分式混合运算(讲义及答案)

合集下载

分式知识点总结和练习题讲义

分式知识点总结和练习题讲义

分式知识点总结和题型归纳 第一部分 分式的运算 (一)分式定义及有关题型题型一:考查分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。

【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =)【例1】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0B A )【例1】当x 取何值时,下列分式的值为0.(1)31+-x x(2)42||2--x x (3)653222----x x x x【例2】当x 为何值时,下列分式的值为零: (1)4|1|5+--x x(2)562522+--x x x题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0B A )分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A )【例1】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.【例2】解下列不等式 (1)012||≤+-x x (2)03252>+++x x x题型五:考查分式的值为1,-1的条件 分式值为1:分子分母值相等(A=B )分式值为-1:分子分母值互为相反数(A+B=0) 【例1】若22||+-x x 的值为1,-1,则x 的取值分别为思维拓展练习题:1、若a>b>0,2a +2b -6ab=0,则a ba b +=- 2、一组按规律排列的分式:25811234,,,,b b b b a aa a --(ab ≠0),则第n 个分式为3、已知2310x x -+=,求221x x +的值。

分式混合运算中的技巧

分式混合运算中的技巧

分式运算的技巧【精练】计算:【分析】本题中有四个分式相加减,如果采用直接通分化成同分母的分式相加减,公分母比较复杂,其运算难度较大.不过我们注意到若把前两个分式相加,其结果却是非常简单的.因此我们可以采用逐项相加的办法.【解】===【知识大串联】1.分式的有关概念设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简2、分式的基本性质(M为不等于零的整式)3.分式的运算(分式的运算法则与分数的运算法则类似).(异分母相加,先通分);4.零指数5.负整数指数注意正整数幂的运算性质可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数.分式是初中代数的重点内容之一,其运算综合性强,技巧性大,如果方法选取不当,不仅使解题过程复杂化,而且出错率高.下面通过例子来说明分式运算中的种种策略,供同学们学习参考.1.顺次相加法例1:计算:【分析】本题的解法与例1完全一样。

【解】===2.整体通分法【例2】计算:【分析】本题是一个分式与整式的加减运算.如能把(—a—1)看作一个整体,并提取“—”后在通分会使运算更加简便。

通常我们把整式看作分母是1的分式。

【解】==.3.化简后通分分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多.4.巧用拆项法例4计算:.分析:本题的10个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若a是整数),联想到,这样可抵消一些项.解:原式====5.分组运算法例5:计算:分析:本题项数较多,分母不相同。

因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便.解:=====【错题警示】一、错用分式的基本性质例1化简错解:原式分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变",而此题分子乘以3,分母乘以2,违反了分式的基本性质。

分式的混合运算

分式的混合运算

a b 2、已知a b 3, ab 1, 则 的值 b a 7 等于 1 3x M N 3、若 2 , 则M、N的值 x 1 x 1 x 1 分别是 ( B )
A、M=1,N=-2 C、M=1,N=2 B、M=-2,N=-1 D、M=2,N=1
课作:计算
1 1 1 ( 1) 2 ( ) 2 x y x y x y
3x( x 2) x( x 2) ( x 2)(x 2) = =3(x+2)-(x-2) ( x 2)(x 2) x
=3x+6-x+2 2 x 2 8x ( x 2)(x 2) = ( x 2)(x 2) =2x+8 x =
2 x( x 4) ( x 2)(x 2) ( x 2)(x 2) x
n
n
典型例题解析
【例1】 计算

3x x x2 x2
x 4 x
2
方法二:利用运算律 方法一:按运算顺序
3x 3x(( 22 2 ( xx ) )( x 2) x( x x 2) ( x x)( x2 )(2 x) 2) 原式= x x x 2 x x 2 ( x 2 )( x 2 ) ( x 2 )( x 2 )
复习回顾
1、分式的加减法则:
a c ad bc ad bc b d bd bd bd
a c ac b d bd a c a d ad b d b c bc
a c ac b b b
2、分式的乘除
3、分式的乘方
a a n b b
3 x 1 1 例2:先化简,再求代数式 x 2 x 2

分式的混合运算

分式的混合运算

分式的混合运算【知识要点】1.分式的运算法则 同分母分式加减法:异分母分式加减法:2.分式的乘除法3.分式的乘方:4.常用的公式变形:211222-⎪⎭⎫⎝⎛+=+x x x x221211222244-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+=-⎪⎭⎫ ⎝⎛+=+x x x x x x注:分式的计算中,分数线具有括号的作用!【典型例题】例1 计算:(1)22221106532xyx y y x ÷⋅ (2)mn nn m m m n n m -+-+--2(3)1111-÷⎪⎭⎫ ⎝⎛--x x x (4)22224421y xy x y x y x y x ++-÷+--(5)m m -+-329122(6)a+2-a-24(7)262--x x ÷ 4432+--x x x(8)222)2222(xxx x x x x --+-+-(9)x x x x x x x x 4)44122(22-÷+----+ (10)2144122++÷++-a a a a a(11)y x axy28512÷ (12)xy x y 2211-+-例2 先化简,后求值:(1)168422+--x x xx ,其中x=5.(2)3,32,1)()2(222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中(3)168422+--x x xx ,其中x=5例3 计算)1999x )(1998x (1.....)3x )(2x (1)2x )(1x (1)1x (x 1+++++++++++思考题:已知12,4-=-=+xy y x ,求1111+++++y x x y 的值;【大展身手】1.计算:2211xy x y x y x y ⎛⎫÷- ⎪--+⎝⎭2.计算:aa a a a a 4)22(2-⋅+--.3.计算:111112-+-∙-+a a a a 4.计算:⎪⎭⎫⎝⎛+---÷--11211222x x x x x x【小试锋芒】一、选择题1.下列判断中,正确的是( )A .分式的分子中一定含有字母;B .当B =0时,分式BA无意义 C .当A =0时,分式BA的值为0(A 、B 为整式)D .分数一定是分式 2.下列各式正确的是( )A .11++=++b a x b x aB .22x y x y =C .()0,≠=a ma na m nD .am an m n --=3.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.化简2293mm m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m-3 5.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 6.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x7.已知x y z ==,则3x y z +-的值是( )A .17 B.7 C.1 D.138.汛期将至,我军机械化工兵连的官兵为驻地群众办实事,计划加固驻地附近20千米的河堤。

