,单向运转,载荷变化不大,空载起动。

减速器小批量生产。

使用期限10年,两班制工作。

运输带容许速度误差为5%。

图A-11)选择电动机类型和结构形式根据工作要求和条件,选用一般用途的Y系列三相异步电动机,结构形式为卧式封闭结构2)确定电动机功率工作机所要的功率Pw(kw)按下式计算Pw=wFwVwη1000式中,Fw=2800,Vw=1.4m/s,带式输送机的效率ηw=0.94,代入上式得:Pw =Kw=4.17Kw电动机所需功率Po(Kw)按下式计算Po=ηPw Pw=4.17Kw(2)计算传动装置的总传动比并分配各级传动比(3)计算传动装置的运动参数和动式中,η为电动机到滚筒工作轴的传动装置总效率,根据传动特点,由表2-4查得:V带传动η带=0.96 ,一对齿轮传动η齿轮=0.97,一对滚动轴承η轴承=0.99,弹性联轴器η联轴器=0.98,因此总效率η=η带η齿轮η2轴承η联轴器,即η=η带η齿轮η2轴承η联轴器=0.96x0.97x0.99x0.982=0.89Po=ηPw=Kw=4.69Kw确定电动机额定功率Pm(Kw),使Pm=(1~1.3)Po=5.12(1~1.3)=5.12~6.66Kw,查表2-1取Pm=5.5 Kw3)确定电动机转速工作机卷筒轴的转速nw为nw=DVwπ100060⨯==66.87r/min根据表2-3推存的各类转动比范围,取V带转动比i带=2~4,一级齿轮减速器i齿轮=3~5,传动装置的总传动比i总=6~20,故电动机的转速可取范围为nm=i总nm=(6~20)⨯84.93=509.58~1698.6r/min符合此转速要求的同步转速有750r/min,1000r/min,1500r/min三种,考虑综合因素,查表2-1,选择同步转速为1000r/min的Y系列电动机Y132M2-6,其满载转速为nm=960r/min电动机的参数见表A-1。

单级圆柱齿轮减速器设计

单级圆柱齿轮减速器设计

前言减速器的结构随其类型和要求不同而异。

单级圆柱齿轮减速器按其轴线在空间相对位置的不同分为:卧式减速器和立式减速器。

前者两轴线平面与水平面平行,如图1-2-1a所示。

后者两轴线平面与水平面垂直,如图1-2-1b所示。

一般使用较多的是卧式减速器,故以卧式减速器作为主要介绍对象。

单级圆柱齿轮减速器可以采用直齿、斜齿或人字齿圆柱齿轮。

图1-2-2和图1-2-3所示分别为单级直齿圆柱齿轮减速器的轴测投影图和结构图。

减速器一般由箱体、齿轮、轴、轴承和附件组成。

箱体由箱盖与箱座组成。

箱体是安置齿轮、轴及轴承等零件的机座,并存放润滑油起到润滑和密封箱体内零件的作用。

箱体常采用剖分式结构(剖分面通过轴的中心线),这样,轴及轴上的零件可预先在箱体外组装好再装入箱体,拆卸方便。

箱盖与箱座通过一组螺栓联接,并通过两个定位销钉确定其相对位置。

为保证座孔与轴承的配合要求,剖分面之间不允许放置垫片,但可以涂上一层密封胶或水玻璃,以防箱体内的润滑油渗出。

为了拆卸时易于将箱盖与箱座分开,可在箱盖的凸缘的两端各设置一个起盖螺钉(参见图1-2-3),拧入起盖螺钉,可顺利地顶开箱盖。

箱体内可存放润滑油,用来润滑齿轮;如同时润滑滚动轴承,在箱座的接合面上应开出油沟,利用齿轮飞溅起来的油顺着箱盖的侧壁流入油沟,再由油沟通过轴承盖的缺口流入轴承(参图1-2-3)。

减速器箱体上的轴承座孔与轴承盖用来支承和固定轴承,从而固定轴及轴上零件相对箱体的轴向位置。

轴承盖与箱体孔的端面间垫有调整垫片,以调整轴承的游动间隙,保证轴承正常工作。

为防止润滑油渗出,在轴的外伸端的轴承盖的孔壁中装有密封圈(参见图1-2-3)。

减速器箱体上根据不同的需要装置各种不同用途的附件。

为了观察箱体内的齿轮啮合情况和注入润滑油,在箱盖顶部设有观察孔,平时用盖板封住。

在观察孔盖板上常常安装透气塞(也可直接装在箱盖上),其作用是沟通减速器内外的气流,及时将箱体内因温度升高受热膨胀的气体排出,以防止高压气体破坏各接合面的密封,造成漏油。

