材料分析方法-7
智慧树知到《材料分析方法》章节测试答案
智慧树知到《材料分析方法》章节测试答案绪论1、材料研究方法分为()A:组织形貌分析B:物相分析C:成分价键分析D:分子结构分析正确答案:组织形貌分析,物相分析,成分价键分析,分子结构分析2、材料科学的主要研究内容包括()A:材料的成分结构B:材料的制备与加工C:材料的性能D:材料应用正确答案:材料的成分结构,材料的制备与加工,材料的性能3、下列哪些内容不属于材料表面与界面分析()A:晶界组成、厚度B:晶粒大小、形态C:气体的吸附D:表面结构正确答案:晶粒大小、形态4、下列哪些内容属于材料微区分析()A:晶格畸变B:位错C:晶粒取向D:裂纹大小正确答案:晶格畸变,位错,晶粒取向,裂纹大小5、下列哪些内容不属于材料成分结构分析()A:物相组成B:晶界组成、厚度C:杂质含量D:晶粒大小、形态正确答案:晶界组成、厚度,晶粒大小、形态第一章1、扫描电子显微镜的分辨率已经达到了()A:0.1 nmB:1.0 nmC:10 nmD:100 nm正确答案: 1.0 nm2、利用量子隧穿效应进行分析的仪器是A:原子力显微镜B:扫描隧道显微镜C:扫描探针显微镜D:扫描电子显微镜正确答案:扫描隧道显微镜3、能够对样品形貌和物相结构进行分析的是透射电子显微镜。
A:对B:错正确答案:对4、扫描隧道显微镜的分辨率可以到达原子尺度级别。
A:对B:错正确答案:对5、图像的衬度是()A:任意两点存在的明暗程度差异B:任意两点探测到的光强差异C:任意两点探测到的信号强度差异D:任意两点探测到的电子信号强度差异正确答案:任意两点存在的明暗程度差异,任意两点探测到的信号强度差异6、对材料进行组织形貌分析包含哪些内容()A:材料的外观形貌B:晶粒的大小C:材料的表面、界面结构信息D:位错、点缺陷正确答案:材料的外观形貌,晶粒的大小,材料的表面、界面结构信息,位错、点缺陷7、光学显微镜的最高分辨率为()A:1 μmB:0.5 μmC:0.2 μmD:0.1 μm正确答案: 0.2 μm8、下列说法错误的是()A:可见光波长为450~750 nm,比可见光波长短的光源有紫外线、X射线和γ射线B:可供照明的紫外线波长为200~250 nm,可以作为显微镜的照明源C:X射线波长为0.05~10 nm,可以作为显微镜的照明源D:X射线不能直接被聚焦,不可以作为显微镜的照明源正确答案: X射线波长为0.05~10 nm,可以作为显微镜的照明源9、 1924年,()提出运动的电子、质子、中子等实物粒子都具有波动性质A:布施B:狄拉克C:薛定谔D:德布罗意正确答案:德布罗意10、电子束入射到样品表面后,会产生下列哪些信号()A:二次电子B:背散射电子C:特征X射线D:俄歇电子正确答案:二次电子,背散射电子,特征X射线,俄歇电子第二章1、第一台光学显微镜是由哪位科学家发明的()A:胡克B:詹森父子C:伽利略D:惠更斯正确答案:詹森父子2、德国科学家恩斯特·阿贝有哪些贡献()A:阐明了光学显微镜的成像原理B:解释了数值孔径等问题C:阐明了放大理论D:发明了油浸物镜正确答案:阐明了光学显微镜的成像原理,解释了数值孔径等问题,阐明了放大理论,发明了油浸物镜3、光学显微镜包括()A:目镜B:物镜C:反光镜D:聚光镜正确答案:目镜,物镜,反光镜,聚光镜4、下列关于光波的衍射,错误的描述是()A:光是电磁波,具有波动性质B:遇到尺寸与光波波长相比或更小的障碍物时,光线将沿直线传播C:障碍物线度越小,衍射现象越明显D:遇到尺寸与光波波长相比或更小的障碍物时,光线将偏离直线传播正确答案:遇到尺寸与光波波长相比或更小的障碍物时,光线将沿直线传播5、下列说法正确的是()A:衍射现象可以用子波相干叠加的原理解释B:由于衍射效应,样品上每个物点通过透镜成像后会形成一个埃利斑C:两个埃利斑靠得越近,越容易被分辨D:埃利斑半径与光源波长成反比,与透镜数值孔径成正比正确答案:衍射现象可以用子波相干叠加的原理解释,由于衍射效应,样品上每个物点通过透镜成像后会形成一个埃利斑6、在狭缝衍射实验中,下列说法错误的是()A:狭缝中间每一点可以看成一个点光源,发射子波B:子波之间相互干涉,在屏幕上形成衍射花样C:整个狭缝内发出的光波在中间点的波程差半波长,形成中央亮斑D:在第一级衍射极大值处,狭缝上下边缘发出的光波波程差为1波长正确答案:整个狭缝内发出的光波在中间点的波程差半波长,形成中央亮斑7、下列关于阿贝成像原理的描述,正确的是()A:不同物点的同级衍射波在后焦面的干涉,形成衍射谱B:同一物点的各级衍射波在像面的干涉,形成物像C:物像由透射光和衍射光互相干涉而形成D:参与成像的衍射斑点越多,物像与物体的相似性越好。
材料分析方法总结
材料分析方法总结材料分析方法是一种用于研究材料性质和品质的科学手段。
随着科技的不断进步,各种材料分析方法也不断涌现,为我们认识材料的微观结构和性能提供了强有力的工具。
本文将就几种常见的材料分析方法进行简要介绍和分析。
一、X射线衍射(XRD)X射线衍射是一种通过材料中晶体的结构信息而研究物质性质的方法。
当X射线照射到晶体上时,由于晶体的晶格结构,X射线会发生衍射现象,形成特定的衍射图样。
通过分析和解读衍射图样,我们可以获得晶体的晶胞参数、晶体结构和晶体取向等信息。
该方法非常适合用于分析晶体材料、无定形材料和薄膜等样品的结构特性。
二、扫描电子显微镜(SEM)扫描电子显微镜是一种利用电子束与物质相互作用产生的信号来观察和分析材料微观形貌和结构的仪器。
相比传统光学显微镜,SEM具有更高的分辨率和放大倍数,可以观察到更小尺寸的样品结构和表面形貌。
