2020届江苏常州高三模拟考试试卷 数学 含答案
2020年江苏无锡市、常州市高考数学(5月份)模拟试卷 (解析版)
2020年高考数学(5月份)模拟试卷一、填空题(共14小题)1.已知集合M={0,1,2},集合N={0,2,4},则M∪N=.2.已知复数z=1+2i(i为虚数单位),则z2的值为.3.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.4.某中学共有1800人,其中高二年级的人数为600.现用分层抽样的方法在全校抽取n人,其中高二年级被抽取的人数为21,则n=.5.执行如图所示的伪代码,输出的结果是.6.若曲线f(x)=mxe x+n在(1,f(1))处的切线方程为y=ex,则m+n=.7.在平面直角坐标系xOy中,已知点A是抛物线y2=4x与双曲线=1(b>0)一个交点,若抛物线的焦点为F,且FA=5,则双曲线的渐近线方程为.8.已知{a n}是等比数列,S n是其前n项和,若a3=2,S12=4S6,则a9的值为.9.已知直三棱柱ABC﹣A1B1C1的所有棱长都为a,点P,Q分别为棱CC1,BC的中点,四面体A1B1PQ的体积为,则a的值为.10.已知且,则=.11.若关于x,y的方程组:在x∈[1,2]上有解,则m2+n2的最小值为.12.已知正实数a,b满足a+2b=2,则(a+)(b+)的最小值为.13.在平面直角坐标系xOy中,A,B是圆C:x2﹣4x+y2=0上两动点,且AB=2,点P坐标为(4,),则|3﹣2|的取值范围为.14.已知函数f(x)=,若函数g(x)=f[f(x﹣1)]恰有3个不同的零点,则实数b的取值范围是.二、解答题:本答题共6分,计90分.15.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(1)求a;(2)求cos(B﹣A)的值.16.如图,在四棱锥P﹣ABCD中.(1)若AD⊥平面PAB,PB⊥PD,求证:平面PBD⊥平面PAD;(2)若AD∥BC,AD=2BC,E为PA的中点,求证:BE∥平面PCD.17.已知椭圆C:+=1(a>b>0)的左顶点为A,左、右焦点分别为F1,F2,离心率为,P是椭圆上的一个动点(不与左、右顶点重合),且∧PF1F2的周长为6,点P 关于原点的对称点为Q,直线AP,QF2交于点M.(1)求椭圆方程;(2)若直线PF2与椭圆交于另一点N,且S=4S,求点P的坐标.18.(16分)如图,建筑公司受某单位委托,拟新建两栋办公楼AB,CD(AC为楼间距),两楼的楼高分别为am,bm,其中b>a.由于委托单位的特殊工作性质,要求配电房设在AC的中点M处,且满足两个设计要求:①∠BMD=90°,②楼间距与两楼的楼高之和的比λ∈(0.8,1).(1)求楼间距AC(结果用a,b表示);(2)若∠CBD=45°,设,用k表示λ,并判断是否能满足委托单位的设计要求?19.(16分)已知函数,其中a>0,b∈R,e为自然对数的底数.(1)若b=1,x∈[0,+∞),①若函数f(x)单调递增,求实数a的取值范围;②若对任意x≥0,f(x)≥1恒成立,求实数a的取值范围.(2)若b=0,且f(x)存在两个极值点x1,x2,求证:.20.(16分)已知数列{a n}满足奇数项{a2n﹣1}成等差,公差为d,偶数项{a2n}成等比,公比为q,且数列{a n}的前n项和为S n,a1=1,a2=2.(1)若S5=2a4+a5,a9=a3+a4.①求数列{a n}的通项公式;②若a m a m+1=a m+2,求正整数m的值;(2)若d=1,q>1,对任意给定的q,是否存在实数λ,使得对任意n∈N*恒成立?若存在,求出λ的取值范围;若不存在,请说明理由.[选修4-2:矩阵与变换]21.已知矩阵,,列向量.(1)求矩阵AB;(2)若,求a,b的值.[选修4-4:坐标系与参数方程]22.在极坐标系中,直线l的极坐标方程为,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为(α为参数),求直线l与曲线C的交点P的直角坐标.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.23.已知正四棱锥PABCD的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制);若这两条棱所在的直线平行,则ξ=0;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制).(1)求P(ξ=0)的值;(2)求随机变量ξ的分布列及数学期望E(ξ).24.给定整数n(n≥3),记f(n)为集合{1,2,…,2n﹣1}的满足如下两个条件的子集A的元素个数的最小值:(a)1∈A,2n﹣1∈A;(b)A中的元素(除1外)均为A中的另两个(可以相同)元素的和.(1)求f(3)的值;(2)求证:f(100)≤108.参考答案一、填空题:本题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.已知集合M={0,1,2},集合N={0,2,4},则M∪N={0,1,2,4}.【分析】利用集合的并集运算即可解题.解:∵集合M={0,1,2},集合N={0,2,4},∴M∪N={0,1,2,4},故答案为:{0,1,2,4}.2.已知复数z=1+2i(i为虚数单位),则z2的值为﹣3+4i.【分析】利用复数的运算法则即可得出.解:复数z=1+2i(i为虚数单位),则z2=1﹣4+4i=﹣3+4i.故答案为:﹣3+4i.3.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【分析】根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=,故答案为:.4.某中学共有1800人,其中高二年级的人数为600.现用分层抽样的方法在全校抽取n人,其中高二年级被抽取的人数为21,则n=63.【分析】根据分层抽样的定义建立比例关系即可得到结论.解:∵高二年级被抽取的人数为21,∴=,得n=63,故答案为:63.5.执行如图所示的伪代码,输出的结果是8.【分析】由题意,模拟程序的运行,依次写出I,S的值,即可求解.解:模拟程序的运行,可得S=1,I=2满足条件S≤100,执行循环体,I=4,S=4满足条件S≤100,执行循环体,I=6,S=24满足条件S≤100,执行循环体,I=8,S=192此时,不满足条件S≤100,退出循环,输出I的值为8.故答案为:8.6.若曲线f(x)=mxe x+n在(1,f(1))处的切线方程为y=ex,则m+n=.【分析】先将x=1代入切线方程求出切线坐标,然后代入曲线方程得m,n的一个方程①,然后求出曲线在x=1处的导数,令其等于e,得另一个关于m,n的方程②,联立①②求解即可.解:将x=1代入y=ex得切点为(1,e),所以e=me+n……①,又f′(x)=me x(x+1),∴f′(1)=2em=e,∴,联立①②解得,故.故答案为:.7.在平面直角坐标系xOy中,已知点A是抛物线y2=4x与双曲线=1(b>0)一个交点,若抛物线的焦点为F,且FA=5,则双曲线的渐近线方程为y=±x.【分析】求出A的坐标,代入双曲线方程求出b,然后求解双曲线的渐近线方程.解:抛物线y2=4x的焦点为F,且FA=5,可得F(1,0)则A(4,±4),点A是抛物线y2=4x与双曲线=1(b>0)一个交点,a=2,可得,解得b=,所以双曲线的渐近线方程为:y=±x.故答案为:y=±x.8.已知{a n}是等比数列,S n是其前n项和,若a3=2,S12=4S6,则a9的值为2或6.【分析】根据条件结合等比数列的通项公式以及前n项和公式,求出首项和公比即可得到结论.解:∵在等比数列中,a3=2,S12=4S6,∴若公比q=1,则S12≠4S6,∴q≠1,∵S12=4S6∴=4×,即1﹣q12=4(1﹣q6)=(1+q6)(1﹣q6)即(1﹣q6)(q6﹣3)=0∴q6=1或3,又q≠1,∴q=﹣1或q6=3,当q=﹣1时,a9=a3q6=2×1=2当q6=3时,a9=a3q6=2×3=6.故答案为:2或6.9.已知直三棱柱ABC﹣A1B1C1的所有棱长都为a,点P,Q分别为棱CC1,BC的中点,四面体A1B1PQ的体积为,则a的值为2.【分析】由题意画出图形,求出A1到平面BB1C1C的距离,再求出三角形B1PQ的面积,得到四面体A1B1PQ的体积,则a的值可求.解:如图,直三棱柱ABC﹣A1B1C1的所有棱长都为a,点P,Q分别为棱CC1,BC的中点,取B1C1的中点H,连接A1H,则A1H⊥平面BB1C1C,且,=.∴四面体A1B1PQ的体积为,解得a=2.故答案为:2.10.已知且,则=.【分析】由二倍角的余弦函数公式,同角三角函数基本关系式结合角α的范围可求tanα的值,进而利用两角和与差的正切函数公式化简所求即可求解.解:∵,∴tanα>0,∵==,整理可得:tan2α=,∴tanα=,∴===.故答案为:.11.若关于x,y的方程组:在x∈[1,2]上有解,则m2+n2的最小值为.【分析】解方程可得(m﹣1)x+n﹣1=0,构造函数f(x)=(m﹣1)x+n﹣1,依题意,函数y=f(x)在x∈[1,2]上存在零点,则由零点存在性定理可得f(1)f(2)≤0,即(m+n﹣2)(2m+n﹣3)≤0,作出不等式表示的可行域,再利用m2+n2的几何意义得解.解:依题意,mx+y﹣x﹣y=1﹣n,即(m﹣1)x+n﹣1=0,设f(x)=(m﹣1)x+n﹣1,显然函数f(x)在R上单调,又方程组在x∈[1,2]上有解,故由函数零点存在性定理可知,f(1)f(2)≤0,即[(m﹣1)+n﹣1][2(m﹣1)+n﹣1]≤0,即(m+n﹣2)(2m+n﹣3)≤0,作出不等式(m+n﹣2)(2m+n﹣3)≤0表示的可行域如下图阴影部分所示,而m2+n2表示的是可行域内的任意一点(m,n)到原点距离的平方,显然其最小值为原点(0,0)到直线2m+n﹣3=0的距离的平方,即为.故答案为:.12.已知正实数a,b满足a+2b=2,则(a+)(b+)的最小值为.【分析】由2=a+2b≥2,可得,(a+)(b+)==令ab=t,t∈(0,].根据函数f(t)=t+﹣4在(0,)单调递减,即可求解.解:∵正实数a,b满足a+2b=2,∴2=a+2b≥2,可得,则(a+)(b+)==,令ab=t,t∈(0,].即有ab+,又函数f(t)=t+﹣4在(0,)单调递减,∴f(t).故答案为:.13.在平面直角坐标系xOy中,A,B是圆C:x2﹣4x+y2=0上两动点,且AB=2,点P坐标为(4,),则|3﹣2|的取值范围为[,3].【分析】设3﹣2=,则﹣=3,即=3,求出CM的长度得出M 的轨迹,从而得出||的范围.解:3﹣2=3﹣3+=3+,设3﹣2=,则﹣=3,即=3,∵A,B均为圆C:x2﹣4x+y2=0上两动点,且AB=2,∴△ABC是边长为2的等边三角形,过C作AB的垂线CN,则N为AB的中点,∴CN=,MN=5,∴CM==2,∴M的轨迹是以C为圆心,以2为半径的圆.又|PC|==,∴≤||≤3.故答案为:[,3].14.已知函数f(x)=,若函数g(x)=f[f(x﹣1)]恰有3个不同的零点,则实数b的取值范围是(﹣∞,2﹣).【分析】首先分析出b<0,则f(m)=0有两个根,一个为0,和一个负根m1,那么g (x)=f[f(x﹣1)]=0需满足f(x﹣1)=0或f(x﹣1)=m1,显然f(x﹣1)=0有两个根,由题意,f(x﹣1)=m1必然有一个根,则只需b<m1即可.解:当x<0时,f′(x)=﹣3x2+8x=﹣x(3x﹣8)<0,则f(x)在(﹣∞,0)上单调递减,此时f(x)>f(0)=b,令f(x﹣1)=m,当b≥0时,f(m)=0只有一解m=0,此时g(x)不可能有三个零点,故b<0,此时f(m)=0有两个根,一个为0,和一个负根m1,如下图所示,则f(x﹣1)=0或f(x﹣1)=m1,m1<0,显然f(x﹣1)=0有两个根,则f(x﹣1)=m1必然有一个根,由图象可知,要使f(x﹣1)=m1有一个根,则需b<m1,又,所以,∴,解得,∴.故答案为:.二、解答题:本答题共6分,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(1)求a;(2)求cos(B﹣A)的值.【分析】(1)直接利用余弦定理求出结果.(2)利用正弦定理和三角函数的关系变换求出结果.解:(1)△ABC中,角A,B,C的对边分别为a,b,c,已知,则:a2=b2+c2﹣2ab cos C=2+5﹣2=9,故:a=3.(2)由于,则:.利用正弦定理:,解得:sin B=,所以:=.则:cos(B﹣A)=cos B cos A+sin B sin A=.16.如图,在四棱锥P﹣ABCD中.(1)若AD⊥平面PAB,PB⊥PD,求证:平面PBD⊥平面PAD;(2)若AD∥BC,AD=2BC,E为PA的中点,求证:BE∥平面PCD.【分析】(1)推导出AD⊥PB,PB⊥PD,从而PB⊥平面PAD,由此能证明平面PBD ⊥平面PAD.(2)取PD的中点F,连结EF,推导出EF∥AD,且AD=2EF,AD∥BC,AD=2BC,从而四边形EFCB是平行四边形,进而BE∥CF,由此能证明BE∥平面PCD.【解答】证明:(1)因为AD⊥平面PAB,PB⊂平面PAB所以AD⊥PB,又因为PB⊥PD,且AD∩PD=D,所以PB⊥平面PAD,又因为PB⊂平面PBD,所以平面PBD⊥平面PAD.…………………(2)取PD的中点F,连结EF,因为E,F分别是PA,PD的中点,所以EF∥AD,且AD=2EF,又因为四边形ABCD为直角梯形,且AD∥BC,AD=2BC,所以EF∥BC且EF=BC,所以四边形EFCB是平行四边形,所以BE∥CF,又CF⊂平面PCD,BE⊄平面PCD,所以BE∥平面PCD.…………………………………………………………17.已知椭圆C:+=1(a>b>0)的左顶点为A,左、右焦点分别为F1,F2,离心率为,P是椭圆上的一个动点(不与左、右顶点重合),且∧PF1F2的周长为6,点P关于原点的对称点为Q,直线AP,QF2交于点M.(1)求椭圆方程;(2)若直线PF2与椭圆交于另一点N,且S=4S,求点P的坐标.【分析】(1)根据椭圆的性质,即可求得a和b的值,求得椭圆方程;(2)分类讨论,当设P(m,n),当m≠﹣1,求得QF2的方程,联立方程组,求得M 点坐标,根据S=4S,则|y M|=4|y N|,由与共线,求得N点坐标,代入椭圆方程,即可求得P点坐标.解:(1)因为椭圆的离心率为,△PF1F2的周长为6,设椭圆的焦距为2c.则,解得,a=2,c=1,.所以椭圆方程为.(2)设P(m,n),则,且Q(﹣m,﹣n).所以AP的方程为①若m=﹣1,则QF2的方程为x=1 ②由对称性不妨设点P在x轴上方,则,.联立①②,解得,即.PF2的方程为,代入椭圆方程得.所以,不符合条件.若m≠﹣1,则QF2的方程为,即,③联立①③,,所以M(3m+4,3n),因为S=4S,所以×|AF2|×|y M|=4××|AF2|×|y N|,即|y M|=4|y N|,又因为M,N位于x轴异侧,所以.因为P,F2,N三点共线,即与共线.所以,即,所以,又所以,解得,所以.所以点P的坐标为或.18.(16分)如图,建筑公司受某单位委托,拟新建两栋办公楼AB,CD(AC为楼间距),两楼的楼高分别为am,bm,其中b>a.由于委托单位的特殊工作性质,要求配电房设在AC的中点M处,且满足两个设计要求:①∠BMD=90°,②楼间距与两楼的楼高之和的比λ∈(0.8,1).(1)求楼间距AC(结果用a,b表示);(2)若∠CBD=45°,设,用k表示λ,并判断是否能满足委托单位的设计要求?【分析】(1)易知,,而∠BMA+∠DMC=90°,可得tan∠BMA•tan∠DMC=1,由此得到;(2),利用正切的和角公式可知,即2k3﹣3k2﹣1=0,构造函数f(x)=2x3﹣3x2﹣1,x>1,利用导数结合零点存在性定理可得1<k<2,符合题意,进而作出判断.解:(1)在△ABM中,,在△CDM中,,∵∠BMD=90°,∴∠BMA+∠DMC=90°,∴tan∠BMA•tan∠DMC=1,即c2=4ab,∴;(2),在△CBD中,过点B作CD的垂线,垂足为E,∴,,∴=,∴,因为,则,即2k3﹣3k2﹣1=0,设f(x)=2x3﹣3x2﹣1,x>1,∴f'(x)=6x2﹣6x=6x(x﹣1)>0,∴函数f(x)单调递增,若λ∈(0.8,1),则,即1<k<2,∵f(1)=﹣2<0,f(2)=3>0,∴1<k<2成立,∴λ∈(0.8,1),∴能满足委托单位的设计要求.19.(16分)已知函数,其中a>0,b∈R,e为自然对数的底数.(1)若b=1,x∈[0,+∞),①若函数f(x)单调递增,求实数a的取值范围;②若对任意x≥0,f(x)≥1恒成立,求实数a的取值范围.(2)若b=0,且f(x)存在两个极值点x1,x2,求证:.【分析】(1)①问题等价于f′(x)≥0在[0,+∞)上恒成立,即ax≥2a﹣1对任意x∈[0,+∞)恒成立,由此得解;②分及讨论,容易得出结论;(2)解法一:表示出f(x1)+f(x2)=,令,求导后易证F(x)<F(1)=e;令,利用导数可证G(x)>G(0)=2,进而得证;解法二:不等式的右边同解法一;由(1)当x≥0时,可得,由此f(x1)+f(x2)==,即得证.解:(1)①因为单调递增,所以对任意x∈[0,+∞)恒成立,即ax≥2a﹣1对任意x∈[0,+∞)恒成立,∴2a﹣1≤0,即;②由①当时,单调递增,故f(x)≥1成立,符合题意;当时,令f'(x)=0得,∴f(x)在上递减,∴不合题意;综上,实数a的取值范围为;(2)证明:解法一:因为存在两个极值点x1,x2所以有两个不同的解,故△=4a2﹣4a>0,又a>0,所以a>1,设两根为x1,x2(x1<x2),则,故0<x1<1,,令,因为,所以F(x)在(0,1)上递增,则F(x)<F(1)=e;又,令,则,令G'(x)=0得,又x∈(0,1),则,即,记为x0,则G(x)在(0,x0)上递增,在(x0,1)上递减,又G(0)=2,G(1)=2e﹣3>2,所以G(x)>G(0)=2,即,综上:.解法二:不等式的右边同解法一;由(1)当x≥0时,恒成立,所以有当x>0时,,所以=.20.(16分)已知数列{a n}满足奇数项{a2n﹣1}成等差,公差为d,偶数项{a2n}成等比,公比为q,且数列{a n}的前n项和为S n,a1=1,a2=2.(1)若S5=2a4+a5,a9=a3+a4.①求数列{a n}的通项公式;②若a m a m+1=a m+2,求正整数m的值;(2)若d=1,q>1,对任意给定的q,是否存在实数λ,使得对任意n∈N*恒成立?若存在,求出λ的取值范围;若不存在,请说明理由.【分析】(1)先由S5=2a4+a5,a9=a3+a4⇒d=2,q=3;①先对n进行分类(正奇数与正偶数),分别求通项公式,再综合;②先对m进行分类(正奇数与正偶数),利用①求得的通项公式分别求满足题意的m,再综合;(2)分当λ=0与λ≠0两种情况分别研究,求出λ的取值范围.【解答】解;(1)因为S5=2a4+a5,a9=a3+a4,所以a1+a2+a3=a4,a9=a3+a4,即解得d=2,q=3.①当n为奇数时,设n=2k﹣1,则a n=a2k﹣1=a1+(k﹣1)d=2k﹣1=n,当n为偶数时,设n=2k,则综上;②当m为奇数时,由a m a m+1=a m+2⇒,即,当m=1时,不合题;当m≥3时,右边小于2,左边大于2,等式不成立;当m为偶数时,a m a m+1=a m+2⇒m+1=3,所以m=2.综上,m=2;(2)①当λ=0时,由于各项,所以,所以λ=0合题;②当λ≠0时,假设对任意n∈N*恒成立,即对任意n∈N*恒成立,所以,令,即对任意n∈N*恒成立先证:lnx<对任意x>0恒成立令,则,所以f(x)在(0,4)上递减,在(4,+∞)上递增,所以f(x)min=f(4)=2﹣ln4>0,即对任意x>0恒成立,所以,所以,所以当时,q n>n2,即,解得,所以当且时,这与对任意n∈N*恒成立矛盾,所以当λ≠0时不合题;综上λ的取值范围为{0}.[选修4-2:矩阵与变换]21.已知矩阵,,列向量.(1)求矩阵AB;(2)若,求a,b的值.【分析】(1)根据矩阵的乘法,即可求得AB;(2)根据矩阵乘法计算公式,求得X=AB,即可求得X,即可求得a和b的值.解:(1);(2)由,解得=,又因为,所以a=28,b=5.