分离工程 第二章-1
制药分离工程固液萃取(1)
提取液
残渣
提取剂(回收)
溶质
《制药分离工程》
xx
概述
提取液再加工:
➢ 按一定质量标准浓缩加工制成煎膏剂、酒剂、酊剂、浸膏、 流浸膏等剂型。
➢ 通过浓缩干燥制成一定规格的半成品,以便制成片剂、冲 剂等剂型。
➢ 加入适当辅料,加工制成软膏、栓剂等其它剂型。 ➢ 精制加工,纯化有效成分,制成注射剂等剂型。
《制药分离工程》
xx
中药的提取
➢ 单体成分的提取 ➢ 单味药的提取 ➢ 复方的提取
《制药分离工程》
xx
中药的提取
单体成分的提取:
某些药材的有效成分具有明确的临床疗效,化学结构、理化性质、 药理、毒性均已明确,含量可观,提取技术经济合理,可以 进行单一成分的提取、分离、精制。如齐墩果酸、豆腐果苷、 黄连素、石吊兰素等,都可纯化制成片剂。又如天花粉、一 叶秋碱、黄藤素等可纯化制成注射液。单体成分制剂具有药 物成分明确,有利于稳定性与安全性等优点,但是有些药物 纯化后不如单味药的有效部分提取物疗效好。
G
g =
S+s s
G —药材中含有的待提取物质,kg; S —提取平衡后放出的溶剂量,kg; g —提取后药材中残留的待提取物质,kg; s —提取后剩余在药材中的溶剂量,kg
《制药分离工程》
xx
提取过程与机理
S 设: α =
s
G 则: g =
α+1
对于一定量的提取剂,α ,则g ,提取量
若进行第二次浸取,加入等量(S)的新溶剂,根据物料平衡可
另外还存在固体内形成的浓溶液中的溶质将向固体表面扩散,并 通过扩散边界层扩散至溶液主体中的扩散过程。一般情况下,溶质 由固体表面传递至溶液主体的传质阻力远小于溶质在固体内部的扩 散阻力。
分离工程习题与思考题
分离工程习题与思考题<i>分离工程</i>分离工程习题第二章精馏1. 欲分离苯(1)-甲苯(2)-二甲苯(3)三元混合物,精馏塔的进料、塔顶和塔釜产品的组成如下:组成mol分率塔顶塔底进料苯0.995 0.005 0.600 甲苯0.005 0.744 0.300 二甲苯0.000 0.251 0.100的操作压强为1atm(绝对)。
试求:1) 塔顶分凝器温度和塔釜温度;2) 若进料温度为92℃,判断进料状态。
假定液相服从拉乌尔定律,汽相可当作理想气体,三个组分的蒸汽压分别按下式计算:苯:lnp1S=15.9008 2788.51/(T 52.36) S=16.0137 3096.52/(T 53.67) (piS mmHg,T K) 甲苯:lnp2 S二甲苯:=16.1390 3366.99/(T 58.04) lnp32.异丙醇(1)-水(2)系统的无限稀释活度系数为γ1=9.78,γ2=3.22,试用此对数值计算Wilson常数Λ12和Λ21,并由此计算x1=0.1665(mole分率)时的汽相组成y1和泡点温度tB。
系统处于常压(设为1atm绝对压)。
已知:异丙醇和水的蒸汽压方程可分别用下列各式计算:∞∞异丙醇:lnp1S=18.6929 3640.20T 53.54 (P mmHg,T K) 3816.44 S=18.3036 水:lnp2 T 46.13(提示:试差求Λ12和Λ21时,可取初值Λ12=0.1327)3.用常规精馏塔分离下列烃类混合物:组分:Mol%:CH40.52 C2H424.9 C2H68.83 C3H68.7 C3H83.05 nC4H1054.0工艺规定塔顶流出液中C4浓度不大于0.002,塔釜残液中C3H8不大于0.0015,试应用清晰分割法估算塔顶和塔底产品的量和组成。
<i>分离工程</i>4.设工艺规定C3H6为轻关键组分,C4为重关键组分,上题料液在常规精馏塔中分离,要求C3H6在塔顶的收率为0.99,C4在塔底的收率为0.995。
分离工程第二章
板框过滤机
回转真空过滤机
Knife
Dry Wash Immersion
Cake Feed
Rotary vacuum filter 真空旋转过滤机
第二节 细胞破碎
• 许多生物产物在细胞培养过程中不能分 泌到胞外,而保留在细胞内。
• 如一些胞内酶、部分外源基因表达产物 和植物细胞产物等。这类生物产物在固 液分离后,需对收集到的菌体或细胞进 行细胞破碎(Cell disruption),使目标 产物释放到液相中。
• 除去细胞碎片后,再进行后续分离纯化 操作。
一、细胞的结构
• 不同种类的细胞结构差别很大,破碎的 难易程度不同: 植物细胞>真菌(如酵母菌)>革兰氏 阳性细菌>革兰氏阴性细菌>动物细胞。
18μ L
Zg
4
Nr
22
vs
2
2d 2 s
9L
L N 2r
Sr 2
其中:r为离心半径;为旋转角速度;N为离心机转数; S为沉降系数,是溶剂物性的函数。
• 2、离心分离法
(1)差速离心分级(Differential centrifugation)
•生化工业中最常用的离心分离法,细 胞的分离为一级分级分离。实际应用 中据实际物系的特点、分离目的和所 需分离程度,选择适当的离心机转数 和时间,可使料液中不同组分得到分 级分离。
Filtrate
Dry vacuum pump
Air out
pump
Barometric seal
Figure 2.2 Flowsheet for continuous rotary vacuum filtration
生物分离工程 第二章
细胞分离与破碎
(2)珠磨
影响因素:搅拌速度、停留时间、微珠粒径、细胞本身 适用对象:绝大多数微生物细胞
2