分式混合运算(习题及答案)

分式混合运算(习题及答案)

分式混合运算(习题及答案)混合运算(题)例1:混合运算:解:原式可以化简为:frac{4-x}{x-2} \div \frac{12}{x+2-x^2}$$frac{4-x}{x-2} \times \frac{x+2-x^2}{12}$$frac{-(x-4)}{(x-2)(x+4)}$$例2:先化简,然后在$-2\leq x\leq 2$的范围内选取一个合适的整数$x$代入求值.解:先化简原式:frac{x(x+1)}{(x-1)(1-x)} \div \frac{2x}{x+1}$$frac{x(x+1)}{(x-1)(x-1)} \times \frac{x+1}{2x}$$frac{1}{2}$$由于$-2\leq x\leq 2$,且$x$为整数,因此使原式有意义的$x$的值为$-2$,$-1$或$2$。

代入计算可得:当$x=2$时,原式为$-2$。

巩固练1.计算:1)$$\frac{x-y}{x+2y} \div \frac{1}{2x+4y}$$化简原式:frac{x-y}{x+2y} \times \frac{2x+4y}{1}$$frac{2(x-y)}{x+2y}$$2)$$\frac{\frac{a}{a-1}-1}{a^2-2a+1} \div \frac{1}{a+1}$$ 化简原式:frac{\frac{a}{a-1}-1}{(a-1)^2} \times (a+1)$$frac{a-2}{(a-1)^2}$$3)$$\frac{2a-2ab}{a^2-b^2} \div \frac{a+b}{a+b}$$化简原式:frac{2a-2ab}{a^2-b^2} \times \frac{a+b}{a+b}$$frac{2a-2ab}{(a-b)(a+b)} \times \frac{a+b}{1}$$frac{2(1-b)}{a-b}$$4)$$\frac{y-1-\frac{8}{y-1}}{y^2+y} \div\frac{1}{y(y+1)}$$化简原式:frac{y-1-\frac{8}{y-1}}{y(y+1)} \times \frac{y(y+1)}{1}$$ frac{(y-1)^2-8}{y(y+1)^2}$$5)$$\frac{a^2-2ab+b^2}{b}\div \frac{1}{a-b}-1$$化简原式:frac{(a-b)^2}{b} \times \frac{a-b}{1}-1$$frac{(a-b)^3}{b}-1$$6)$$\frac{x^2-4x+4}{x(x-1)} \div \frac{x+2}{x-1}$$化简原式:frac{(x-2)^2}{x(x-1)} \times \frac{x-1}{x+2}$$frac{(x-2)^2}{x(x+2)}$$7)$$\frac{2}{(x-1)^2} - \frac{1}{(x-1)^2(x+1)}$$化简原式:frac{2(x+1)-1}{(x-1)^2(x+1)}$$frac{2x+1}{(x-1)^2(x+1)}$$8)$$\frac{3-x}{2(x-2)} \div \frac{5}{x-2}-\frac{5}{x-3}$$ 化简原式:frac{3-x}{2(x-2)} \times \frac{x-2}{5} - \frac{5}{x-3}$$ frac{(x-3)(x-1)}{2(x-2)5} - \frac{5}{x-3}$$frac{x^2-4x+7}{10(x-2)(x-3)}$$9)$$\frac{x-1}{x+1} \div \frac{x-3}{x-2} - \frac{5}{x^2-3x}$$化简原式:frac{(x-1)(x-2)}{(x+1)(x-3)} - \frac{5}{x(x-3)}$$frac{x^2-3x-2}{x(x-3)(x+1)(x-3)} - \frac{5(x+1)}{x(x-3)(x+1)(x-3)}$$frac{x^2-3x-2-5x-5}{x(x-3)(x+1)(x-3)}$$frac{x^2-8x-7}{x(x-3)(x+1)^2}$$10)$$\frac{1}{(x-1)(x+1)}-\frac{1}{x(x-1)}$$化简原式:frac{x-(x-1)}{x(x-1)(x+1)}$$frac{1}{x(x+1)}$$11)$$\frac{2}{x+y} - \frac{1}{y-x} \times \frac{y^2-x^2}{11}$$化简原式:frac{2(y-x)}{(y-x)(x+y)} - \frac{y+x}{11(x+y)}$$frac{y-x-2}{11(x+y)}$$2.化简求值:1)先化简,再求值:$\frac{x^2+2x+1}{x+2x+2} \div \frac{1}{x+2}$,其中$x=3-1$。

八年级数学 分式的混合运算

八年级数学 分式的混合运算

精心整理八年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:12.20(1(2 1(1)(2)(3)(4)(5)a b ⎛ ⎝23数的n 次幂的倒数。

4、引入负整数指数幂后,正整数指数幂的运算法则对负整数指数幂一样适用。

详解点三、科学计数法(1)绝对值大于1的数,用科学计数法表示成a ×n 10的形式,其中1≤|a|<10,n 为正整数。

(2)绝对值小于1的数,用科学计数法表示成a ×-n10的形式,其中1≤|a|<10,n 为正整数。

确定n 的方法:(1)用科学计数法表示绝对值大于1的数,那么n=该数的整数位数-1。

例如5位数20300记为2.3×410(2)用科学计数法表示绝对值小于1的数,那么n=原数第一个非零数字前面所有零的个数。

例如0.0000203记为2.03×-510第二部分例题解析 例1:计算:)(aab a b a 222-2a b a · 1-2a 12+++ 【变式练习】(1)112---a a a ;(2)12(21444(222+-⋅--+--x x x x x x x 例2:先化简,再求值:242+÷x ,其中x =3(4)已知5,4,3=+=+=+acc a bc c b ab b a ,求c 1b 1a 1++的值; (5)已知51,41,31=+=+=+c a ac c b bc b a ab,求ac bc ab abc ++的值。

第三部分巩固练习A 组 一、选择题1、已知bb a a N b a M ab +++=+++==11,1111,1,则M 与N 的关系为() A.M>NB.M=NC.M<ND.不能确定.2、用科学计数法表示0.00036是()A0.36×10-4B3.6×10-4C36×10-4D3.6×10-5二、填空题 1、0112222=-++⎪⎭⎫ ⎝⎛-++b x x a x x ,则a,b 之间的关系式是_____________ 2、7m =3,7n =5,则72m-n =3451.(1)2. 3123、计算:12442222+--÷--+n m m n m n m mn n 4、已知:M x y xy y x y x y x y 222222-=--+-+,求M 的值。