单级直齿圆柱齿轮减速器计算

单级直齿圆柱齿轮减速器计算

单级直齿圆柱齿轮减速器计算、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。

查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。

(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=3.89取小齿轮齿数Z1=20。

则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78由课本表6-12取φd=1.1(3)转矩T1T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm(4)载荷系数k : 取k=1.2(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×473.33×10×300×18=1.36x109N2=N/i=1.36x109 /3.89=3.4×108查[1]课本图6-38中曲线1,得ZN1=1 ZN2=1.05按一般可靠度要求选取安全系数SHmin=1.0[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=49.04mm模数:m=d1/Z1=49.04/20=2.45mm取课本[1]P79标准模数第一数列上的值,m=2.5(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=2.5×20mm=50mmd2=mZ2=2.5×78mm=195mm齿宽:b=φdd1=1.1×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为:σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=122.5mm(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s 因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料确定许用应力选轴的材料为45号钢,调质处理。

机械设计之单级圆柱齿轮减速器

机械设计之单级圆柱齿轮减速器

机械设计之单级圆柱齿轮减速器单级圆柱齿轮减速器是一种最常见的减速机械,其主要作用是将高速旋转的电机或燃气发动机输出的动力转换为低速高力矩的输出端。

这种减速器是一种硬齿面传动机构,由一对相互啮合的圆柱齿轮组成,其结构简单,传动效率高,使用寿命长,被广泛应用于机械传动领域。

一、单级圆柱齿轮减速器的工作原理单级圆柱齿轮减速器是由两个相互啮合的圆柱形齿轮组成,其中一个为主动齿轮,另一个为从动齿轮,它们之间通过啮合来完成传动。

主动齿轮又称为驱动齿轮,由电动机、内燃机等提供动力,将动力传递给从动齿轮,从动齿轮又称为被动齿轮,负责将输入的动力转换为输出端的低速高力矩。

圆柱齿轮减速器的啮合过程主要是齿轮的滚动和相互啮合,因此齿形设计、精度的要求较高。

同时,为了减小齿轮之间的摩擦和磨损,需要在齿轮表面镀上一层硬度较高的材料,以增强齿轮的耐磨性和使用寿命。

二、单级圆柱齿轮减速器的特点1. 结构简单、传动效率高单级圆柱齿轮减速器的结构简单,传动效率高,稳定性好。

它没有多个齿轮轴,所以没有过多的结构复杂性,因此体积小、重量轻,还有较好的承载能力。

2. 使用寿命长单级圆柱齿轮减速器的齿轮表面硬度高,采用合理的润滑方式,可大幅度延长使用寿命。

同时,减速器承载能力大,可以应对较大的工作负载。

3. 传动性能稳定由于使用固定的齿轮比,单级圆柱齿轮减速器的传动性能是稳定的,不会受到内部摩擦和动力浪涌影响。

4. 低噪音单级圆柱齿轮减速器的齿轮啮合过程相对平稳,没有瞬间冲击和振动,因此噪音低。

5. 成本低与其他减速机构相比,单级圆柱齿轮减速器的制造成本较低,易于维护和保养。

三、单级圆柱齿轮减速器的应用单级圆柱齿轮减速器广泛应用于工业自动化控制、航空航天、轨道交通、冶金、矿山、建材、化工、食品、医药、轮船和机车等多个领域,特别是在要求传动稳定性和性能可靠的场合,如物料输送、机械装置和各类设备的减速传动等。

结论总之,单级圆柱齿轮减速器是一种传动性能稳定、可靠,使用寿命长,成本低的传动机构,具有广泛的应用前景。

单级直齿圆柱齿轮减速器课程设计

单级直齿圆柱齿轮减速器课程设计

单级直齿圆柱齿轮减速器课程设计一、设计任务本课程设计的设计任务是:根据给定的要求,设计一台单级直齿圆柱齿轮减速器。

二、设计要求1. 减速比为5;2. 输入轴转速为1500r/min;3. 输出轴转矩为1500N.m;4. 齿轮材料为40Cr;5. 要求减速器传动效率不低于90%。