通过SEM的图像分析,可以得到材料表面形貌、粒径分布、表面缺陷和微观结构等信息,对于材料的微观性能研究和质量控制具有重要意义。
三、傅里叶变换红外光谱(FTIR)傅里叶变换红外光谱是一种通过检测材料在红外波段的吸收和散射谱线,来研究材料组成和化学结构的方法。
物质的分子具有特定的振动模式,当红外辐射通过样品时,根据样品对不同波长的红外辐射的吸收情况,我们可以获得样品分子的化学键、官能团和其他结构信息。
因此,FTIR可用于鉴定和分析有机物、聚合物和无机物等材料。
四、热重分析(TGA)热重分析是利用材料在升温或降温过程中质量的变化来研究材料热特性和失重行为的方法。
在TGA实验中,材料样品被加热,同时装有高精度天平的仪器记录样品质量的变化。
通过分析反应前后质量变化曲线,我们可以推断样品中的各类组分和反应过程。
TGA在材料的热稳定性、相变行为、降解特性和组分分析等方面起着重要作用。
五、原子力显微镜(AFM)原子力显微镜是利用探测器的探针扫描物体表面的力的变化来观察样品的表面形貌和研究材料的物理性质。
(完整版)材料分析方法试题及答案07
材料现代分析方法试题7(参考答案)一、基本概念题(共10题,每题5分)1.欲用Mo靶X射线管激发Cu的荧光X射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少?答:欲使Cu样品产生荧光X射线辐射,V =1240/λCu=1240/0.15418=8042,V =1240/λCu=1240/0。
1392218=8907激发出荧光辐射的波长是0。
15418nm激发出荧光辐射的波长是0.15418nm2.判别下列哪些晶面属于[11]晶带:(0),(1),(231),(211),(01),(13),(12),(12),(01),(212)。
答:(0)(1)、(211)、(12)、(01)、(01)晶面属于[11]晶带,因为它们符合晶带定律:hu+kv+lw=0。
答:(0)(1)、(211)、(12)、(01)、(01)晶面属于[11]晶带,因为它们符合晶带定律:hu+kv+lw=0。
3.用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成什么图案?为摄取德拜图相,应当采用什么样的底片去记录?答:用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成一组锥心角不等的圆锥组成的图案;为摄取德拜图相,应当采用带状的照相底片去记录.4.洛伦兹因数是表示什么对衍射强度的影响?其表达式是综合了哪几方面考虑而得出的?答:洛伦兹因数是表示掠射角对衍射强度的影响。
洛伦兹因数表达式是综合了样品中参与衍射的晶粒大小,晶粒的数目和衍射线位置对衍射强度的影响。
5.给出简单立方、面心立方、体心立方以及密排六方晶体结构电子衍射发生消光的晶面指数规律。
答:常见晶体的结构消光规律简单立方对指数没有限制(不会产生结构消光)f. c. c h。
k. L. 奇偶混合b. c。
c h+k+L=奇数h。
c。
p h+2k=3n, 同时L=奇数体心四方 h+k+L=奇数6.透射电镜的成像系统的主要构成及特点是什么?答:透射电镜的成像系统由物镜、物镜光栏、选区光栏、中间镜(1、2)和投影镜组成。
7-第七章 金属材料焊接性分析方法(焊工工艺-第3版)
图7-3 采用焊条电弧焊时,试验焊缝位置
第二节 金属焊接性评定与试验
图7-4 采用焊条自动送进装置焊接试验焊缝位置
第一节 金属的焊接性
第二节 金属焊接性评定与试验
二、常用的焊接性试验方法 由前述可知,焊接性试验方法种类很多,因抗裂性能是衡量金
属焊接性的主要标志,所以在生产中还是常用焊接裂纹试验来表征 材料的焊接性。以下主要介绍几种常用的焊接性试验方法。 1.间接试验法
碳当量鉴定法是判断焊接性的最简便的间接法,常用作焊接冷 裂纹的间接评定。所谓碳当量法,就是将包括碳在内的其他合金元 素对硬化(脆化和冷裂等)的影响折合成碳的影响。
第一节 金属的焊接性
(3)结构因素 焊接接头和结构设计会影响应力状态,从而对焊 接性也发生影响。
这里主要从结构的刚度、应力集中和多向应力等方面来考虑。 使焊接接头处于刚度较小的状态,能够自由收缩,有利于防止焊接 裂纹。缺口、截面突变、焊缝余高过大、交叉焊缝等容易引起应力 集中,要尽量避免。不必要地增大母材厚度或焊缝体积,会产生多 向应力,也应注意防止。
第七章 金属材料 焊接性分析方法
第一节 金属的焊接性
一、金属焊接性的概念 1.定义:金属焊接性是指材料在限定的施工条件下焊接成按规定设 计要求的构件,并满足预定服役要求的能力,即金属材料对焊接加 工时适应性。 2.特点:焊接性受材料、焊接方法、构件类型及使用要求四个因素 的影响。根据上述定义,优质的焊接接头应具备两个特点:即接头 中不允许存在超过质量标准规定的缺陷;同时具有预期的使用性能。 根据讨论问题的着眼点不同,焊接性又分为工艺焊接性和使用焊接 性。
材料力学-7-应力状态分析
7.1 应力状态的基本概念
y
y
1 1 4
z
4
Mz
x
x
l
S FP
2
3
Mx
z
3
a
第7章 应力状态分析
7.2 平面应力状态任意方向面上的应力 ——解析法
7.2 平面应力状态任意方向面上的应力 ——解析法
一、方向角与应力分量的正负号约定
x
正应力
x
x
拉为正
压为负
x
7.2 平面应力状态任意方向面上的应力 ——解析法
?