分式的混合运算

分式的混合运算
2、分式的乘方
8x6 y 3 2x y 3 ( ) 27 z 3 ————
2
先乘方,再乘除, 然后加减
3z
分时乘方:把分子、分母分别乘方
3、分式的加减法 1 a3 a 2 a 2 ————
1
2x 1 1 x 1 x 1 ( x y)( x y) ————
★例题
1 1 1 1 (3)( ) ( 2 2 ) a b a b
x2 4 x2 ) (4)( x2 2 x 2x
b a b2 a2 解:原式 ( ) ( 2 2 2 2 ) ab ab ab ab
b a b2 a 2 2 2 ab ab
b a a 2b 2 2 ab b a 2
★例题
15.2 分式的运算
——分式的混合运算
★知识回顾 1、分式的乘除法
6ab 10c 2 5c 3b
4a c ————
xy 1 2 2 2 2 x y x yx y
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
x2 4 x 2 解:原式 x2 2x
( x 2)( x 2) 2 x x2 x2
2x

ab ba
★例题
a b a2 b2 (1)1 2 a 2b a 4ab 4b 2
a b a 2 4ab 4b 2 解:原式 1 a 2b a2 b2
从高到低,从左 到右,括号从小到 大
同分母分式相加减:分母不变,把分子相加减; 异分母分式相加减:先通分,变为同分母的分式,再加减.

人教八年级数学上册-分式的混合运算(附习题)

人教八年级数学上册-分式的混合运算(附习题)

课堂小结 对于不带括号的分式混合运算: (1)运算顺序:先乘方,再乘除,然后加减; (2)计算结果要化为最简分式. 对于带括号的分式混合运算: (1)将各分式的分子、分母分解因式后,再
进行计算; (2)注意处理好每一步运算中遇到的符号; (3)计算结果要化为最简分式.
课后作业
2y 3x
x2 2y
x 2y2
3x3 8y
x3 4 y3
3x3y2 8y3
2x3
2.先化简,再求值: m2
m2
3m 4m
4
m m
3 2
m
2
2

其中m=2.
解:原式
m m 3 m 22
m2 m3
2 m
2
m 2 m 2. m2 m2 m2
当m=2代入其中,得原式 2 2 0 . 22
问题 分数的混合运算的顺序是什么?你能将 它们推广,得出分式的混合运算顺序吗?
分式的混合运算顺序: “从高到低、从左到右、括号从小到大”.
例1 计算:
2a 2 b
1 a-b
-
a b
b 4
.
这道题的运算顺序是怎样的?
解:
2a 2
b
1 a-b
-
a b
b 4
=
4a2 b2
1 a-b
-
a b
例2 计算:
(1) m+2+
5
2-m
2m-4 ; 3-m
(2) xx2 -+22x -
x-1 x2 -4x+4
x-4 . x
这两道题的运算顺序又是怎样的?
解:(1)
m+2+

分式混合运算专题练习(经典集合)解析

分式混合运算专题练习(经典集合)解析

分式的乘除乘方运算1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式.分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法4.分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n . 分式的乘方,是把分子、分母各自乘方.用式子表示为:例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例2.计算:3234)1(x y y x • aa a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432zy x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(cb a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211xa x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯ 练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x Bx A x x x ,求A. B 的值。

计算下列各题:(1)2222223223x y yx y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a,(6)x y yy x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623xx x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸)1x 3x 1(1x 1x 2x 22+-+÷-+- ⑹ )252(23--+÷--x x x x ⑺221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xy x y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (ab b a 22++2)÷b a b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ xx x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x -⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x x x x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛b a c b b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x xx x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x-+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。

八年级数学上册分式混合运算(讲义及答案)(人教版)

八年级数学上册分式混合运算(讲义及答案)(人教版)
ห้องสมุดไป่ตู้

1

ab
当 a=1, b=1 时,原式 =1.

以上过程有两处错误,第一次出错在第
______步(填写序号) ,原因:
____________________________________________;_
还有第 _______步出错(填写序号) ,原因:
__________________________________________________._
x 2; 2x
11
x
(2) x1 x1
2x2
; 2
(3) 1
4 a2 4
a; a2
第1页 共7页
(4) a 3a 4 1 1 ;
a3
a2
(5) x 1 3
x2 4x 4 ;
x1
x1
(6) a a
1 1
a a2 2a 1
1. a
2. 化简求值:
第2页 共7页
(1)先化简,再求值:
x2 1 1 x x2 2x 1 x 1
请你写出此题的正确解答过程.
4. 课堂上,王老师出了这样一道题:
已知 x
2 015
5
3 ,求代数式
x2 2x 1 x2 1
1 x 3 的值. x1
小明觉得直接代入计算太复杂了, 同学小刚帮他解决了问题, 并解释说:“结
果与 x 无关”.解答过程如下:
第5页 共7页
x ,其中 x=3. x1
( 2)先化简,再求值:
b2 a2
a2 ab
a 2 1, b 2 1.
2ab b2 a
a
1 1 ,其中 ab
( 3)先化简分式 x

分式混合运算(习题及答案)

分式混合运算(习题及答案)

