二叉树的三种遍历方法

合集下载

汇编二叉树的遍历

汇编二叉树的遍历

一、软件背景介绍树的遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。

访问结点所做的操作依赖于具体的应用问题。

遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算的基础。

从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。

因此,在任一给定结点上,可以按某种次序执行三个操作:⑴访问结点本身(N),⑵遍历该结点的左子树(L),⑶遍历该结点的右子树(R)。

所以二叉树的遍历也包括三种:先序遍历,中序遍历,和后序遍历。

图1:程序显示结果二、核心算法思想二叉树的存储:在内存中为数组binary分配一个大小为63(0,0,0)的存储空间,所有数组元素初始化为0,用来存放二叉树。

每三个连续的数组地址存放一个节点:第一个地址存放节点的值;第二个地址存放有无左孩子的信息,如果有则将其置为1,否则为0;第三个地址存放有无右孩子的信息,如果有则将其置为1,否则为0。

将binary的首址偏移赋给si,cx初始化为0用来计数,用回车代表输入的为空,即没有输入。

按先根存储的方式来存二叉树,首先输入一个字符,若为回车则退出程序,否则cx+3且调用函数root。

然后该结点若有左孩子,调用leftchild函数,置该结点标志即第二个地址中的0为1,该结点进栈,再存储左孩子结点,递归调用左右,若没有左孩子,看有没有右孩子,若有,则调用rightchild置该结点标志位即上第三个地址中的0为1,然后该结点进栈,再存储右孩子结点,递归调用左右,整个用cx计数,数组binary中每多一个节点,cx加3。

此存储方式正好符合先序遍历思想。

遍历二叉树的执行踪迹:三种递归遍历算法的搜索路线相同,具体线路为:从根结点出发,逆时针沿着二叉树外缘移动,对每个结点均途径三次,最后回到根结点。

二叉树的遍历有常用的三种方法,分别是:先根次序、中根次序、后根次序。

为了验证这几种遍历算法的区别,本次的实验将会实现所有的算法。

二叉树的遍历ppt课件

二叉树的遍历ppt课件
后序遍历:若二叉树非空,则先遍历左子树,再 遍历右子树,最后访问根节点。
后序遍历顺序:
A
B
C
DE
F
中 序遍历 : 资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
DBEAF
C
前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
一棵二叉树的中序遍历结果为 DBEAFC,前序遍历结果为ABDECF, 则后序遍历结果为 【 】 。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
前序遍历:若二叉树非空,则先访问根节点,再 遍历左子树,最后遍历右子树。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
拓展:
已知二叉树的 后序遍历:D A B E C 中序遍历:D E B A C
请问前序遍历结果为?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值

二叉树的遍历

二叉树的遍历

二叉树的三种遍历方式:先序遍历、中序遍历、后序遍历先序:始终执行以下步骤,1、访问根节点2、遍历左子树3、遍历右子树中序:始终执行以下步骤,1、遍历左子树2、访问根节点3、遍历右子树后序:始终执行以下步骤,1、遍历左子树2、遍历右子树3、访问根节点“始终”:为什么要说“始终”执行呢?因为二叉树的每一个子树又可以看成是一个新的二叉树,遍历步骤、方式都保持一样,所以应该“始终”执行同样的操作,我们也应该始终把它看成一棵新的二叉树。

