重庆市铜梁县第一中学初高中数学衔接教材试题:专题六二次函数的最值问题(附答案)

合集下载

2020年重庆中考二次函数最值专题训练(含答案)

2020年重庆中考二次函数最值专题训练(含答案)

2020年重庆中考二次函数最值专题训练类型一、线段的最值问题【例1】(2019•铜仁市模拟)如图,在平面直角坐标系中,已知A(﹣1,0)、C(4,0),BC ⊥x轴于点C,且AC=BC,抛物线y=x2+bx+c经过A、B两点.(1)求抛物线的表达式;(2)点E是线段AB上一动点(不与A、B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标;解:∵A(﹣1,0)、C(4,0),∴OA=1,OC=4,∴AC=5,∵BC⊥x轴于点C,且AC=BC,∴B(4,5),将点A和点B的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x2﹣2x﹣3.(2)∵直线AB经过点A(﹣1,0),B(4,5),设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3),∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣),∴当t=时,EF的最大值为,∴点E的坐标为().【例2】(2019•贺州)如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC =4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6). 【例3】(2019•覃塘区三模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C(1)求抛物线的表达式;(2)如图1,若点F在线段OC上,且OF=OA,经入过点F的直线在第一象限内与抛物线交于点D,与线段BC交于点E,求的最大值;(3)如图2,若P为抛物线的顶点,动点Q在抛物线上,当∠QCO=∠PBC时,请直接写出点Q的坐标.解:(1)函数的表达式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3,则点C(0,3);(2)过点D作y轴的平行线交BC于点N,将点B、C的坐标代入一次函数表达式并解得:函数BC表达式为:y=﹣x+3, OF=OA=1,则点F(0,1),CF=2,设点D(x,﹣x2+2x+3),则点N(x,﹣x+3),∵DN∥CF,∴==(﹣x2+2x+3+x﹣3)=﹣x2+x,∵﹣0,则有最大值,此时x=,的最大值为;(3)连接PC,点P坐标(1,4),则PC=,PB=,BC=,则△PBC为直角三角形,tan∠PBC==,过点Q作QH⊥y轴于点H,设点Q(x,﹣x2+2x+3),则tan∠HCQ=tan=,解得:x=0或5或﹣1(舍去0),故点Q(﹣1,0)或(5,﹣12).【练习】1、(2019•河南模拟)如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F (1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0), ∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=,∴抛物线的解析式为y=x2+x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,m2+m﹣1)∴y=(m+3)﹣(m2+m﹣1)=﹣m2+m+4即y=(m﹣)2+,此时点E的坐标为(,);2、(2019•安阳二模)如图,直线y=﹣x+4与x轴,y轴分别交于点B,C,点A在x轴负半轴上,且OA=OB,抛物线y=ax2+bx+4经过A,B,C三点.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值.解:(1)由y=﹣x+4,当x=0时,y=4;当y=0时,x=4,∴B(4,0),C(0,4),∴OB=4,∴OA=OB=2,∴A(﹣2,0),把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx+4中,得,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点P在二次函数y=﹣x2+x+4图象上且横坐标为m,∴P(m,﹣m2+m+4),过P作PF∥y轴,交BC于F,则F(m,﹣m+4),∴PF=﹣m2+2m,∵PD⊥AB于点D,∴在Rt△OBC中,OB=OC=4,∴∠OCB=45°,∵PF∥y轴,∴∠PFD=∠OCB=45°,∴PD=PF•sin∠PFD=(﹣m2+2m)=﹣(m﹣2)2+,∵0<m<4,﹣<0,∴当m=2时,PD最大,最大值为.3、(2019•仁寿县模拟)在平面直角坐标系XOY中,抛物线y=﹣x2+bx+c经过点A(﹣2,0),B(8,0).(1)求抛物线的解析式;(2)点C是抛物线与y轴的交点,连接BC,设点P是抛物线上在第一象限内的点,PD⊥BC,垂足为点D.是否存在点P,使线段PD的长度最大?