[选修4-4:坐标系与参数方程]22.在极坐标系中,直线l的极坐标方程为,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为(α为参数),求直线l与曲线C的交点P的直角坐标.【分析】先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换将极坐标方程化成直角坐标方程.再利用消去参数的方法化参数方程为直角坐标方程,通过直角坐标方程求出交点即可.解:因为直线l的极坐标方程为所以直线l的普通方程为,又因为曲线C的参数方程为(α为参数)所以曲线C的直角坐标方程为,联立解方程组得或,根据x的范围应舍去,故P点的直角坐标为(0,0).【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.23.已知正四棱锥PABCD的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制);若这两条棱所在的直线平行,则ξ=0;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制).(1)求P(ξ=0)的值;(2)求随机变量ξ的分布列及数学期望E(ξ).【分析】(1)该四棱锥的四个侧面均为等边三角形,底面为正方形,△PAC,△PBD 为等腰直角三角形.ξ的可能取值为:0,,,在这个正四棱锥的8条棱中任取两条基本事件总数n==28种情况,当ξ=0时有2种,由此能求出P(ξ=0).(2)分别求出P(ξ=0),P(ξ=),P(ξ=).由此能求出随机变量ξ的分布列和E(ξ).解:(1)根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,△PAC,△PBD为等腰直角三角形.ξ的可能取值为:0,,,在这个正四棱锥的8条棱中任取两条基本事件总数n==28种情况,当ξ=0时有2种,当ξ=时有3×4+2×4=20种,当ξ=时有2+4=6种.∴P(ξ=0)==.(2)P(ξ=0)==.P(ξ=)==,P(ξ=)==.随机变量ξ的分布列如下表:ξ0PE(ξ)=0×+×+×=.24.给定整数n(n≥3),记f(n)为集合{1,2,…,2n﹣1}的满足如下两个条件的子集A的元素个数的最小值:(a)1∈A,2n﹣1∈A;(b)A中的元素(除1外)均为A中的另两个(可以相同)元素的和.(1)求f(3)的值;(2)求证:f(100)≤108.【分析】根据定义,分别进行验证即可求出f(3)的值,然后根据条件进行递推,即可得到不等式的结论.解:(1)设集合A⊆{1,2,…23﹣1},且A满足(a),(b).则1∈A,7∈A.由于{1,m,7},(m=2,3,4,5,6)不满足(b),故A集合的元素个数大于3.又{1,2,3,7},{1,2,4,7},{1,2,5,7},{1,2,6,7},{1,3,4,7},{1,3,5,7},{1,3,6,7},{1,4,5,7},{1,4,6,7},{1,5,6,7}都不满足(b),故A集合的元素个数大于4.而集合{1,2,4,6,7}满足(a),(b),∴f(3)=5.(2)首先证明f(n+1)≤f(n)+2,n≥3 ①事实上,若A⊆{1,2,…2n﹣1},满足(a),(b),且A的元素个数为f(n).令B=A∪{2n+1﹣2,2n+1﹣1},由于{2n+1﹣2>2n﹣1,故|B|=f(n)+2.又2n+1﹣2=2(2n﹣1),2n+1﹣1=1+(2n+1﹣2),所以,集合B⊆{1,2,…,2n+1﹣1},且B满足(a),(b).从而f(n+1)≤|B|=f(n)+2,其次证明:f(2n)≤f(n)+n+1,n≥3 ②事实上,设A⊆{1,2,…2n﹣1},满足(a),(b),且A的元素个数为f(n).令B=A∪{2n+1﹣2,2n+1﹣1…22n﹣1},由于2(2n﹣1)<22(2n﹣1)<⋅⋅⋅<22n﹣1,所以B⊆{1,2,…22n﹣1},且|B|=f(n)+n+1.而2k+1(2n﹣1)=2k(2n﹣1)+2k(2n﹣1),k=0,1,2⋅⋅⋅n﹣1,从而B满足(a),(b),于是f(2n)≤|B|=f(n)+n+1.…由①,②得f(2n+1)≤f(n)+n+1.③反复利用②,③可得f(100)≤f(50)+50+1≤f(25)+25+1+51≤f(12)+12+3+77≤f(6)+6+1+92≤f(3)+3+1+99=108.。
2020年江苏省无锡市常州高级中学高三数学文模拟试卷含解析
2020年江苏省无锡市常州高级中学高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数是幂函数且是上的增函数,则的值为A. 2B. -1C. -1或2D. 0参考答案:B因为函数为幂函数,所以,即,解得或.因为幂函数在,所以,即,所以.选B.2. 已知集合,,且都是全集的子集,则右图中阴影部分表示的集合是()A、 B、 C、 D、参考答案:C略3. 对于函数:①,②,③,命题甲:在区间上是增函数;命题乙:在区间上恰有两个零点,且;能使命题甲、乙均为真的函数的序号是( )A.①B.② C.①③ D.①②参考答案:D略4. 如图,设全集为U=R,A={x|x(x﹣2)<0},B={x|y=ln(1﹣x)},则图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2} C.{x|0<x≤1}D.{x|x≤1}参考答案:B【考点】Venn图表达集合的关系及运算.【分析】由韦恩图中阴影部分表示的集合为A∩(?R B),然后利用集合的基本运算进行求解即可.【解答】解:A={x|x(x﹣2)<0}={x|0<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则?R B={x|x≥1}.由韦恩图中阴影部分表示的集合为A∩(?R B),∴A∩(?R B)={x|1≤x<2},故选B.5. △ABC的三个内角A、B、C,所对的边分别是a、b、c,若a=2,c=2,tanA+tanB=﹣tanAtanB,则△ABC的面积S△ABC=()A.B.1 C.D.2参考答案:C【考点】GR:两角和与差的正切函数.【分析】由已知结合两角和的正确求得C,利用正弦定理求得A,则B可求,代入三角形面积公式得答案.【解答】解:由tanA+tanB=﹣tanAtanB,得tanA+tanB=(1﹣tanAtanB),∴tan(A+B)=,即tanC=﹣.∵0<C<π,∴C=.则sinC=.由正弦定理可得:,得sinA=,∴A=.则B=.∴S△ABC=×=.故选:C.6. 下列函数中既是偶函数,又在区间上单调递增的函数是( )A. B. C.(D)参考答案:C7. 若幂函数与在第一象限的图象如图所示,则m与n的取值情况为()A.B.C.D.参考答案:D在第一象限作出幂函数的图象,在内取同一值,作直线,与各图象有交点,则由“指大图高”,可知如图,故选D.8. 一只蚂蚁从正方体的顶点处出发,经正方体的表面,按最短路线爬行到达顶点位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A.①② B.①③ C.②④ D.③④参考答案:C9. 要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度参考答案:C略10. 已知,向量与垂直,则实数的值为()A. B.3 C.D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 是虚数单位,计算=________.参考答案:-112. 某校一天要上语文、数学、外语、历史、政治、体育六节课,在所有可能的安排中,数学不排在最后一节,体育不排在第一节的概率是.参考答案:13. 设定点A(3,0),动点P的坐标满足约束条件,则(O为坐标原点)的最大值为______________.参考答案:414. 将函数的图象向左平移个单位,再向下平移1个单位,得到函数g(x)的图象,则g(x)的解析式为.参考答案:略15. 已知△ABC中,,D为边BC上一点,,,则的值为______.参考答案:【分析】以为原点,以所在直线为轴建立平面直角坐标系,设,记,再根据同角的平方关系以及数量积的坐标运算求解即可.【详解】解:以原点,以所在直线为轴建立平面直角坐标系,设,则,∵,记,∴,,,则,,∵,,∴,,∴,,又为边上一点,∴,则,即,又,∴∴,解得,∴,故答案为:.【点睛】本题主要考查数量积的坐标运算,考查同角的平方关系,考查设而不求思想,属于中档题.16. 已知满足,且目标函数的最小值是5,则的最大值是____.参考答案:10略17. 若实常数,则不等式的解集为.参考答案:三、解答题:本大题共5小题,共72分。
江苏省常州市2020届高三上学期期末学业水平监测数学答案
常州市教育学会学生学业水平监测高三数学Ⅰ参考答案2020年1月一、填空题:本大题共14小题,每小题5分,共计70分.1.1,12.13.104.0,5.26.71017.8.5129.6410.2211.212.1413.1 217,011714.1,25 1326二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)解:(1)在ABC中,0B ,则sinB 0,因为B3,所以sin1cos21(3)2 6cos B B.…………………………3分33 3在ABC中,A B C ,所以sinC sin((A B))sin(A B),…………5分33163 6所以sinC sin(B)sin cosB cos sin B .3332323 6……………………………8分3(2)由余弦定理得b2a22accosB c2,则(2)212c c2,…………10分3所以223103c c ,(c 3)(c )0,……………………………12分3 3因为3c 0,所以c 30,即c 3. (14)分316.(本小题满分14分)证明:(1)取PC,BC的中点E,F,连结ME,EF,FN,三角形PCD中,M,E为PD,PC的中点,所以EM∥CD,1EM CD;三角形ABC中,F,N为BC,AC的中点,2所以FN∥AB,1FN AB,2因为四边形ABCD是矩形,所以AB∥CD,AB CD,高三数学Ⅰ答案第1页(共7页)从而EM∥FN,EM=FN,所以四边形EMNF是平行四边形.……………………4分所以MN∥EF,又EF 平面PBC,MN 平面PBC,所以MN∥平面PBC.……………………………6分(2)因为PA平面ABCD,CD 平面ABCD,所以PA CD.因为四边形ABCD是矩形,所以AD CD.……………………………8分又因为PA AD A,PA 平面PAD,AD 平面PAD,所以CD 平面PAD.又AM 平面PAD,所以CD AM.……………………………10分因为AP AD,M为PD的中点,所以AM PD,又因为PD CD D,PD平面PCD,CD平面PCD,所以AM 平面PCD.……………………………12分又PC 平面PCD,所以PC AM.……………………………14分17.(本小题满分14分)解:(1)圆A:(x 2)y 1的圆心A(2,0),半径r 1,与x轴交点坐标为(1,0),(3,0)2 2点F2在圆A:(x 2)2y21上,所以F2(1,0),从而a 2,c 1,2 2x y所以b a2c222123,所以椭圆C的标准方程为 1.……4分4 3(2)由题,设点M(x1,y1),0x12,y10;点N(x2,y2),x20,y20.则AM (x 2,y),1 1AN (x 2,y),由2 213AM AN知点A,M,N共线.……5分2直线AM的斜率存在,可设为k(k>0),则直线AM的方程为y k(x 2),由y k(x 2),,得(x 2)y 12 21k2x 21k2k 1ky221k,,或1k2x 2,1k2,k 1ky221k所以1k k 1k2 2N(2,),……………………………7分1k 1k2 2高三数学Ⅰ答案第2页(共7页)8k 2 6 y k(x2),x,x 2,3 4k2由22,得 (3 4k 2 )x 2 16k 2 x 16k 2 12 0,解得,或,x y1y 012ky 4 323 4k所以 8k6 12k 2M( , ) , ……………………………10 分3 4k 34k22代入13AMAN 得28k6 12k 13 1k k 1k222( 2 )( ), ,,3 4k3 4k 21k 1k22223 (4k9)(52k51) 0 ,又 k>0,得 k, ……………………………13 分2223 2 3所以 M ) ,又 F 1(1,0) ,可得直线 F 1M 的斜率为(1,21(1)3 4.…………………14 分 18.(本小题满分 16 分)(图1)(图2)解:(1)在图1中连结AC,BD交于点O,设BD与FG交于点M,在图2中连结OP,因为ABCD是边长为102cm的正方形,所以OB=10(cm),x x由FG=x,得OM,PM BM10,……………………………2分2 2x x因为PM OM,即10,所以0x10.……………………………4分2 21x因为S4FG PM2x(10)20x x2,……………………………6分2 2由20x x275,得5≤x15,所以5x10.答:x的取值范围是5x10.……………………………8分高三数学Ⅰ答案第3页(共7页)(2)因为在 RT OMP 中,OM 2 OP PM ,22x x 所以 OP OM)( ) 100 10x , PM 22(102 22 2 11 1 VFG 2 OP x 100 10x100x10x ,0 x10 ,…………10 分245333 设 f (x) 100x 410x 5 , 0 x10 ,所以 f (x) 400x 3 50x 450x 3 (8 x) ,令 f(x) 0,得 x 8或x 0 (舍去).……………………………12 分列表得,x (0,8) 8 (8,10) f'(x) + 0 - f(x)↗极大值↘所以当 x =8 时,函数 f (x) 取得极大值,也是最大值, ……………………………14 分128 所以当 x =8 时,V 的最大值为35 .128 答:当 x =8 cm 时,包装盒容积 V 最大为35 (cm 3 ). ………………………16 分19.(本小题满分 16 分) (1)函数 f (x) 的定义域为 (0,) , 21 f (x) (2ax 2) l n x (ax2x)ax 2(ax 1) l n x 2ax 2 2(ax 1)(l n x 1),……2 分x 则 f (1) 2(a 1) 2 ,所以 a 0 , ……………………………3 分此时 f (x) 2xln x1,定义域为 (0,) , f (x) 2(ln x 1),令f (x)0,解得1x ;令f (x)0,解得e1x ;e高三数学Ⅰ答案第4页(共7页)所以函数f(x)的单调增区间为1(,),单调减区间为e1(0,)e.…………………6分(2)函数af(x)(ax22x)ln x x21在区间[1,e]上的图象是一条不间断的曲线.2由(1)知f (x)2(ax 1)(l n x 1),1)当a≥0时,对任意x(1,e),ax 10,l n x 10,则f (x)0,所以函数f(x)在区a间[1,e]上单调递增,此时对任意x(1,e),都有f(x)f(1)10成立,从而函数f(x)2在区间(1,e)上无零点;……………………………8分2)当a 0时,令f (x)0,得1x 或e1a,其中1e1,1 ①若a ≤,即a ≤1,则对任意x(1,e),f (x)0,所以函数f(x)在区间[1,e]上1a af,且(e)e22e e210 单调递减,由题意得(1)10f a ,解得2 22(2e 1)2a ,其中23e 2(2e 1)3e 4e 22(2e 1)2(1)0,即1,2 23e23e3e所以a的取值范围是2a≤1;……………………………10分1 1②若≥e,即≤a 0,则对任意x(1,e),f (x)0,所以函数f(x)在区间[1,e]a ea上单调递增,此时对任意x(1,e),都有f(x)f(1)10成立,从而函数f(x)在2区间(1,e)上无零点;……………………………12分1 ③若1ea ,即11a ,则对任意e1x (1,)a,f (x)0;所以函数f(x)在区1 间[1,]a 上单调递增,对任意1x (1,]aa,都有f(x)f(1)10成立;2对任意1 1x ,f (x)0,函数f(x)在区间(,e)[,e]上单调递减,由题意得x ,f (x)0,函数f(x)在区间a aa2 2f(e)ae 2e e 10,解得22(2e 1) a,23e其中2(2e 1)13e 4e 2e 22(2e 1) 1 ()0,即(),3e e3e3e3e e 222 22(2e 1)所以a的取值范围是1a .……………………………15分23e综上可得,实数a的取值范围是2(2e 1)2a . (16)分23e高三数学Ⅰ答案第5页(共7页)20.(本小题满分16分)解:(1)设等比数列{a}公比为q,由8a=4a=1得8a q2=4a q=1,n321 1解得1a=q=,故121a=.……………………………3分n n22111123112 3(2)|a (a 1)||(1)||()+|=()+.…………5分n n n n n n2422422 411 1n N*,且n≤m时,有≤≤,对任意正整数m,当02m2n 2则(11)2+31+3=1,即|a (a21)|≤1成立,2n244 4n n故对任意正整数m,数列{a},{a21}是“(m,1)接近的”.…………………8分n nS(b b) 1 (3)由1=n n nb b 2n n 1 ,得到1S(b b)=b b ,且b n,b n10,n n1n n n 12从而b bb b ,于是 110S=n nn n n2()b bn1n.……………………………9分b b当n 1时,S=1 212(b b)2 1 ,b,解得2 21=1b ,当n≥2时,b b b bb S Sn n1n1nn n n 12(b b)2(b b)n1n n n 1,又b 0,n整理得b 1b 12b,所以b n1b n b n b n1,因此数列{b n}为等差数列.n n n又因为b1=1,2=2b,则数列{b}的公差为1,故b n.……………………11分n n根据条件,对于给定正整数m(m≥5),当n N且n≤m时,都有*1(2)|2n(2)|≤成立,|b k|n k Lnan即L2n n2≤k≤L2n n2①对n1,2,3,m都成立.…………12分考察函数f(x)2x x2,f(x)2x ln22x,令g(x)2x ln22x,高三数学Ⅰ答案第6页(共7页)则g(x)2x(ln2)22,当x>5时,g(x)0,所以g(x)在[5,)上是增函数.又因为g(5)25ln2100,所以当x 5时,g(x)0,即f (x)0,所以f(x)在[5,)上是增函数.注意到f(1)=1,f(2)f(4)0,f(3)1,f(5)7,故当n 1,2,3,m时,L 2n n2的最大值为L 2m m2,L 2n n的最小值为L 1.……………………………14分2欲使满足①的实数k存在,必有L 2m m2≤L 1,即2m m 12L≥,2因此L的最小值2 1m m22,此时k2 1m m2.……………………………16分2高三数学Ⅰ答案第7页(共7页)常州市教育学会学生学业水平监测数学Ⅱ(附加题)参考答案2020 年 1 月21.【选做题】在 A 、B 、C 三 小 题 中 只.能.选.做.两.题., 每 小 题 10 分,共计 20 分.A .解:(1) A 13221 1 2. ……………………………4 分 (2)点 (a,b) 在矩阵 1 3 A 2 4 对应的变换作用下得到点 (4,6) ,所以 a 4A b 6, …6 分 所以3 2 a4 2 4 1A1b 6 1 6 112, ……………………………8 分 所以 a 1,b 1,得 a b 2 .……………………………10 分B .解:因为所求圆的圆心在极轴上,且过极点,故可设此圆的极坐标方程是 ρ 2r cos θ . ππ又因为点 P(2 3, ) 在圆上,所以 2 32rcos ,解得 r2 .66因此所求圆的极坐标方程是 ρ 4cos θ . ……………………………10分C .