三、设计步骤1. 确定输入轴和输出轴的位置关系和方向;2. 根据减速比和输入轴转速,计算输出轴转速;3. 根据输出轴转矩和输出轴转速,计算输出功率;4. 根据输入功率和传动效率,计算输出功率;5. 根据输出功率和输出轴转速,计算输出轴扭矩;6. 选择合适的齿轮模数、齿数、中心距等参数,并绘制齿轮剖面图和总体布置图;7. 计算齿轮尺寸,并绘制零件图。

四、设计计算1. 计算减速比:减速比 = 输出转速 / 输入转速 = 1500 / 300 = 52. 计算输出功率:Pout = Tout × ωout = 1500 × 2π × 25 / 60 = 393.44W3. 计算输入功率:Pin = Pout / η = 393.44 / 0.9 = 437.16W4. 计算输出轴扭矩:Tout = Pout / ωout = 1500 × 1000 / (2π × 25) = 377 N.m5. 计算齿轮尺寸:(1) 齿轮模数的选择:根据齿轮传动功率和转速,选择合适的齿轮模数。

本次设计中,选择齿轮模数为6。

(2) 齿数的确定:根据减速比和齿轮模数,计算出输入齿轮和输出齿轮的齿数。

本次设计中,输入齿轮Z1=30,输出齿轮Z2=150。

(3) 中心距的确定:根据输入、输出齿轮的模数、压力角、法向变位系数等参数,计算出中心距。

本次设计中,中心距a=240mm。

五、零件图绘制根据计算结果和要求,绘制零件图,并进行配合公差分析。

六、结论通过本次课程设计,我们成功地设计出了一台单级直齿圆柱齿轮减速器。

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书设计说明书:单级圆柱齿轮减速器1.引言本设计说明书旨在详细说明单级圆柱齿轮减速器的设计方案、工作原理以及相关参数,并给出制造和装配的指导。