细胞分离与破碎
(3)喷雾撞击破碎
喷雾撞击破碎器结构简图
特点:细胞破碎程度均匀,可避免过度破碎,适用 于细胞器(线粒体、叶绿体等)的回收 适用对象:大多数微生物细胞和植物细胞
2
细胞分离与破碎
(4)超声波破碎 机理:在超声波作用下液体发生空化作用,空穴的 形成、增大和闭合产生极大的冲击波和剪切力,使细胞 破碎。 影响因素:细胞种类,细胞浓度,频率、功率 适用对象:多数微生物细胞
物理渗透法
(1)渗透压冲击法
(2)冻结-融化法
2
细胞分离与破碎
2.2.4 目标产物的选择性释放
细胞破碎的目的是使胞内的目标产物释放出来,以 进行进一步的分离纯化,因此,理想的破碎方法应当是
使目标产物尽可能多的释放出来,而杂质成分尽可能少 得释放。 ① 仅破坏或破碎目标产物的周围。
① 选择性溶解目标产物。
Rc
W
A
kp
m
一般需缓慢增大操作压力,最终操作压力不超过 0.3 ~ 0.4MPa。
2
细胞分离与破碎
2.1.3.2
过滤设备
工业上常用的过滤设备:加压叶滤机、板框过滤机、 转鼓真空过滤机。
加压叶滤机
转鼓真空过滤机
2
细胞分离与破碎
板框过滤机
2
细胞分离与破碎
2.2 细 胞 破 碎
2.2.1 细胞结构
不同生物细胞,其细胞结构差异很大。
2.2.2 细胞破碎和产物释放原理
摩擦力、撞击作用力、剪切力、化学溶解、酶解
渗透作用力等。
《分离工程》思考题及习题(整理)(1)
《生化分离工程》思考题及习题第一章绪论2、生化分离工程有那些特点?3、简述生化分离过程的一般流程?第二章预处理与固-液分离法1、发酵液预处理的目的是什么?主要有那几种方法?2、何谓絮凝?何谓凝聚?各自作用机理是什么?3、发酵液中去除杂蛋白的原因是什么?方法主要有那些?7、何谓密度梯度离心?其工作原理是什么?第三章细胞破碎法1、革兰氏阳性菌和阴性菌在细胞壁在组成上有何区别?2、细胞破碎主要有那几种方法?3、机械法细胞破碎方法非机械破碎方法相比有何特点?4、何谓化学破碎法?其原理是什么?包括那几种?5、何谓酶法破碎法?有何特点?常用那几种酶类?第四章萃取分离法1、何谓溶媒萃取?其分配定律的适用条件是什么?2、在溶媒萃取过程中pH值是如何影响弱电解质的提取?3、何谓乳化液?乳化液稳定的条件是什么?常用去乳化方法有那些?5、某澄清的发酵液中含260mg/l放线菌D, 现用醋酸丁酯进行多级萃取。
已知平衡常数K=57.0,料液流量450升/时,有机相流量20升/时。
为达到此抗生素收率为98%的要求,需要多少级的萃取过程?(计算题)8、何谓双水相萃取?双水相体系可分为那几类?目前常用的体系有那两种?9、为什么说双水相萃取适用于生物活性大分子物质分离?第五章沉淀分离法1)何谓盐析沉淀?其沉淀机理是什么?有何特点?2) 生产中常用的盐析剂有哪些?其选择依据是什么?3) 何谓分步盐析沉淀?4)何谓等电点沉淀?其机理是什么?pH是如何影响pI的?第六章吸附分离法1、吸附作用机理是什么?2、吸附法有几种?各自有何特点?5、已知80g的活性炭最多能吸附0.78 mol腺苷三磷酸(ATP),这种吸附过程符合兰缪尔等温线。
其中b=2.0×10E3mol/L,请问在1.2L的料液浓度为多少时才能使活性炭吸附能力达90%? (计算题)★第七章离子交换法1、何谓离子交换法(剂)?一般可分为那几种?2、离子交换剂的结构、组成?按活性基团不同可分为那几大类?3、pH值是如何影响离子交换分离的?5、在离子交换层析分离过程中,离子交换剂是如何选择的?6、各类离子交换树脂的洗涤、再生条件是什么?7、软水、去离子水的制备工艺路线?★第八章膜分离技术2)膜在结构上可分为那几种?膜材料主要用什么?3)简述微滤、超滤、纳滤及反渗透膜在膜材料、结构、性能、分离机理及其应用等方面的异同点5)何谓浓差极化现象?它是如何影响膜分离的?减少浓差极化现象的措施?6)膜的清洗及保存方法有那几种?7)膜分离设备按膜组件形式可分为几种?相比较的优缺点?第九章层析技术1)何谓色层分离法?可分为那几大类?4)何谓亲和色层分离法?亲和力的本质是什么?亲和色层中常用的亲和关系有那几种?5)何谓疏水作用层析?其最大的特点是什么?6)凝胶层析的原理是什么?何谓排阻极限?第十章电泳技术2、聚丙稀酰胺凝胶电泳的原理什么?影响其操作的因素主要有那些?3、SDS聚丙稀酰胺凝胶电泳原理是什么?有何应用?第十一章结晶法2、何谓过饱和度?饱和度形成有那几种方法?4、结晶法与沉淀法相比较有何区别?综合题1、已知某一氨基酸G是一酸性氨基酸,水溶性随温度升高而升高,pI=6.2,在中性和酸性条件下较稳定。
分离工程第2章多组分分离基础精品PPT课件
• 设计变量:确定设计中已知变量 • 对于一个只有一处进料的二组分精馏塔,如果
已知进料流率,进料组成浓度,进料状态,塔 压(固有的4个变量),再规定馏出液浓度A or B , 釜液回收率A or B 和回流比,则可计算出理论 板数(精馏段和提馏段板数,确定适宜的进料 位置)和冷凝器及再沸器的热负荷。 • 复杂体系
3
2.1.1 设计变量
• (1)设计变量
• 在化工原理课程中,对双组分精馏和单组分吸收 等简单传质过程进行过较详尽的讨论。然而,在 化工生产实际中,遇到更多的是含有较多组分或 复杂物系的分离与提纯问题。
• 在设计多组分多级分离问题时,必须用联立或迭 代法严格地解数目较多的方程,这就是说必须规 定足够多的设计变量,使得未知变量的数目正好 等于独立方程数,因此在各种设计的分离过程中, 首先就涉及过程条件或独立变量的规定问题。