解:函数 yx 2 x 6x 1的定义域为[0,), x 1 0. (2)分x 2x 6(x 1)4(x 1)9992(x 1)4≥2(x 1)4 2,x 1x 1x 1x 1当且仅当x 19,即x 4时取到“=”.……………………………8分x 1所以当x 4时,函数yx 2x6x 1的最小值为2.……………………………10分【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)记“取出的3个样品中有优等品”为事件A,则A表示“取出的3个样品3343343657中没有优等品”,P A,所以(10.3)P A 1P A 1,……3分100010001000答:取出的3个样品中有优等品的概率是6571000.……………………………4分(2)X B(3,0.3),P(X k)C k0.3k (10.3)3k,k 0,1,2,3,…………………………6分3随机变量X的分布如下表:高三数学Ⅱ答案第1页(共2页)X012 3P343100044110001891000271000……………………………8分343441189279E(X)0123.1000100010001000109答:随机变量X的数学期望是10.……………………………10分23.解(1)A1t|t a13a0,其中a i A,i 0,14,5,7,8,所以A中所有元素的和为24;集合1 A中元素的个数为2n1.…………………………2分n(2)取s l 2n,下面用数学归纳法进行证明.①当n 2时,A213,14,16,17,22,23,25,26,……………………………3分取b113,b217,b323,b425,c114,c216,c322,c426,有b1b2b3b4c1c2c3c478,且12223242122232421612b b b bc c c c成立.…4分222 2k k k k22 ②假设当n k,k N*且k≥2时,结论成立,有b c,且b c成立.i i i ii1i1i1i 1当n k 1时,取B b b b c c c,231,31,,231,231,231,,2231k k k1121 2k k k k k kC c c c b b b,23,3,,23,23,23,,22 3k1k1k1k1k1k 1 k112k12k此时B,C无公共元素,且2k2k1 1 B2C2A (6)分k1k1k 1有222 2k k k kk1k1k1k 1 (b 3)(c 23)(c 3)(b 23),且i i i ii1i1i1i 122222 2k k k k k k(b 3k1)2(c 23k1)2b2c223k1b 43k1c 2k[(3k1)2(23k1)2],i i i i i ii1i1i1i1i1i 122222 2k k k k k k(c 3)(b 23)c b 23c 43b 2[(3)(23)],k12k1222k1k1k k12k1 2 ii i i i ii1i1i1i1i1i 1由归纳假设知2 2k kb c,且i ii1i 12 2k k2 2b c,所以i ii1i 1222 2k k k k(b 3)(c 23)(c 3)(b 23),k12k12k12k1 2 ii i ii1i1i1i 1即当n k 1时也成立;……………………………9分综上可得:能将集合A,n≥2分成两个没有公共元素的子集B b1,b2,b3,,b 和n s sC c1,c2,c3,,c,s,l N*,使得b2b2b2c2c2c2成立.………10分1212l ls l高三数学Ⅱ答案第2页(共2页)。
2020届江苏高三高考数学全真模拟试卷07(解析版)
直线 AB 的方程为____________.
答案:x+y-3=0
解析:设圆心为 C,由题知 kAB·kCP=-1,又 kCP=2-1=1,∴ kAB=-1,∴ 直线 AB 的方程为 y= 1-0
-(x-1)+2,即 x+y-3=0.
11. 在△ABC 中,BC=2,A=2π,则A→B·A→C的最小值为________. 3
抛物线 y2=-4x 的焦点重合,则该双曲线的渐近线方程为________.
答案: y=± 3x 解析:由题设知a2=1,又易知双曲线焦点在 x 轴上,且 a=1,所以 b2=c2-a2=3,从而双曲线方程为
c2
x2-y2=1,所以双曲线渐近线方程为 y=± 3x. 3
7. 在平面直角坐标系 xOy 中,若点 P(m,1)到直线 4x-3y-1=0 的距离为 4,且点 P 在不等式 2x+y≥3 表示的平面区域内,则 m=________. 答案:6 解析:由题知|4m-4|=4,得 m=6 或-4,∴ P(6,1)或 P(-4,1).又 2x+y≥3,∴ m=6. 5
11
=
a
[π
- 1 x4+4x3-12x2 25 3
+12×104],(10
分)
11
令 f(x)=- 1 x4+4x3-12x2,则 25 3
f′(x)=-
4
x3+4x2-24x=-4x
1 x2-x+6 25
.
25
由 f′(x)=0,解得 x=0(舍去)或 x=10 或 x=15,(12 分)
列表如下:
a
a
14. 已知等比数列{an}的首项为4,公比为-1,其前 n 项和为 Sn,若 A≤Sn- 1 ≤B 对 n∈N*恒成立,则 B
2020届江苏高三数学模拟试题以及答案
2020届江苏高三数学模拟试题以及答案1.已知集合U={-1.0.1.2.3.23},A={2.3},则U-A={-1.0.1.4.5.23}。
2.已知复数z=a+bi是纯虚数,则a=0.3.若输出y的值为4,则输入x的值为-1.4.该组数据的方差为 9.5.2只球都是白球的概率为 3/10.6.不等式f(x)>f(-x)的解集为x2.7.S3的值为 61/8.8.该双曲线的离心率为 sqrt(3)/2.9.该几何体的体积为27π/2.10.sin2α的值为 1/2.11.λ+μ的值为 1/2.12.离墙距离为 3.5m时,视角θ最大。
13.实数a的值为 2.14.CD的最小值为 3/2.15.在△ABC中,已知$a$,$b$,$c$分别为角$A$,$B$,$C$所对边的长度,且$a(\sin A-\sin B)=(c-b)(\sin B+\sin C)$。
1)求角$C$的值;2)若$a=4b$,求$\sin B$的值。
16.如图,在四棱锥$P-ABCD$中,底面$ABCD$是平行四边形,平面$BPC$⊥平面$DPC$,$BP=BC$,$E$,$F$分别是$PC$,$AD$的中点。
证明:(1)$BE\perp CD$;(2)$EF\parallel$平面$PAB$。
17.如图,在平面直角坐标系$xOy$中,已知椭圆$C$:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,经过点$M(0,1)$。
1)求椭圆$C$的方程;2)过点$M$作直线$l_1$交椭圆$C$于$P$,$Q$两点,过点$M$作直线$l_1$的垂线$l_2$交圆$N(x_0,0)$于另一点$N$。
若$\triangle PQN$的面积为$3$,求直线$l_1$的斜率。
18.南通风筝是江苏传统手工艺品之一。
现用一张长$2$米,宽$1.5$米的长方形牛皮纸$ABCD$裁剪风筝面,裁剪方法如下:分别在边$AB$,$AD$上取点$E$,$F$,将三角形$AEF$沿直线$EF$翻折到$A'EF$处,点$A'$落在牛皮纸上,沿$A'E$,$A'F$裁剪并展开,得到风筝面$AEA'F$,如图$1$。
2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.
2020届江苏省常州市高三上学期期末数学试题(解析版)
常州市教育学会学生学业水平监测高三数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题一第14题)、解答题(第15题一第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将本卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. 参考公式: 棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 是高. 样本数据1x ,2x ,…,n x 的方差()2211n i i s x x n ==-∑,其中11ni i x x n ==∑. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.已知集合{}1,0,1A =-,{}2|0B x x =>,则A B =I ______. 【答案】{}1,1-【解析】【分析】求出集合B ,即可得出A B I【详解】∵集合{}2|0B x x =>∴集合{}|0B x x =≠∵集合{}1,0,1A =-∴{}1,1A B ⋂=-故答案为:{}1,1-.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若复数z 满足1z i i ⋅=-(i 是虚数单位),则z 的实部为______. 【答案】-1【解析】【分析】设z a bi =+,再代入已知等式中计算解得a ,b 的值,即可求出z 的实部.【详解】设z a bi =+∵1z i i ⋅=-∴()1a bi i i +⋅=-∴1b ai i -+=-∴1b =-,1a =-故答案为:1-.【点睛】本题考查了复数的运算法则、虚部与实部的定义,考查了推理能力与计算能力,属于基础题. 3.下图是一个算法的流程图,则输出的S 的值是______.【答案】10【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】经过第一次循环得到结果为1S =,3i =此时不满足判断框的条件;经过第二次循环得到结果为21310S =+=,5i =此时满足判断框的条件.执行输出S ,即输出10.故答案为:10.【点睛】本题主要考查了循环结构,在解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律,属于基础题.4.函数()f x =________.【答案】[)0,+∞【解析】【分析】由题意得210x -≥,解不等式求出x 的范围后可得函数的定义域.【详解】由题意得210x -≥,解得0x ≥,∴函数()f x 的定义域为[)0,+∞.故答案为[)0,+∞.【点睛】已知函数的解析式求函数的定义域,实质上就是求解析式中自变量的取值范围,解题时要根据解析式的特点得到关于自变量的不等式(组),解不等式(组)后可得结果.5.已知一组数据17,18,19,20,21,则该组数据的方差是______.【答案】2【解析】【分析】先求出该组数据的平均值,再根据方差的公式计算即可.【详解】一组数据17,18,19,20,21的平均数为1718192021195x ++++== ∴该组数据的方差为:()()()()222221719181902019211925S -+-++-+-==故答案为:2.【点睛】本题考查方差的求法,考查平均数、方差的定义等基础知识,考查运算求解能力,是基础题. 6.某校开设5门不同的选修课程,其中3门理科类和2门文科类,某同学从中任选2门课程学习,则该同学“选到文科类选修课程”的概率为______. 【答案】710【解析】分析】先求出基本事件总数为2510n C ==,该同学恰好“选到文科类选修课程”包含的基本事件个数为2112327m C C C =+=,由此能求出该同学“选到文科类选修课程”的概率. 【详解】某校开设5门不同的选修课程,其中3门理科类和2门文科类,某同学从中任选2门课程学习,基本事件总数为2510n C ==,该同学恰好“选到文科类选修课程”包含的基本事件个数为2112327m C C C =+=. ∴该同学“选到文科类选修课程”的概率是710m p n ==. 故答案为:710. 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.已知函数()231,01,0x x x x f x ⎧≤⎪-=⎨⎪->⎩,则()()8f f =______. 【答案】15- 【解析】【分析】先求出()23884f =-=-,则()()()84ff f =-,由此能求出答案.【详解】 ∵函数()231,01,0x x f x x x ⎧≤⎪-=⎨⎪->⎩ 【∴()23884f =-=-∴()()()1184415f f f =-==--- 故答案为: 15-.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题. 8.函数3sin 23y x π⎛⎫=+⎪⎝⎭,[]0,x π∈取得最大值时自变量x 的值为______. 【答案】12π【解析】【分析】 令()2232x k k Z πππ+=+∈,解得()12x k k Z ππ=+∈,再根据[]0,x π∈,即可确定自变量x 的值. 【详解】令()2232x k k Z πππ+=+∈,解得()12x k k Z ππ=+∈. ∵[]0,x π∈ ∴12x π= 故答案为:12π.【点睛】本题考查的知识要点为正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.等比数列{}n a 中,若11a =,24a ,32a ,4a 成等差数列,则17a a =______.【答案】64【解析】【分析】根据题意设等比数列{}n a 的公比为q ,再根据24a ,32a ,4a 成等差数列结合等比数列的通项公式,即可求出q 的值,从而可求出17a a 的值.【详解】设等比数列的公比为()0q q ≠.∵24a ,32a ,4a 成等差数列24344a a a +=∴3211144a q a q a q +=∴∵11a =∴3244q q q +=∵0q ≠∴2q =∴266171264a a a q ===故答案为:64.【点睛】本题考查等比数列的通项公式、等差数列的中项性质,考查方程思想和运算能力,属于基础题. 10.已知cos 2cos παα⎛⎫- ⎪⎝⎭=tan2α=______.【答案】-【解析】【分析】利用诱导公式化简三角函数式求得tan α的值,再利用二倍角的正切公式,求得结果.【详解】∵sin tan co cos 2cos s πααααα=⎛⎫- ⎪⎝==⎭∴22tan tan 21tan 1ααα===---故答案:-.【点睛】本题主要考查应用诱导公式化简三角函数式、二倍角的正切公式的应用,属于基础题.11.在平面直角坐标系xOy 中,双曲线C :()222210,0x y a b a b -=>>右顶点为A ,过A 作x 轴的垂线与C 的一条渐近线交于点B ,若2=OB a ,则C 的离心率为______.【答案】2【解析】【分析】求出右顶点A ,以及双曲线的渐近线方程,令x a =,求得B 的坐标,由两点的距离公式和离心率公式,可得所求值.【详解】∵双曲线C :()222210,0x y a b a b-=>>的右顶点为A ∴(,0)A a ,且双曲线的渐近线方程为b y x a=± 根据渐近线方程的对称性,设其中一条渐近线为0bx ay -=.∵过点A 作x 轴的垂线与C 的一条渐近线交于点B∴(,)B a b∵2=OB a∴2OB c a === ∴2c e a== 故答案为:2.【点睛】本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.已知函数()()lg 2f x x =-,互不相等的实数a ,b 满足()()f a f b =,则4a b +的最小值为______.【答案】14【解析】【分析】由对数的运算性质可得(2)(2)1a b --=,2b >,再把4a b +转化为14(2)102b b +-+-,借助于基本不等式即可求解.【详解】∵函数()()lg 2f x x =-,互不相等的实数a ,b 满足()()f a f b =∴()()lg 2lg 2a b -=-,即()()lg 2lg 20a b -+-=,且2b >.∴(2)(2)1a b --= ∴122a b =+-∴114424(2)10101422a b b b b b +=++=+-+≥=--,当且仅当52b =时取等号. ∴4a b +的最小值为14.故答案为:14.【点睛】本题考查最值求法,注意运用对数的运算性质和基本不等式的最值求法.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).13.在平面直角坐标系xOy 中,圆C :22222210x ax y ay a -+-+-=上存在点P 到点()0,1的距离为2,则实数a 的取值范围是______.【答案】111,22⎡⎤⎡⋃⎢⎥⎢⎣⎦⎣⎦【解析】【分析】根据题意,求得圆C 的圆心与半径,求出以点()0,1为圆心,半径为2的圆的方程,分析可得,若圆C :22222210x ax y ay a -+-+-=上存在点P 到点()0,1的距离为2,则圆C 与圆()2214x y +-=有交点,结合圆与圆的位置关系分析可得答案.【详解】∵圆C :22222210x ax y ay a -+-+-=∴()()221x a y a -+-=,其圆心(),C a a ,半径1r =. ∵点P 到点()0,1的距离为2∴P 点的轨迹为:22(1)4x y +-=∵P 又在22()()1x a y a -+-=上∴圆C 与圆()2214x y +-=有交点,即2121-≤+.∴102a ≤≤或112a +≤≤∴实数a 的取值范围是11,01,22⎡⎤⎡+⋃⎢⎥⎢⎣⎦⎣⎦故答案为:⎤⎡⋃⎥⎢⎣⎦⎣⎦. 【点睛】本题考查实数值、两平行线间的距离的求法,考查直线与直线平行的性质、两平行线间距离公式等基础知识,考查运算求解能力,是基础题14.在ABC ∆中,3A π∠=,点D 满足23AD AC =u u u r u u u r ,且对任意x ∈R ,xAC AB AD AB +≥-u u u r u u u r u u u r u u u r 恒成立,则cos ABC ∠=______.【解析】【分析】根据题意,设2AD t =,则3AC t =,由向量模的定义以及向量减法的几何意义分析可得BD AC ⊥,即2ADB π∠=,进而可得AB 、BC 的值,结合余弦定理计算可得答案.【详解】根据题意,在ABC ∆中,点D 满足23AD AC =u u u r u u u r . 设2AD t =,则3AC t =.∵AD AB BD -=u u u r u u u r u u u r∴对任意x ∈R ,xAC AB AD AB +≥-u u u r u u u r u u u r u u u r 恒成立,必有BD AC ⊥,即2ADB π∠=,如图所示. ∵3A π∠=∴24AB AD t ==,BD ==∴BC ==.∴222cos 2AB BC AC ABC AB BC +-∠==⨯⨯.【点睛】本题考查三角形中的几何计算,涉及向量加减法的几何意义以及余弦定理的应用,属于综合题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知1a =,cos 3B =. (1)若3A π=,求sin C 的值;(2)若b =c 的值.【答案】(1)36+(2)c =【解析】【分析】(1)在ABC ∆中,sin 0B >,可得sin B 再根据()sin sin sin 3C A B B π⎛⎫=+=+⎪⎝⎭,即可求出sin C ;(2)由余弦定理可得:2222cos b a ac B c =-+,即可推出(0c c ⎛= ⎝⎭,从而求得c 的值.【详解】(1)在ABC ∆中,0B π<<,则sin 0B >,因为cos B =sin 3B ===.在ABC ∆中,A B C π++=,所以()()()sin sin sin C A B A B π=-+=+,所以sin sin sin cos cos sin 333C B B B πππ⎛⎫=+=+⎪⎝⎭12==(2)由余弦定理得2222cos b a ac B c =-+,则22123c c =-⋅+,所以210c -=,(0c c ⎛= ⎝⎭,因为03c +>,所以0c =,即c =. 【点睛】本题主要考查余弦定理,根据条件建立边角关系是解决本题的关键.