第7章 应力状态分析 7.1 应力状态的基本概念
7.2 平面应力状态任意方向面上的应力 ——解析法 7.3 主应力、主平面与面内最大切应力 ——解析法 7.4 应力圆及其应用——图解法
7.5 三向应力状态的特例分析
7.6 广义胡克定律
7.7 应变能密度
第7章 应力状态分析
tan 2q p=- 2 τ
xy
x y
主平面(principal plane):切应力q=0的方向面,用 qp表示。 主应力(principal stress):主平面上的正应力。 主方向(principal directions):主平面法线方向,用方 向角qp表示。
7.3 主应力、主平面与面内最大切应力 ——解析法
第7章 应力状态分析
第7章 应力状态分析
1
3
2
max
max
拉压、弯曲正应力 扭转、弯曲切应力
这些强度问题的共同特点是:
1、危险截面上的危险点只承受正应力 或切应力; 2、都是通过实验直接确定失效时的极限应力,并以此为依据建立强度 设计准则。 复杂受力:危险截面上危险点同时承受正 应力和切应力,或者危险点的其他面上同 时承受正应力或切应力。 → 强度条件
材料断口分析(第七—八章)
29
二、挤压(拉拔)时的断裂
挤压表面裂纹
由于挤压筒和模壁摩擦力的阻碍作用,使边部金属流动滞后中心部金 属,造成了边部受拉,中心受压的附加应力分布。摩擦阻力越大,此 种现象就越严重,当摩擦力很大时,就会造成金属挤压制品的表面裂 纹,严重时会出现竹节状或棘棒状。 拉拔与挤压类似,但基本应力为拉应力,这就加剧了边部裂纹。
提出预防措施及改进建议
↓↓↓ 综合分析报告
36
失效分析报告的内容
① 失效构件的描述 ② 失效时的服役条件 ③ 失效前的历史 ④ 构件制造及处理过程 ⑤ 构件材质及冶金质量的评定 ⑥ 各种物理、化学、力学试验 ⑦ 失效的主要原因及其影响因素 ⑧ 预防措施及改进意见
要求:简洁、清晰、合乎逻辑
37
三、失效的主要原因
31
三、锻造时的断裂
锻造时表面裂纹
1、锻造温度过高时,由于晶间结合力大大减弱,常出现晶间断裂,且裂 纹方向与周向拉应力垂直 2、锻造温度过低时,晶间强度常高于晶内强度,便出现穿晶断裂。由剪 应力引起,其裂纹方向与最大主应力呈45°角 3、自由镦粗塑性较低的金属饼材时,由于锤头端面对镦粗件表面摩擦力 的影响,形成单鼓形,使其侧面周向承受拉应力而产生裂纹
预防措施:加强润滑、降低摩擦阻力
改进工艺方法:反向挤压,反张力拉伸
30
挤压内部裂纹 挤压比较小时,由于产生表面变形会使压缩变形深入 不到轴心层,结果导致中心层产生附加拉应力,此拉 应力与纵向基本应力相迭加,使轴心层工作应力大于 材料的断裂应力,产生内裂。 预防措施:增大挤压比 拉拔时增大变形程度,减小模孔锥角
可能原因:酸洗过度或 漂洗不够,导致氢脆。
47
疲劳断裂—内燃机曲轴断裂分析
内燃机曲轴:40Cr,锻造+调质 (轴颈处渗碳)
现代材料分析方法
现代材料分析方法现代材料分析方法是科学家们为了研究材料的性质和结构而开发的一系列技术和手段。
随着科学技术的进步,越来越多的先进分析方法被开发出来,使得人们能够更加深入地了解材料的特性和行为。
以下将介绍一些常见的现代材料分析方法。
1.X射线衍射(XRD):X射线衍射是一种用于确定晶体结构的分析方法。
通过照射材料并观察衍射的X射线图案,可以推导出材料的晶格常数、晶胞结构以及晶体的取向和纯度等信息。
2.扫描电子显微镜(SEM):SEM使用电子束来扫描样品表面,并通过捕获和放大反射的电子来产生高分辨率的图像。
SEM可以提供有关材料表面形貌、尺寸分布和化学成分等信息。
3.透射电子显微镜(TEM):TEM使用电子束透射样品,并通过捕获透射的电子来产生高分辨率的图像。
TEM可以提供有关材料内部结构、晶体缺陷和晶界等信息。
4.能谱仪(EDS):能谱仪是一种与SEM和TEM配套使用的分析设备,用于确定材料的元素组成。
EDS通过测量样品散射的X射线能量来识别和定量分析元素。
5.红外光谱(IR):红外光谱是一种用于确定材料分子结构和化学键的分析方法。
通过测量材料对不同频率的红外辐射的吸收,可以确定样品的功能基团和化学结构。
6.核磁共振(NMR):核磁共振是一种用于研究材料中原子核的分析方法。
通过利用材料中原子核的磁性质,可以确定样品的化学环境、分子结构和动力学信息。
7.质谱(MS):质谱是一种用于确定材料中化合物和元素的分析方法。
通过测量材料中离子生成的质量-电荷比,可以确定样品的分子量、结构和组成。
8.热分析(TA):热分析是一种通过测量材料对温度的响应来研究其热性质和热行为的方法。
常见的热分析技术包括差示扫描量热法(DSC)、热重分析(TGA)和热膨胀分析(TMA)等。
9.表面分析(SA):表面分析是一种研究材料表面化学成分和结构的方法。
常用的表面分析技术包括X射线光电子能谱(XPS)、扫描隧道显微镜(STM)和原子力显微镜(AFM)等。
材料分析方法第3版(周玉)出版社配套课件第7章机械工业出版社
所在的圆为欲求的轨迹;
图7-4 与极点成等夹角点的轨迹
与P点成90点的轨迹为过赤道线
上F 点的经线大圆NFS,NFS可
视为一平面的投影,其法线的投
影点为P
8
第一节 极射赤面投影法
二、乌氏网
4) 极点的转动 在乌氏网上可将极点绕确定轴转动到新位置
转轴垂直于投影面:如图7-5,将P点绕基圆圆心(轴的投影)转
6
第一节 极射赤面投影法
二、乌氏网
乌氏网是确定晶体方位及测量夹角的工具,应用时注意
1) 晶体投影图基圆的直径与乌氏网相同,使用时将二者中心 重合