9
• 能量交换数:有热与功的输入和输出,就要增加 相应的能量交换数。
• 系统与环境间能量交换数的确定:有一股热量交 换,增加一个变量数。既有一股热量交换,又有 一股功交换时,应增加两个变量数。
10
• 约束数 Nc
• 约束数可以依靠热力学第一定律和第二定律来计算, 即由物料衡算,热量衡算和平衡关系写出变量之间的 关系式。
调设计变量Na,Nx是指确定进料物流的那些变量
(进料组成和流量)以及系统的压力,这些变量常
常是由单元在整个装置中的地位,或装置在整个流
程中的地位所决定,也就是说,实际上不要由设计
者来指定,而Na才是真正要由设计者来确定的,因 此郭氏法的目的是确定正确Na的值。
8
(2)独立变量与约束数
• 系统的独立变量数由出入系统的各物流的独立变量数 以及系统与环境进行能量交换情况来决定。
分离工程第二章部分课后题答案
分离⼯程第⼆章部分课后题答案5.由于绝⼤部分体系是⾮理想溶液,为进⾏定量的热⼒学分析与计算,溶液中的各组分浓度必须以活度代替。
由正⾟烷(1)、⼄苯(2)和2-⼄氧基⼄醇(3)所组成的溶液,其组成为: x 1=0.25 (均为摩尔分数),x 2= 0.52, x 3= 0.23,试求总压为0. 1MPa 达到平衡时该溶液中各组分的活度系数。
已知: 0. 1MPa 时有关各端值常数如下。
A 12= 0. 085,A 21= 0.085, A 23= 0.385,A 32= 0. 455, A 13=0. 700, A 31= 0.715,c=-0.03。
解:ln γ1=x 22[A 12+2x 1(A 21?A 12)]+x 32[A 13+2x 1(A 31?A 13)]+x 2x 3[A 21+A 13?A 32+2x 1(A 31?A 13)+2x 3(A 32?A 23)?c (1?2x 1)]=0.1064γ1=1.1123ln γ2=x 32[A 23+2x 2(A 32?A 23)]+x 12[A 21+2x 2(A 12?A 21)]+x 3x 1[A 32+A 21?A 13+2x 2(A 12?A 21)+2x 1(A 13?A 31)?c (1?2x 2)]=0.0198γ2=1.0200ln γ3=x 12[A 31+2x 3(A 13?A 31)]+x 22[A 32+2x 3(A 23?A 32)]+x 1x 2[A 13+A 32?A 21+2x 3(A 23?A 32)+2x 2(A 32?A 23)?c (1?2x 3)]=0.3057γ3=1.35767.若要将上题中甲醇与醋酸甲酯的均相共沸物⽤⽔作萃取剂将其分离,需计算醋酸甲酯对甲醇的相对挥发度。
系统温度为60°C,已知醋酸甲酯(1)-甲醇(2)-⽔(3)三元体系各相应⼆元体系的端值常数A 12= 0.447, A 21= 0.411,A 23=0.36,A 32= 0.22, A 13=1.3,A 31= 0.82,醋酸甲酯和甲醇的饱和蒸⽓压p 10= 0.1118MPa , p 20= 0. 0829MPa ,试⽤三元Margules ⽅程来推算出在60°C 时x 1=0.1, x 2=0.1, x 3= 0.8 (均为摩尔分数)的三元体系中醋酸甲酯对甲醇的相对挥发度a 12。
讲义-化工分离工程-第二章
第二章精馏Chapter 2 Distillation主要内容及要求:1.相平衡常数计算:状态方程法,活度系数法2.泡点、露点计算(1)泡点计算:在一定P(或T)下,已知x i,确定T b(或P b)和y i(2)露点计算: 在一定P(或T)下,已知y i,确定T b(或P b)和x i3.等温闪蒸计算:给定物料的量与组成,计算在一定P和T下闪蒸得到的汽相量与组成,以及剩余的液相量与组成。
4.掌握多组分精馏过程的基本原理、流程以及简捷计算方法;5.掌握萃取精馏和共沸精馏的原理、流程及其简捷计算法。
授课主要内容:2.1 概述2.2 汽液相平衡2.3 精馏计算2.4 特殊精馏2.5 板效率2.1 概述精馏原理:精馏是分离液体混合物的单元操作,是利用混合物中各组分挥发度的差异及回流的工程手段,实现组分的分离。
不适宜用普通精馏进行分离的物系:1. 1→AB α2.1=AB α3. 热敏性物料4. 难挥发组分的稀溶液2.1.1 理论板、板效率以及填料的理论板当量高度(HETP )1. 理论板理论板= f(相平衡,分离要求,操作参数)⏹ 所谓理论塔板,如右图所示,即气、液两相在塔板上充分接触,混合进行传质、传热后,两相组成均匀且离开塔板的气、液两相呈相平衡关系。
显然,在相同条件下,理论板具有最大的分离能力,是塔分离的极限能力。
该状态可由热力学方法求解确定,离开塔板的气、液两相存在的相平衡关系由以下关系式表达: ⏹ 相平衡关系:y i =k i ·x i相平衡关系是传质过程趋向的目标,或所达到的热力学极限状态。
理论板是一个理想化了的两相间接触传质场所,也称为平衡级。
理论板符合以下三条假设:1)进入该板的不平衡物流在其间充分接触传质,使离开该板的汽液两相物流间达到了相平衡;2)在该板上发生接触的汽液两相各自完全均匀,板上各点汽相浓度和液相浓度各自都相同;3)该板上充分接触后的汽液两相实现了完全机械分离,不存在夹带、泄漏。
《分离工程第二章》课件
通过分离工程中的技术手段,将污水中的悬浮物、油、重金属等污 染物进行分离和去除。
大气治理
通过分离工程中的技术手段,将大气中的颗粒物、有害气体等进行 分离和去除。