解三角形问题的技巧:①作为三角形问题,它必须要用到三角形的内角和定理,正弦定理、余弦定理及其有关三角形的性质,及时进行边角转化,有利于发现解题的思路;②它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”(即“统一角、统一函数、统一结构”)是使问题获得解决的突破口.16.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,AP AD =,点M ,N 分别是线段PD ,AC 的中点.求证:(1)//MN 平面PBC ; (2)PC AM ⊥.【答案】(1)证明见解析(2)证明见解析 【解析】 【分析】(1)取PC ,BC 的中点E ,F ,连结ME ,EF ,FN ,利用三角形的中位线性质可证//EM FN ,EM FN =,可证四边形EMNF 是平行四边形,可证//MN EF ,进而利用线面平行的判定定理即可证明//MN 平面PBC ;(2)利用线面垂直的性质可证PA CD ⊥,又AD CD ⊥,利用线面垂直的判定定理可证CD ⊥平面PAD ,可证CD AM ⊥,又证AM PD ⊥,利用线面垂直的判定定理可证AM ⊥平面PCD ,进而利用线面垂直的性质可证PC AM ⊥.【详解】证明:(1)取PC ,BC 的中点E ,F ,连结ME ,EF ,FN , 三角形PCD 中,M ,E 为PD ,PC 的中点,所以//EM CD ,12EM CD =;三角形ABC 中,F ,N 为BC ,AC 的中点,所以//FN AB ,12FN AB =,因为四边形ABCD 是矩形,所以//AB CD ,AB CD =, 从而//EM FN ,EM FN =,所以四边形EMNF 是平行四边形.所以//MN EF ,又EF ⊂平面PBC ,MN ⊄平面PBC ,所以//MN 平面PBC .(2)因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥. 因为四边形ABCD 是矩形,所以AD CD ⊥.又因为PA AD A ⋂=,PA ⊂平面PAD ,AD ⊂平面PAD , 所以CD ⊥平面PAD .又AM ⊂平面PAD ,所以CD AM ⊥.因为AP AD =,M 为PD 的中点,所以AM PD ⊥, 又因为PD CD D ⋂=,PD ⊂平面PCD ,CD ⊂平面PCD , 所以AM ⊥平面PCD .又PC ⊂平面PCD ,所以PC AM ⊥.【点睛】本题主要考查了三角形的中位线性质,线面平行的判定定理,线面垂直的判定定理,线面垂直的性质定理的应用,考查了空间想象能力和推理论证能力,属于中档题.17.如图,在平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,椭圆右顶点为A ,点2F 在圆A :()2221x y -+=上.(1)求椭圆C 的标准方程;(2)点M 在椭圆C 上,且位于第四象限,点N 在圆A 上,且位于第一象限,已知AM AN =u u u u r u u ur ,求直线1F M 的斜率.【答案】(1)22143x y +=(2)34-【解析】 【分析】(1)由题意知a ,c 的值,及a ,b ,c 之间的关系求出椭圆的标准方程;(2)设M ,N 的坐标,设直线AM 的方程,由向量的关系可得A ,M ,N 三点关系,直线AM 与圆联立求出N 的坐标,直线与椭圆联立求出M 的坐标,再由向量的关系求出参数,进而求出直线1F M 的斜率. 【详解】(1)圆A :()2221x y -+=的圆心()2,0A ,半径1r =,与x 轴交点坐标为()1,0,()3,0,点2F 在圆A :()2221x y -+=上,所以()21,0F ,从而2a =,1c =,所以b ===C 的标准方程为22143x y +=.(2)由题,设点()11,M x y ,102x <<,10y <;点()22,N x y ,20x >,20y >.则()112,AM x y =-u u u u r ,()222,AN x y =-u u u r ,由2AM AN =-u u u u r u u ur 知点A ,M ,N 共线.直线AM 的斜率存在,可设为()0k k >,则直线AM 的方程为()2y k x =-,由()()22221y k x x y ⎧=-⎪⎨-+=⎪⎩,得221x k y ⎧=+⎪⎪+⎨⎪=⎪⎩,或221x k y ⎧=-⎪⎪+⎨⎪=⎪⎩,所以22211N k k ⎛⎫+ ⎪ ⎪++⎝⎭, 由()222143y k x x y⎧=-⎪⎨+=⎪⎩,得()2222341616120k x k x k +-+-=,解得20x y =⎧⎨=⎩,或22286341234k x k ky k ⎧-=⎪⎪+⎨-⎪=⎪+⎩, 所以2228612,3434k k M k k ⎛⎫-- ⎪++⎝⎭,代入2AM AN =-u u u u r u u u r得2222286122,3434211k k k k k k ⎫⎛⎫---=-⎪ ⎪ ⎪++++⎝⎭⎝⎭, ()()224952510kk -+=,又0k >,得32k =,所以31,2M ⎛⎫- ⎪⎝⎭,又()11,0F -,可得直线1F M 的斜率为()332114-=---. 【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.18.请你设计一个包装盒,ABCD是边长为的正方形硬纸片(如图1所示),切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图2中的点P ,正好形成一个正四棱锥形状的包装盒(如图2所示),设正四棱锥P EFGH -的底面边长为()x cm .(1)若要求包装盒侧面积S 不小于275cm ,求x 的取值范围; (2)若要求包装盒容积()3V cm最大,试问x 应取何值?并求出此时包装盒的容积.【答案】(1)510x ≤<(2)当8x cm =时,包装盒容积V 最大)3cm 【解析】 【分析】(1)结合已知可建立侧面积关于FG x =的函数关系,然后由侧面积S 不小于275cm ,可建立关于x 的不等式,即可求得x 的取值范围; (2)先利用x 表示出()3V cm的函数关系,结合导数可求其最大值.【详解】(1)在图1中连结AC ,BD 交于点O ,设BD 与FG 交于点M ,在图2中连结OP ,因为ABCD 是边长为的正方形,所以()10OB cm =,由FG x =,得2x OM =,102xPM BM ==-, 因为PM OM >,即1022x x->,所以010x <<.因为2142102022x S FG PM x x x ⎛⎫=⨯⋅=-=- ⎪⎝⎭,由22075x x -≥,得515x ≤≤,所以510x ≤<. 答:x 的取值范围是510x ≤<.(2)因为在Rt OMP ∆中,222OM OP PM +=,所以OP ===21133V FG OP x =⋅==010x <<,设()4510010x f x x =-,010x <<,所以()()3434005050'8x x x f x x =-=-,令()'0f x =,得8x =或0x =(舍去). 列表得,所以当8x =时,函数()f x 取得极大值,也是最大值,所以当8x =时,V .答:当8x cm =时,包装盒容积V 最大为()33cm . 【点睛】本题主要考查了利用导数研究函数的单调性,求解极值及最值在实际问题中的应用,解题的关键是把实际问题转化为数学问题. 19.已知函数()()()222ln 12a ax x x R f x x a =+++∈. (1)若曲线()y f x =在1x =处的切线的斜率为2,求函数()f x 的单调区间;(2)若函数()f x 在区间()1,e 上有零点,求实数a 的取值范围.(e 是自然对数的底数, 2.71828e ≈⋅⋅⋅)【答案】(1)函数()f x 的单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭,单调减区间为10,e ⎛⎫ ⎪⎝⎭(2)()222123e a e +-<<- 【解析】 【分析】(1)求导,由导数的结合意义可求得0a =,进而得到函数解析式,再解关于导函数的不等式即可得到单调区间;(2)对a 进行分类讨论,利用导数,结合零点的存在性定理建立不等式即可求解. 【详解】(1)函数()f x 的定义域为()0,∞+,()()()2122ln 2'ax x ax x ax f xx =+++⋅+()()()21ln 2221ln 1ax x ax ax x =+++=++,则()()'1212f a =+=,所以0a =,此时()2ln 1f x x x =+,定义域为()0,∞+,()()'2ln 1f x x =+, 令()'0f x >,解得1x e >;令()'0f x <,解得1x e<; 所以函数()f x 的单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭,单调减区间为10,e ⎛⎫ ⎪⎝⎭.(2)函数()()222ln 12a ax x x f x x =+++在区间[]1,e 上的图象是一条不间断的曲线. 由(1)知()()()'21ln 1f x ax x =++,1)当0a ≥时,对任意()1,x e ∈,10ax +>,ln 10x +>,则()'0f x >,所以函数()f x 在区间[]1,e 上单调递增,此时对任意()1,x e ∈,都有()()1102af x f >=+>成立,从而函数()f x 在区间()1,e 上无零点;2)当0a <时,令()'0f x =,得1x e =或1a -,其中11e<,①若11a-≤,即1a ≤-,则对任意()1,x e ∈,()'0f x <,所以函数()f x 在区间[]1,e 上单调递减,由题意得()1102a f =+>,且()222102f aae e e e =+++<,解得()222123e a e+-<<-,其中()()2223221432013e e e e e --+-=->-,即()222113e e+->-, 所以a 的取值范围是21a -<≤-;②若1e a -≥,即10a e-≤<,则对任意()1,x e ∈,()'0f x >,所以函数()f x 在区间[]1,e 上单调递增,此时对任意()1,x e ∈,都有()()1102af x f >=+>成立,从而函数()f x 在区间()1,e 上无零点;③若11e a <-<,即11a e -<<-,则对任意11,x a ⎛⎫∈- ⎪⎝⎭,()'0f x >;所以函数()f x 在区间11,a ⎡⎤-⎢⎥⎣⎦上单调递增,对任意11,x a ⎛⎤∈- ⎥⎝⎦,都有()()1102af x f >=+>成立; 对任意1,x e a ⎛⎫∈-⎪⎝⎭,()'0f x <,函数()f x 在区间1,e a ⎡⎤-⎢⎥⎣⎦上单调递减,由题意得 ()222102f aae e e e =+++<,解得()22213e a e+<-, 其中()222221134220333e e e e e e e e +----⎛⎫---==< ⎪⎝⎭,即()222113e e e +⎛⎫-<-- ⎪⎝⎭, 所以a 的取值范围是()222113e a e+-<<-. 综上可得,实数a 的取值范围是()222123e a e+-<<-. 【点睛】本题考查导数的结合意义,及利用导数研究函数的的单调性及函数的零点问题.判断函数有无零点的方法: ①直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;②零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;③利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.20.设m 为正整数,若两个项数都不小于m 的数列{}n A ,{}n B 满足:存在正数L ,当*n N ∈且m n ≤时,都有n n A B L -≤,则称数列{}n A ,{}n B 是“(),m L 接近的”.已知无穷等比数列{}n a 满足32841a a ==,无穷数列{}n b 的前n 项和为n S ,11b =,且()1112n n n n n S b b b b ++-=,*n N ∈.(1)求数列{}n a 通项公式;(2)求证:对任意正整数m ,数列{}n a ,{}21n a +是“(),1m 接近的”;(3)给定正整数()5m m ≥,数列1n a 禳镲睚镲铪,{}2n b k +(其中k ∈R )是“(),m L 接近的”,求L 的最小值,并求出此时的k (均用m 表示).(参考数据:ln 20.69≈)【答案】(1)12n n a =(2)证明见解析(3)L 的最小值2212m m --,此时2212m m k --=【解析】 【分析】(1)设等比数列{}n a 公比为q ,由32841a a ==,可求得首项和公比,进而求得通项;(2)只需证明()211n n a a -+≤成立,即可得证;(3)由题设可求得n b n =,根据定义进而得到2222n n L n k L n ≤-+-≤+-对1,2,3,n m =⋅⋅⋅都成立,再构造函数求解即可.【详解】(1)设等比数列{}n a 公比为q ,由32841a a ==得211841a q a q ==,解得112a q ==,故12n n a =. (2)()2111124n n n n a a ⎛⎫-+=-+ ⎪⎝⎭22113113224224n n ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭.对任意正整数m ,当*n N ∈,且m n ≤时,有1110222m n <≤≤, 则211313122444n ⎛⎫-+<+= ⎪⎝⎭,即()211n n a a -+≤成立,故对任意正整数m ,数列{}n a ,{}21n a +是“(),1m 接近的”.(3)由()1112n n n n n S b b b b ++-=,得到()1112n n n n n S b b b b ++-=,且1,0n n b b +≠,从而10n n b b +-≠,于是()112n n n n n b b S b b ++=-.当1n =时,()121212b b S b b =-,11b =,解得22b =,当2n ≥时,()()1111122n n n nn n n n n n n b b b b b S S b b b b +--+-=-=---,又0n b ≠,整理得112n n n b b b +-+=,所以11n n n n b b b b +--=-,因此数列{}n b 为等差数列. 又因为11b =,22b =,则数列{}n b 的公差为1,故n b n =.根据条件,对于给定正整数()5m m ≥,当*n N ∈且m n ≤时,都有()()2212n n nb k n k L a -+=-+≤成立, 即2222n n L n k L n ≤-+-≤+-①对1,2,3,n m =⋅⋅⋅都成立.考察函数()22xf x x =-,()'2ln 22x f x x =-,令()2ln 22xg x x =-,则()()2'2ln 22x g x =-,当5x >时,()'0g x >,所以()g x 在[)5,+∞上是增函数.又因为()552ln 2100g =->,所以当5x >时,()0g x >,即()'0f x >,所以()f x 在[)5,+∞上是增函数.注意到()11f =,()()240f f ==,()31f =-,()57f =, 故当1,2,3,n m =⋅⋅⋅时,22n L n -+-的最大值为22m L m -+-,22n L n +-的最小值为1L -.欲使满足①的实数k 存在,必有221mL m L --≤+-,即2212m m L -+≥,因此L 的最小值2212m m --,此时2212m m k --=. 【点睛】本题考查数列与函数的综合运用,考查根据递推关系求数列通项及利用导数研究函数的单调性及最值,考查逻辑推理能力及运算能力,属于难题.数学Ⅱ(附加题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试卷第21题有A 、B 、C 三个小题供选做,每位考生在3个选做题中选答2题.若考生选做了3题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将本卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损,一律不准使用胶带纸、修正液、可擦洗的圆珠笔.21.已知点(),a b 在矩阵1324A ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点()4,6. (1)写出矩阵A 的逆矩阵; (2)求+a b 的值.【答案】(1)1322112A -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦(2)2a b += 【解析】 【分析】(1)设矩阵A 的逆矩阵为11111a cd b A -⎡⎤=⎢⎥⎣⎦,根据11001A A -⎡⎤⋅=⎢⎥⎣⎦,列方程求出A 的逆矩阵; (2)根据题意可得 46a A b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,得出146a A b -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,从而求出a ,b 的值和+a b 的值. 【详解】(1)设阵1324A ⎡⎤=⎢⎥⎣⎦的逆矩阵为11111a c d b A -⎡⎤=⎢⎥⎣⎦,则11001A A -⎡⎤⋅=⎢⎥⎣⎦. ∴111111113130240241a c b d a c b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得1111232112a b c d =-⎧⎪⎪=⎪⎨=⎪⎪=-⎪⎩∴1322112A -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦.(2)点(),a b 在矩阵1324A ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点()4,6,所以46a A b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 1a =,1b =,得2a b +=.所以1324412616112a A b -⎡⎤-⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦, 所以1a =,1b =,得2a b +=.【点睛】本题考查了矩阵的逆矩阵和矩阵变换问题,也考查了计算求解能力,是中档题. 22.求圆心在极轴上,且过极点与点6P π⎛⎫⎪⎝⎭的圆的极坐标方程. 【答案】4cos ρθ= 【解析】 【分析】设圆的极坐标方程是2cos r ρθ=,根据点6P π⎛⎫⎪⎝⎭在圆上,解得r 的值,从而求得圆的极坐标方程. 【详解】因为所求圆的圆心在极轴上,且过极点,故可设此圆的极坐标方程是2cos r ρθ=.又因为点6P π⎛⎫ ⎪⎝⎭在圆上,所以2cos 6r π=,解得2r =.因此所求圆极坐标方程是4cos ρθ=.【点睛】本题主要考查圆的极坐标方程的求法,考查学生的运算能力和转换能力及思维能力,属于基础题型.23.求函数y =的最小值.【答案】最小值为2. 【解析】 【分析】先求出函数y =的定义域,再将函数化简到)14y =+,然后利用基本不等式即可求出最小值.【详解】函数y =的定义域为[)0,+∞10>.21419-+=)1442=+-≥=, 1=,即4x =时取到“=”.所以当4x =时,函数y =的最小值为2.【点睛】本题主要考查利用基本不等式求最值.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).24.批量较大的一批产品中有30%的优等品,现进行重复抽样检查,共取3个样品,以X 表示这3个样品中优等品的个数.(1)求取出的3个样品中有优等品的概率; (2)求随机变量X 的概率分布及数学期望()E X . 【答案】(1)6571000(2)详见解析 【解析】 【分析】(1)记“取出的3个样品中有优等品”为事件A ,()()334310.31000P A =-=,由此利用对立事件概率计算公式能求出取出的3个样品中有优等品的概率;(2)()3,0.3X B :,写出随机变量X 的分布列,即可求得数学期望()E X .