2) 测定二极点间夹角时,转动投 影图,使二极点位于同一经线大 圆(包括基圆)或赤道上, 二点间 的纬度差或经度差极为二极点间 夹角,见图7-3。 如A、B极点间 夹角为120, C、D极点间夹角 为20, E、F 极点间夹角为20
X射线衍射是织构测定的主要方法,近年来电子背散射衍 射(EBSD)技术在织构分析方面亦得到广泛应用
3
第一节 极射赤面投影法
一、极射赤面投影法的特点
极射赤面投影法用以表达晶向、晶面的方位,见图7-1
1) 被投影晶体置于参考球球心O,假定晶体的所有晶向、晶 面均通过球心
2) 投射点B为球面上一点的射线,投影 面是与过B点直径垂直的任一平面,平 行于投影面且通过球心的平面与球交成 一大圆, B点向大圆上各点的投影线在 投影面上的交点构成基圆(NESW)
图7-9为立方晶系标准投影图,落在同一大圆弧和直线上的极 点对应的晶面法线在同一平面上, 此平面的法线为这些晶面 的交线。相交于同一直线的晶面属于同一晶带, 其交线称为 晶带轴,用[uvw]表示,晶面指数(hkl)和[uvw]满足晶带定律
材料分析方法总结
材料分析方法总结材料分析是一门重要的科学技术,它在工程、材料科学、地质学、化学等领域都有着广泛的应用。
在材料分析中,我们需要运用各种方法来对材料的成分、结构、性能进行分析,以便更好地理解和利用材料。
本文将对常见的材料分析方法进行总结,希望能够对相关领域的研究者和工程师有所帮助。
首先,光学显微镜是材料分析中常用的方法之一。
通过光学显微镜,我们可以观察材料的形貌、颗粒大小、晶粒结构等信息。
这对于金属、陶瓷、塑料等材料的分析都非常有帮助。
同时,透射电子显微镜和扫描电子显微镜也是常用的分析工具,它们可以提供更高分辨率的图像,帮助我们观察材料的微观结构。
除了显微镜,X射线衍射也是一种常用的材料分析方法。
通过X射线衍射,我们可以确定材料的晶体结构和晶格参数,从而了解材料的晶体学性质。
X射线衍射在材料科学、地质学和化学领域都有着广泛的应用,是一种非常有效的分析手段。
此外,光谱分析也是材料分析中常用的方法之一。
光谱分析包括紫外可见吸收光谱、红外光谱、拉曼光谱等,它们可以用于分析材料的组成、结构和性能。
光谱分析在材料科学、化学和生物学领域都有着重要的应用,是一种非常有力的分析工具。
在材料分析中,热分析也是一种常用的方法。
热分析包括热重分析、差热分析、热膨胀分析等,它们可以用于研究材料的热稳定性、热分解过程、相变行为等。
热分析在材料科学、化学工程和材料加工领域都有着广泛的应用,是一种非常重要的分析手段。
最后,表面分析也是材料分析中不可或缺的方法。
表面分析包括扫描电子显微镜、原子力显微镜、X射线光电子能谱等,它们可以用于研究材料的表面形貌、化学成分和电子结构。
表面分析在材料科学、电子工程和纳米技术领域都有着重要的应用,是一种非常有效的分析手段。
综上所述,材料分析是一门重要的科学技术,它涉及到多个领域的知识和技术。
在材料分析中,我们可以运用光学显微镜、X射线衍射、光谱分析、热分析和表面分析等方法来对材料进行分析,从而更好地理解和利用材料。
材料成分分析方法
材料成分分析方法材料成分分析是指对材料中各种成分的含量和性质进行定量和定性分析的一种方法。
在材料科学和工程领域中,材料成分分析是非常重要的,它可以帮助我们了解材料的组成和性能,为材料的选取、设计和应用提供重要依据。
在材料成分分析中,常用的方法包括化学分析、物理分析、光谱分析等,下面将对这些方法进行详细介绍。
化学分析是材料成分分析的重要手段之一,它通过化学反应来确定材料中各种成分的含量和性质。
常用的化学分析方法包括滴定法、显色滴定法、络合滴定法、重量法等。
这些方法可以对材料中的金属元素、非金属元素、有机物等进行准确的分析,具有分析范围广、准确度高的特点。
物理分析是通过材料的物理性质来进行成分分析的方法,常用的物理分析方法包括热分析、磁分析、电分析等。
热分析是利用材料在加热或冷却过程中的物理性质变化来进行分析的方法,包括热重分析、差热分析等。
磁分析是利用材料在外加磁场下的响应来进行分析的方法,包括磁化率分析、磁滞回线分析等。
电分析是利用材料在外加电场下的响应来进行分析的方法,包括电导率分析、介电常数分析等。
这些方法可以对材料的热学、磁学、电学性质进行准确的分析,具有分析速度快、操作简便的特点。
光谱分析是利用材料对光的吸收、发射、散射等现象进行分析的方法,包括紫外-可见吸收光谱分析、红外光谱分析、拉曼光谱分析等。
这些方法可以对材料的分子结构、化学键、功能团等进行准确的分析,具有分析非破坏性、样品准备简单的特点。
综上所述,材料成分分析方法包括化学分析、物理分析、光谱分析等多种方法,每种方法都有其特点和适用范围。
在实际应用中,我们可以根据具体的分析目的和要求选择合适的分析方法,以获得准确、可靠的分析结果。
同时,随着科学技术的不断发展,新的分析方法也在不断涌现,为材料成分分析提供了更多的选择和可能性。
希望本文对材料成分分析方法的介绍能够对读者有所帮助,谢谢阅读。
材料现代分析技术-7透射电子显微像
第二相粒子
应变场衬度 由点阵畸变造成
第二相粒子
取向衬度
可以通过某种途径,使第二相处于有利的 取向位置,而基体退居不利取向位置,从而 有利于清晰显示第二相的衬度
结构因数衬度
利用结构因数衬度可以显示非常细小的第 二相粒子。特别是当这些质点在基体中并没 有引起明显的应变时,也能提供清晰的质点 形象。
相位衬度和高分辨率像
层错
层错不可见