固废处理
在固废处理中,分离工程用于将固体废物中的不同组分进行分离和回 收。
食品工业领域
食品加工
在食品加工中,分离工程用于分离食品中的不同组分,如牛奶中 的奶油和脱脂品添加剂, 如味精、食用香精等。
食品安全检测
通过分离工程中的技术手段,对食品中的有害物质进行检测和分离 。
其他领域
制药工业
在制药工业中,分离工程用于分离和 纯化各种药物成分。
新能源领域
在新能源领域中,分离工程用于太阳 能电池板制造中的硅片切割和海水淡 化技术中的盐分去除。
脱水
将石油中的水分进行分离,以减少对设备和管道的腐蚀。
化工领域
化学反应
01
通过分离工程中的技术手段,实现化学反应的高效分离和产物
纯化。
精细化工
02
在精细化工中,分离工程用于分离高纯度的化学品,如染料、
农药、医药等。
合成气分离
03
将合成气中的不同组分进行分离,如一氧化碳、氢气、甲烷等
。
环境工程领域
环境工程
与环境工程学科的交叉融合,实现环保与分离工程的有机 结合。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
分离工程的特点
分离工程具有多样性、复杂性、 高效率和高精度等特点,能够实 现混合物中各组分的有效分离、 纯化和精制。
分离工程的重要性
分离工程在工业生产中的应用
分离工程广泛应用于化工、制药、食品、环保等领域,是实现物质分离纯化的 关键技术之一。
高等分离工程Chap_2 part1
2.1 分离过程的构建
2.1.1 分离机理
科学研究和技术的发展,各种新物质需分离,对物质分离要 求有了变化(更低成本、更高纯度)。 研究和技术手段的进步,各种新分离方法相继研究成功。 无论是成熟的工业分离技术,还是仍处于实验室研究阶段的新 型分离方法,都是利用混合物中各组分性质差异而得以实施。
(1)适用性: 各分离单元组合后,确实达到分离效率 要求。 (2)经济性:各步分离单元的选择,避免过度纯化, 避免选择与产物附加值不相称的高成本分离方法 (3)可靠性:选择成熟的分离方法和设备。
2.1.3 效率、规模和成本
工业分离过程的评价指标 分离效率 分离成本
①
浓缩率
对于一个以浓缩为目的的分离过程,产品的浓缩率是最 重要指标。 F为流速,c为浓度;下标T和X分别表示目标产 物和杂质。C、P和W分别表示原料、产物和废物。此时, 浓缩率m为
物理性质
1 力学性质:如重力沉降、离心分离、膜筛分等。 2 热力学性质:精馏、蒸发、吸收、吸附、萃取、结晶、泡沫 分离等。 3 传质性质:膜分离、溶解扩散、热扩散等。 4 电磁性质:电泳、电色谱、电渗析、离子交换、磁性分离等。
化学性质
1.伴生化学反应的萃取过程:如金属螯合萃取 2.分子间相互作用:如疏水作用和疏水色谱分离 3.分子识别:如环糊精对一些有机物的选择性包接作 用,冠醚对金属离子的识别作用等。
VP cTP ×100% REC = VC cTC
若以产品活性(activity)计算收率,则连续和间歇生物分离 过程的回收率分别为 V a FP aTP REC = P TP ×100% REC = ×100% VC aTC FC aTC
选用分离过程,对目标产物应有较高的回收率, 这对分离过程的经济可行性有决定作用。
化工分离工程:第二章习题答案(刘家祺版)
第二章习题4(P85)一液体混合物的组成为:苯0.50;甲苯0.25;对二甲苯0.25(摩尔分率)。
分别用平衡常数法和相对挥发度法计算该物系在100kPa 式的平衡温度和汽相组成。
假设为完全理想系。
解1:由题2中附录的苯、甲苯和对-二甲苯的安托尼公式计算P i s (1)平衡常数法: 设T=368K 用安托尼公式得:kPa P s 24.1561= ;kPa P s 28.632= ;kPa P s 88.263= 由式(2-36)得:P P K s i i /=562.11=K ;633.02=K ;269.03=K781.01=y ;158.02=y ;067.03=y ;006.1=∑i y 由于∑i y >1.001,表明所设温度偏高。
由题意知液相中含量最大的是苯,由式(2-62)得: 553.11'1==∑iy K K 可得K T 78.367'= 重复上述步骤:553.1'1=K ;6284.0'2=K ;2667.0'3=K 7765.0'1=y ;1511.0'2=y ;066675.0'3=y ;0003.1=∑i y 在温度为367.78K 时,存在与之平衡的汽相,组成为:苯0.7765、甲苯0.1511、对二甲苯0.066675。
(2)用相对挥发度法:设温度为368K ,取对二甲苯为相对组分。
计算相对挥发度的:sj s i ij P P /=α13α计算∑=P x P i j i sα*3,即为所求的平衡温度和组成。
解2:(1)平衡常数法。
假设为完全理想系。