分式混合运算(习题)例题示范例1:混合运算:. 412222x x x x -⎛⎫÷+- ⎪--⎝⎭【过程书写】 2244122241622422(4)(4)14x x x x x x x x x x x x x x ---=-÷----=-÷----=-⋅-+-=-+解:原式例2:先化简,然后在的范围内选取一个你认为(1)211x x x x x x+⎡⎤+÷⎢⎥--⎣⎦22x -≤≤合适的整数x 代入求值. 【过程书写】 2221122112x x x x x x xx x x x x++--=⋅--=⋅-=-解:原式∵,且x 为整数22x -≤≤∴使原式有意义的x 的值为-2,-1或2当x =2时,原式=-2巩固练习1. 计算:(1); 22221244x y x y x y x xy y---÷+++(2);211121a a a a ⎛⎫-÷ ⎪--+⎝⎭(3);22221aa b a ab a b ⎛⎫-÷ ⎪--+⎝⎭(4);2286911y y y y y y ⎛⎫-+--÷ ⎪-+⎝⎭(5); (6);2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭24421x x x x -+⎛⎫÷- ⎪⎝⎭(7); 2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭(8); (9); 352242x x x x -⎛⎫÷+- ⎪--⎝⎭253263x x x x --⎛⎫÷-- ⎪--⎝⎭(10); 211(1)111x x x ⎛⎫--- ⎪-+⎝⎭(11). 22221113x y x y x y x xy x y ⎛⎫⎛⎫--⋅÷-- ⎪ ⎪+--⎝⎭⎝⎭2. 化简求值:(1)先化简,再求值:,其中. 2121122x x x x ++⎛⎫-÷ ⎪++⎝⎭1x =(2)先化简,再求值:,其中 2222225321x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭,.x =+y =(3)先化简,然后在 22212211211x x x x x x x x ++-⎛⎫+÷+ ⎪--+-⎝⎭22x -≤≤的范围内选取一个合适的整数x 代入求值.(4)已知.222111x x xA x x ++=---①化简A ;②当x 满足不等式组,且x 为整数时,求A 的值.1030x x -⎧⎨-<⎩≥3. 不改变分式的值,把分子、分母中各项系数化为整数,结果是2132113x yx -+( )A .B .263x yx -+218326x yx -+C .D . 2331x y x -+218323x y x -+4. 把分式中的分子、分母的值同时扩大为原来的2倍,则分式的值32a b ab-( )A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的125. 把分式中a ,b 的值都扩大为原来的2倍,则分式的值() 34a bab -A .不变 B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的126. 把分式中x ,y 的值都扩大为原来的2倍,则分式的值()222xyx y +A .不变 B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的12 7. 已知,则A =_______,B =_______.47(2)(3)23x ABx x x x +=+-+-+【参考答案】巩固练习1. (1)yx y -+(2)1a -(3)21a (4)22(1)(27)(1)(3)y y y y y y +----(5)2ab (6)2x -+(7)11x x -+ (8)126x -+ (9)124x -+ (10)23x -+(11)y x y-+2. (1)原式,当时,原式11x =+1x =-=(2)原式=3xy ,当,时,原式=3 x =+y =(3)原式,当x =2时,原式=0 241x x -=+(4)①;②1 11x -3.B 4.A 5.D 6.A 7. 3,1。

分式的加减乘除乘方混合运算

分式的加减乘除乘方混合运算

分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。

分式可以进行加、减、乘、除以及乘方等混合运算。

本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。

一、分式的加法运算分式的加法运算是指将两个分式相加的操作。

要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。

例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。

同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。

例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。

要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。

例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。

要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。

例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。

要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。

例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。

在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。

分式的混合运算

分式的混合运算

分式的混合运算
对于分式混合运算,一般应按运算顺序,有括号先做括号内的运算,若利用乘法对加法的分配律,则可简化运算。

分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。

分式运算法则
1、约分
根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

约分的关键是确定分式中分子与分母的公因式。

2、公因式的提取方法
系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。

3、最简分式
一个分式不能约分时,这个分式称为最简分式。

约分时,一般将一个分式化为最简分式。

乘法同分母分式的加减法法则进行计算。

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

4、除法
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

也可表述为:除以一个分式,等于乘以这个分式的倒数。

5、乘方
分子乘方做分子,分母乘方做分母,可以约分的约分。

(寒假班内部讲义)第十六章----分式(后面为提高部分)

(寒假班内部讲义)第十六章----分式(后面为提高部分)

第十六章分式第一部分:知识点及重难点一、学习目标1、切实掌握分式的概念,分式的基本性质,能熟练地进行分式变形及约分通分。

2、能准确、顺畅地进行分式的乘除、加减以及混合运算。

3、会用科学记数法表示绝对值小于1的数,并能进行有关负整数指数幂的运算。

4、明确分式方程的步骤,并能列出可化为一元一次方程的分式方程解简单的应用题。

二知识结构网络三重点难点1、分式重点:(1)正确理解分式的概念,分式的值为零和分式有无意义的条件:分式是两整式相除的商式,分数线有除号和括号的作用,比如表示;分式的分子可以含字母,也可以不含字母,但分母中必须含有字母,这是区分一个代数式是整式还是分式的依据,分式的分母不能为0,如分式中是该分式的一个隐含条件当时分式无意义。

(2)准确理解分式的基本性质:要特别注意分式的分子与分母都乘以(或除以)同一个不等于零的整式,其值不变。

例如由分式一定可以变形为但由分式就不一定变形为,这是因为分式的分母,一定有而a是分子,有可能等于0。

(3)分式的约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

如果一个分式的分子或分母没有公因式,则该分式叫做最简分式。

(4)分式的通分:把几个异分母的分式化为与原来相等的同分母的分式的过程称为分式的通分。

分式通分的关键是确定几个分式的最简公分母,找最简公分母要注意以下几点:①各分母所有因式的最高次幂指凡出现的字母或含字母的式子为底数的幂的因式选取指数最大②如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数。

难点:正确理解分式的概念,在分式的分子与分母同时乘以或除以整式A时,应首先判断A是否为0,分子、分母中的系数都是分数(或小数)时,要把分式化简,都是分数时,应把分子、分母都乘以分子、分母中各系数分母的最小公倍数如,分子、分母中的系数都是小数时,应把分子、分母都乘以可使系数互质的整数。

如2、分式的乘除法重点:分式的乘除运算,其中约分是关键。

《分式的混合运算》参考课件

《分式的混合运算》参考课件
2
1 x1

x1 (x 1)
2
解:(1)原式=

x3 (x 1)(x 1)

(x 1)
2
(x 1)(x 3)
x1 (x 1)
2
解:(2) 原式=

x 1 (x 1) (x 1)
2
x1x1 (x 1)
2

2 (x 1)
2
有理数和整式的加、减、乘、除、乘方的混合 运算顺序原则: 优先进行乘方运算,其次进行乘、除运算, 最后进行加、减运算; 对于同级运算,则按照从左到右的顺序,依 次进行。


2(a 3) (a 1)(a 3)

(a 2) (a 1)(a 3)

2(a 3) (a 2) (a 1)(a 3)