一些技巧:1、先序遍历第一个元素一定是根节点2、中序遍历中,任何一个元素的前一个元素一定在二叉树中它的左边,比如D在G前面,则D在G左边3、后序遍历最后一个元素一定是根节点4、先、中、后意思是说访问根节点的先后顺序,而且始终从左往右,从上往下先序遍历为:ABC中序遍历为:BAC后序遍历为:BCA先序遍历为:ABDECFG中序遍历为:DBEAFCG后序遍历为:AEBFGCA前序遍历:abcdef 中序遍历:cbdaef 后序遍历:cdbfea先序遍历为:ABDGCEF 中序遍历为:DGBAECF 后序遍历为:GDBEFCA前序遍历结果为 a b d e h i c f g 中序遍历结果为 d b h e i a f c g 后序遍历结果为 d h i e b f g c a前序遍历结果为 FCADBEGHP 中序遍历结果为 ACBDFEHGP 后序遍历结果为 ABDCHPGEF前序遍历为:—+ a * b — c d / e f 中序遍历为: a + b * c — d — e / f后序遍历为: a b c d — * + e f / —前序遍历结果为ABDHEICFG中序遍历结果为HDBEIACGF后序遍历结果为HDIEBGFCA由先序序列ABCDEFGH 和中序序列CBEDAGHF 恢复二叉树: 方法: 先序序列ABCDEFGH (注:A 是根) 中序序列CBEDAGHF由左子树先序序列:BCDE 和左子树中序序列:CBED 构造A 的左子树 同理,由右子树先序序列:FGH 和右子树中序序列GHF 构造A 的右子树:1. 已知某二叉树的其前序遍历序列为1 2 4 3 5 7 6,中序遍历序列为4 2 1 5 7 3 6,求后序遍历序列(4275631)。

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

二叉树的遍历及其应用

二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。

二叉树遍历(前中后序遍历,三种方式)

二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。

对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。

⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。

使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。

二叉树常用的三种遍历方法

二叉树常用的三种遍历方法

二叉树常用的三种遍历方法二叉树是一种常用的数据结构,它由一个根节点和两个子节点组成,其中左子节点小于根节点,右子节点大于根节点。

遍历二叉树是对所有节点进行访问的过程,常用的三种遍历方法是前序遍历、中序遍历和后序遍历。

下面将详细介绍这三种方法的实现步骤。

一、前序遍历前序遍历是指先访问根节点,然后按照左子树、右子树的顺序依次访问每个节点。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 访问当前节点。

3. 递归进入左子树。

4. 递归进入右子树。

代码实现:void preorderTraversal(TreeNode* root) {if (root == NULL) return;cout << root->val << " ";preorderTraversal(root->left);preorderTraversal(root->right);}二、中序遍历中序遍历是指先访问左子树,然后访问根节点,最后访问右子树。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 递归进入左子树。

3. 访问当前节点。

4. 递归进入右子树。

代码实现:void inorderTraversal(TreeNode* root) {if (root == NULL) return;inorderTraversal(root->left);cout << root->val << " ";inorderTraversal(root->right);}三、后序遍历后序遍历是指先访问左子树,然后访问右子树,最后访问根节点。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 递归进入左子树。

3. 递归进入右子树。

4. 访问当前节点。

代码实现:void postorderTraversal(TreeNode* root) {if (root == NULL) return;postorderTraversal(root->left);postorderTraversal(root->right);cout << root->val << " ";}总结:以上就是二叉树常用的三种遍历方法的详细介绍和实现步骤。