【详解】(1)记“取出的3个样品中有优等品”为事件A ,则A 表示“取出的3个样品中没有优等品”,()()334310.31000P A =-=,所以()()3436571110001000P A P A =-=-=,答:取出的3个样品中有优等品的概率是6571000. (2)()3,0.3X B :,()()330.310.3kkk P X k C -==-,0,1,2,3k =,随机变量X 的分布如下表:()3434411892790123100010001000100010E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查对立事件概率计算公式、二项分布的性质等基础知识,考查运算求解能力,是中档题. 25.设集合{}1,2A =,{}1110|333,0,1,,2,,nn n n n i A t t a a a a a A i n --==⋅+⋅++⋅+∈=L L 其中,*n N ∈.(1)求1A 中所有元素的和,并写出集合n A 中元素的个数; (2)求证:能将集合()*2,n A n n N≥∈分成两个没有公共元素的子集{}123,,,,ssB b b b b =L 和{}123,,,,l l C c c c c =L ,*,s l N ∈,使得2222221212s l b b b c c c +++=+++L L 成立.【答案】(1)1A 中所有元素的和为24;集合n A 中元素的个数为12n +(2)证明见解析 【解析】 【分析】(1)根据题意求出1A ,代入即可;(2)利用数学归纳法证明,当2n =时,显然成立,假设2n k =≥,*k N ∈时,结论成立,即2121k kiii i b c ===∑∑,且212221kki i i ib c===∑∑,当1n k =+时,取{}111111112122223,3,,3,23,23,,23k k k k k k k k k B b b b c c c +++++++=++++⋅+⋅+⋅L L ,{}111111112122223,3,,3,23,23,,23k k k k k k k k k C c c c b b b +++++++=++++⋅+⋅+⋅L L ,证明即可.【详解】(1){}110|3,,0,1i A t t a a a A i ==⋅+∈=其中{}4,5,7,8=, 所以1A 中所有元素的和为24;集合n A 中元素的个数为12n +. (2)取2n s l ==,下面用数学归纳法进行证明. ①当2n =时,{}213,14,16,17,22,23,25,26A =,取113b =,217b =,323b =,425b =,114c =,216c =,322c =,426c =,有1234123478b b b b c c c c +++=+++=,且22222222123412341612b b b b c c c c +++=+++=成立.②假设当n k =,*k N ∈且2k ≥时,结论成立,有2121k k iii i b c ===∑∑,且212221k kii i ib c===∑∑成立.当1n k =+时,取{}111111112122223,3,,3,23,23,,23k k k k k k k k k B b b b c c c +++++++=++++⋅+⋅+⋅L L ,{}111111112122223,3,,3,23,23,,23k k k k k k k k k C c c c b b b +++++++=++++⋅+⋅+⋅L L ,此时12k B +,12k C +无公共元素,且11122k k k B C A +++=U . 有()()221111323k k k k iii i b c ++==+++⋅∑∑()()221111323k kk k iii i c b ++===+++⋅∑∑,且()()22221111323kkk k iii i b c ++==+++⋅∑∑()()222222221111111123432323kkkkk k kk k iii i i i i i b c b c ++++====⎡⎤=++⋅+⋅++⋅⎢⎥⎣⎦∑∑∑∑, ()()22221111323kkk k iii i c b ++==+++⋅∑∑()()222222221111111123432323kkkkk k kk k iii i i i i i c b c b ++++====⎡⎤=++⋅+⋅++⋅⎢⎥⎣⎦∑∑∑∑, 由归纳假设知2121kki i i i b c ===∑∑,且212221kkii i i b c ===∑∑,所以()()()()2222222211111111323323kkkkk k k k i i i i i i i i b c c b ++++====+++⋅=+++⋅∑∑∑∑,即当1n k =+时也成立;综上可得:能将集合n A ,2n ≥分成两个没有公共元素的子集{}123,,,,s s B b b b b =L 和{}123,,,,l l C c c c c =L ,*,s l N ∈,使得2222221212s l b b b c c c +++=+++L L 成立. 【点睛】本题主要考查数学归纳法的应用,属于难题.利用数学归纳法证明结论的步骤是:(1)验证0n n =时结论成立;(2)假设n k =时结论正确,证明1n k =+时结论正确(证明过程一定要用假设结论);(3)得出结论.。
【数学】常州市2020届高三上学期期末学业水平监测数学及答案
3
3
……………………………12 分
因为 c
3 3
0
,所以
c
3 0 ,即 c
3.
……………………………14 分
16.(本小题满分 14 分) 证明:(1)取 PC , BC 的中点 E, F ,连结 ME,EF,FN,
三角形 PCD 中,M,E 为 PD , PC 的中点,所以 EM ∥CD ,
(1) MN / / 平面 PBC ; (2) PC AM .
17.
如图,在平面直角坐标系
xOy 中,椭圆 C :
x2 a2
y2 b2
1(a
b
0)
的左右焦点分别为 F1, F2 ,
椭圆右顶点为 A ,点 F2 在圆 (x 2)2 y2 1 上。
(1) 求椭圆 C 的标准方程;
(2) 点 M 在椭圆 C 上,且位于第四象限,点 N 在圆 A 上,且位于第一象限,已知
则 AM (x1 2, y1) , AN (x2 2, y2 ) ,由 AM
13
AN
知点
A,M,N
共线.
……5
分
2
直线 AM 的斜率存在,可设为 k(k>0),则直线 AM 的方程为 y k(x 2) ,
由
(
y k( x 2)2
x 2), y2 1
,得
x
y
2
1 k2 1 k2
常州市教育学会学生学业水平监测
高三数学Ⅰ参考答案 2020 年 1 月
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.
1. 1,1
2. 1 3.10
4. 0,
5.2
7 6. 10
江苏省常州市2020届高三上学期期末考试 数学-含答案
2020届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2020.1参考公式:锥体的体积公式V =13Sh ,其中S 是锥体的底面积,h 为锥体的高.样本数据x 1,x 2,…,x n 的方差s 2=1n (x i -x -)2,其中x -=1nx i .一、 填空题:本大题共14小题,每小题5分,共70分.(第3题)1. 已知集合A ={-1,0,1},B ={x|x 2>0},则A ∩B =________.2. 若复数z 满足z·i =1-i(i 是虚数单位),则z 的实部为________.3. 如图是一个算法的流程图,则输出S 的值是________.4. 函数y =2x -1的定义域是________.5. 已知一组数据17,18,19,20,21,则该组数据的方差是________.6. 某校开设5门不同的选修课程,其中3门理科类和2门文科类,某同学从中任选2门课程学习,则该同学“选到文科类选修课程”的概率为________.7. 已知函数f(x)=⎩⎨⎧1x -1,x ≤0,-x 23,x >0,则f(f(8))=________.8. 函数y =3sin(2x +π3),x ∈[0,π]取得最大值时自变量x 的值为________.9. 在等比数列{a n }中,若a 1=1,4a 2,2a 3,a 4成等差数列,则a 1a 7=________.10. 已知cos (π2-α)cos α=2,则tan 2α=________.11. 在平面直角坐标系xOy 中,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,过A作x 轴的垂线与C 的一条渐近线交于点B.若OB =2a ,则C 的离心率为________.12. 已知函数f(x)=|lg(x -2)|,互不相等的实数a ,b 满足f(a)=f(b),则a +4b 的最小值为________.13. 在平面直角坐标系xOy 中,圆C :x 2-2ax +y 2-2ay +2a 2-1=0上存在点P 到点(0,1)的距离为2,则实数a 的取值范围是________.14. 在△ABC 中,∠A =π3,点D 满足AD →=23AC →,且对任意x ∈R ,|xAC →+AB →|≥|AD →-AB →|恒成立,则cos ∠ABC =________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,cos B =33. (1) 若A =π3,求sin C 的值;(2) 若b =2,求c 的值.16.(本小题满分14分)如图,在四棱锥PABCD 中,PA ⊥平面ABCD ,四边形ABCD 是矩形,AP =AD ,点M ,N 分别是线段PD ,AC 的中点.求证:(1) MN ∥平面PBC ; (2) PC ⊥AM.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆右顶点为A ,点F 2在圆A :(x -2)2+y 2=1上.(1) 求椭圆C 的标准方程;(2) 点M 在椭圆C 上,且位于第四象限,点N 在圆A 上,且位于第一象限,已知AM →=-132AN →,求直线F 1M 的斜率.请你设计一个包装盒,ABCD是边长为10 2 cm的正方形硬纸片(如图1),切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得A,B,C,D四个点重合于图2中的点P,正好形成一个正四棱锥形状的包装盒(如图2),设正四棱锥PEFGH的底面边长为x(cm).(1) 若要求包装盒侧面积S不小于75 cm2,求x的取值范围;(2) 若要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的容积.已知函数f(x)=(ax2+2x)ln x+a2x2+1(a∈R).(1) 若曲线y=f(x)在x=1处的切线的斜率为2,求函数f(x)的单调区间;(2) 若函数f(x)在区间(1,e)上有零点,求实数a的取值范围.(e为自然对数的底数,e ≈2.718 28…)设m 为正整数,若两个项数都不小于m 的数列{A n },{B n }满足:存在正数L ,当n ∈N *且n ≤m 时,都有|A n -B n |≤L ,则称数列{A n },{B n }是“(m ,L)接近的”.已知无穷等比数列{a n }满足8a 3=4a 2=1,无穷数列{b n }的前n 项和为S n ,b 1=1,且S n (b n +1-b n )b n b n +1=12,n ∈N *. (1) 求数列{a n }通项公式;(2) 求证:对任意正整数m ,数列{a n },{a 2n +1}是“(m ,1)接近的”; (3) 给定正整数m(m ≥5),数列⎩⎨⎧⎭⎬⎫1a n ,{b 2n +k}(其中k ∈R )是“(m ,L)接近的”,求L 的最小值,并求出此时的k(均用m 表示).(参考数据:ln 2≈0.69)2020届高三模拟考试试卷(五)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-2:矩阵与变换)已知点(a ,b)在矩阵A =⎣⎢⎡⎦⎥⎤1 32 4对应的变换作用下得到点(4,6).(1) 写出矩阵A 的逆矩阵; (2) 求a +b 的值.B. (选修4-4:坐标系与参数方程)求圆心在极轴上,且过极点与点P(23,π6)的圆的极坐标方程.C. (选修4-5:不等式选讲) 求函数y =x -2x +6x +1的最小值.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 批量较大的一批产品中有30%的优等品,现进行重复抽样检查,共取3个样品,以X表示这3个样品中优等品的个数.(1) 求取出的3个样品中有优等品的概率;(2) 求随机变量X的概率分布及数学期望E(X).23. 设集合A={1,2},A n={t|t=a n·3n+a n-1·3n-1+…+a1·3+a0,其中a i∈A,i=0,1,2,…,n},n∈N*.(1) 求A1中所有元素的和,并写出集合A n中元素的个数;(2) 求证:能将集合A n(n≥2,n∈N*)分成两个没有公共元素的子集B s={b1,b2,b3,…,b s}和C l={c1,c2,c3,…,c l},s,l∈N*,使得b21+b22+…+b2s=c21+c22+…+c2l成立.2020届高三模拟考试试卷(五)(常州)数学参考答案及评分标准1. {-1,1}2. -13. 104. [0,+∞)5. 26. 7107. -15 8. π129. 64 10. -22 11. 2 12. 14 13. ⎣⎢⎡⎦⎥⎤1-172,0∪⎣⎢⎡⎦⎥⎤1,1+172 14. 5132615. 解:(1) 在△ABC 中,0<B <π,则sin B >0.因为cos B =33,所以sin B =1-cos 2B =1-(33)2=63.(3分) 在△ABC 中,A +B +C =π,所以sin C =sin[π-(A +B)]=sin(A +B),(5分) 所以sin C =sin(π3+B)=sin π3cos B +cos π3sin B =32×33+12×63=3+66.(8分)(2) 由余弦定理得b 2=a 2-2accos B +c 2,则(2)2=1-2c·33+c 2,(10分)所以c 2-233c -1=0,(c -3)(c +33)=0.(12分)因为c +33>0,所以c -3=0,即c = 3.(14分) 16.证明:(1) 取PC ,BC 的中点E ,F ,连结ME ,EF ,FN , 在三角形PCD 中,点M ,E 为PD ,PC 的中点, 所以EM ∥CD ,EM =12CD.在三角形ABC 中,点F ,N 为BC ,AC 的中点, 所以FN ∥AB ,FN =12AB.因为四边形ABCD 是矩形,所以AB ∥CD ,AB =CD ,从而EM ∥FN ,EM =FN ,所以四边形EMNF 是平行四边形.(4分)所以MN ∥EF ,又EF ⊂平面PBC ,MN ⊄平面PBC ,所以MN ∥平面 PBC.(6分) (2) 因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD. 因为四边形ABCD 是矩形,所以AD ⊥CD.(8分)因为PA ∩AD =A ,PA ⊂平面PAD ,AD ⊂平面PAD ,所以CD ⊥平面PAD. 又AM ⊂平面PAD ,所以CD ⊥AM.(10分)因为AP =AD ,点M 为PD 的中点,所以AM ⊥PD. 因为PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以AM ⊥平面PCD.(12分)又PC ⊂平面PCD ,所以PC ⊥AM.(14分)17. 解:(1) 圆A :(x -2)2+y 2=1的圆心A(2,0),半径r =1,与x 轴交点坐标为(1,0),(3,0).点F 2在圆A :(x -2)2+y 2=1上,所以F 2(1,0),从而a =2,c =1,所以b =a 2-c 2=22-12=3,所以椭圆C 的标准方程为x 24+y 23=1.(4分)(2) 由题可设点M(x 1,y 1),0<x 1<2,y 1<0,点N(x 2,y 2),x 2>0,y 2>0, 则AM →=(x 1-2,y 1),AN →=(x 2-2,y 2). 由AM →=-132AN →知,点A ,M ,N 共线.(5分)由题知直线AM 的斜率存在,可设为k(k >0),则直线AM 的方程为y =k(x -2). 由⎩⎪⎨⎪⎧y =k (x -2),(x -2)2+y 2=1,得⎩⎪⎨⎪⎧x =2+1+k 21+k 2,y =k 1+k 21+k 2或⎩⎪⎨⎪⎧x =2-1+k21+k 2,y =-k 1+k21+k2, 所以N(2+1+k 21+k 2,k 1+k 21+k 2).(7分)由⎩⎪⎨⎪⎧y =k (x -2),x 24+y 23=1,得(3+4k 2)x 2-16k 2x +16k 2-12=0,解得⎩⎪⎨⎪⎧x =2,y =0或⎩⎪⎨⎪⎧x =8k 2-63+4k 2,y =-12k 3+4k2,所以M(8k 2-63+4k 2,-12k3+4k 2).(10分)代入AM →=-132AN →得(8k 2-63+4k 2-2,-12k 3+4k 2)=-132(1+k 21+k 2,k 1+k 21+k 2),即(4k 2-9)(52k 2+51)=0,又k >0,解得k =32,(13分)所以M(1,-32),又F 1(-1,0),可得直线F 1M 的斜率为-321-(-1)=-34.(14分)18. 解:(1) 在图1中连结AC ,BD 交于点O ,设BD 与FG 交于点M ,在图2中连结OP.因为ABCD 是边长为10 2 cm 的正方形,所以OB =10(cm). 由FG =x ,得OM =x 2,PM =BM =10-x2.(2分)因为PM >OM ,即10-x 2>x2,所以0<x <10.(4分)因为S =4×12FG ·PM =2x(10-x2)=20x -x 2,(6分)由20x -x 2≥75,得5≤x ≤15,所以5≤x<10.答:x 的取值范围是5≤x <10.(8分)(2) 在Rt △OMP 中,因为OM 2+OP 2=PM 2, 所以OP =PM 2-OM 2=(10-x 2)2-(x2)2=100-10x ,V =13·FG 2·OP =13x 2100-10x =13100x 4-10x 5,0<x <10.(10分)设f(x)=100x 4-10x 5,0<x <10,所以f′(x)=400x 3-50x 4=50x 3(8-x). 令f′(x)=0,解得x =8或x =0(舍去),(12分) 列表:x (0,8) 8 (8,10) f′(x) +0 -f(x)极大值所以当x =8时,函数f(x)取得极大值,也是最大值,(14分) 所以当x =8时,V 的最大值为12853.答:当x =8 cm 时,包装盒容积V 最大为12853(cm 3).(16分)19. (1) 函数f(x)的定义域为(0,+∞),f ′(x)=(2ax +2)ln x +(ax 2+2x)·1x+ax =2(ax +1)ln x +2ax +2=2(ax +1)(ln x +1),(2分)则f′(1)=2(a +1)=2,所以a =0.(3分)此时f(x)=2xln x +1,定义域为(0,+∞),f ′(x)=2(ln x +1), 令f′(x)>0,解得x >1e ;令f′(x)<0,解得x <1e;所以函数f(x)的单调增区间为(1e ,+∞),单调减区间为(0,1e).(6分)(2) 函数f(x)=(ax 2+2x)ln x +a2x 2+1在区间[1,e]上的图象是一条不间断的曲线.