2a 6 a 2 (a 1)(a 3)

a8 (a 1)(a 3)
分式的加、减、乘、除、乘方的混合运算顺序 原则(不变) 优先进行乘方运算,其次进行乘、除运算, 最后进行加、减运算;如果有括号,则优先进 行括号内的运算。 对于同级运算,则按照从左到右的顺序,依 次进行。
2

xy y
2
2
x (x y)

xy y
2
2
x (x y)
分析:先进行 乘方运算,再 做乘法运算, 最后进行加减 运算。
计算:
b ab 1 ba ab ab
1 1 1 3 1 1 x x
试一试
2 a1 a 3 a 4a 5
2

a 9
2
a 3a 10

第19讲 分式的加减及综合计算(解析版)

第19讲 分式的加减及综合计算(解析版)

原创精品资源学科网独家享有版权,侵权必究!1第19讲分式的加减及综合计算模块一:分式的加、减法一、同分母的分式加减法法则:同分母分式相加减,分母不变,分子相加减.二、异分母的分式加减法法则:(1)通分:将几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫做通分,这几个相同的分母叫做公分母.(2)异分母分式加减法法则:分母不同的几个分式相加减,应先进行通分,化成同分母分式后再进行加减运算,运算结果能化简的必须化简.【例1】计算:(1)x yx y x y ---;(2)211a ab ab+-.【答案】(1)1;(2)b2.【解析】本题主要考查同分母的加减法,注意计算结果一定要是最简分式.【例2】化简22x y y x y x---的结果是()A 、x y--B 、y x-C 、x y-D 、x y+【答案】A【解析】本题主要考查同分母的加减法,注意结果为最简分式.【例3】计算:(1)22x x+;(2)31269x x+.【答案】(1)x x 242+;(2)321843x x +【解析】(1)222442222x x x x x x x++=+=;(2)22333312343469181818x x x x x x x++=+=.【总结】本题主要考查异分母分式的加减法.【例4】计算:(1)a b b c ab bc++-;(2)2212y x x x y y -+-.【答案】(1)ac ac -;(2)22232242xy x x y x y +-+.【解析】(1)()()()c a b a b c b c a a b b c ca cb ab ac c aab bc abc abc abc abc ac++-+++----=-===;(2)()323222222222121224222222x x y x x y x y y x y x x x y y xy xy xy xy--+-++-=+-=.【总结】本题主要考查异分母分式的加减法,注意结果要化为最简分式.【例5】计算:(1)23(3)3x xx x ---;(2)2216322a a a a a --++--.【答案】(1)()223x x -;(2)4102--a a .【解析】(1)23(3)3x x x x ---()()2233(3)3x x x x x -=---2233(3)x x x x -+=-22(3)x x =-;(2)2216322a a a a a --++--()()()()161221a a a a a -=-++-+()()()()()()()()()1262122122a a a a a a a a a --+=-++-++-()()()232612122a a a a a a -+--=++-原创精品资源学科网独家享有版权,侵权必究!3()()()2910122a a a a a --=++-()()()()()101122a a a a a -+=++-()()1022a a a -=+-2104a a -=-.【总结】当分式的分母是多项式时,要先分解因式,再按照相应法则进行加减运算.【例6】某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下.已知该同学上楼速度是a 米/分,下楼速度是b 米/分,求他上、下楼的平均速度.(用含a 、b 的代数式表示)【答案】b a ab+2.【解析】b a ababb a b a +=+=+22112.【总结】本题要注意速度等于路程除以时间,不要简单的求两个速度的平均数.模块二:分式的综合计算一、分式的综合运算:与分数的混合运算类似,先算乘除,再算加减,如果有括号,要先算括号内的.【例7】计算:a b a bb a a +⎛⎫-÷ ⎪⎝⎭的结果为()A 、a b b-B 、a b b+C 、a ba-D 、a b a+【答案】A【解析】原式=bba b a a ab b a -=+⋅-22.【总结】本题在计算时,注意按照运算顺序进行,有括号先算括号里面的.【例8】计算:262393m m mm ⎛⎫⎛⎫⎛⎫-÷ ⎪ ⎪ ⎪+--⎝⎭⎝⎭⎝⎭的结果为()A 、1B 、33m m -+C 、33m m +-D 、33m m +【答案】A【解析】原式=()()1333233363=+++=-⋅+--+mm m m m m m m .【总结】本题依旧考查的是分式的混合运算,注意先乘除后加减.【例9】计算:(1)22211()()a b ab a b b a a b a b--÷-+--;(2)2284111[(1)(442a a a a+-⋅-÷--.【答案】(1)ab a b -+;(2)22+-a a .【解析】(1)22211((a b ab a b b a a b a b--÷-+--()()()()()()()()2()a a b b a b ab b a a b a b a b a b a b a b ab ab ⎡⎤-+=+-÷-⎢⎥+-+-+-⎢⎥⎣⎦()()222a ab ab b ab ab a b a b b a -++-=⋅+--()()()2a b ab a b a b b a-=⋅+--ab a b=-+;(2)2284111[(1)()]442a a a a+-⋅-÷--()()284421[((224422a a a a a a a a a +=-⋅-÷-+-()()()228212242a aa a aa -=-⋅⋅+--412a =-+22a a -=+.【总结】本题主要考查分式的混合运算,在计算时一方面注意法则的准确运用,一方面注意方法的灵活.【例10】已知320a b -=,求下式的值:(1)(1b a b a a a b a a b+-÷---+.【答案】-5.【解析】∵320a b -=,∴23=a b ,2-=-b a a ,52=+b a a .∴(1)(1b a b a a a b a a b +-÷---+332121225⎛⎫⎛⎫=++÷-- ⎪ ⎪⎝⎭⎝⎭5=-.【总结】本题主要是利用分式的性质,通过整体代入的思想求值,另外本题也可以通过分式的混合运算,算出分式的最终结果之后再求值.【例11】化简:11111(1)(2)(2)(3)(99)(100)a a a a a a a ++++------- .原创精品资源学科网独家享有版权,侵权必究!5【答案】()()99199---a a 【解析】11111(1)(2)(2)(3)(99)(100)a a a a a a a ++++------- 1111111=1213210099a a a a a a a +-+-++-------- 1100a =-.【总结】本题主要是类比分数的拆项的思想来求解,注意方法的恰当选择.1.(2022秋黄浦七年级期末真题)12-的结果是()A .12B .12-C .2D .2-【答案】A【分析】根据负整数指数幂法则即可得.【详解】解:1122-=,故选:A .【点睛】本题考查了负整数指数幂,熟练掌握运算法则是解题关键.2.(2022秋浦东新区七年级期末真题)如果2210a a --=,那么代数式242aa a a ⎛⎫-⋅ ⎪+⎝⎭的值是()A .3-B .1-C .1D .3【答案】B【分析】先化简所求的式子,再根据2210a a --=,可以得到221a a -=-,然后代入化简后的式子即可.【详解】解:242aa a a ⎛⎫-⋅⎪+⎝⎭2242a a a a -=⋅+()()2222a a a a a +-=⋅+()2a a =-22a a =-,2210a a --= ,221a a ∴-=-,∴原式1=-,故选:B .【点睛】本题考查了分式的化简求值,掌握分式的混合运算法则是解答本题的关键.3.计算23111b b b a a a +-+++的结果是()A .0B .61b a +C .()3361b a -+D .1b a -+【答案】A【分析】根据分式的混合运算法则即可求解.【详解】解:23111b b b a a a +-+++231b b b a +-=+0=,故选:A .【点睛】本题主要考查分式的混合运算,掌握同分母分式的加减法运算法则是解题的关键.4.