2.设计目标在本节中,将阐明设计减速器所需要达到的目标,包括但不限于输出转矩、输入转速、轴向力等。

3.工作原理描述单级圆柱齿轮减速器的工作原理,包括输入和输出轴的运动相对方向、齿轮的传动方式以及摩擦损失等。

4.构成要素及材料选择本节将介绍单级圆柱齿轮减速器的构成要素,包括齿轮、轴承、壳体等,并对每个要素所选择的材料进行说明。

5.减速器的设计过程详细描述单级圆柱齿轮减速器的设计过程,包括齿轮参数的计算、齿轮副的布置设计、轴的选取及布置、轴承的选用等。

6.制造和装配指南给出制造和装配单级圆柱齿轮减速器的指导,包括零件的加工工艺、装配顺序、紧固力矩等。

7.性能测试方法及标准描述对单级圆柱齿轮减速器进行性能测试的方法和标准,包括转矩测试、转速测试以及噪音测试等。

8.质量控制说明质量控制的准则和方法,包括零部件的检验、装配质量检查以及出厂前的整机测试等。

9.维护与维修介绍单级圆柱齿轮减速器的维护与维修方法,包括常见故障的诊断和处理、润滑油更换周期等。

10.安全注意事项列出使用单级圆柱齿轮减速器时需要注意的安全事项,包括操作注意事项、维护保养注意事项以及紧急情况处理措施等。

11.附件提供与本文档有关的附件,包括技术图纸、设计计算表格、实验数据等。

12.法律名词及注释列出本文档中涉及的法律名词,并提供相应的注释和解释,以确保读者对相关法律概念有准确的理解。

【附件】1.技术图纸2.设计计算表格3.试验报告【法律名词及注释】1.版权:指对著作权人就其作品享有的法律权利,包括复制权、发行权、表演权等。

2.专利:指对于发明的技术解决方案的一种保护形式,授予专利权人在一定期限内对其发明进行独占性使用的权利。

3.商标:指对于产品或服务的标志,授予商标权人在特定领域内以独占性方式使用该标志的权利。

带式运输机单级圆柱齿轮减速器设计的创新点

带式运输机单级圆柱齿轮减速器设计的创新点

带式运输机单级圆柱齿轮减速器设计的创新点带式运输机是一种常见的物料输送设备,广泛应用于矿山、化工、电力等行业。

为了实现带式运输机的稳定运行和高效输送,减速器是不可或缺的关键部件之一。

本文将以单级圆柱齿轮减速器在带式运输机中的设计创新点为主题,从减速器的结构设计、传动原理和优势等方面进行阐述。

一、创新点之一:结构设计在带式运输机的减速器设计中,采用单级圆柱齿轮减速器具有独特的结构设计。

相比于传统的多级减速器,单级减速器在结构上更加简洁紧凑,减少了传动元件的数量和配合面,提高了系统的可靠性和稳定性。

单级圆柱齿轮减速器的主要结构包括输入轴、输出轴、齿轮、轴承等部件。

其中,齿轮是减速器的核心部件,通过齿轮的啮合传递动力。

在设计过程中,需要合理选择齿轮的材料和模数,以确保齿轮的强度和耐磨性能,同时减少噪声和振动。

二、创新点之二:传动原理单级圆柱齿轮减速器采用平行轴传动原理,通过输入轴和输出轴之间齿轮的啮合传递动力。

其中,输入轴通常由电机驱动,输出轴与带式运输机的输送带相连,实现动力的传递和物料的输送。

在传动过程中,需要对齿轮的啮合角、啮合系数和传动比等进行合理的设计和计算。

通过优化传动参数,可以提高减速器的传动效率和运行平稳性,减少能量损失和磨损。

三、创新点之三:优势单级圆柱齿轮减速器在带式运输机中的设计具有以下优势:1.结构简洁紧凑:相比于多级减速器,单级减速器减少了传动元件的数量和配合面,减小了体积和重量,降低了制造成本和安装难度。

2.传动效率高:采用圆柱齿轮传动,传动效率高,能够更有效地将输入轴的动力传递给输出轴,提高了整个系统的效率和运行速度。

3.运行稳定可靠:单级减速器在设计上更加精简,减少了传动元件的配合间隙和摩擦,降低了运行噪声和振动,提高了系统的稳定性和可靠性。

4.维护方便快捷:单级减速器的结构简单,易于维护和保养。

在出现故障或需要更换部件时,可以快速进行修理和更换,减少了停机时间和维修成本。

单级圆柱齿轮减速器设计说明

单级圆柱齿轮减速器设计说明

单级圆柱齿轮减速器设计说明一、设计原理齿轮副由主动轮和从动轮组成,一般情况下采用直齿轮、斜齿轮或锥齿轮。

当主动轮齿数大于从动轮齿数时,减速器为减速比大于1的减速器;反之,则为减速比小于1的增速器。

二、设计构造1.减速比选择:根据需要确定减速比,同时要考虑齿轮副的登齿系数、传动效率和材料强度等因素。

一般情况下,齿轮副的登齿系数应为1-1.5,传动效率应在0.95以上。

2.齿轮材料选择:根据工作条件和负载要求选择合适的齿轮材料。

常用的齿轮材料有20CrMnTi、40Cr、45#钢等,其中硬度要求一般在58-62HRC之间。

3.轴承选择:根据输出轴受力大小和转速要求选择合适的轴承。

一般情况下,使用圆柱滚子轴承或角接触球轴承,且滚动体要求使用钢球或钢针。

4.结构布局:根据设计空间和机器布局确定减速器的整体结构布局。

要考虑轴承的支座设计、润滑系统的布置、轴向气隙的调整等因素。

三、选型要点在进行单级圆柱齿轮减速器选型时,要综合考虑以下几个要点:1.转矩要求:根据输出负载的转矩要求选择减速器的额定转矩。

一般情况下,额定转矩应大于实际转矩的1.3-1.5倍。

2.转速要求:根据工作要求选择减速器的额定转速。

要注意减速器的最大转速和工作转速。

3.允许误差:根据传动精度要求选择减速器的精度等级。

一般情况下,选择高精度的减速器,以保证传动精度和稳定性。

4.安装方式:根据机械布局和安装条件选择减速器的安装方式。

常见的安装方式有法兰连接、挂牙连接等。

总结起来,单级圆柱齿轮减速器的设计需要考虑减速比、齿轮材料、轴承选择、结构布局等因素。

在选型时要综合考虑转矩要求、转速要求、允许误差和安装方式等因素,以满足实际应用需求。

一级圆柱齿轮减速器设计(开式齿轮传动)

一级圆柱齿轮减速器设计(开式齿轮传动)