前序后序中序详细讲解

前序后序中序详细讲解

前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。

它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。

通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。

前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。

中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。

后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。

它们的不同之处在于访问根节点的时机不同。

前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。

中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。

后序遍历常用于删除二叉树或者释放二叉树的内存空间。

在实际应用中,前序、中序和后序遍历算法有着广泛的应用。

它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。

在图像处理中,前序遍历可以用于图像压缩或者图像识别。

另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。

综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。

通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。

1.2文章结构文章结构是指文章中各个部分的布局和组织方式。

一个良好的文章结构可以使读者更好地理解和理解文章的内容。

本文将详细讲解前序、中序和后序三个部分的内容和应用。

首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。

接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。

在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。

通过详细的解释和实例,读者将能更好地理解前序的概念和用途。

二叉树的遍历PPT-课件

二叉树的遍历PPT-课件

4 、二叉树的创建算法
利用二叉树前序遍历的结果可以非常方便地生成给定的
二叉树,具体做法是:将第一个输入的结点作为二叉树的 根结点,后继输入的结点序列是二叉树左子树前序遍历的 结果,由它们生成二叉树的左子树;再接下来输入的结点 序列为二叉树右子树前序遍历的结果,应该由它们生成二 叉树的右子树;而由二叉树左子树前序遍历的结果生成二 叉树的左子树和由二叉树右子树前序遍历的结果生成二叉 树的右子树的过程均与由整棵二叉树的前序遍历结果生成 该二叉树的过程完全相同,只是所处理的对象范围不同, 于是完全可以使用递归方式加以实现。
void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); /*生成二叉树的根结点*/ (*t)->data=ch; createbintree(&(*t)->lchild); /*递归实现左子树的建立*/ createbintree(&(*t)->rchild); /*递归实现右子树的建立*/ }
if (s.top>-1) { t=s.data[s.top]; s.tag[s.top]=1; t=t->rchild; }
else t=NULL; }
}
7.5 二叉树其它运算的实现
由于二叉树本身的定义是递归的,因此关于二叉树的许多 问题或运算采用递归方式实现非常地简单和自然。 1、二叉树的查找locate(t,x)
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所

二叉树的遍历学习心得 (3)

二叉树的遍历学习心得 (3)

二叉树的遍历学习心得 (3)
二叉树是一种经常出现在程序设计中的数据结构。

通过对二叉树的遍历,能够完成许多复杂的任务。

因此,学习二叉树的遍历方式非常重要。

首先,二叉树的遍历包括前序遍历、中序遍历和后序遍历。

其中,前序遍历就是先遍历根节点,再遍历左节点和右节点。

中序遍历是先遍历左节点,再遍历根节点和右节点。

后序遍历是先遍历左节点,再遍历右节点和根节点。

我们需要掌握这三种遍历方式,了解其原理和具体实现方法。

其次,在实现遍历方式时,我们需要使用递归或非递归的方式。

递归方式简单易懂,但是当节点较多时,会占用大量的栈空间,会导致栈溢出。

而非递归方式需要使用辅助数据结构,比如栈或队列,来实现遍历。

虽然它的代码相对复杂,但却具有灵活性和高效性。

我们要根据具体情况,选择适合的遍历方式。

最后,我们还需要注意二叉树遍历的应用。

比如,前序遍历可以用于复制树或表达式树,中序遍历可以用于对树进行排序,后序遍历可以用于计算表达式树的值等。

因此,在学习二叉树遍历的同时,还要了解它们的常见应用场景,以便更好地进行算法设计和应用实践。

总之,掌握二叉树的遍历方式和应用,对于数据结构和算法的学习非常重要。

我们要理解其原理和代码实现,并且要多加练习,深入掌握遍历的思想和技巧。

只有这样,我们才能在实际工作中灵活运用二叉树遍历,提高代码质量和效率。

第六章树2

第六章树2

有六种遍历方法:D L R,L D R,L R D,D R L,R D L,R L D D R, R, D, L, L, 约定: R, R, 约定:先左后右,有三种遍历方法: D L R,L D R,L R D , 分别称为先序遍历,中序遍历,后序遍历
3
A,先序遍历(D L R)(前缀表示) D R 若二叉树非空 (1)访问根结点; (2)先序遍历左子树; D (3)先序遍历右子树; ; 例:先序遍历右图所示的二叉树
……
if (k== -1) T=NULL; else { } } // } // CrtBT
18
T=(BiTNode*)malloc(sizeof(BiTNode)); T->data = pre[ps]; if (k==is) T->Lchild = NULL; else CrtBT(T->Lchild, pre[], ino[], ps+1, is, k-is ); if (k=is+n-1) T->Rchild = NULL; else CrtBT(T->Rchild, pre[], ino[], ps+1+(k-is), k+1, n-(k-is)-1 );
2
2,对"二叉树"而言,可以有三条搜索路径: , 二叉树"而言,可以有三条搜索路径: 先上后下 先上后下的按层次遍历; 先左 先左(子树)后右 后右(子树)的遍历; 后右 先右 先右(子树)后左 后左(子树)的遍历. 后左
二叉树由根,左子树,右子树三部分组成 令: D:访问根结点 L:遍历左子树 R:遍历右子树 L D R
24
4,复制二叉树
(后序遍历) 后序遍历)
其基本操作为:生成一个结点. 其基本操作为:生成一个结点. T 根元素 左子树 左子树 右子树 右子树 左子树 NEWT 根元素 右子树