(2022秋黄浦七年级期末真题)已知244A x =-,1122B x x=++-,其中2x ≠±,下列说法正确的是()A .A B=B .A ,B 互为倒数C .A ,B 互为相反数D .以上均不正确【答案】C【分析】把A 、B 先分别化简,然后观察比较.【详解】∵B=222111122442222444x x x x x x x x x ----+=-===-+-+----,且A=244x -,∴A 、B 互为相反数,故选C .【点睛】本题考查分式的加减运算,这类题通常的解题思路是将A 、B 两个式子分别先化简,然后再根据化简的结果进行分析判断,得出结论.5.(2022秋徐汇区七年级期末真题)如图是嘉琪进行分式计算的过程,下列判断不正确的是()原创精品资源学科网独家享有版权,侵权必究!7A .第二步运用了分式的基本性质B .从第三步开始出现错误C .原分式的计算结果11x -D .当1x =时,原分式的值为0【答案】D【分析】根据分式的混合运算法则和分式有意义的条件即可解答.【详解】解:第二步将11x +变为()()()111x x x -+-,即分式的分子和分母同时乘()1x -,是运用了分式的基本性质,故A 正确,不符合题意;第三步分式相减时,把分母减没了,出现错误,故B 正确,不符合题意;从第三步开始,正确的计算如下,()()2(1)11x x x x --=+-…………第三步()()111x x x +=+-…………第四步11x =-…………第五步.∴原分式的计算结果为11x -,故C 正确,不符合题意;当1x =时,原分式没有意义,故D 错误,符合题意.故选D .【点睛】本题考查分式的化简求值.掌握分式的混合运算法则和分式的分母不能为0是解题关键.6.(2022秋青浦区七年级期末真题)计算312112a a a a++--的结果是()A .1B .1-C .2121a a +-D .4121a a +-【答案】A【分析】根据同分母分式减法计算法则求解即可.【详解】解:312112a a a a++--312121a a a a +=---3121a a a --=-2121a a -=-1=,故选A .【点睛】本题主要考查了同分母分式减法,正确计算是解题的关键.7.(2022秋浦东新区七年级期末真题)计算211a a a a ++++的结果是()A .1a a +B .21a a ++C .3D .2【答案】D【分析】根据同分母分式加法计算法则求解即可.【详解】解:211a a a a ++++21a a a ++=+221a a +=+()211a a +=+2=,故选D .【点睛】本题主要考查了同分母分式加法,熟知相关计算法则是解题关键.8.(2022秋徐汇区七年级期末真题)计算12x x+=_____.【答案】3x【分析】根据同分母分式相加,分母不变,只把分子相加,进行计算即可.【详解】解:123x x x+=,故答案为:3x.【点睛】本题要考查了同分母分式的加法,解题的关键是掌握:同分母分式相加,分母不变,只把分子相加.原创精品资源学科网独家享有版权,侵权必究!99.化简分式2422x x x ---的结果为______.【答案】2x +/2x+【分析】根据分式的减法法则进行计算.【详解】2422x x x ---242x x -=-()()222x x x +-=-2x =+,故答案为:2x +.【点睛】本题考查了分式的减法,正确的计算是解题的关键.10.(2022秋民办华育七年级期中真题)化简22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭的结果为______.【答案】1m n-【详解】解:22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭222m n m mn n m m m ⎛⎫--=÷- ⎪⎝⎭222m n m mn n m m--+=÷()2m n mm m n -=⨯-1m n=-故答案为:1m n-【点睛】此题考查了分式的混合运算,熟练掌握运算顺序和法则是解题的关键.11.已知50x y --=,则11⎛⎫-÷ ⎪-++⎝⎭yx y x y x y 的值为______.【答案】25/0.4【分析】先将括号里面的通分,将除法转化为乘法,约分化简,代入x y -的值,即可求解.【详解】原式()()()()x y x yx y y x y x y x y x y ⎡⎤+-+=-⨯⎢+-+-⎢⎥⎣⎦()()2yx yyx y x y +=⨯+-2x y=-5x y -= ∴225x y =-故答案为:25.【点睛】本题考查了分式化简求值,正确化简分式是解题的关键.12.计算:23111m m m +-=++______.【答案】2【分析】根据同分母的减法运算可进行求解.【详解】解:231222111m m m m m ++-==+++;故答案为2.【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.13.(2022秋青浦区七年级期末真题)已知13a b =,则2222a ab b a b ++=+________.【答案】1310【分析】由13a b =可得3b a =,代入式子进行化简即可求解.【详解】解:13a b =,3b a ∴=,原式22222399a a a a a +=++2213131010a a ==.故答案:1310.【点睛】本题考查了分式化简求值,掌握化简求值方法是解题的关键.原创精品资源学科网独家享有版权,侵权必究!1114.(2022秋上宝七年级期中真题)通分(1)314x y ,246xy (2)26a a +,219a a --(3)229a a -,2369a a -+(4)21(1)4a a -+-,21242a a a --+【答案】(1)33213412y x y x y =,223248612x xy x y =(2)(3)262(3)(3)a a a a a a -=++-,212292(3)(3)a a a a a --=-+-(3)2222(3)9(3)(3)a a a a a a -=--+,2233(3)69(3)(3)a a a a a +=-+-+(4)212(1)(1)42(1)(3)a a a a a --=+--+,2132422(1)(3)a a a a a a -+=--+-+【分析】根据分式的基本性质,把几个异分母分式分别化为与原来的分式相等的同分母的分式,叫做分式的通分.根据分式的通分的概念逐个化简即可.【详解】(1)最简公分母:3212x y ,33213412y x y x y =,223248612x xy x y =;(2)最简公分母:2(3)(3)a a +-(3)262(3)(3)a a a a a a -=++-,212292(3)(3)a a a a a --=-+-;(3)最简公分母:2(3)(3)a a -+,2222(3)9(3)(3)a a a a a a -=--+,2233(3)69(3)(3)a a a a a +=-+-+;(4)最简公分母:2(3)(1)a a +-,21112(1)(1)4(3)(1)32(1)(3)a a a a a a a a a ---===--+-+-+,2211132422(1)2(1)2(1)(3)a a a a a a a a a --+==-=--+---+.【点睛】本题考查了分式通分的概念,理解分式通分的概念,会正确求出几个分式的最简公分母是解题的关键.15.化简:(1)()1333x x x ---;(2)2111x x x+--;(3)212111x x x -⎛⎫-÷ ⎪--⎝⎭;(4)222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭.【答案】(1)1x (2)1x +(3)1x +(4)22a bb a+-【分析】(1)根据异分母分式的减法运算法则求解即可;(2)根据同分母分式的加法运算法则求解即可;(3)根据分式的混合运算法则求解即可;(4)根据分式的混合运算法则求解即可;【详解】(1)()1333x x x ---()()333x x x x x =---()33x x x -=-1x=;(2)2111x x x+--2111x x x =---211x x -=-()()111x x x +-=-1x =+;(3)212111x x x -⎛⎫-÷ ⎪--⎝⎭()()1111211x x x x x x -⎛⎫-÷ ⎪--+⎝=-⎭-()()11212x x x x x +--⨯--=原创精品资源学科网独家享有版权,侵权必究!131x =+;(4)222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭()222223a b b a b a b a b a b +⎛⎫-=÷ ---⎝⎭()22224a b b a b a a b+=-÷--()()()2222a a b a b ba b a b +-+⨯--=22a bb a +=-.