设t=95℃苯: 96.11)36.5215.27395/(5.27887936.20ln 1=-+-=s P ;∴ Pa P s 5110569.1⨯=甲苯: 06.11)67.5315.27395/(52.30969065.20ln 2=-+-=s P ;∴Pa P s 4210358.6⨯=对二甲苯:204.10)84.5715.27395/(65.33469891.20ln 3=-+-=s P ;∴Pa P s 4310702.2⨯=569.11010569.15511=⨯==P P K s ;6358.022==PP K s2702.033==PP K s∴011.125.06358.025.02702.05.0596.1=⨯+⨯+⨯=∑i i x K选苯为参考组分:552.1011.1569.112==K ;解得T 2=94.61℃ ∴05.11ln 2=s P ;Pa P s 4210281.6⨯= 19.10ln 3=s P ; Pa P s 43106654.2⨯=∴2K =0.62813K =0.2665∴19997.025.02665.025.06281.05.0552.1≈=⨯+⨯+⨯=∑i i x K故泡点温度为94.61℃,且776.05.0552.11=⨯=y ;157.025.06281.02=⨯=y ;067.025.02665.03=⨯=y(2)相对挥发度法设t=95℃,同上求得1K =1.569,2K =0.6358,3K =0.2702∴807.513=α,353.223=α,133=α∴∑=⨯+⨯+⨯=74.325.0125.0353.25.0807.5i i x α.174.325.0174.325.0353.274.35.0807.5=⨯+∑∑⨯+⨯=∑=ii i i i x x y αα故泡点温度为95℃,且776.074.35.0807.51=⨯=y ;157.074.325.0353.22=⨯=y ;067.074.325.013=⨯=y习题12(P86)用图中所示系统冷却反应器出来的物料,并从较重烃中分离轻质气体。
分离工程思考题
分离⼯程思考题第⼀章1、⽣物技术与⽣物分离的关系是什么?为什么说⽣物分离过程是⽣物技术的重要组成部分?⽣物技术的主要⽬标是⽣物物质的⾼效⽣产,⽽分离纯化是⽣物产品⼯程的重要环节。
因此,⽣物分离是⽣物技术的重要组成部分。
2、⽣物物质有哪些?现代⽣物技术产品的主体是什么?⽣物物质总类繁多,包括⼩分⼦化合物,⽣物⼤分⼦,超⼤分⼦,细胞和具有复杂结构与组成成分的⽣物体组织。
现代⽣物技术产品的主体---蛋⽩质类药物.1)细胞因⼦:⼲扰素、⽣长因⼦、红细胞⽣成素2)激素:胰岛素、⽣长激素3)抗体药物:单克隆抗体、抗体⽚段4)酶类药物:尿激酶5)基因⼯程疫苗6)基因治疗3、⽣物分离过程设计应考虑哪些因素?为什么⾊谱是分离过程的核⼼技术?考虑因素:1)⽬标产物的存在位置:胞内或胞外2)⽬标产物的存在形式:活性表达产物或包含体3)⽬标产物分⼦的⼤⼩、疏⽔性、电荷性质、溶解度和稳定性4)⽬标产物的商业价值和对纯度的要求4、⽣物分离过程有哪些特点?1)⽣化产物的稳定性差,产物可能失活2)分离难度⼤,⼀般需⽤特殊的⾼效分离技术3)⽣物产物的原料构成成分复杂,需要采⽤多种分离技术和多个分离步骤完成⼀个⽬标产物的分离4)对最终产物的质量要求很⾼5)需对原料液进⾏⾼度浓缩5、⽣物分离过程中需要考虑分离对像的哪些性质?1)根据物理性质的差异实现分离i.⼒学性质:密度、尺⼨和形状。
⽤于重⼒沉降、离⼼、膜分离等ii.热⼒学性质:溶解度、挥发度等。
⽤于如蒸馏、蒸发、结晶、吸附和离⼦交换等iii.传质性质:粘度、扩散系数、热扩散现象等。
即利⽤传质速度的差别进⾏分离iv.电磁性质:荷电性质、电荷分布、等电点等。
⽤于电泳、电渗析、离⼦交换、磁性分离等2)根据化学性质的差异实现分离i.化学性质包括热⼒学(化学平衡)、反应动⼒学(反应速率)和光化学特性等。
ii. 化学吸附和化学吸收即利⽤化学性质实现分离。
3) 根据⽣物学性质的差异实现分离a) ⽣物分⼦间的识别作⽤,如亲和⾊谱b) 利⽤酶的⽴体选择性,如对⼿性分⼦进⾏选择性修饰后以增⼤分⼦间差异,从⽽⽤常规⽅法进⾏分离6、什么是平衡分离?什么是差速分离?差速分离(速度分离)分离机理:根据溶质在外⼒作⽤下产⽣的移动速度的差异实现分离。
生物分离工程(孙彦)1-4章部分答案
加入原点对Q2-t 做线性回归,比不包括原点时回归数据的相关度增加了。
第二章 细胞分离与破碎
方法三: 二次回归:
利用二次回归所得拟合方程最为精确,也为恒压过滤中介质比阻可以忽略提供依据
第二章 细胞分离与破碎
2.3
第二章 细胞分离与破碎 – 第二次作业
第二章 细胞分离与破碎
2.4 (式2.44a)
得
log 0.26 K S 9.0 (2) 由(1 )和(2)解得:K S 1.107, 9.378 所以Cohn方程为: log S 9.378 1.107 I
第三章 初级分离
当C3=3.5 mol时, I 3=1/ 2 (2 3.5 1 +3.5 2 )
第三章 初级分离
3.4
(式3.13-式3.15)
第三章 初级分离
( 2)沉淀颗粒直径达到 100 m时,假设生长过程中 粒子总体积不变 , 则:=d 3CN / (式 6 3.19) 3.14 1.125 10 2.84 10 4 P 750 Kg /( m * s ) V P 4 P 1/ 2 [ v ] 759.55,由式C C 0 exp( [ v ]1 / 2 t ) V V 求得:t=2002.24S 又v 1.3 10 3 Kg /( m * s ),
d (Vc) Qc(1 RT ) dt
① ②
dV Qdt
得:
V0 RT c ( ) c0 V 代入数据得:
5 1000 0.99 ( ) 1 V
V 196.78(m L)
由②积分得:
dV Qdt dV 0.5 dt
V0 0 V t
t
分离工程题库附答案
分离工程题库附答案分离工程题库附答案第一章绪论填空题:1、分离技术的特性表现为其(重要性)、(复杂性)和(多样性)。