一级圆柱齿轮减速器设计说明书一、传动方案拟定 (3)二、电动机的选择 (4)三、确定传动装置总传动比及分配各级的传动比 (6)四、传动装置的运动和动力设计 (7)五、齿轮传动的设计 (15)六、传动轴的设计 (18)七、箱体的设计 (27)八、键连接的设计 (29)九、滚动轴承的设计 (31)十、润滑和密封的设计 (32)十一、联轴器的设计 (33)十二、设计小结 (33)计算过程及计算说明一、传动方案拟定设计单级圆柱齿轮减速器1、工作条件:输送带常温下连续工作,空载起动,工作载荷平稳,使用期限5年,两班制工作,输送带速度容许误差为±5%,环境清洁。

2、原始数据:输送带有效拉力F=6500N;带速V=0.8m/s;滚筒直径D=335mm;方案拟定:采用开始齿轮传动与减速齿轮的组合,即可满足传动比要求;同时由于带传动具有良好的缓冲、吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。

二、电动机选择1、电动机类型和结构的选择:选择Y系列三相异步电动机,此系列电动机属于一般用途的全封闭自扇冷电动机,其结构简单,工作可靠,价格低廉,维护方便,适用于不易燃,不易爆,无腐蚀性气体和无特殊要求的机械。

2、电动机容量选择:电动机所需工作功率为:式(1):Pd=PW/ηa(KW)由式(2):PW=FV/1000(KW)因此P d=FV/1000ηa(KW)由电动机至运输带的传动总效率为:η总=η1³η2³η2³η3³η4³η5式中:η1、η2、η3、η4、η5分别为开式齿轮传动、轴承、圆柱齿轮传动、联轴器和滚筒的传动效率。

取η1=0.98(开式齿轮传动),η2=0.98,η3=0.98,η4=0.99(弹性联轴器),η5=0.96(卷筒)。

则:η总=0.98³0.98³0.98³0.98³0.99³0.97=0.886所以:电机所需的工作功率:P d= FV/1000η总=(6500³0.8)/(1000³0.886)=5.87(KW)3、确定电动机转速卷筒工作转速为:n卷筒=60³1000²V/(π²D)=(60³1000³0.8)/(335²π)=45.63(r/min)根据《机械设计基础课程设计指导书》上推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’=3~6,取开式齿轮传动比I1’=2~4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计基础课程设计机械设计说明书设计题目:单级机圆柱齿轮减速器机械电子工程系系08一体化专业 2 班设计者:曹刘备学号:*********指导老师:***2010 年6 月19 日目录一、传动装置总体设计二、V带设计三、各齿轮的设计计算四、轴的设计五、校核六、主要尺寸及数据七、设计小结设计任务书课程设计题目:设计带式运输机传动装置1已知条件:运输带工作拉力 F = 3200 N。

运输带工作速度v= 2 m/s滚筒直径 D = 375 mm工作情况两班制,连续单向运转,载荷较平稳。

,室内,工作,水分和灰度正常状态,环境最高温度35℃。

要求齿轮使用寿命十年。

一、传动装置总体设计一、传动方案1)外传动用v带传动2)减速器为单级圆柱齿轮齿轮减速器3)方案如图所示二、该方案的优缺点:该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。