二叉树实现及应用实验报告

二叉树实现及应用实验报告

二叉树实现及应用实验报告实验名称:二叉树实现及应用实验目的:1. 实现二叉树的创建、插入和删除操作。

2. 学习二叉树的遍历方法,并能够应用于实际问题。

3. 掌握二叉树在数据结构和算法中的一些常用应用。

实验内容:1. 实现二叉树的创建、插入和删除操作,包括二叉树的构造函数、插入函数和删除函数。

2. 学习二叉树的三种遍历方法:前序遍历、中序遍历和后序遍历,并应用于实际问题。

3. 掌握二叉树的一些常用应用,如二叉搜索树、平衡二叉树和哈夫曼树等。

实验步骤:1. 创建二叉树的结构体,包括树节点和树的根节点。

2. 实现二叉树的构造函数,用于创建二叉树的根节点。

3. 实现二叉树的插入函数,用于将元素插入到二叉树中的合适位置。

4. 实现二叉树的删除函数,用于删除二叉树中的指定元素。

5. 学习并实现二叉树的前序遍历、中序遍历和后序遍历函数。

6. 运用二叉树的遍历方法解决实际问题,如查找二叉树中的最大值和最小值。

7. 学习并应用二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构。

实验结果:1. 成功创建、插入和删除二叉树中的元素,实现了二叉树的基本操作。

2. 正确实现了二叉树的前序遍历、中序遍历和后序遍历,并能够正确输出遍历结果。

3. 通过二叉树的遍历方法成功解决了实际问题,如查找二叉树中的最大值和最小值。

4. 学习并熟练应用了二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构,丰富了对二叉树的理解。

实验分析:1. 二叉树是一种重要的数据结构,具有较好的数据存储和查找性能,广泛应用于计算机科学和算法领域。

2. 通过实验,我们深入了解了二叉树的创建、插入和删除操作,以及前序遍历、中序遍历和后序遍历的原理和应用。

3. 实际问题往往可以转化为二叉树的遍历问题进行求解,通过实验,我们成功应用了二叉树的遍历方法解决了实际问题。

4. 熟练掌握二叉搜索树、平衡二叉树和哈夫曼树的原理和应用,对于提高我们在数据结构和算法方面的设计能力具有重要意义。

二叉树的遍历代码

二叉树的遍历代码

二叉树的遍历代码二叉树是一种非常常见的数据结构,它由根节点、左子树和右子树组成,可以用于实现各种算法和应用。

在使用二叉树时,我们常常需要进行遍历来获取树中的节点信息。

下面,我们将详细介绍二叉树的遍历方法及其代码实现。

二叉树的遍历方法分为三种:前序遍历、中序遍历和后序遍历。

它们的不同之处在于遍历节点的顺序不同。

我们分别来介绍一下这三种遍历方法。

1.前序遍历前序遍历的顺序是:先访问根节点,然后递归访问左子树和右子树。

实现前序遍历的代码如下:```pythondef preorder_traversal(node):if node:print(node.data)preorder_traversal(node.left)preorder_traversal(node.right)```在代码中,我们首先输出根节点的值,然后分别递归访问左子树和右子树,直到遍历完整个树。

2.中序遍历中序遍历的顺序是:先递归访问左子树,然后访问根节点,最后递归访问右子树。

实现中序遍历的代码如下:```pythondef inorder_traversal(node):if node:inorder_traversal(node.left)print(node.data)inorder_traversal(node.right)```在代码中,我们先递归访问左子树,然后输出根节点的值,最后递归访问右子树。

3.后序遍历后序遍历的顺序是:先递归访问左子树和右子树,然后访问根节点。

实现后序遍历的代码如下:```pythondef postorder_traversal(node):if node:postorder_traversal(node.left)postorder_traversal(node.right)print(node.data)```在代码中,我们先递归访问左子树和右子树,然后输出根节点的值。