由(1)知f′(x)=2(ax +1)(ln x +1),1) 当a ≥0时,对任意x ∈(1,e),ax +1>0,ln x +1>0,则f′(x)>0,所以函数f(x)在区间[1,e]上单调递增,此时对任意x ∈(1,e),都有f(x)>f(1)=a2+1>0成立,从而函数f(x)在区间(1,e)上无零点;(8分)2) 当a <0时,令f′(x)=0,得x =1e 或-1a ,其中1e<1,①若-1a ≤1,即a ≤-1,则对任意x ∈(1,e),f ′(x)<0,所以函数f(x)在区间[1,e]上单调递减,由题意得f(1)=a 2+1>0,且f(e)=ae 2+2e +a2e 2+1<0,解得-2<a <-2(2e +1)3e 2,其中-2(2e +1)3e 2-(-1)=3e 2-4e -23e 2>0,即-2(2e +1)3e 2>-1,所以a 的取值范围是-2<a ≤-1;(10分)②若-1a ≥e ,即-1e ≤a <0,则对任意x ∈(1,e),f ′(x)>0,所以函数f(x)在区间[1,e]上单调递增,此时对任意x ∈(1,e),都有f(x)>f(1)=a2+1>0成立,从而函数f(x)在区间(1,e)上无零点;(12分)③若1<-1a <e ,即-1<a <-1e ,则对任意x ∈(1,-1a ),f ′(x)>0,所以函数f(x)在区间[1,-1a ]上单调递增,对任意x ∈(1,-1a ],都有f(x)>f(1)=a2+1>0成立;(1分)对任意x ∈(-1a ,e),f ′(x)<0,函数f(x)在区间[-1a ,e]上单调递减,由题意得f(e)=ae 2+2e +a2e 2+1<0,解得a <-2(2e +1)3e 2,其中-2(2e +1)3e 2-(-1e )=3e -4e -23e 2=-e -23e 2<0,即-2(2e +1)3e 2<-(-1e ), 所以a 的取值范围是-1<a <-2(2e +1)3e 2.(15分)综上,实数a 的取值范围是-2<a <-2(2e +1)3e 2.(16分)20. 解:(1) 设等比数列{a n }公比为q ,由8a 3=4a 2=1得8a 1q 2=4a 1q =1,解得a 1=q =12,故a n =12n .(3分)(2) |a n -(a 2n +1)|=⎪⎪⎪⎪12n -(14n +1)=⎪⎪⎪⎪(12n -12)2+34=(12n -12)2+34.(5分) 对任意正整数m ,当n ∈N *,且n ≤m 时,有0<12m ≤12n ≤12,则(12n -12)2+34<14+34=1,即|a n -(a 2n +1)|≤1成立, 故对任意正整数m ,数列{a n },{a 2n +1}是“(m ,1)接近的”.(8分) (3) 由S n (b n +1-b n )b n b n +1=12,得到S n (b n +1-b n )=12b n b n +1,且b n ,b n +1≠0,从而b n +1-b n ≠0,于是S n =b n b n +12(b n +1-b n ).(9分)当n =1时,S 1=b 1b 22(b 2-b 1),b 1=1,解得b 2=2;当n ≥2时,b n =S n -S n -1=b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),又b n ≠0,整理得b n +1+b n -1=2b n ,所以b n +1-b n =b n -b n -1,因此数列{b n }为等差数列. 因为b 1=1,b 2=2,则数列{b n }的公差为1,故b n =n.(11分)根据条件,对于给定正整数m(m ≥5),当n ∈N *且n ≤m 时,都有⎪⎪⎪⎪1a n -(b 2n +k )=|2n -(n 2+k)|≤L 成立, 即-L +2n -n 2≤k ≤L +2n -n 2 ①对n =1,2,3,…,m 都成立.(12分)考查函数f(x)=2x -x 2,f ′(x)=2x ln 2-2x ,令g(x)=2x ln 2-2x ,则g′(x)=2x (ln 2)2-2,当x >5时,g′(x)>0,所以g(x)在[5,+∞)上是增函数. 因为g(5)=25ln 2-10>0,所以当x >5时,g(x)>0,则f′(x)>0, 所以f(x)在[5,+∞)上是增函数.注意到f(1)=1,f(2)=f(4)=0,f(3)=-1,f(5)=7,故当n =1,2,3,…,m 时,-L +2n -n 2的最大值为-L +2m -m 2, L +2n -n 2的最小值为L -1.(14分) 欲使满足①的实数k存在,必有-L +2m -m 2≤L -1,则L ≥2m -m 2+12,因此L 的最小值2m -m 2+12,此时k =2m -m 2-12.(16分)2020届高三模拟考试试卷(常州) 数学附加题参考答案及评分标准21. A. 解:(1) A-1=⎣⎢⎡⎦⎥⎤-2321-12.(4分) (2) 点(a ,b)在矩阵A =⎣⎢⎡⎦⎥⎤1324对应的变换作用下得到点(4,6),所以A ⎣⎢⎡⎦⎥⎤a b =⎣⎢⎡⎦⎥⎤46,(6分)所以⎣⎢⎡⎦⎥⎤a b =A -1⎣⎢⎡⎦⎥⎤46=⎣⎢⎡⎦⎥⎤-2321-12⎣⎢⎡⎦⎥⎤46=⎣⎢⎡⎦⎥⎤11,(8分) 所以a =1,b =1,得a +b =2.(10分) B. 解:因为所求圆的圆心在极轴上,且过极点,故可设此圆的极坐标方程是ρ=2rcos θ. 因为点P(23,π6)在圆上,所以23=2rcos π6,解得r =2.因此所求圆的极坐标方程是ρ=4cos θ.(10分) C. 解:函数y =x -2x +6x +1的定义域为[0,+∞),x +1>0.(2分)x -2x +6x +1=(x +1)2-4(x +1)+9x +1=(x +1)+9x +1-4≥2(x +1)·9x +1-4=2, 当且仅当x +1=9x +1,即x =4时取到“=”.(8分)所以当x =4时,函数y =x -2x +6x +1的最小值为2.(10分)22. 解:(1) 记“取出的3个样品中有优等品”为事件A ,则A 表示“取出的3个样品中没有优等品”,P(A)=(1-0.3)3=3431 000,所以P(A)=1-P(A)=1-3431 000=6571 000.(3分)答:取出的3个样品中有优等品的概率是6571 000.(4分)(2) X ~B(3,0.3),P(X =k)=C k 30.3k (1-0.3)3-k ,k =0,1,2,3,(6分) 随机变量X 的分布如表:(8分)E(X)=0×3431 000+1×4411 000+2×1891 000+3×271 000=910.答:随机变量X的数学期望是910.(10分)23. 解:(1) A1={t|t=a1·3+a0,其中a i∈A,i=0,1}={4,5,7,8}.所以A1中所有元素的和为24,集合A n中元素的个数为2n+1.(2分)(2) 取s=l=2n.下面用数学归纳法进行证明.①当n=2时,A2={13,14,16,17,22,23,25,26},(3分)取b1=13,b2=17,b3=23,b4=25,c1=14,c2=16,c3=22,c4=26,有b1+b2+b3+b4=c1+c2+c3+c4=78,且b21+b22+b23+b24=c21+c22+c23+c24=1 612成立.(4分)即当n=k+1时也成立.(9分)综上可得:能将集合A n,n≥2分成两个没有公共元素的子集B s={ b1,b2,b3,…,b s}和C l={c1,c2,c3,…,c l},s,l∈N*,使得b21+b22+…+b2s=c21+c22+…+c2l成立.(10分)。
【附加15套高考模拟试卷】江苏省常州市2020届高三两校联考数学试题含答案
江苏省常州市2020届高三两校联考数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线E :()222210,0-=>>x y a b a b的两个焦点分别为1F ,2F ,以原点O 为圆心,1OF 为半径作圆,与双曲线E 相交.若顺次连接这些交点和1F ,2F 恰好构成一个正六边形,则双曲线E 的离心率为( ) A .3 B .2C .31+D .32.在ABC ∆中,三内角A 、B 、C 对应的边分别为a 、b 、c ,且cos cos 2cos a B b A C +=,1c =,则角C = ( )A .6πB .3πC .23πD .56π3.已知某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .4.我国古代数学名著《九章算术》里有一道关于玉石的问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(176两).问玉、石重各几何?”如图所示的程序框图反映了对此题的一个求解算法,运行该程序框图,则输出的x ,y 分别为( )A .90,86B .94,82C .98,78D .102,745.一个几何体的三视图如图所示,其轴截面的面积为6,其中正视图与侧视图均为等腰梯形,则该几何体外接球的表面积为 ()A .653πB .654πC .6512πD .6.在平面直角坐标系中,角的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点,则( )A .B .C .D .7.已知函数的最小正周期为,且图象关于直线对称,若函数的图象向右平移个单位长度得到函数的图象,则函数的一个对称中心为( )A .B .C .D .8.已知函数()()x xf x x e e -=-,对于实数a b ,,“0a b +>”是“()()0f a f b +>”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是( )A .B .C .D .10.已知抛物线2:C y x =,直线:1l x my =+,则“0m ≠”是“直线l 与抛物线C 有两个不同交点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A .(45,44)B .(45,43)C .(45,42)D .该数不会出现12.设a r ,b r 是非零向量,“a b a b ⋅=r r r r ”是“//a b r r ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。
江苏省2020届高考数学模拟试卷
高考数学模拟试题注意事项:1.本科目考试分试题卷和答题卷,考生必须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
满分150分, 考试时间120分钟。
参考公式:如果事件A , B 互斥, 那么 柱体的体积公式 P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么 其中S 表示柱体的底面积,h 表示柱体的高 P (A ·B )=P (A )·P (B )锥体的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =13Sh 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式 台体的体积公式S = 4πR 2 1()11223V h S S S S =+球的体积公式 其中S 1, S 2分别表示台体的上、下底面积,V =43πR 3h 表示台体的高 其中R 表示球的半径第Ⅰ卷(选择题,共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知全集=R U ,集合{}0|>=x x A ,{}10|<<=x x B ,则()=B A C U ( ▲ ) A .{}1|<x x B . {}10|<<x x C .{}0|≤x x D .R 2.已知i 是虚数单位,复数2z i =-,则(12)z i ⋅+的共轭复数为( ▲ ) A .2i + B .43i + C .43i - D .43i -- 3.已知直线,,a b m ,其中,a b 在平面α内.则“,m a m b ⊥⊥”是“m α⊥”的( ▲ )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件 4.某几何体的三视图如图所示,则该几何体的体积是( ▲ ) A . 3π B .83π C . 103π D . 113π 5.记()()()77017211x a a x a x -=+++++,则0126a a a a +++的值为( ▲ )A . 1B . 2C . 129D . 21886.已知不等式组210,2,10,x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域为D ,若函数|1|y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( ▲ )A . [2,1]-B . 1[2,]2-C . 1[0,]2D . 3[1,]2-7.甲、乙、丙、丁四个人到A ,B ,C 三个景点旅游,每个人只去一个景点,每个景点至少有一个人去,则甲不到A 景点的方案有( ▲ ) A . 18种 B . 12种 C . 36种 D . 24种8.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ▲ )1]1,1)A B C D9.已知函数()()1ln 1,1{21,1x x x f x x -->=+≤,则方程()()()3204f f x f x ⎡⎤-+=⎢⎥⎣⎦的实根个数为( ▲ )A . 3B . 4C . 5D . 610.已知直三棱柱111ABC A B C -的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱1AA , 1BB , 1CC 分别交于三点M , N , Q ,若MNQ ∆为直角三角形,则该直角三角形斜边长的最小值为( ▲ )A . 2B . 4C .D .第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题, 多空题每小题6分,单空题每小题4分, 共36分.11.双曲线:C 2214x y -=的渐近线方程为___▲__,设双曲线过点(4,1),且与C 具有相同渐近线,则C 的方程为 ▲ . 12. 设数列{}n a 满足123(21)2n a a n a n +++-=.{}n a 的通项n a = ▲ ,数列的21n a n ⎧⎫⎨⎬+⎩⎭前n 项和是 ▲ . 13.随机变量X 的分布列如下:MA BCQDX -10 1 Pabc其中a ,b ,c 成等差数列,则P (|X |=1)= ▲ ,方差的最大值是 ▲ .14. 函数()()sin f x A x ωϕ=+ (0,0,π0)A ωϕ>>-<<的部分图像如图所示,则ϕ= ▲ ,为了得到()cos g x A x ω=的图像,需将函数()y f x =的图象最少向左平移 ▲ 个单位. 15.若实数,x y 满足114422xy xy ,则22xy S的取值范围是 ▲ .16.已知24y x =抛物线,焦点记为F ,过点F 作直线l 交抛物线于,A B 两点,则2AF BF-的最小值为 ▲ . 17.如图,在四边形ABCD 中, 1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则()·PQ AB DC -的值为 ▲ .三、解答题:本大题共5小题, 共74分。
2020年江苏省常州市木渎高级中学高三数学理模拟试卷含解析
2020年江苏省常州市木渎高级中学高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. “函数在区间(0,+∞)上为增函数”是“a=3”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:B2. 等比数列的前项和为,已知,且,则实数的值为A. B. C. D.参考答案:B3. 将函数y=sin(x+φ)的图像上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得图像向左平移个单位后得到的函数图像关于原点中心对称,则sin2φ=A. B. C. D.参考答案:4. 体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是()参考答案:C略5. 如图,正的中心位于点G,A,动点P从A点出发沿的边界按逆时针方向运动,设旋转的角度,向量在方向的投影为y(O为坐标原点),则y 关于x的函数的图像是(▲ )参考答案:C6. 过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B两点,的面积为,则双曲线的离心率为()A. B. C. D.参考答案:D【分析】令,代入双曲线方程可得,由三角形的面积公式,可得的关系,由离心率公式计算可得所求值.【详解】右焦点设,其坐标为令,代入双曲线方程可得的面积为可得本题正确选项:【点睛】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.7. 已知集合A={x|y=lg(5﹣x)},B={y|y=lg(5﹣x)},则A∩B=()A.?? B.R C.(﹣∞,5)D.[0,5]参考答案:C【考点】交集及其运算.【专题】集合思想;定义法;集合.【分析】求出y=lg(5﹣x)中x的范围确定出A,求出y的范围确定出B,找出两集合的交集即可.【解答】解:由A中y=lg(5﹣x),得到5﹣x>0,即x<5,∴A=(﹣∞,5),由B中y=lg(5﹣x),得到y∈R,即B=R,则A∩B=(﹣∞,5),故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8. 在△ABC中,角A,B,C所对的边a,b,c,已知,,,则C=( )A.30°B.45°C.45°或135°D.60°参考答案:B【考点】正弦定理;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】已知等式左边通分并利用同角三角函数间的基本关系化简,右边利用正弦定理化简,整理后求出cosA的值,进而求出sinA的值,由a与c的值,利用正弦定理求出sinC的值,即可确定出C 的度数.【解答】解:∵1+=,即===,∴cosA=,即A为锐角,∴sinA==,∵a=2,c=2,∴由正弦定理=得:sinC==,∵a>c,∴A>C,∴C=45°.故选B【点评】此题考查了正弦定理,以及同角三角函数间的基本关系,熟练掌握正弦定理是解本题的关键.9. 已知向量,且,则的最小值为()A. B. C.1 D.参考答案:D略10. 如图,在边长为2的正方形中,随机撒1000粒豆子,若按π≈3计算,估计落到阴影部分的豆子数为()A. 125B. 150C. 175D. 200参考答案:A【分析】由题意求出阴影部分的面积为,利用,可得结果.【详解】由题意知圆的半径为1,则圆的面积近似为3,又正方形面积为4,则阴影部分面积为.设落到阴影部分的豆子数为,则.故选:A.【点睛】本题考查几何概型概率的求法,求阴影部分面积是关键,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 如图,在四边形ABCD中,=5,BD=4,O为BD的中点,且=,则=▲.参考答案:-3在中,由余弦定理可得:,由题意可得:,,故.12. 已知圆心角为120°的扇形AOB半径为,C为中点D,E分别在半径OA,OB上.若CD2+CE2+DE2=,则OD+OE的取值范围是.参考答案:13. 在平行四边形ABCD中,已知,点E是BC的中点,则=﹣3参考答案:分析:利用向量的运算法则将用已知向量表示,利用向量的运算律将用已知的向量表示出,求出的值解答:解:∵∴===﹣3故答案为﹣31),若对任意的实数m,直线l被圆C截得的弦长都是定值,则直线l的方程为.参考答案:2x+y+1=0【考点】直线与圆的位置关系.【专题】转化思想;综合法;直线与圆.【分析】先将圆的方程化为标准式,求出圆心和半径,通过分析可以看出,圆心在一条直线m上,若对任意的实数m,直线l被圆C截得的弦长都是定值,可得直线l与圆心所在直线平行,即可得出结论.【解答】解:将圆C:x2+y2﹣(6﹣2m)x﹣4my+5m2﹣6m=0化为标准式得(x﹣(3﹣m))2+(y﹣2m)2=9∴圆心C(3﹣m,2m),半径r=3,令x=3﹣m,y=2m,消去m得2x+y﹣6=0,∴圆心在直线2x+y﹣6=0上,又∵直线l经过点(﹣1,1),若对任意的实数m,直线l被圆C截得的弦长都是定值,∴直线l与圆心所在直线平行,∴设l方程为2x+y+C=0,将(﹣1,1)代入得C=1,∴直线l的方程为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题主要考查圆的标准方程,直线和圆的位置关系,考查学生分析解决问题的能力,属于中档题.15. 已知f(x)是定义在R上的奇函数,且当x>0时f(x)=e x+a,若f(x)在R上是单调函数,则实数a的最小值是.参考答案:﹣1【考点】指数函数的图象与性质.【分析】由f'(x)=e x>0,知f(x)在(0,+∞)上为增函数,故当x=0时,f(x)的最小值为1+a,当x<0,f(x)=﹣e﹣x﹣a,为增函数,当x=0时,f(x)max=﹣1﹣a,由此能求出实数a的最小值.【解答】解:f'(x)=e x>0,f(x)在(0,+∞)上为增函数,当x=0时,f(x)的最小值为1+a,当x<0,因为f(x)为奇函数,∴f(x)=﹣e﹣x﹣a,x<0,f(x)为增函数,当x=0时,f(x)max=﹣1﹣a,∵f(x)是增函数,∴﹣1﹣a≤1+a 解得a≥﹣1.故实数a的最小值是﹣1.【点评】本题考查函数的图象和性质的应用,是基础题.解题时要认真审题,仔细解答,注意函数的奇偶性和单调性的灵活运用.16. 直线(t为参数)与曲线(α为参数)的交点个数为.参考答案:2略17. 已知中心在原点的椭圆与双曲线有公共焦点, 且左、右焦点分别为F1、 F2, 这两条曲线在第一象限的交点为P, △P F1F2是以P F1为底边的等腰三角形。