减速器部分单级渐开线圆柱齿轮减速器。

轴承相对于齿轮对称,要求轴具有较大的刚度。

原动机部分为Y系列三相交流异步电动机。

总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。

计算与说明(一)电机的选择工作机所需要的功率 P w =F ×v=6400w =6.4 kwm in .110134.014.36.1•-=⨯==R D V n π 传动装置总效率:η总=η带轮×η齿轮×η轴承×η轴承×η联轴器=0.95×0.97×0.99×0.99×0.99=0.89电机输出功率 P =P w/η总= 7.11 kw所以取电机功率P =7.5kw技术数据: 额定功率 7.5 kw 满载转速 970 R/min额定转矩 2.0 n •m 最大转矩 2.0 n •m选用Y160 M-6型外形查表19-2(课程设计书P 174)A:254 B:210 C:108 D:42 E:110 F:12 G:37H:160 K:15 AB:330 AC:32 AD:255 HD:385 BB:270 L:600二、 V 带设计总传动比 6.959.9101970≈===n i nm 定 V 带传动比i 1=3.2定 齿轮传动比i 2=3外传动带选为V 带由表12-3(P 216)查得K a =1.2P ca =K a ×P = 1.1×7.5=9KW所以 选用B 型V 带设小轮直径d 1=125 d 1/2<Hs m d n V a ⋅-=⨯⨯⨯=⨯⋅⋅=11116100060125970100060ππ大带轮直径 d 2=i 1×d 1=3.2×125=439.6所以取d 2=400所以 i 1=d 2/d 1=3.2所以大带轮转速n 2=n 1/i 1=303(R/min)确定中心距a 和带长L 00.7(d 1+d 2)≤a ≤2(d 1+d 2)367.5≤a ≤1050 所以初选中心距 a 0=500 2)()(22221210d d d d L a ++++=π=1861查表12-2(P 210)得L 0 =2000 中心距mm a L L a d 5.569218612000500200=-+=-+= 中心距调整范围a max =a+0.03l d =629.5a min =a -0.015l d =539.5小带轮包角 ︒≥︒=︒⨯--︒≈1207.1663.57180121a d d α确定V 带根数Z 参考12-27 取P 0=1.32KW由表12-10 查得△P 0=0.11Kw由查表得12-5 查得包角系数K ≈0.96由表12-2(P 210)查得长度系数K L =1.06计算V 带根数Z ,由式(5-28机设)97.413.195.0)3.013.2(75.9)(00≈⨯⨯+=∇+≥K K P P PL caZ α 取Z=5根计算单根V 带初拉力F0,由式(12-22)机设。

)(5.251)15.2(50020N q VZ v K P F aca =+-⨯= 由式12-22(机设)q=0.19计算对轴的压力F Q ,由式(12-23机设)得N Z F F Q 24962160sin 178522sin 210=︒⨯⨯⨯=≈α 小带轮基准直径d 1=125 mm 采用实心式结构。

大带轮基准直径 d 2= 400 mm ,采用孔板式结构。

三、 各齿轮的设计计算1齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。

齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为占蚀,考虑传动平稳性,齿数宜取多些,取Z 1=31 ,则Z 2=31×3=93设计准则按接触疲劳强度计算,按齿根疲劳强度校核。

运动参数及动力参数计算计算各轴转速(R/min )n 1= n m /i 1=970/3.2=303 R/minn 2= n 1/i 2=303/3=101 R/min计算各轴的功率(KW )P 1=P ×η带轮=7.125KWP 2=P 1×η轴承×η齿轮=6.84KW传递扭矩(N ·mm )T 1 = 9.55×610×P 1/n 1= 9.55×610×7.125/303= 2.2×510载荷系数k 由表(10-4机设) 因载荷平稳取k=1.1齿宽系数Ψa 轻型减速器 Ψa=0.3许用接触应力[σH] 由图10-26(c )ΔH lim1=600MPa ΔH lim2=560MPa 取较小值代入安全系数由表(10-5课设)查的S H =1[ΔH1]= ΔH lim1/S H =600 MPa[ΔH1] = ΔH lim1/S H =560 MPa按齿面解除疲劳强度计算式(10-25机设)a=(u+1) ×6.179232531=∇UKT H a ψ 确定齿轮参数及重要尺寸圆整中心距 取a=180mm模数 m=2a/(z1+z2)=2.9 由表(10-1课设) 取m=3齿轮分度圆直径d 1 =mz 1 =93mm d 2= mz 2=279mm校核齿根弯曲疲劳强度确定有关参数由上可知 K=1.1 T 1=225N.mb=Ψa ×a=0.3×180=54圆整后取 b1=55 b2=60许用弯曲应力 [σF]由图10-24(c )得[σFlim 1] =210MPa [σFlim 2]=180MPa安全系数由表10-5 取 SF=1.3[σF 1]= σFlim1 /SF=161.5MPa[σF 2]= σFlim2 /SF=138.5MPa由图10-23得 Y F1=2.65 Y F2=2.2σF1=2KT 1Y F1/bm 2z=83.6<[σF 1]σF2=σF1/σF1=69.4<[σF 2]计算齿轮的圆周速度VV=πn 1d 1/60×1000=1.9m/sV < 6m/s 所以8级精度合适四、 轴的设计1选择轴的材料及热处理由于减速器传递的功率不大,对其重量和尺寸也无特殊要求故选择常用材料45钢,调质处理。

由表16-1(机设)强度极限 σb=650MPa 屈服极限 σs=360MPa弯曲疲劳极限σ-1= 300 MPa由表 16-2(机设) 可知118 ≥ c ≥ 107 取c=118从动轴的设计1 按扭矩初估轴的直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d ≥26.483 np c考虑键槽的影响以及联轴器孔径系列标准,取d=50mm2 轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式。