通过前序遍历、中序遍历和后序遍历,我们可以获取二叉树中每个节点的值。

二叉树的遍历有三种方式

二叉树的遍历有三种方式

二叉树的遍历有三种方式,如下:(1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树。

简记根-左-右。

(2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树。

简记左-根-右。

(3)后序遍历(LRD),首先遍历左子树,然后遍历右子树,最后访问根结点。

简记左-右-根。

例1:如上图所示的二叉树,若按前序遍历,则其输出序列为。

若按中序遍历,则其输出序列为。

若按后序遍历,则其输出序列为。

前序:根A,A的左子树B,B的左子树没有,看右子树,为D,所以A-B-D。

再来看A的右子树,根C,左子树E,E的左子树F,E的右子树G,G的左子树为H,没有了结束。

连起来为C-E-F-G-H,最后结果为ABDCEFGH中序:先访问根的左子树,B没有左子树,其有右子树D,D无左子树,下面访问树的根A,连起来是BDA。

再访问根的右子树,C的左子树的左子树是F,F的根E,E的右子树有左子树是H,再从H出发找到G,到此C的左子树结束,找到根C,无右子树,结束。

连起来是FEHGC, 中序结果连起来是BDAFEHGC 后序:B无左子树,有右子树D,再到根B。

再看右子树,最下面的左子树是F,其根的右子树的左子树是H,再到H的根G,再到G的根E,E的根C无右子树了,直接到C,这时再和B找它们其有的根A,所以连起来是DBFHGECA例2:有下列二叉树,对此二叉树前序遍历的结果为()。

A)ACBEDGFH B)ABDGCEHFC)HGFEDCBA D)ABCDEFGH解析:先根A,左子树先根B,B无左子树,其右子树,先根D,在左子树G,连起来是ABDG。

A的右子树,先根C,C左子树E,E无左子树,有右子树为H,C的右子树只有F,连起来是CEHF。

整个连起来是B答案ABDGCEHF。

例3:已知二叉树后序遍历是DABEC,中序遍历序列是DEBAC,它的前序遍历序列是( ) 。

A)CEDBA B)ACBED C)DECAB D)DEABC解析:由后序遍历可知,C为根结点,由中序遍历可知,C左边的是左子树含DEBA,C右边无结点,知根结点无右子树。

二叉树的四种遍历算法

二叉树的四种遍历算法

⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。

上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。

上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。

上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。

先序中序后序遍历算法

先序中序后序遍历算法

先序中序后序遍历算法
先序、中序和后序遍历是二叉树遍历的三种基本方法,它们可以帮助我们按照不同顺序访问树中的节点。

下面我会分别介绍这三种遍历算法。

1. 先序遍历:
先序遍历是指先访问根节点,然后递归地对左子树进行先序遍历,最后递归地对右子树进行先序遍历。

因此,先序遍历的顺序是根-左-右。

2. 中序遍历:
中序遍历是指先递归地对左子树进行中序遍历,然后访问根节点,最后递归地对右子树进行中序遍历。

因此,中序遍历的顺序是左-根-右。

3. 后序遍历:
后序遍历是指先递归地对左子树进行后序遍历,然后递归地
对右子树进行后序遍历,最后访问根节点。

因此,后序遍历的顺序
是左-右-根。

这三种遍历算法都是基于递归的思想实现的,它们在不同的应
用场景下都有各自的优势。

例如,先序遍历常用于复制整棵树,中
序遍历常用于二叉搜索树的查找操作,后序遍历常用于计算表达式
树的值等。

除了递归实现外,这三种遍历算法也可以通过迭代的方式实现,通常使用栈来辅助实现。

在实际应用中,根据具体的问题和数据结
构的特点,选择合适的遍历算法可以提高算法的效率和准确性。

总之,先序、中序和后序遍历算法是树结构中常用的基本算法,它们在数据结构和算法领域具有重要的意义,对于理解树的结构和
实现树相关的操作非常重要。

希望以上介绍能够帮助你更好地理解
这三种遍历算法。

三种遍历方法

三种遍历方法

三种遍历方法一、前序遍历前序遍历是二叉树遍历的一种方法,也是最常见的遍历方式之一。

在前序遍历中,首先访问根节点,然后递归地遍历左子树,最后递归地遍历右子树。

前序遍历的应用非常广泛,例如在二叉树的构建和重建、树的深度优先搜索等问题中都会用到前序遍历。

在进行前序遍历时,可以采用递归或者非递归的方式。

1. 递归实现前序遍历:递归实现前序遍历非常简单,具体步骤如下:- 首先判断当前节点是否为空,若为空则返回;- 访问当前节点;- 递归遍历左子树;- 递归遍历右子树。