【点睛】此题考查了分式的加减乘除混合运算,解题的关键是熟练掌握以上运算法则.1.分式2411÷--xxx x 的值可能等于()A .0B .1C .2D .4【答案】B【详解】解:()()2441411111x xxx x x x x x x -÷=⋅--+-+,401x ≠+,故选项A 不符合题意;41x =+,则3x =,存在,故选项B 符合题意;()421x =+,则1x =,此时原式无意义,故选项C 不符合题意;()441x =+,则0x =,此时原式无意义,故选项D 不符合题意;故选:B .【点睛】此题主要考查了分式的乘除,正确化简分式是解题关键.2.已知13xyx y =+,15yzy z =+,16zxz x =+,则xyzxy yz zx =++()A .14B .12C .17D .19【答案】C【分析】结合题意得3x y xy +=,5y z yz +=,6z x zx+=从而求出1117x y z ++=,对xyz xy yz zx ++进行化简得1111z x y++代入即可求解.【详解】解:13xy x y =+ ,15yz y z =+,16zx z x =+,3x y xy +∴=,5y z yz +=,6z x zx+=,113x y ∴+=,115y z +=,116z x+=,111111356x y y z z x∴+++++=++,1117x y z∴++=,1111117xyz xy yz zx xy yz zx xyz xyz xyz z x y===++++++,故选:C .【点睛】本题考查了分式的化简求值,解题的关键是结合题意求出1111z x y++.3.若分式24932321x A B x x x x -=---+-(A 、B 为常数),则A 、B 的值为()A .43A B ==;B .71A B ==;C .17A B ==;D .3513A B =-=;【答案】B 【分析】等式右边进行分式的减法运算,再根据对应项的系数相等可求解.【详解】解:∵321A B x x -+-()()()()132321A x B x x x --+=+-()()32321Ax A Bx Bx x ---=+-()()22323A B x x A B x --+--=,∴()()2223493232A B x A B x x x x x ---+=----,∴3429A B A B -=⎧⎨+=⎩,则71A B =⎧⎨=⎩,故选:B .【点睛】本题考查了分式的加减法、解二元一次方程组,熟练掌握分式加减运算法则是解答的关键.原创精品资源学科网独家享有版权,侵权必究!154.已知2610m m --=,则22126m m m -+的值为______.【答案】39【分析】由已知得到16m m-=和22261m m m -=+,再整体代入,利用完全平方公式化简即可求解.【详解】解:将2610m m --=,两边同时除以m ,得:16m m -=,由2610m m --=,可得:22261m m m -=+,所以22126m m m -+2211m m =++2112m m ⎛⎫ ⎪⎝⎭=+-+2162=++39=.故答案为:39.【点睛】本题考查了分式的加减以及完全平方公式的运用,解题关键是正确将已知变形.5.甲、乙两港口分别位于长江的上、下游,相距50千米,一艘轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时()b a <,轮船往返两个港口一次共需______小时.【答案】22100aa b -【分析】分别求出顺流和逆流时的速度,利用路程、时间、速度之间的关系即可列式求解.【详解】解: 轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时()b a <,∴顺流速度为()a b +千米/时,逆流速度为()a b -千米/时,甲、乙两港口分别位于长江的上、下游,相距50千米,∴轮船往返两个港口一次共需时间为:()()()()2250505050100a b a b a a b a b a b a b a b -+++==+-+--,故答案为:22100a a b -.【点睛】本题考查分式加减的应用,解题的关键是计算出轮船顺流和逆流时的速度,根据路程、时间、速度之间的关系列出分式.6.分式化简:22424422x x x x x x x ⎛⎫---÷= ⎪-++-⎝⎭___.【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式2(2)(2)22(2)2x x x x x x x ⎡⎤+---=-⨯⎢⎥-+⎣⎦22222x x x x x x +--⎛⎫=-⨯ ⎪-+⎝⎭()()()()2222222x x x x x x +---=⨯+-82(2)(2)x x x x x-=-+82x =+.故答案为:82x +.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.7.若()()112121A x x x x =+----,则A =__________.【答案】1-【分析】首先将等式右边通分,然后根据题意得到()112x A x =-+-,然后求解即可.【详解】∵121A x x +--()()()()()212121A x x x x x x --=+----()()()1221x A x x x -+-=--∵()()112121A x x x x =+----∴()112x A x =-+-∴()22x A x -=-∴1A =-.故答案为:1-.【点睛】此题考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算法则.8.计算:(1)2221651565a a a a a a a a a --+⋅÷++++;(2)29(2)33666x x x x x x --+--+-.原创精品资源学科网独家享有版权,侵权必究!17(2)26xx +【分析】(1)因式分解约分即可得到答案;(2)通分合并再因式分解约分即可得到答案.【详解】(1)解:原式1(5)(1)1(5)(5)(1)a a a a a a a a a -++=⨯⨯++--15a =-;(2)解:原式221896(318)(6)(6)x x x x x x x -+----+=+-2(6)(6)(6)x x x x -=+-26x x =+.【点睛】本题考查分式化简,解题的关键是熟练掌握整式乘法及因式分解.9.已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭的值.【答案】2ab a b -+,14a ,b ,再根据分式的混合运算法则先化简后代值求解即可.【详解】解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩原式22()()b a a b a a b a a b a b a b ⎡⎤----⎡⎤=÷⋅⎢⎥⎢⎥+--⎣⎦⎣⎦2b a b ab a b b a b--=⋅⋅+-2ab a b=-+,当14a =-,12b =时,原式21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭=-=-+.【点睛】本题考查非负数的性质、分式的混合运算、解二元一次方程组等知识,正确运用法则是解题的关键,是中考常考题型,可以通过此类题目的训练提高计算能力.10.计算(1)22211444a a a a a --÷-+-;(2)211a a a ---【答案】(1)2(1)(2)a a a ++-(2)11a -【分析】(1)先将两个分式分解因式,然后再约分化简即可.(2)先通分,再化简求解.【详解】(1)解:原式21(2)(2)2(2)(1)(1)(1)(2)a a a a a a a a a -+-+=⋅=-+-+-(2)解:原式=2111a a a +--=2(1)(1)1a a a a -+--=2211a a a -+-=11a -【点睛】本题考查了分式的加减、乘除运算,掌握通分、分解因式的方法是求解的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式混合运算(讲义)
➢ 知识点睛
1. 在进行分式的运算前,要先把分式的分子和分母__________.
分式的乘除要__________,加减要___________,最后的结果要化成______________.
➢ 精讲精练
1. 分式的混合运算:
(1)242222x x x x x ⎛⎫++÷ ⎪--⎝⎭