α = ±2nπ (n = 0,±1,±2,LL)
层错可见
α = ± 2 nπ
3
层错
平行于膜面的层错
有层错处与无层错处衬度往往不同
层错
倾斜于膜面的层错
当某晶柱中的Q点位置正好是消光距离的整数倍时,层错区与完
整区衬度相同,所以层错区除了和完整区之间有衬度上的差别 外,还会出现整齐的消光条纹 。有点象楔形晶体边缘的等厚条纹。
衍衬运动学
运动学理论是建立在运动学近似[即忽略各级 衍射束(透射束为零级衍射束)之间的相互作用] 基础之上的用于讨论衍射波强度的一种简化理 论。 基本假设:
1. 入射电子在样品内只可能受到不多于一次的散射, 即不考虑多次反射与吸收。
2. 入射电子波在样品内传播过程中,强度的衰减可以 忽略,即不考虑入射束与衍射束之间相互作用
(πt)2 sin2(πst)
Ig =
ξ
2 g
⋅
(πst )2
(πt )2
I = gmax
2
ξg
等倾条纹
特征:
1. 在等倾条纹上s=0; 2. s=0条纹两侧s异 号;
3. 可以相交; 4. 在视场中会跑动
非理想晶体
衍射衬度特别适合观察晶体中缺陷
A晶柱
材料现代分析与测试 第七章 扫描探针显微分析
第七章扫描探针显微分析第一节概述电子探针显微分析(Electrom Probe Microanalysis——EPMA)也称为电子探针X射线显微分析,是利用电子光学和X射线光谱学的基本原理将显微分析和成分分析相结合的一种微区分析方法。
该分析方法特别适用于分析试样中微小区域的化学成分分析,是研究材料组织结构和元素分布状态的极为有用的分析方法。
扫描探针显微镜(Scanning Probe Microscopes 简称SPM)包括扫描显微镜(STM)、原子力显微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)、静电力显微镜以及扫描热显微镜等,是一类完全新型的显微镜。
它们通过其端粗细只有一个原子大小的探针在非常近的距离上探索物体表面的情况,便可以分辨出其它显微镜所无法分辨的极小尺度上的表面特征。
一、SPM的基本原理控制探针在被检测样品的表面进行扫描,同时记录下扫描过程中探针尖端和样品表面的相互作用,就能得到样品表面的相关信息。
因此,利用这种方法得到被测样品表面信息的分辨率取决于控制扫描的定位精度和探针作用尖端的大小(即探针的尖锐度)。
二、SPM的特点1. 原子级高分辨率。
STM在平行和垂直于样品表面方向的分辨率分别可达0.1nm 和0.01nm,即可以分辨出单个原子,具有原子级的分辨率。
2. 可实时地得到实空间中表面的三维图像,可用于具有周期性或不具备周期性的表面结构研究及表面扩散等动态过程的研究。
3. 可以观察单个原子层的局部表面结构,因而可直接观察表面缺陷、表面重构、表面吸附体的形态和位置,以及由吸附体引起的表面重构等。
4. 可在真空、大气、常温,以及水和其它溶液等不同环境下工作,不需要特别的制样技术,并且探测过程对样品无损伤。
这些特点适用于研究生物样品和在不同试验条件下对样品表面的评价。
5. 配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得到有关表面结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。
材料分析测试方法
材料分析测试方法材料分析测试方法是指通过一系列的实验和测试手段,对材料的成分、结构、性能等进行分析和评定的方法。
在工程领域和科学研究中,材料分析测试方法是非常重要的,它可以帮助我们了解材料的特性,指导材料的设计、制备和应用。
下面将介绍几种常见的材料分析测试方法。
首先,光学显微镜是一种常用的材料分析测试方法。
通过光学显微镜,我们可以观察材料的表面形貌、晶粒结构、孔隙分布等特征。
这对于金属、陶瓷、高分子材料等的分析非常有帮助,可以直观地了解材料的微观结构和性能。
此外,透射电镜和扫描电镜也是常用的材料分析测试方法,它们可以进一步放大材料的微观结构,观察材料的晶体形貌、晶界特征、颗粒大小等,为材料的分析提供更多的信息。
其次,化学分析是另一种重要的材料分析测试方法。
化学分析可以通过化学试剂与被测物质发生化学反应,从而确定材料的成分和含量。
常见的化学分析方法包括滴定法、显色反应法、火焰原子吸收光谱法等。
这些方法可以用于分析金属材料、无机非金属材料、有机高分子材料等,对于材料的成分分析非常有帮助。
另外,热分析是一种通过加热材料,测量其在温度变化过程中物理性质和化学性质的变化来分析材料的方法。
常见的热分析方法包括热重分析、差热分析、热膨胀分析等。
这些方法可以用于分析材料的热稳定性、热分解特性、热膨胀系数等,对于材料的热性能分析非常有帮助。
最后,机械性能测试是评价材料力学性能的重要方法。
常见的机械性能测试方法包括拉伸试验、压缩试验、弯曲试验、硬度测试等。
这些方法可以用于评价材料的强度、韧性、硬度等力学性能,对于材料的力学性能分析非常有帮助。
总之,材料分析测试方法是多种多样的,每种方法都有其特点和适用范围。
在实际工程和科学研究中,我们需要根据具体的材料类型和分析目的,选择合适的测试方法进行分析。
通过材料分析测试方法,我们可以全面了解材料的特性,为材料的设计和应用提供科学依据。
材料科学基础-第7章-三元相图
38
38
7.8.5 两相平衡、三相平衡和 四相平衡的类型和一般规律 (2)三相包晶型平衡(由两个相反应生成一个相) 包晶转变 L + → 包析转变 →+ 合晶转变 L1+L2→
垂直截面中倒三角形
