五年级下册数学试题-奥数专题:牛吃草问题全国通用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛吃草问题
知识要点
一、定义
英国大科学家牛顿在他所著的《普通算术》一书中曾提出一个有趣的数学问题(格尔为牧场面积单位):
有三片牧场,场上的草长得一样密,并且长的速度一样快,它们的面积分别是三又三分之一格尔、10格尔和24格尔。第一片牧场的草饲养12头牛可以吃4个星期,第二片牧场的草饲养21头牛可以吃9个星期,问在第三片牧场上放多少头牛可以吃18个星期?
这个问题被人们称为牛顿问题,也就是我们平常说的牛吃草问题。
二、特点
牛吃草问题其实就是消长问题,问题的主要特征是:同一个数量一方面增加,另一方面减少,朝两个方向同时变化。如牛吃草问题中,草生长使草量匀速增加,牛吃草却使草量逐渐减少。
在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。
数量关系分析:
在牛吃草问题中,我们一般把一头牛一天的吃草量看作一个单位的草量,作为牧草的计量单位。
在这个问题中,主要研究牧场原有草量、每日新增草量(即牧草生长速度)、牛的饲养数量、饲养时间,这四个数量之间的关系。
一头牛一天吃一个单位的草量。
如果养牛头数等于或小于每日新增草量,则无需动用牧场原有草量,这个牧场就会像个聚宝盆一样,供这些牛永远吃下去,草永远吃不完;
如果养牛头数大于每日新增草量,我们可以理解为,每日新增的草先喂养了同等数量的牛,而多出的牛则需要吃牧场原有的草,牧场中原有的草可以供这些多出的牛吃多少天,这个牧场草就可以供这些牛吃多少天。(原有的草吃完了,新增草未生长,就理解为牧场的草吃完了。)
此类问题中的基本数量关系有:
牛的头数×对应的吃的天数=总草量;
牛的头数-每日新增草量数=多出牛的头数;
每日新增草量=(较长时间总草量-同一牧场较短时间总草量)÷相差天数;
原有草量=对应总草量-每日新增草量×天数;
吃的天数=原有草量÷多出牛的头数;
牛的头数=原有草量÷天数+每日新增草量数。
解题方法介绍:
上面牛顿提出的牛吃草问题,比较复杂(三片面积不同的牧场),需要进行几次转化解题。本讲只学习较简单的牛吃草问题(同一片牧场),及数量关系、解题方法与之相似的消
长问题。
解题时,一般要先根据题中的条件(每日消耗数量等),先求出每日新增数量和原有数量,再根据上面的数量关系,求出对应的时间或个体数量。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长,所以草的存量随牛吃的天数不断地变化。
解决牛吃草问题常用的四个基本公式,分别是:
设定一头牛一天吃草量为“1”
1草的生长速度=(对应的牛头数×吃的较多的天数-相应的牛头数×吃的较少的天数)÷(吃的较多的天数-吃得较少的天数)
2原有草量=牛头数×吃的天数-草的生长速度×吃的天数
3吃的天数=原有草量÷(牛头数-草的生长速度)
4牛头数=原有草量÷吃的天数+草的生长速度
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正由于这个不变量,才能导出上面的四个基本公式。
牛吃草的问题经常给出不同头数的牛吃同一片草地,这地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题的关键:是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有的草量,进而解答问题。
解决多块草地的方法
多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。
精解名题
例1 牧场上长满牧草,每天都匀速生长。这片牧场可供27头牛吃6天或23头牛吃9天。问可供21头牛吃几天?
举一反三
【思考1】一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天?
例2 因天气寒冷,牧场上的草不仅不生长,反而每天以均匀的速度在减少。已知牧场上的草可供33头牛吃5天,可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天?
举一反三
【思考2】由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。那么,可供11头牛吃几天?
总结:想办法从变化中找到不变的量。牧场上原有的草是不变的,新长出的草虽然在变化,但是因为是匀速生长,所以每天新长出的草量也是不变的。正确计算草地上原有的草及每天新长出的草,问题就会迎刃而解。
知识衍变
例3 两只蜗牛同时从一口井的井顶爬向井底。白天往下爬,两只蜗牛的爬行速度是不同的,一只每天爬行20分米,另一只每天爬行15分米。黑夜往下滑,两只蜗牛滑行的速度却是相同的,结果一只蜗牛恰好用了5个昼夜到达井底,另一只恰好用了6个昼夜到达井底。那么,井深多少米?
例4 一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。如果用10人舀水,3小时舀完。如果只有5个人舀水,要8小时才能舀完。现在要想在2小时舀完,需要多少人舀水?
举一反三
【思考4】一个水池,池底有泉水不断涌出,用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?
例5 有一牧场长满牧草,牧草每天匀速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在有若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有牛多少头?
举一反三
【思考5】一个牧场上的青草每天都匀速生长。这片青草可供27头牛吃6天,或供23头牛吃9天,现有一群牛吃了4天后卖掉2头,余下的牛又吃了4天将草吃完。这群牛原来有多少头?
例6 有三块草地,面积分别为5公顷,6公顷和8公顷。每块地每公顷的草量相同而且长的一样快,第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。第三块草地可供19头牛吃多少天?