2、分离过程是(混合过程)的逆过程,因此需加入(分离剂)来达到分离目的。
3、分离过程分为(机械分离)和(传质分离)两大类4、分离剂可以是(能量)或(物质),有时也可两种同时应用。
5、若分离过程使组分i及j之间并没有被分离,则(a s ij=1)。
6、可利用分离因子与1的偏离程度,确定不同分离过程分离的(难易程度)。
7、平衡分离的分离基础是利用两相平衡(组成不相等)的原理,常采用(平衡级)作为处理手段,并把其它影响归纳于(级效率)中。
8、传质分离过程分为(平衡分离)和(速率分离)两类。
9、速率分离的机理是利用溶液中不同组分在某种(推动力)作用下经过某种介质时的(传质速率)差异而实现分离。
10、分离过程是将一混合物转变为组成(互不相等)的两种或几种产品的哪些操作。
11、工业上常用(分离因子)表示特定物系的分离程度,汽液相物系的最大分离程度又称为(固有分离因子)。
12、速率分离的机理是利用传质速率差异,其传质速率的形式为(透过率)、(迁移率)和(迁移速率)。
13、绿色分离工程是指分离过程(绿色化的工程)实现。
14、常用于分离过程的开发方法有(逐级经验放大法)、(数学模型法)选择题:1、分离过程是一个(A)a.熵减少的过程;b.熵增加的过程;c.熵不变化的过程;d.自发过程2、组分i、j之间不能分离的条件是(C)a.分离因子大于1;b.分离因子小于1;c.分离因子等于13、平衡分离的分离基础是利用两相平衡时(A)实现分离。
a.组成不等;b.速率不等;c.温度不等4、当分离因子(C)表示组分i及j之间能实现一定程度的分离。
a.a ij=1b.a s ij=1c.a ij<15.下述操作中,不属于平衡传质分离过程的是(C)a.结晶;b.吸收;c.加热;d.浸取。
6、下列分离过程中属机械分离过程的是(D):a.蒸馏;b.吸收;c.膜分离;d.离心分离。
分离工程第二章习题参考答案
设温度为1℃,用泡点方程进行试差,不满足泡点方程,结果见表。
组分
组分
设温度为1℃
设温度为1.68℃
乙烷
0.05
4.8000
0.24
4.7574
0.2379
丙烷
0.30
1.8000
0.540
2.2534
0.6760
正丁烷
0.65
0.1142
0.074
0.1334
0.0867
1.00
0.854
1.0006
组分
甲烷
乙烷
丙烯
丙烷
异丁烷
正丁烷
∑
Ki,75℃
7.8
2.45
1.15
1.05
0.54
0.41
xi
0.0064
0.1429
0.1304
0.1905
0.1852
0.3659
1.0213
Ki,76℃
7.82
2.48
1.16
1.06
0.56
0.42
xi
0.0064
0.1411
0.1293
0.1887
0.1786
作业(计算题)
7、某精馏塔釜压力2.626MPa,温度76℃,液相组成如下表,如取i-C40为关键性组分,各组分的相对挥发度如表所示,求与塔釜液体呈平衡状态的汽相组成:
组分i
i-
xwi
ij
0.002
6.435
0.002
4.522
0.680
2.097
0.033
1.913
0.196
1
0.087
0.322
组分
分离工程第二章
分离工程第二章
一、细胞的结构
• 不同种类的细胞结构差别很大,破碎的 难易程度不同: 植物细胞>真菌(如酵母菌)>革兰氏 阳性细菌>革兰氏阴性细菌>动物细胞。
• 破碎细胞的目的就是使细胞壁和细胞膜 受到不同程度的破坏或破碎,释放其中 的目标产物。
分离工程第二章
分离工程第二章
• 平衡区带离心:调配的介质密度梯度比 差速区带离心的密度梯度大。
• 离心操作结果使料液中的高分子溶质在 与其自身密度相等的溶剂密度处形成稳 定的区带,区带中的溶质以该密度为中 心,呈高斯分布。
分离工程第二章
– 可用于调配密度梯度的物质除蔗糖、聚蔗 糖,还有CsCl (核酸的分离)和NaBr (脂蛋白的分离) 。
分离工程第二章
分离工程第二章
分离工程第二章
Knife
Dry Wash Immersion
Cake Feed
Rotary vacuum filter 真空旋转过滤机
第二节 细胞破碎
分离工程第二章
• 许多生物产物在细胞培养过程中不能分 泌到胞外,而保留在细胞内。
• 如一些胞内酶、部分外源基因表达产物 和植物细胞产物等。这类生物产物在固 液分离后,需对收集到的菌体或细胞进 行细胞破碎(Cell disruption),使目标产 物释放到液相中。
分离工程第二章
分离工程第二章
Tubular bowl
分离工程第二章
三、过滤
• 定义:利用多孔介质(如滤布)截留固 体粒子,进行固液分离的方法。
• 过滤速度
dQ dt
Ap
L Rm
Rc
Rc
W
A
其中:A为过滤面积;p为操作压力;Q为滤液体积;L为滤液粘度; Rm和Rc分别为介质和滤饼的阻力;为滤饼的平均比阻; W为滤饼干重。
(完整版)化工分离工程完整版
6、对流传质与对流传热有何异同? 同:传质机理类似;传递的数学模型类似;数学模型的求解方法和求解结果类似。 异:系数差异:传质:分子运动;传热:能量过去 7、提出对流传质模型的意义是:对流传质模型的建立,不仅使对流传质系数的确定得以简 化,还可以据此对传质过程及设备进行分析,确定适宜的操作条件,并对设备的强化、新型 高效设备的开发等作出指导。 8、停滞膜模型、溶质渗透模型和表面更新模型的要点是什么?各模型求得的传质系数与扩 散系数有何关系,其模型参数是什么?