39
39
7.8.5 两相平衡、三相平衡和 四相平衡的类型和一般规律
三相平衡图形特点:
24
24
7.8.4 三元共晶相图 应用:
可确定合金在该温度下的相组成; 可运用杠杆定律和重心法则确定合金中各相 的成分及其含量。
25
25
7.8.4三元共晶相图
2.垂直截面与投影图 b1 O点合金室温相组成物: A+B+C
c1 (1)投影图
a1
wA
oa1 Aa1
100%
wB
ob1 Bb1
三元合金R在某温度处于++三相平衡状 态,则该合金成分点必定处在这三相成分点 组成的三角形的重心。
13
13
W Rd w % 100 % W R ad
Re w % 100% WR e B% Rf w % 100% W R f
A
B
W
C% f
杠杆定律:
WP / WQ RQ / RP
。
10
10
7.8.2 三元系平衡相的定量法则
合金R在某温度处于+两相平衡,则R的成 分必定落在连接两个成分点的直线上。 杠杆定律:
W / W Rβ / Rα
。
W % R / 100%
,
W % R / 100%
11
O
XA+XB+XC=100%
A
材料分析方法
材料分析方法
1. 目视观察法:通过裸眼观察材料的外观特征,包括颜色、形状、纹理等,以初步判断材料的性质。
2. 显微镜观察法:使用光学显微镜观察材料的微观结构和特征,包括晶体结构、颗粒形貌等,以评估材料的晶化程度、颗粒尺寸等。
3. 热分析法:通过对材料在不同温度下的热响应进行分析,包括热重分析(TGA)、差热分析(DSC)等,以确定材料的
热稳定性、相变温度等。
4. 光谱分析法:利用光的吸收、发射、散射等性质对材料进行分析,常见的光谱分析包括紫外可见光谱、红外光谱、拉曼光谱等,用于分析材料的化学组成、分子结构等。
5. 电子显微镜观察法:使用扫描电子显微镜(SEM)或透射
电子显微镜(TEM)对材料的表面形貌、晶体结构进行观察,以获取高分辨率的图像和微区成分分析。
6. X射线衍射方法:利用材料对入射X射线的衍射现象,分
析材料的晶体结构、结晶度等,常见的方法包括X射线粉末
衍射(XRD)和单晶X射线衍射(XRD)。
7. 磁学分析法:通过对材料的磁性进行测试与分析,包括磁滞回线测量、霍尔效应测量等,以判断材料的磁性、磁结构等。
8. 电化学分析法:通过测量材料在电化学条件下的电流、电压等性质,以研究材料的电化学性能、电极活性等。
9. 分子模拟与计算方法:运用计算机模拟技术对材料的分子结构、物理性质进行分析与计算,包括分子力场模拟、密度泛函理论等。
10. X射线能量色散谱分析法:通过对X射线入射材料的能量散射进行分析,以确定材料的元素成分和含量,用于材料的定性与定量分析。
材料力学-07-应力分析和强度理论
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
1.斜截面上的应力 1.斜截面上的应力
y
σx
a
τ yx
τ xy
σx α
τa
n
τ xy
σa
dA
x
σy
n
τ yx
σy
t
t
∑F = 0
∑F =0
13
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
tan 2α0 = − 2τ xy
σ x −σ y
由上式可以确定出两个相互垂直的平面, 由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。 为最大正应力和最小正应力所在平面。 所以,最大和最小正应力分别为: 所以,最大和最小正应力分别为:
σmax = σ x +σ y
2 1 + 2 − 1 2
单元体
单元体——构件内的点的代表物, 单元体——构件内的点的代表物,是包围被研究点的 ——构件内的点的代表物 无限小的几何体。 常用的是正六面体。 无限小的几何体。 常用的是正六面体。 单元体的性质—— 平行面上,应力均布; 单元体的性质——1) 平行面上,应力均布; —— 2) 平行面上,应力相等。 平行面上,应力相等。
2 2
σy
τ xy
α
60 − 40 60 + 40 = + cos(−60o ) + 30 sin(−60o ) 2 2
σx
= 9.02 MPa
τα =
σ x −σ y
2 60 + 40 = sin(−60o ) − 30 cos(−60o ) 2
《材料现代分析方法》练习与答案
《材料现代分析方法》练习与答案1. 在粉末多晶衍射的照相法中包括、和。
2. 德拜相机有两种,直径分别是和Φ mm。
测量θ角时,底片上每毫米对应o和o。
3. 衍射仪的核心是测角仪圆,它由、和共同组成。
4. 可以用作X射线探测器的有、和等。
5. 影响衍射仪实验结果的参数有、和等。
八、名词解释 1. 偏装法—— 2. 光栏—— 3. 测角仪——4. 聚焦圆—— 5. 正比计数器—— 6. 光电倍增管——习题:1. CuKα辐射(λ=0.154 nm)照射Ag(f.c.c)样品,测得第一衍射峰位置2θ=38°,试求Ag的点阵常数。
2. 试总结德拜法衍射花样的背底来源,并提出一些防止和减少背底的措施。
3. 粉末样品颗粒过大或过小对德拜花样影响如何?为什么?板状多晶体样品晶粒过大或过小对衍射峰形影响又如何?4. 试从入射光束、样品形状、成相原理(厄瓦尔德图解)、衍射线记录、衍射花样、样品吸收与衍射强度(公式)、衍射装备及应用等方面比较衍射仪法与德拜法的异同点。