2020年江苏省常州市武进职业高级中学高三数学文模拟试卷含解析
2020年江苏省常州市武进职业高级中学高三数学文模拟试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若与在区间上都是减函数,则的取值范围是 A.B.C.D.参考答案:D2. 在区间上任选两个数和,则的概率为 A. B. C. D. 参考答案:D3. 已知由不等式组,确定的平面区域的面积为7,定点M 的坐标为,若,O 为坐标原点,则的最小值是A .B .C .D .参考答案:【知识点】简单线性规划.E5【答案解析】B 解析:依题意:画出不等式组所表示的平面区域(如右图所示)可知其围成的区域是等腰直角三角形面积为,由直线恒过点,且原点的坐标恒满足, 当时,,此时平面区域的面积为,由于,由此可得.由可得,依题意应有,因此(,舍去)故有,设,故由,可化为,所以当直线过点时,截距最大,即取得最小值,故选B .【思路点拨】首先作出不等式组所表示的平面区域,然后根据直线恒过点B(0,2),且原点的坐标恒满足,当k=0时,y≤2,此时平面区域Ω的面积为6,由于6<7,由此可得k <0.联立方程组求出D 的坐标,根据三角形的面积公式求得k 的值,最后把转化为线性目标函数解决.4. 总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )C.02D.01参考答案:D5. 已知△ABC 是边长为1的等边三角形,点D ,E分别是边AB ,BC 的中点,连接DE 并延长到点F,使,则的值为()A.B.C.D.参考答案:A【考点】平面向量数量积的运算.【专题】计算题;数形结合;向量法;平面向量及应用.【分析】可画出图形,并连接AE,从而有AE⊥BC,这便得出,并由条件得出,而,代入,进行数量积的运算即可求出该数量积的值.【解答】解:如图,连接AE,则:AE⊥BC;;∴;∴====.故选A.【点评】本题考查向量垂直的充要条件,向量加法的几何意义,向量的数乘运算,以及向量数量积的运算及计算公式.6. 已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是A. B. C. D.参考答案:A略7. 已知集合,,则的真子集个数为( )A.5 B.7 C.31 D.3参考答案:D略8. 在如图所示的正方形中随机投掷10000 个点,则落入阴影部分(曲线C为正态分布N(﹣1,1)的密度曲线)的点的个数的估计值()附“若X~N(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.1193 B.1359 C.2718 D.3413参考答案:B【考点】正态分布曲线的特点及曲线所表示的意义.【专题】计算题;方程思想;综合法;概率与统计.【分析】根据正态分布的定义,可以求出阴影部分的面积,也就是x在(0,1)的概率.【解答】解:正态分布的图象如下图:正态分布N(﹣1,1)则在(0,1)的概率如上图阴影部分,其概率为×[P(μ﹣2σ<X≤μ+2σ)﹣P(μ﹣σ<X≤μ+σ)]=×(0.9544﹣0.6826)=0.1359;即阴影部分的面积为0.1359;所以点落入图中阴影部分的概率为p==0.1359;投入10000个点,落入阴影部分的个数期望为10000×0.1359=1359.故选B.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.9. 已知集合A={x|y=},B={x|x2﹣x>0},则A∩B=()A.{x|x≥0}B.{x|0<x<1} C.{x|x>1} D.{x|x<0或x>1}参考答案:C【考点】交集及其运算.【分析】求函数定义域得集合A,解不等式得集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|y=}={x|x≥0},B={x|x2﹣x>0}={x|x<0或x>1},则A∩B={x|x>1}.故选:C.【点评】本题考查了求函数定义域和解不等式的应用问题,也考查了交集的运算问题,是基础题.10. 设,,,则()A. B.C.D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 某天,小赵、小张、小李、小刘四人一起到电影院看电影,他们到达电影院之后发现,当天正在放映A,B,C,D,E五部影片,于是他们商量一起看其中的一部影片:小赵说:只要不是B就行;小张说:B,C,D,E都行;小李说:我喜欢D,但是只要不是C就行;小刘说:除了E之外,其他的都可以据此判断,他们四人可以共同看的影片为____参考答案:【知识点】集合运算. A1D解析:小赵可以看的电影的集合为:{A,C,D,E,},小张可以看的电影的集合为{B,C,D,E},小李可以看的电影的集合为:{A,B,D,E},小刘可以看的电影的集合为:{A,B,C,D},这四个集合的交集中只有元素D ,故填D .【思路点拨】分别找出小赵、小张、小李、小刘四人各自可以看的电影的集合,然后求这些集合的交集即可.12. 若x,y满足约束条件,则z=x+2y的最大值为.参考答案:5【考点】7C:简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,可得当x=1且y=2时,z取得最大值为5.【解答】解:作出不等式组约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(0,2),B(1,2),C(1,1),设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点B时,目标函数z达到最大值,∴z最大值=F(1,2)=5.故答案为:5.【点评】本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.13.若函数是幂函数,且在上是减函数,则实数=______________参考答案:答案:214. 已知平面向量a,b的夹角为60°,a=(,1),|b|=1,则|a+2b|=__________.参考答案:略15. 一个正四棱锥的底面边长为2,侧棱长为,五个顶点都在同一个球面上,则此球的表面积为 .参考答案:9π16. (坐标系与参数方程选做题)在极坐标系中,已知圆C的圆心为,半径为5,直线被圆截得的弦长为8,则α= 。
2020年江苏省常州市武进市横山桥中学高三数学理模拟试题含解析
2020年江苏省常州市武进市横山桥中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知满足条件若目标函数仅在点处取到最大值,则实数的取值范围是A.(-∞,1)B.(-∞,1] C.[-1,+∞)D.(-1,+∞)参考答案:D2. 若整数x,y满足不等式组则2x+y的最大值是()B解答:解:满足不等式组的可行域如下图所示又∵x,y均为整数故当x=8,y=7时,2x+y的最大值为23故选B点评:本题考查的知识点是简单的线性规划,本题易忽略约束条件中的不等式均不带等号,可行域不3. 将函数的图象上各点的横坐标伸长为原来的2倍,再向右平移个单位,所得函数图象的一个对称中心为()A. B. C. D.参考答案:C4. 已知函数f(x)=x2+|ax+1|,命题p:?a∈R,f(x)为偶函数,则¬p为()A.?a∈R,f(x)为奇函数B.?a∈R,f(x)为奇函数C.?a∈R,f(x)不为偶函数D.?a∈R,f(x)不为偶函数参考答案:D【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题p:?a∈R,f(x)为偶函数,则¬p为:?a∈R,f(x)不为偶函数.故选:D【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.5. 在平面直角坐标平面上,,且与在直线上的射影长度相等,直线的倾斜角为锐角,则的斜率为 ( )A. B. C. D.参考答案:C6. 已知是虚数单位,则=A. B. C. D.参考答案:A略7. 复数z的共轭复数记作,已知复数对应复平面上的点(-1,-1),复数:满足.则等于()A. B. 2 C. D. 10参考答案:A【分析】根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题. 8.参考答案:A9. 已知a,b都是负实数,则的最小值是( )A.B.2(﹣1)C.2﹣1 D.2(+1)参考答案:B【考点】函数的最值及其几何意义.【专题】计算题.【分析】把所给的式子直接通分相加,把分子整理出含有分母的形式,做到分子常数化,分子和分母同除以分母,把原式的分母变化成具有基本不等式的形式,求出最小值.【解答】解:直接通分相加得==1﹣=1﹣因为a,b都是负实数,所以,都为正实数那么上式分母中的分母可以利用基本不等式求出最小值最小值为为2分母有最小值,即有最大值那么1﹣可得最小值最小值:2﹣2故选B.【点评】本题考查函数的最值及其几何意义,本题解题的关键是整理出原式含有基本不等式的形式,可以应用基本不等式求最值.10. 设正实数a、b、c分别满足,,,则a、b、c的大小关系为()A. B.C. D.参考答案:B【分析】由,可得或.将,变形为:,.分别作出函数:,,的图象.即可得出大小关系.【详解】解:,解得或,,分别作出函数:,,的图象.由图可知故选:【点睛】本题考查了指数函数与对数函数的图象及其单调性,考查了推理能力与计算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 如图,AB是圆O的直径,C、D是圆O上的点,∠CBA=60°,∠ABD=45°,则x+y=A. B.C. D.参考答案:A略12. 已知是奇函数, 则的值是.参考答案:13. 已知向量满足,,则的夹角为 .参考答案:略14. 已知,且,则▲。
2020年江苏省常州市白蒲高级中学高三数学文模拟试题含解析
2020年江苏省常州市白蒲高级中学高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知为区域内的任意一点,当该区域的面积为4时,的最大值是()A.6 B.0 C.2 D.参考答案:2. 如果复数(a∈R)为纯虚数,则a=( )(A)-2 (B)0 (C)1 (D)2参考答案:D3.已知= ()A.1 B.2 C.—2 D.参考答案:答案:C4. 函数f(x)=的最大值为M,最小值为N,则( )A.M﹣N=4 B.M+N=4 C.M﹣N=2 D.M+N=2参考答案:D【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】利用分式函数的性质进行分解,结合奇函数的对称性即可得到结论.【解答】解:f(x)===+1,设g(x)=,则g(﹣x)=﹣g(x),即g(x)是奇函数,则g max(x)+g min(x)=0,∴M=g max(x)+1,N=g min(x)+1,∴M+N=g max(x)+g min(x)+2=2,故选:D.【点评】本题主要考查函数最值的判断,利用分式函数进行分解,利用奇函数的最值互为相反数,即可得到结论.5.若,则a的取值范围是A. B. C. D.参考答案:答案:A6. 已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A.(2,+∞) B.2,+∞)C.(3,+∞) D.3,+∞)参考答案:B7. 如果,那么()(A) (B) (C) (D)参考答案:C8. (理科)地球北伟45°纬度圈上有A、B两点,点A在东经30°处,点B在东经120°处,如图,若地球半径为R,则A、B两点在纬度圈上的劣弧长与A、B两点的球面距离之比是()A.4:3 B.C. D.参考答案:D略9. 设集合A.[1,2] B.(-1,3) C.{1} D.{l,2}参考答案:D,所以,故选D10. 设集合,B={-2,-1,0,1,2,3},则集合A∩B为()A.{-2,-1,0,1,2} B.{-1,0,1,2}C.{-1,0,1,2,3} D.{-2,-1,0,1,2,3}参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 已知等差数列的通项公式为an=3n-2,等比数列{bn}中,b1=a1,b4=a3+1.记集合A =,B=,U—AUB,把集合U中的元素按从小到大依次排列,构成数列{c。
2020年江苏省常州市华罗庚高级中学高三数学文摸底试卷含解析
2020年江苏省常州市华罗庚高级中学高三数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知定义在上的函数满足:对任意,都有成立,且,设,则三者的大小关系是------------------------------------------------(★ )A. B.C.D.参考答案:C2. 若﹁p∨q是假命题,则A. p∧q是假命题B. p∨q是假命题C. p是假命题D. ﹁q是假命题参考答案:A略3. 已知,其中为虚数单位,则()A.-1 B.1 C.2D.3参考答案:A略4. 向量在正方形网格中的位置如图所示.若向量与共线,则实数()A.-2B. -1C.1D.2参考答案:D5. 平行四边形中,点为中点,连接且交于点.若,则()A. B. C.D.参考答案:C6. 已知集合A={0,2,4,6},B={n∈N|2n<8},则集合A∩B的子集个数为()A.8 B.7 C.6 D.4参考答案:D【考点】1E:交集及其运算.【分析】先分别求出集合A,B,从而求出集合A∩B,由此能求出集合A∩B的子集个数.【解答】解:∵集合A={0,2,4,6},B={n∈N|2n<8}={0,1,2},∴集合A∩B={0,2},∴集合A∩B的子集个数为n=22=4.故选:D.【点评】本题考查交集的子集个数求法,是基础题,解题时要认真审题,注意交集、子集定义的合理运用.7. 已知函数f(x)是R上的偶函数,且满足f(x+2)=﹣f(x),当x∈[0,1]时,f (x)=2﹣x,则f的值为()A.0 B.1 C.2 D.3参考答案:D【考点】3Q:函数的周期性.【分析】首先确定函数的周期,然后结合函数的周期和函数的奇偶性整理计算即可求得最终结果.【解答】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∴f(﹣2017)=f(﹣504×4﹣1)=f(1),f=f(0),当x∈[0,1]时,f(x)=2﹣x,故f(1)=1,f(0)=2,故f=f(0)+f(1)=3,故选:D.8. 若,,且,则tanα=()A.2 B.C.﹣2 D.参考答案:A【考点】平面向量共线(平行)的坐标表示.【分析】利用向量共线定理、同角三角函数基本关系式即可得出.【解答】解:∵,∴sinα=2cosα,cosα≠0.则tanα=2.故选:A.9. 下列函数中,既是偶函数又在单调递增的函数是()(A)(B)(C)(D)参考答案:B10. 抛物线的焦点与双曲线的右焦点的连线交于第一象限的点M,若在点M处的切线平行于的一条渐近线,则=A. B. C.D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 已知,是夹角为的两个单位向量,=﹣2,=k+,若?=0.(1)k的值为(2)||= .参考答案:考点:平面向量数量积的运算;向量的模.专题:平面向量及应用.分析:(1)利用数量积的定义及其运算性质即可得出;(2)利用数量积的运算性质即可得出.解答:解:(1)∵,是夹角为的两个单位向量,∴==﹣.∵?=0,∴+=0,化为k﹣2﹣=0,解得k=.(2)===.故答案分别为:,.点评:本题考查了数量积的定义及其运算性质,属于基础题.12. 执行上面(图右)的程序框图,输出的S 值为。
江苏省常州中学2020届高三数学内部模拟试卷(二)【会员独享】