(2)2111122
x x x x ⎛⎫-÷ ⎪-+-⎝⎭;
(3)24142
a a a ⎛⎫+÷ ⎪--⎝⎭;
(4)341132a a a a -⎛⎫⎛⎫+- ⎪⎪--⎝⎭⎝⎭

(5)2344111x x x x x -+⎛⎫+-÷ ⎪--⎝⎭

(6)
11-+a a 221a a a -÷-+a
1.
2. 化简求值:
(1)先化简,再求值:
2
2
11
2111
x x x
x x x x
⎛⎫
--


-++-
⎝⎭
,其中x=3.
(2)先化简,再求值:
222
2
211
b a ab b
a
a a
b a a b
⎛⎫
-+⎛⎫
÷++
⎪ ⎪
-⎝⎭
⎝⎭
,其中
11
a b
==
,.
(3)先化简分式
2
2
1221
x x x x
x x x x
-
⎛⎫


---+
⎝⎭
,然后从13
x
-≤≤
中选取一个你认为合适的整数x代入求值.
(4)先化简分式3423332a a a a a a a +-+⎛⎫-÷⋅ ⎪+++⎝
⎭,然后从不等式组 25<324a a --⎧⎨⎩
≤的解集中选取一个你认为符合题意的a 代入求值.
3. 化简:22
111a a ab a ab --÷⋅+,并选取一组你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:
22(1)(1)1111(1)(1)1a a a ab a ab
a a a
b a a ab ab
+--=÷
⋅++-=⨯⋅+-=解:原式①②③
当a =1,b =1时,原式=1. ④ 以上过程有两处错误,第一次出错在第______步(填写序号),原因:_____________________________________________;
还有第_______步出错(填写序号),原因:
___________________________________________________.
请你写出此题的正确解答过程.
4. 课堂上,王老师出了这样一道题:
已知2015x =-,求代数式22213111x x x x x -+-⎛⎫÷+ ⎪-+⎝
⎭的值. 小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与x 无关”.解答过程如下:
2(1)13(1)(1)1
111112(1)
12
_________x x x x x x x x x x x x -++-=÷+-+-=÷+-+=⋅+-=原式①②③④
当2015x =-时,12
=原式. (1)从原式到步骤①,用到的数学知识有_______________;
(2)步骤②中空白处的代数式应为_____________________;
(3)从步骤③到步骤④,用到的数学知识有_____________.
5. 有两个熟练工人甲和乙,已知甲每小时能制作a 个零件,乙每小时能制作b
个零件.现要赶制一批零件,如果甲单独完成需要m 小时,那么甲、乙两人同时工作,可比甲单独完成提前_______________小时.
6. 若把分式x y x y
+-中的x 和y 都扩大为原来的10倍,则分式的值( ) A .扩大为原来的10倍 B .不变
C .缩小为原来的110
D .不能确定 7. 若把分式2x y xy
+中的x 和y 都扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .不变
C .缩小为原来的13
D .缩小为原来的16
8. 已知53
m n =,则2
22m m n m n m n m n +-=+--__________. 9. 已知34(1)(2)12x A B x x x x -=+----,则A =______,B =______.
【参考答案】
➢ 知识点睛
1. 因式分解,约分,通分,最简分式或整式
➢ 精讲精练
1. (1)2x
(2)
4x
(3)2
a a + (4)2a +
(5)22
x x +- (6)21(1)a -- 2. (1)原式41
x =+,当x =3时,原式1=
(2)原式1ab
=-,当11a b ==,时,原式1=- (3)原式12
x =--,当x =3时,原式1=- (4)原式=a +3,当0a =时,原式3=
3. ③,约分出错
④,a 的取值不能为1,当a =1时,原分式无意义 正确的解答过程略 4. (1)分解因式,通分,分式的基本性质 (2)221x x -+ (3)约分,分式的基本性质 5.
bm a b + 6.
B 7.
C 8.
4116 9.
1,2。

相关文档
最新文档