5. 衍射仪与聚焦相机相比,聚焦几何有何异同?6. 从一张简单立方点阵物的德拜相上,已求出四根高角度线条的θ角(系由CuKα所产生)及对应的干涉指数,试用“a-cos2θ”的图解外推法求出四位有效数字的点阵参数。
HKL 532 620 443 541 611 540 621θ.角72.08 77.93 81.11 87.44 7. 根据上题所给数据用柯亨法计算点阵参数至四位有效数字。
8. 用背射平板相机测定某种钨粉的点阵参数。
从底片上量得钨的400衍射环直径2Lw=51.20毫米,用氮化钠为标准样,其640衍射环直径2LNaCl =36.40毫米。
若此二衍射环均系由CuKαl辐射引起,试求精确到四位数字的钨粉的点阵参数值。
9. 试用厄瓦尔德图解来说明德拜衍射花样的形成。
10. 同一粉末相上背射区线条与透射区线条比较起来其θ较高还是较低?相应的d较大还是较小?既然多晶粉末的晶体取向是混乱的,为何有此必然的规律11. 衍射仪测量在人射光束、试样形状、试样吸收以及衍射线记录等方面与德拜法有何不同?12. 测角仪在采集衍射图时,如果试样表面转到与入射线成30°角,则计数管与人射线所成角度为多少?能产生衍射的晶面,与试样的自由表面呈何种几何关系?13. Cu Kα辐射(λ=0.154 nm)照射Ag(f.c.c)样品,测得第一衍射峰位置2θ=38°,试求Ag的点阵常数。
材料分析7-SEM黑白
举例1: SEM图(二次电子像)
样品:X7R电容器瓷料 变化条件:保温时间
举例2:
不同晶粒形状的 电子瓷料SEM图 (二次电子像)
二、背散射电子成像
背散射电子(BSE)—Backscattered Electrons,被样 品原子反射回来的一部分入射电子。
目前常用线性直进式全聚焦谱仪,分光晶体C与 样品S、探测器D处在半径为R的聚焦圆上(罗兰圆),分 光晶体C沿一条直线运动。这样可保持出射角α不变, 同时绕其自身轴旋转以改变θ角。探测器D必须和分光 晶体一起协调运动,以保证时刻收集到晶体表面产生 的衍射线,因此D的运动轨迹是玫瑰叶曲线,轴线面 向分光晶体,罗兰图的中心的运动轨迹,以样品S为 中心,R为半径的圆(R=140mm)。
与表面形态一一对应,
二次电子的强度对表面形貌的变化敏感,故可以用以
形成形貌衬度像。
②SE主要来自于样品表层50—100Å的深度范围,
电子束未向横向扩展,所以SE的分辨率相当于束斑
直径,分辨率高,适于显示形貌细节特征。
③SE能量低(<50eV),在检测器+100~+200伏偏压 的吸引下,低能电子走弯曲轨迹到达检测器,不仅增 加了有效收集立体角,提高SE信号强度,而且背向检 测器的区域产生的SE也可到达检测器,不至于形成阴 影——无影照射。
由图中几何关系,谱仪长度(分光晶体的位置) 为
l = 2 R sin θ = R λ
d
对于给定的谱仪,罗兰图半径(R=140mm)和分光晶体 面间距d为已知值。只要测出 l 的值,即可求出特征X 射线的波长λ,确定样品所含元素种类。
XRD分析测试方法-7
《材料分析测试方法》
1. 固溶体的类型与组分测量
固溶体分间隙式和置换式两类,根据固溶体的点阵常数随溶质原于的浓 度变化规律可以判断溶质原子在固溶体点阵中的位置,从而确定因溶体的类型。
0.05265.....W . M
0.05265 17.0% 1 0.69
WQ
8604 4892
0.69 8.08
0.15019.....W . Q
0.15019 1 0.69
48.4%
WC
6660 0.69 4892 9.16
0.10255.....W . C
求 ——参比强W度i值。
K
i s
得先
(2) K值法特点
《材料分析测试方法》
• K值法中的 与掺K入si 量无关,且为常数。而内标法公式中的 关,还C随si内标物质的掺入量有关
不仅与物相本身有
• 绘制内标法标定曲线时一般至少需要三个试样,在不同样品中标准相 S 的重量百分
数保持恒定,i 相含量在各个试样中不相同。 在 K 值法中,配制试样不要求 S 相
C A
9.16
复合样中各峰的强度, IM(120+210)= 922, IC(101)= 6660, IA(113)= 4829
IQ(1011) 8604
《材料分析测试方法》
计算公式: 计算结果:
Wi
Ii Is
Ws
K
i s
,
Wi
Wi (1 Ws )
WM
922 0.69 4892 2.47
含量恒定,也不要求i 相重量分数有规律变化
《材料分析测试方法》
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4) 极点的转动 在乌氏网上可将极点绕确定轴转动到新位置
转轴与投影面成任意夹角:如图7-7,转轴的投影为B1点,使 A1点绕B1轴顺时针转动40的步骤为,① 将B1 置于赤道线上;
② 将A1和B1同时绕NS轴转动至B1 到达基圆圆心,称为B2, A1点在 其纬线上到达A2; ③ A2 绕B2按预 定方向转40到达A3; ④ B2绕 NS 轴转至原位B1, A3沿其纬线相应 转至A4, A4即为A1点绕 B1轴顺时 针转动40后的新位置
图7-8 投影面的转. 换
11
第一节 极射赤面投影法
三、单晶体的标准投影图
极射赤面投影可以用一个点简明方便地表示晶体中一组晶 向和晶面
对于某种点阵结构的单晶体,选择某一低指数的重要晶面 作为投影面,将各晶面向其投影,即可得到单晶体的标准 衍射图
立方晶系的晶面间夹角 co s h1h2k1k2l1l2
X射线衍射是织构测定的主要方法,近年来电子背散射衍
射(EBSD)技术在织构分析方面亦得到广泛应用
.