2. 非递归实现前序遍历:非递归实现前序遍历需要借助栈来实现,具体步骤如下:- 将根节点入栈;- 循环执行以下步骤,直到栈为空:- 弹出栈顶节点,并访问该节点;- 若该节点的右子节点不为空,则将右子节点入栈;- 若该节点的左子节点不为空,则将左子节点入栈。

二、中序遍历中序遍历是二叉树遍历的另一种方法,同样也是一种常用的遍历方式。

在中序遍历中,首先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。

中序遍历的应用也非常广泛,例如在二叉搜索树的操作中,中序遍历可以按照升序输出所有节点的值。

1. 递归实现中序遍历:递归实现中序遍历的步骤如下:- 首先判断当前节点是否为空,若为空则返回;- 递归遍历左子树;- 访问当前节点;- 递归遍历右子树。

2. 非递归实现中序遍历:非递归实现中序遍历同样需要借助栈来实现,具体步骤如下:- 将根节点入栈;- 循环执行以下步骤,直到栈为空:- 若当前节点不为空,则将当前节点入栈,并将当前节点指向其左子节点;- 若当前节点为空,则弹出栈顶节点,并访问该节点,然后将当前节点指向其右子节点。

三、后序遍历后序遍历是二叉树遍历的另一种方式,也是最后一种常见的遍历方式。

在后序遍历中,首先递归地遍历左子树,然后递归地遍历右子树,最后访问根节点。

后序遍历的应用也非常广泛,例如在二叉树的删除操作中,需要先删除子节点,再删除根节点。

二叉树的遍历

二叉树的遍历

T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }

树的三种搜索(人工智能)

树的三种搜索(人工智能)

中序遍历二叉树的递归过程图解
前序遍历 (Preorder Traversal) 前序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 访问根结点 (V); 前序遍历左子树 (L); 前序遍历右子树 (R)。 遍历结果 -+a*b-cd/ef
二叉树递归的前序遍历算法 template <class Type> void BinaryTree <Type>::PreOrder ( ) { PreOrder ( root ); } template <class Type> void BinaryTree<Type>:: PreOrder ( BinTreeNode <Type> *current ) { if ( current != NULL ) { cout << current→data; PreOrder ( current→leftChild ); PreOrder ( current→rightChild )Traversal) 后序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 后序遍历左子树 (L); 后序遍历右子树 (R); 访问根结点 (V)。 遍历结果 abcd-*+ef/-
二叉树递归的后序遍历算法 template <class Type> void BinaryTree <Type>::PostOrder ( ) { PostOrder ( root ); } template <class Type> void BinaryTree<Type>:: PostOrder ( BinTreeNode <Type> *current ) { if ( current != NULL ) { PostOrder ( current→leftChild ); PostOrder ( current→rightChild ); cout << current→data; } }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前序序列:ABDEHCFIG 中序序列 : (DBEH)A(FICG)
A
前序:BDEH 中序:D B EH
B
前序:EH 中序:EH
D
E
前序:CFIG 中序:FI C G
C
前序:FI 中序:FI
F
G
H
I
中后序遍历到二叉树
中序序列 : (DBEH)A(FICG) 后序序列 : DHEB IFGC A
从二叉树的遍历序列返回二叉树
二叉树的三
1 种遍历
2 前中序遍历到 二叉树
中后序遍历到二
叉树
3
目录
CONTENTS
二叉树的三种遍历
A
B
C
前序遍历:父左右 中序遍历:左父右 后序遍历:左右父
从二叉树的遍历序列返回二叉树必须有 其中序遍历序列,前后遍历序列有其中一种 即可。
前中序遍历到二叉树
A
中序:D B EH 后序:DHE
B
B
中序:FI C G 后序:IFG C
C
中序:EH 后序:HE
中序
I
相关文档
最新文档