1)、联轴器的选择已知从动轴的转矩T=650N.m 由表19-1(机设)查得运输机的工作情况系数K A=1.5故 T C=K A×T=975 N·m由表18-3(课设)选用弹性柱销联轴器,HL4 公称扭矩为1250N.m 材料为铁许用转速为2800r/min 允许轴孔直径D取40~56 满足要求2)轴承选择初选用6212深沟球轴承技术数据基本尺寸: d=60 D=110 B=22 安装尺寸: da=69 Da=101 3) 各轴段直径的确定(1)用于安装联轴器 d1=50(2)用于联轴器的轴间定位 d2=55(3)轴承的安装 d3=60(4)安装齿轮 d4=65(5)齿轮的轴肩定位 d5=80(6)用于轴承的轴肩定位 d6=65(7)安装轴承 d7=604) 各轴段长度的确定(1)查表18-3(课设)得 L1=84(2)考虑轴承端盖 L2=50(3)考虑轴承取套筒为29 L3=53(4)齿轮齿宽为55 L4=53(5)轴肩 L5=10(6)保持两轴承对称 L6=30(7)考虑轴承宽度 L7=665)按弯曲复合强度计算齿轮上作用力的计算齿轮所受的转矩:T=9.55×610N·mm=650N·m10P/n=6. 5×5齿轮作用力:圆周力:Ft=2T/d=4.68KN径向力:F r=F t tan20º=1.7KN齿轮分度圆直径 d=279mm因为两轴承对称,所以L A=74(1)绘制剪力图a(2)绘制垂直面弯矩图b和水平面弯矩图c轴承支座反力F ay=F By=F r/2=0.85KN F Az=F Bz=2.34KN由两边对称知,截面C的玩具也对称,截面C在垂直面最大弯矩为M c1=F Ay L/2=62.9N.m截面C 在水平面最大弯矩为M c2=F Az L/2=173.1N.m(3)绘制复合弯矩图d最大弯矩为Mc=1862221=+c c M M N ·m(4)绘制当量弯矩图eMec=269)(22=+T M c αN ·m(5)绘制扭矩图fT=650N.m(6)校核危险截面C 的强度σe=269/0.1d=9.6MPa<[σ-1b]所以该轴强度足够。

主动轴的设计1 按扭矩初估轴的直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d ≥8.33303125.711833=⨯=n p c mm 考虑键槽的影响以及联轴器孔径系列标准,取d=41mm2 轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,1)轴承选择初选用6209深沟球轴承技术数据基本尺寸 : d=45 D=85 B=19安装尺寸 : da=52 Da=782) 各轴段直径的确定(1) 轴承的安装 d1=45(2) 安装齿轮 d2=50(3) 齿轮的轴肩定位 d3=55(4) 用于轴承的轴肩定位 d4=60(5) 安装轴承 d5=45(6) 带轮的安装,考虑轴承端盖等因素 d6=413) 各轴段长度的确定(1)考虑轴承宽度,取套筒长29mm L1=48(2)齿宽为60mm L2=58(3)定位轴肩 L3=10(4)用于轴承轴肩定位 L4=30(5)安装轴承,考虑轴承宽度,取套筒长29mm L5=66(6)安装带轮,考虑轴承端盖 L6=1204) 按弯曲复合强度计算齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=225N.m齿轮作用力:圆周力:Ft=2T/d=4.8KN径向力:Fr=Fttan20°=1.7KN齿轮分度圆直径 d=93mm因为两轴承对称,所以LA=87(1)绘制剪力图a(2)绘制垂直面弯矩图b 和水平面弯矩图c轴承支座反力F ay =F By =F r /2=0.85KN F Az =F Bz =2.4KN由两边对称知,截面C 的玩具也对称,截面C 在垂直面最大弯矩为 Mc1=FAyL/2=62.9N.m截面C 在水平面最大弯矩为Mc2=FAzL/2=177.6N.m(3)绘制复合弯矩图d最大弯矩为最大弯矩为m N 188.42221⋅=+=M M M c c c (4)绘制当量弯矩图em N 200()2'2''⋅=+=T M M c ec α (5)绘制扭矩图fT=220N.m(6)校核危险截面C 的强度σe=269/0.1d=21.5MPa<[σ-1b ]所以该轴强度足够。

相关文档
最新文档