3
第一节 极射赤面投影法
一、极射赤面投影法的特点
极射赤面投影法用以表达晶向、晶面的方位,见图7-1
1) 被投影晶体置于参考球球心O,假定晶体的所有晶向、晶 面均通过球心
2) 投射点B为球面上一点的射线,投影 面是与过B点直径垂直的任一平面,平 行于投影面且通过球心的平面与球交成 一大圆, B点向大圆上各点的投影线在 投影面上的交点构成基圆(NESW)
动 角到达P 点
转轴平行于投影面:如图7-6, 轴的投影为基圆直径,转动投 影图使转轴与乌氏网
NS重合, 使极点沿
其纬线转动 角。如
A1→A2; 若转至投
影图背面,用不同符
号标明(如B1→B1)
图7-5 极点绕垂直于 图7-6 极点绕平行于
投影面的轴转动 . 投影面的轴转动
9
第一节 极射赤面投影法
球面上某极点 M 的位置可用经度( )
和纬度( )表示
图7-2a 参考球上的坐标网.
5
第一节 极射赤面投影法
二、乌氏网
在图7-2a中,若以赤道平面上一点(如E点)为投射点,投 影面平行于NS轴,此投影为乌氏网,见图7-2b
若以N或S为投影点,投影面平行于赤道平面,可得到极网, 见图7-2c
. 图7-2 b) 乌氏网 c) 极网
与点
(h1 2k1 2l1 2)h (2 2k2 2l2 2)
阵常数无关,标准投影图对于不同点阵常数的立方晶体普
遍适用;因立方晶系同名的晶面和晶向垂直,其标准投影
图同时可用于晶面和晶向
非立方晶系的晶面间夹角与点阵常数有关,故无法制作普
遍适用的标准衍射. 图
12
第一节 极射赤面投影法
三、单晶体的标准投影图
定出等角的点M、T及Q,此3点
所在的圆为欲求的轨迹;
图7-4 与极点成等夹角点. 的轨迹
与Байду номын сангаас点成90点的轨迹为过赤道线
上F 点的经线大圆NFS,NFS可
视为一平面的投影,其法线的投
影点为P
8
第一节 极射赤面投影法
二、吴氏网
4) 极点的转动 在乌氏网上可将极点绕确定轴转动到新位置
转轴垂直于投影面:如图7-5,将P点绕基圆圆心(轴的投影)转
图7-3 极点间夹角的测. 量
7
第一节 极射赤面投影法
二、吴氏网
3) 与已知极点成等夹角点的轨迹如图7-4所示。首先转动投影 图中已知极点P 位于乌氏网的赤道线上
在P点两侧定出 2 个等角距离点(如Q、R),以Q、R连线中点 P为圆心作圆,此小圆即为与P 点成等角点的轨迹;
在过P 的经线大圆上及赤道线上
图7-7 极点绕倾斜轴转. 动
10
第一节 极射赤面投影法
二、吴氏网
5) 投影面的转换 在乌氏网上将极点绕确定轴转动到新位置
如图7-8, K、P、Q是以 O 为 投影面的极点, 将K转到投影 面基圆中心, P、Q 随之作相 同的转动,沿其各自的纬线到 达新位置 P1、Q1,这就是 P、 Q点以K为新投影面的位置
(111)
图. 7-9 立方晶系标准投影图
13
第二节 织构的种类和表示方法
织构按择优取向分布特点分类
.
2
第七章 多晶体织构的测定
理想多晶体中各晶粒的取向呈无规分布,宏观上表现为各 向同性
实际的多晶体材料的晶粒存在择优取向,称这种组织状态 为织构
多晶体材料织构的形成往往与其制备和加工过程有关,如 铸造、镀膜、塑性变形、退火等
织构使多晶体材料的物理、化学、力学等性能发生各向异 性。这种性质有时是有害的,有时又是有益的
6
第一节 极射赤面投影法
二、吴氏网
吴氏网是确定晶体方位及测量夹角的工具,应用时注意
1) 晶体投影图基圆的直径与乌氏网相同,使用时将二者中心 重合
2) 测定二极点间夹角时,转动投 影图,使二极点位于同一经线大 圆(包括基圆)或赤道上, 二点间 的纬度差或经度差极为二极点间 夹角,见图7-3。 如A、B极点间 夹角为120, C、D极点间夹角 为20, E、F 极点间夹角为20
图7-9为立方晶系标准投影图,落在同一大圆弧和直线上的极 点对应的晶面法线在同一平面上, 此平面的法线为这些晶面 的交线。相交于同一直线的晶面属于同一晶带, 其交线称为 晶带轴,用[uvw]表示,晶面指数(hkl)和[uvw]满足晶带定律
hu + kv + lw = 0
(7-1)
(001)
(011)
3) 晶向或晶面法线与球面交点称露出点,
投影线与投影面的交点即为晶向或晶面
的投影点,称极点
图7-1 极射赤面投影法.
4
第一节 极射赤面投影法
二、乌氏网
如图7-2a,为确定极点在极射赤面投影面上的位置,以及 测量各极点间的夹角,需在参考球上建立坐标网
取参考球的一直径NS作为南北极,过球心O且垂直于NS的大 圆称为赤道,平行于赤道大圆的一系 列等角距离平面与参考球交成纬线, 通过NS轴的等角距离平面与球面交成 经线
第一篇 材料X射线衍射分析
第 一章 X射线物理学基础 第二章 X射线衍射方向 第三章 X射线衍射强度 第四章 多晶体分析方法 第五章 物相分析及点阵参数精确测定 第六章 宏观残余应力的测定 第七章 多晶体织构的测定
.
1
第七章 多晶体织构的测定
本章主要内容 第一节 极射赤面投影法 第二节 织构的种类和表示方法 第三节 丝织构指数的测定 第四节 极图的测定 第五节 反极图的测定