2020江苏数学模拟试卷(二)说明:1. 以下题目的答案请全部填写在答卷纸上; 2. 本卷总分160分,考试时间120分钟.一、 填空题:本大题共14小题,每小题5分,共70分. 1.若复数z 满足(2)z z i =-(i 是虚数单位),则z = .2.已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合()U A B U ð= .3.在圆x 2+y 2=4所围成的区域内随机取一个点P (x ,y ),则| x |+| y | ≤ 2的概率为 .4.已知4cos 5α=-且(,)2παπ∈,则tan()4πα+= . 5.已知定义域为R 的函数121()2xx f x a+-+=+是奇函数,则a = .6.右图是一个算法的流程图,则输出S 的值是 .7.在ABC ∆中,已知4AB AC ⋅=u u u r u u u r ,12AB BC ⋅=-u u u r u u u r ,则AB u u u r= .8.在样本的频率分布直方图中,共有9个小长方形,若第 一个长方形的面积为0.02,前五个与后五个长方形的 面积分别成等差数列且公差是互为相反数,若样本容量 为1600,则中间一组(即第五组)的频数为 .9.已知B 为双曲线22221(0,0)x y a b a b-=>>的左准线与x 轴的交点,点(0,)A b ,若满足2AP AB=u u u r u u u r 的点P 在双曲线上,则该双曲线的离心率为 .10.已知变量,a R θ∈,则22(2cos )(522sin )a a θθ-+--的最小值为 .11.等比数列{}n a 中,120121,9a a ==,函数122012()()()()2f x x x a x a x a =---+L ,则曲线()y f x = 在点(0,(0))f 处的切线方程为 .12.将一个长宽分别是,(0)a b b a <<的铁皮的四角切去相同的正方形,然后折成一个无盖的长方体的盒子,若这个长方体的外接球的体积存在最小值,则ab的取值范围是 .13.在平面直角坐标系xOy 中,抛物线y 2=2x 的焦点为F . 设M 是抛物线上的动点,则MO MF样本数据频率组距10第题图开始结束是否100k ≥3s s k←+1,0k s ←←S 输出2k k ←+7第题图的最大值为 .14.设等差数列{}n a 的前n 项和为n S ,若对任意的等差数列{}n a 及任意的正整数n 都有不等式22212n n S a a nλ+≥成立,则实数λ的最大值为 .二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)已知函数21()2cos ,2f x x x x R =--∈.] (1)求函数()f x 的最小值和最小正周期;(2)设ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c,且c =()0f C =,若sin 2sin B A =,求a ,b 的值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,090BAD ∠=,3AD BC =,O 是AD 上一点.(1)若//CD PBO 平面,试确定点O 的位置;(2)求证:PAB PCD ⊥平面平面.17.(本小题满分14分)如图,一载着重危病人的火车从O 地出发,沿射线OA 行驶,其中1tan 3α=,在距离O 地a 5(a 为正数)公里北偏东β角的N 处住有一位医学专家,其中3sin 5β=,现有110指挥部紧急征调离O 地正东p 公里的B 处的救护车赶往N 处载上医学专家全速追赶乘有重危病人的火车,并在C 处相遇,经测算当两车行驶的路线与OB 围成的三角形OBC 面积S 最小时,抢救最及时.OPDBA第16题BNA OCα东北第17题(1)求S 关于p 的函数关系; (2)当p 为何值时,抢救最及时.18.(本小题满分16分)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点为1F 、2F ,P 是右支上一点,212PF F F ⊥,1OH PF ⊥于H ,111,[,]92OH OF λλ=∈(1)当13λ=时,求双曲线的渐近线方程;(2)求双曲线的离心率的取值范围;(3)当离心率最大时,过1F 、2F ,P 的圆截y 轴线段长为8,求该圆的方程.19.(本小题满分16分)已知数列{}n a 和{}n b 满足:1a λ=,124,(1)(321),3n n n n n a a n b a n +=+-=--+其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{}n a 不是等比数列; (2)试判断数列{}n b 是否为等比数列,并证明你的结论;(3)设0a b <<,n S 为数列{}n b 的前n 项和.是否存在实数λ,使得对任意正整数n ,都有n a S b <<?若存在,求λ的取值范围;若不存在,说明理由.20.(本小题满分16分)已知函数()f x 的图像在[a ,b ]上连续不断,定义:1()min{()/}([,])f x f t a t x x a b =≤≤∈,2()max{()/}([,])f x f t a t x x a b =≤≤∈,其中min{()/}f x x D ∈表示函数)(x f 在D 上的最小值,max{()/}f x x D ∈表示函数)(x f 在D 上的最大值,若存在最小正整数k ,使得21()()()f x f x k x a -≤-对任意的[,]x a b ∈成立,则称函数)(x f 为[,]a b 上的“k 阶收缩函数”.(1)若()cos ,[0,]f x x x π=∈,试写出1()f x ,2()f x 的表达式;(2)已知函数2(),[1,4],f x x x =∈-试判断)(x f 是否为[-1,4]上的“k 阶收缩函数”,如果是,求出对应的k ,如果不是,请说明理由;(3)已知0b >,函数32()3,f x x x =-+是[0,b ]上的2阶收缩函数,求b 的取值范围数学Ⅱ(理科附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.A .选修4—1:几何证明选讲如图,延长⊙O 的半径OA 到B ,使OA =AB ,DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线,垂足为点C . 求证:∠ACB =31∠OAC . B .选修4—2:矩阵与变换已知矩阵1121⎡⎤=⎢⎥⎣⎦A ,向量12β⎡⎤=⎢⎥⎣⎦u r .求向量αu r ,使得2αβ=u r u r A . C .选修4—3:坐标系与参数方程已知椭圆C 的极坐标方程为2223cos 4sin aρθθ=+,焦距为2,求实数a 的值.D .选修4—4:不等式选讲已知函数2222()()()()()3a b c f x x a x b x c ++=-+-+-+(,,a b c 为实数)的最小值为m ,若23a b c -+=,求m 的最小值.【必做题】第22题、第23题,每题10分,共计20分.22.在平面直角坐标系xOy 中,已知点(1,1)A -,P 是动点,且三角形POA 的三边所在直线的斜率满足k OP +k OA =k PA .(1)求点P 的轨迹C 的方程;(2)若Q 是轨迹C 上异于点P 的一个点,且()0PQ OA λλ=>u u u r u u u r,直线OP 与QA 交于点M ,问:是否存在点P 使得△PQA 和△PAM 的面积满足2PQA PAM S S ∆∆=? 若存在,求出点P 的坐标;若不存在,说明理由.23.已知1(1)2nx +展开式的各项依次记为1231(),(),(),(),()n n a x a x a x a x a x +L .设1231()()2()3(),()(1)()n n F x a x a x a x na x n a x +=+++++L . (1)若123(),(),()a x a x a x 的系数依次成等差数列,求n 的值; (2)求证:对任意12,[0,2]x x ∈,恒有112|()()|2(2)1n F x F x n --≤+-.1.1i +; 2.{3,5}; 3.π; 4.17; 5.2; 6.7500;7.4; 8.360;910.9; 11.201232y x =+;12.)45,1(; 13.1515. 解:(1)1cos 21()2sin(2)1226x f x x x π+=--=--,…………3分则()f x 的最小值是-2, …………5分最小正周期是22T ππ==; …………7分(2)()sin(2)106f C C π=--=,则sin(2)16C π-=, 0C π<<Q 022C π∴<< 112666C πππ∴-<-<,262C ππ∴-=,3C π∴=, …………10分sin 2sin B A =Q ,由正弦定理,得12a b =,① …………11分由余弦定理,得2222cos 3c a b ab π=+-,即223a b ab +-=, ②由①②解得1,2a b ==. …………14分16.(1) …………7分 (2)……14分17.解:(1)以O 为原点,正北方向为y 轴建立直角坐标系,……… 2分则x y l OA 3:= .设00N x y (,),有05sin 3x a a β==,05cos 4y a a β==, (3,4)N a a ∴.又0B p (,),∴直线BC 的方程为:)(34p x pa ay --=.……… 6分由⎪⎩⎪⎨⎧--==)(343p x p a a y xy 得C 的纵坐标)35(5312a p a p ap y c >-=,∴2165||,()2353c ap S OB y p a p a ∆=⋅=>-.……… 10分(2)由(1)得22625353ap ap S p a p a ==--,令5(0)3t p a t =->∴222510402[]933a a S a t a t =++≥, ∴当且仅当,9252ta t =即53a t =,此时103a p =时,上式取等号,……… 13分 ∴当103ap =公里时,抢救最及时. ……… 14分 18. (1)y x =±(2)2e ≤≤3)22(2)16x y +-= 19.解(Ⅰ)证明:假设存在一个实数λ,使{an }是等比数列,则有a 22=a 1a 3,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{an }不是等比数列.(Ⅱ)解:因为bn +1=(-1)n +1[an +1-3(n -1)+21]=(-1)n +1(32an -2n +14) =32(-1)n ·(an -3n +21)=-32bn 又b 1x -(λ+18),所以当λ=-18,b n =0(n ∈N +),此时{b n }不是等比数列: 当λ≠-18时,b 1=(λ+18) ≠0,由上可知bn ≠0,∴321-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-32为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-32)n -1,于是可得 S n =-.321·)18(53⎥⎦⎤⎢⎣⎡+n)-(- λ 要使a <Sn <b 对任意正整数n 成立, 即a <-53(λ+18)·[1-(-32)n ]〈b (n ∈N +),则令 得)2(1)()32(1)18(53)32(1--=--<+-<--n f b a nnλ ①令2()1()3nf n =--,则 当n 为正奇数时,1<f (n ),1)(95;35<≤≤n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 95,于是,由①式得95a <-53(λ+18)<.1831853--<<--⇔a b b λ当a <b ≤3a 时,由-b -18≥=-3a -18,不存在实数满足题目要求;当b >3a 存在实数λ,使得对任意正整数n ,都有a <Sn < b .20. 解:(1)由题意可得:1()cos ,[0,]f x x x π=∈,2()1,[0,]f x x π=∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高三模拟考试试卷(五)数 学(满分160分,考试时间120分钟)2020.1 参考公式:锥体的体积公式V =13Sh ,其中S 是锥体的底面积,h 为锥体的高.样本数据x 1,x 2,…,x n 的方差s 2=1n(x i -x -)2,其中x -=1nx i .一、 填空题:本大题共14小题,每小题5分,共70分.(第3题)1. 已知集合A ={-1,0,1},B ={x|x 2>0},则A ∩B =________.2. 若复数z 满足z·i =1-i(i 是虚数单位),则z 的实部为________.3. 如图是一个算法的流程图,则输出S 的值是________.4. 函数y =2x -1的定义域是________.5. 已知一组数据17,18,19,20,21,则该组数据的方差是________.6. 某校开设5门不同的选修课程,其中3门理科类和2门文科类,某同学从中任选2门课程学习,则该同学“选到文科类选修课程”的概率为________.7. 已知函数f(x)=⎩⎨⎧1x -1,x ≤0,-x 23,x >0,则f(f(8))=________.8. 函数y =3sin(2x +π3),x ∈[0,π]取得最大值时自变量x 的值为________.9. 在等比数列{a n }中,若a 1=1,4a 2,2a 3,a 4成等差数列,则a 1a 7=________.10. 已知cos (π2-α)cos α=2,则tan 2α=________.11. 在平面直角坐标系xOy 中,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,过A作x 轴的垂线与C 的一条渐近线交于点B.若OB =2a ,则C 的离心率为________.12. 已知函数f(x)=|lg(x -2)|,互不相等的实数a ,b 满足f(a)=f(b),则a +4b 的最小值为________.13. 在平面直角坐标系xOy 中,圆C :x 2-2ax +y 2-2ay +2a 2-1=0上存在点P 到点(0,1)的距离为2,则实数a 的取值范围是________.14. 在△ABC 中,∠A =π3,点D 满足AD →=23AC →,且对任意x ∈R ,|xAC →+AB →|≥|AD →-AB →|恒成立,则cos ∠ABC =________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,cos B =33. (1) 若A =π3,求sin C 的值;(2) 若b =2,求c 的值.16.(本小题满分14分) 如图,在四棱锥PABCD 中,PA ⊥平面ABCD ,四边形ABCD 是矩形,AP =AD ,点M ,N 分别是线段PD ,AC 的中点.求证:(1) MN ∥平面PBC ; (2) PC ⊥AM.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆右顶点为A ,点F 2在圆A :(x -2)2+y 2=1上.(1) 求椭圆C 的标准方程;(2) 点M 在椭圆C 上,且位于第四象限,点N 在圆A 上,且位于第一象限,已知AM →=-132AN →,求直线F 1M 的斜率.请你设计一个包装盒,ABCD是边长为10 2 cm的正方形硬纸片(如图1),切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得A,B,C,D四个点重合于图2中的点P,正好形成一个正四棱锥形状的包装盒(如图2),设正四棱锥PEFGH的底面边长为x(cm).(1) 若要求包装盒侧面积S不小于75 cm2,求x的取值范围;(2) 若要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的容积.已知函数f(x)=(ax2+2x)ln x+a2x2+1(a∈R).(1) 若曲线y=f(x)在x=1处的切线的斜率为2,求函数f(x)的单调区间;(2) 若函数f(x)在区间(1,e)上有零点,求实数a的取值范围.(e为自然对数的底数,e ≈2.718 28…)设m 为正整数,若两个项数都不小于m 的数列{A n },{B n }满足:存在正数L ,当n ∈N *且n ≤m 时,都有|A n -B n |≤L ,则称数列{A n },{B n }是“(m ,L)接近的”.已知无穷等比数列{a n }满足8a 3=4a 2=1,无穷数列{b n }的前n 项和为S n ,b 1=1,且S n (b n +1-b n )b n b n +1=12,n ∈N *.(1) 求数列{a n }通项公式;(2) 求证:对任意正整数m ,数列{a n },{a 2n +1}是“(m ,1)接近的”;(3) 给定正整数m(m ≥5),数列⎩⎨⎧⎭⎬⎫1a n ,{b 2n +k}(其中k ∈R )是“(m ,L)接近的”,求L 的最小值,并求出此时的k(均用m 表示).(参考数据:ln 2≈0.69)2020届高三模拟考试试卷(五)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-2:矩阵与变换)已知点(a ,b)在矩阵A =⎣⎢⎡⎦⎥⎤1 32 4对应的变换作用下得到点(4,6).(1) 写出矩阵A 的逆矩阵; (2) 求a +b 的值.B. (选修4-4:坐标系与参数方程)求圆心在极轴上,且过极点与点P(23,π6)的圆的极坐标方程.C. (选修4-5:不等式选讲) 求函数y =x -2x +6x +1的最小值.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 批量较大的一批产品中有30%的优等品,现进行重复抽样检查,共取3个样品,以X表示这3个样品中优等品的个数.(1) 求取出的3个样品中有优等品的概率;(2) 求随机变量X的概率分布及数学期望E(X).23. 设集合A={1,2},A n={t|t=a n·3n+a n-1·3n-1+…+a1·3+a0,其中a i∈A,i=0,1,2,…,n},n∈N*.(1) 求A1中所有元素的和,并写出集合A n中元素的个数;(2) 求证:能将集合A n(n≥2,n∈N*)分成两个没有公共元素的子集B s={b1,b2,b3,…,b s}和C l={c1,c2,c3,…,c l},s,l∈N*,使得b21+b22+…+b2s=c21+c22+…+c2l成立.2020届高三模拟考试试卷(五)(常州)数学参考答案及评分标准1. {-1,1}2. -13. 104. [0,+∞)5. 26. 7107. -15 8. π129. 64 10. -22 11. 2 12. 14 13. ⎣⎢⎡⎦⎥⎤1-172,0∪⎣⎢⎡⎦⎥⎤1,1+172 14. 5132615. 解:(1) 在△ABC 中,0<B <π,则sin B >0.因为cos B =33,所以sin B =1-cos 2B =1-(33)2=63.(3分) 在△ABC 中,A +B +C =π,所以sin C =sin [π-(A +B)]=sin(A +B),(5分) 所以sin C =sin(π3+B)=sin π3cos B +cos π3sin B =32×33+12×63=3+66.(8分)(2) 由余弦定理得b 2=a 2-2accos B +c 2,则(2)2=1-2c·33+c 2,(10分)所以c 2-233c -1=0,(c -3)(c +33)=0.(12分)因为c +33>0,所以c -3=0,即c = 3.(14分) 16.证明:(1) 取PC ,BC 的中点E ,F ,连结ME ,EF ,FN , 在三角形PCD 中,点M ,E 为PD ,PC 的中点, 所以EM ∥CD ,EM =12CD.在三角形ABC 中,点F ,N 为BC ,AC 的中点, 所以FN ∥AB ,FN =12AB.因为四边形ABCD 是矩形,所以AB ∥CD ,AB =CD ,从而EM ∥FN ,EM =FN ,所以四边形EMNF 是平行四边形.(4分)所以MN ∥EF ,又EF ⊂平面PBC ,MN ⊄平面PBC ,所以MN ∥平面 PBC.(6分) (2) 因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD. 因为四边形ABCD 是矩形,所以AD ⊥CD.(8分)因为PA ∩AD =A ,PA ⊂平面PAD ,AD ⊂平面PAD ,所以CD ⊥平面PAD. 又AM ⊂平面PAD ,所以CD ⊥AM.(10分)因为AP =AD ,点M 为PD 的中点,所以AM ⊥PD. 因为PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以AM ⊥平面PCD.(12分)又PC ⊂平面PCD ,所以PC ⊥AM.(14分)17. 解:(1) 圆A :(x -2)2+y 2=1的圆心A(2,0),半径r =1,与x 轴交点坐标为(1,0),(3,0).点F 2在圆A :(x -2)2+y 2=1上,所以F 2(1,0),从而a =2,c =1,所以b =a 2-c 2=22-12=3,所以椭圆C 的标准方程为x 24+y 23=1.(4分)(2) 由题可设点M(x 1,y 1),0<x 1<2,y 1<0,点N(x 2,y 2),x 2>0,y 2>0, 则AM →=(x 1-2,y 1),AN →=(x 2-2,y 2). 由AM →=-132AN →知,点A ,M ,N 共线.(5分)由题知直线AM 的斜率存在,可设为k(k >0),则直线AM 的方程为y =k(x -2). 由⎩⎪⎨⎪⎧y =k (x -2),(x -2)2+y 2=1,得⎩⎪⎨⎪⎧x =2+1+k 21+k 2,y =k 1+k 21+k 2或⎩⎪⎨⎪⎧x =2-1+k 21+k 2,y =-k 1+k21+k 2,所以N(2+1+k 21+k 2,k 1+k 21+k 2).(7分)由⎩⎪⎨⎪⎧y =k (x -2),x 24+y 23=1,得(3+4k 2)x 2-16k 2x +16k 2-12=0,解得⎩⎪⎨⎪⎧x =2,y =0或⎩⎪⎨⎪⎧x =8k 2-63+4k 2,y =-12k 3+4k2,所以M(8k 2-63+4k 2,-12k3+4k 2).(10分)代入AM →=-132AN →得(8k 2-63+4k 2-2,-12k 3+4k 2)=-132(1+k 21+k 2,k 1+k 21+k 2),即(4k 2-9)(52k 2+51)=0,又k >0,解得k =32,(13分)所以M(1,-32),又F 1(-1,0),可得直线F 1M 的斜率为-321-(-1)=-34.(14分)18. 解:(1) 在图1中连结AC ,BD 交于点O ,设BD 与FG 交于点M ,在图2中连结OP.因为ABCD 是边长为10 2 cm 的正方形,所以OB =10(cm). 由FG =x ,得OM =x 2,PM =BM =10-x2.(2分)因为PM >OM ,即10-x 2>x2,所以0<x <10.(4分)。