溶质渗透模型 要点:①液面是由无数微笑的流体单元所构成,当气液两相出于湍流状 态相互接触时,液相主体中的某些流体单元运动至界面便停滞下来。在气液未接触前,液体 单元中溶质的浓度和液相主体的浓度相等,接触开始后,相界面处立即达到与气相平衡状态。 ②随着接触时间的延长,溶质 A 通过不稳态扩散方式不断地向液体单元中渗透。液体单元 在界面处暴露的时间是有限的,经过时间θc 后,旧的液体单元即被新的液体单元所置换而 回到液相主体中去。在液体单元深处,仍保持原来的主体浓度不变。④液体单元不断进行交 换,每批液体单元在界面暴露的时间θc 都是一样的。关系:kcm=2[D/(πθc)]1/2 对流传质 系数可通过分子扩散系数 D 和暴露时间 θc 计算。模型参数:暴露时间。
答:无论是逆流操作还是并流操作的吸收塔,其操作线方程及操作线都是由物料衡算求
得的,与吸收系统的平衡关系、操作条件以及设备的结构型式等均无任何牵连。 12.传质单元高度和传质单元数有何物理意义? 答:传质单元高度反映了传质阻力的大小、填料性能的优劣以及润湿情况的好坏。吸收过程 的传质阻力越大,填料层有效比面积越小,则每个传质单元所相当的填料层高度就越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上式为两种常用的汽液相平衡关系表达式
二、相平衡关系的表示方法
相图: yi
0
xi
相平衡常数(工程计算中常用):
K i yi / xi
分离因子:
Ki ij xi / x j K j
分离因子与1的偏离程度表示组分之间分离的难易程度。 精馏中,分离因子又称为相对挥发度,它相对于汽液平 衡常数而言,对温度和压力的变化不敏感,可近似看作常数, 使计算简化。
viL ( P Pi s ) yi i Pi sis Ki V e xp ) f (T , P , xi , yi (2-35) ˆ xi RT i P
组分i蒸汽在温度为T、压 力为Pis时的逸度系数。 组分i在液相中 的活度系数。 纯组分i在温度 为T时的饱和蒸 汽压。
i
L
Pi S
P
Vi L ( P Pi S ) P l ni ln S RT Pi 纯液体组分i在系统温度下的
s
纯组分i蒸汽在一定温度的 饱和蒸汽压下的逸度系数。
摩尔体积,与压力无关。
f i L Pi sis expviL ( P Pi s ) / RT
校正饱和蒸汽压下的蒸 汽对理想气体的偏离。
Ki yi xi
ˆV ˆL (2 8) 及汽液平衡关系式: i yi p i xi p ˆ y L K i i ( 2 14) i x ˆ V i i
计算
V , L i i
从热力学原理可推导建立逸度系数与P-T-V关系:
1 P RT ˆ ln [( ) ( )]dV ln Z ( 2 15) i RT n T ,V , n t M V j V i t
如何求 i ? f
L
f i L 的计算:
由 热 力 学 基 本 关 系 式 2 16用 于 计 算 纯 组 分 ) 可 写 为 : (即 i时 fi 1 RT l n i l n (Vi p )dP (2 20) P RT 0 l n i
L P
fi 1 RT RT L L ln [ (Vi )dP (Vi )dP] P RT 0 p p PS
2
m
i=i+1
i=1
ˆiV 或 iL ˆ 输出
RT ˆ 1 [( P ) ln ( )]dV ln Z ( 2 15) i RT t M n T ,V , n j V V i t
ˆ lni
2 aai bi b ln[Z M (1 )] Vt b Vt RTVt
H—化工计算解决
亨利定律:一般来说,亨利常数H不仅与溶剂、溶质的性质和系 统温度有关,而且还与系统压力有关。在低压下,溶质组分的逸 度近似等于它在气相中的分压,亨利常数不随压力而改变。
小结:
对于由一种溶质(不凝性组分)和一种溶剂(可凝性 组分)构成的两组分溶液,通常: 溶剂的活度系数按 xi1,i1定义基准态; 溶质的活度系数按 xi0,i*1定义基准态。 由于两组分的基准态不同,称为不对称型标准化方法。
ZM
将维里方程截断式 Z M
PVt B 1 RT Vt
1 P RT ˆ ln [( ) ( )]dV ln Z ( 2 15) 代入: i RT n T , P , n t M V j V i t
由(2-15)得:
1 P RT ˆ ln ) ( )]dV ln Z [( i T , P, n t M RT V n V j i t 2 c y j Bij ln Z M ( 2 31) Vt j 1
V
Bij 混合物的第二维里交互 ( p22),与T、P、n j 无关 系数
步骤:
Z 1.用状态方程〈4〉求Vt (两个根取大根)、 M
2.由(2-31)求
ˆ ln i
注 意:
维里方程的适宜范围: c y i pc ,i T i 1 P 或 0.5 c c 2 y i Tc ,i
T , P ,ni n j
( 3)通 过 前 式 建 立i 数 学 模 型 , 求 得i
常用的活度系数模型: Vanlaar(范拉尔)方程、Margules(玛古斯)方程、 Wilson(威尔逊)方程、NRTL(有轨双液)方程、 UNIQUAC(通用拟化学活度系数)方程、UNIFAC
ˆ 就可代入2-15或2-16求 i
用Van der waals(范德华)方程计算
ˆ i
ˆ 已知T,P,xi , yi ( i 1,2,c) 求 iV
• Van der waals方程:
3 Vm (b
ˆ iL
RT a ab 2 )Vm Vm 0 P p p
1
——a、b为Van der waals常数
( 2 27)
此式把任意组分 i 的活度系数和整个溶液的过剩自由 焓关联在一起,得过剩自由焓和活度系数间的基本关系式。 过剩自由焓可以判断实际溶液偏离理想溶液的程度。
G E 与T、P、xi、yi 关系?
到目前有20多种经 验、半经验公式。
求 i f ( xi )过 程 :
E nGm E (1)已 知Gm 数 学 模 型2)求 ( n i
2.液相活度系数
i
(摩尔)过剩自由焓:表示在恒温恒压下 由纯组分形成1摩尔实际溶液与形成1mol理 想溶液的混合自由焓的差值 实际溶液混合焓 过剩自由焓
E Gm G实际 G理想
理想溶液混合焓
G 表示在恒温恒压下由纯组分生成1mol溶液过程中自由 焓的变化称为混合自由焓。
第2周第4次课2007年9月18日
纯 组 分: i
2 2 ai 27R Tc ,i 64Pc ,i bi RTc ,i 8 Pc ,i
混合物混合规则: a ( yi
i 1 c
ai )2
i
b
yb
i 1 i
c
ZM
RT a ( 2 )Vt PVm Vm b Vm Vm a RT RT Vm b RTVm
3
式 中 , t nVm V
注意:
● i=1时求汽相逸度系数;i=2时求液相逸度系数。
汽相:用y求a、b,Vt、Zm 分别为液相混合物总
体积和液相混合物压缩因子; 体积和气相混合物压缩因子。
液相:用x求a、b,Vt、Zm 分别为气相混合物总
●(1)式有三个根
汽相:取最大根(Vt )max 液相:取最小根(Vt )min
化工热力学提出:
过 剩 自 由 焓 E与 活 度 系 数 i关 系 : i )
i 1
GE
—1摩尔混合物的过剩自由焓
( nG E ) ( )T , P , n j RT l n i ni GE (n ) RT ) l n i ( T , P ,n j ni
i 1
三、活度系数法计算相平衡常数的简化形式:
将可凝组分基准态逸度表达式(2-21):
f i L Pi sis expviL ( P Pi s ) / RT
(2-21)
代入相平衡常数表达式(2-17): yi i f iOL Ki V (2-17) ˆ xi i P 得到活度系数法计算相平衡常数的通式:
yi / y j
2.1.2 汽液平衡常数的计算
汽液平衡常数:
K i yi / xi
由两种常用的汽液相平衡关系表达式:
ˆ ˆ iV yi p iL xi p(2 8)
ˆ iV yi p i xi f iOL (2 9)
一、状态方程法 二、活度系数法
一、状态方程法 由:
(2-21)
Poynting因子,校正压 力对饱和蒸汽压的偏离。
(2)不凝性组分基准态 取基准态:
当xi 0时,i 1 ˆ fi L (2 — 7): i xi f iOL f iOL ˆ fi L Hi xi
H i —为亨利常数,与T、P、溶质、溶剂有关。
1、基准态逸度 fiol 基准态:活度系数等于1的状态。 讨论:◆可凝性组分基准态 ◆不凝性组分基准态 下的基准态逸度。
(1)可凝性组分基准态 取基准态:
ˆ fiL ˆ 当xi 1时,i 1 这 时 由 i (2 7) f iOL f i L f i L oL xi f i f iOL 可 认 为 在 系 统 、P下 液 相 中 纯 组 分 逸 度 T i ˆ ˆ fiL fiL i (2 7) 可 表 示 为 i : ( 2 19) oL L xi f i xi f i
----适用于以V、T为独立变量的状态方程
1 P Vt RT ˆ l n [( ) ( )]dp( 2 16) i RT n T , P , n P j 0 i
----适用于以P、T为独立变量的状态方程
(2-15)、(2-16),结合状态方程是计算 i 的普遍化方 法。
ˆ
注意:只要知道状态方程
2
将
1 P RT ˆ ln [( ) ( )]dV ln Z ( 2 15) i RT n T ,V , n t M V j V i t
积分后,<2>代入:
ˆ bi ln[Z (1 b )] 2 aai lni M Vt b Vt RTVt 式 中 , t nVm V 3
方程的优缺点和应用范围进行比较。
ˆV 3.气相逸度系数 i
选用适宜的状态方程求取汽相逸度系数。
ˆ 用维里方程计算 i V
汽相哟!
PVt 1 B' P RT 4 PVt B 1 RT Vt
已知T、P、Tc、i、Pc、i,xi、yi