若存在,请求出点P的坐标;若不存在,请说明理由;解:(1)把A(﹣2,0),B(8,0)代入抛物线y=﹣x2+bx+c,,解得:, ∴抛物线的解析式为:y=﹣x2+x+4;(2)由(1)知C(0,4),∵B(8,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的解析式为:y=﹣x+4,如图1,过P作PG⊥x轴于G,PG交BC于E,Rt△BOC中,OC=4,OB=8,∴BC=4,在Rt△PDE中,PD=PE•sin∠PED=PE•sin∠OCB=PE,∴当线段PE最长时,PD的长最大,设P(t,﹣t2+t+4),则E(t,﹣t+4),∴PE=PG﹣EG=﹣t2+t+4+t﹣4=﹣(t﹣4)2+4,(0<t<8),当t=4时,PE有最大值是4,此时P(4,6),∴PD═,即当P(4,6)时,PD的长度最大,最大值是;4、(2019•邓州市一模)如图,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C.已知点A(﹣2,0),B(8,0),连接AC,BC.(1)求抛物线的解析式和点C的坐标;(2)点D是直线BC上方抛物线上的一点,过点D作DE⊥BC,垂足为E,求线段DE的长度最大时,点D的坐标;(3)抛物线上是否存在一点P(异于点A,B,C),使S△P AC=S△PBC?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)把A(﹣2,0),B(8,.0)分别代入y=ax2+bx+4中得∴抛物线的解析式为y=,令x=0,得y=4.∴点C的坐标为(0,4);(2)如图1,过点D作DF∥y轴,交BC于点F,则∠DFE=∠BCO.∵C=(0,4),B(8,0),∴OC=4,OB=8,在Rt△OBC中,BC=,∴sin∠BCO=,∴在Rt△DEF中,DE=DF・sin∠DFE=DF•sin∠BCO=,设直线BC的解析式为y=kx+t,把B(8,0),C(0,4)分别代入,得,解得,∴直线BC的解析式为y=, 设D(m,,则F(m,)∴DF=,∴DE=,∵,∴当m=4时,DE的值最大,最大值为,此时点D的坐标为(4,.6);(3)存在点P,使S△P AC=S△PBC,过点C与AB平行的直线交抛物线于P,∵CP∥AB,∴点A、B到CP的距离相等,∴△P AC、△PBC的面积相等,∵C(0,4),把y=4代入y=,解得x=0或x=6,∴P(6,4),∴使S△P AC=S△PBC的点P的坐标为(6,4).类型二、线段和的最值问题【例4】(2019•广安)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合). (1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.解:(1)将点A、D的坐标代入直线表达式得:,解得:,故直线l的表达式为:y=﹣x﹣1,将点A、D的坐标代入抛物线表达式,同理可得抛物线的表达式为:y=﹣x2+3x+4;(2)直线l的表达式为:y=﹣x﹣1,则直线l与x轴的夹角为45°,即:则PE=PE,设点P坐标为(x,﹣x2+3x+4)、则点F(x,﹣x﹣1),PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,∵﹣2<0,故PE+PF有最大值,当x=2时,其最大值为18;【例5】(2019•资阳)如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+P A的最小值;解:(1)将点B的坐标为(4,m)代入y=﹣x+,m=﹣4+=﹣,∴B的坐标为(4,﹣),将A(3,2),B(4,﹣)代入y=﹣x2+bx+c,解得b=1,c=,∴抛物线的解析式y=;(2)设D(m,),则E(m,﹣m+),DE=()﹣(﹣m+)==﹣(m﹣2)2+2, ∴当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A',连接A'D,与对称轴交于点P.PD+PA=PD+PA'=A'D,此时PD+PA最小,∵A(3,2),∴A'(﹣1,2),A'D==,即PD+PA的最小值为;类型三、线段差或线段差的绝对值的最值问题【例6】(2019•零陵区一模)如图,已知抛物线y=ax2﹣4x+c(a≠0)与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,6).(1)求抛物线y的函数表达式及点B的坐标;(2)在抛物线的对称轴上是否存在点P使PB﹣PC的值最大?若存在,求出P点的坐标,若不存在,请说明理由;解:(1)函数过点C,则其表达式为:y=ax2﹣4x+6,将点A的坐标代入上式并解得:a=﹣2, 故抛物线的表达式为:y=﹣2x2﹣4x+6…①,令y=0,则x=1或﹣3,过点B(1,0);(2)存在,理由:连接BC并延长交函数对称轴于点P,此时,PB﹣PC的值最大,将点B、C的坐标代入一次函数表达式:y=kx+b得:,故直线BC的表达式为:y=﹣6x+6, 当x=﹣1时,y=12,故点P(﹣1,12);【例7】(2019•安顺)如图,抛物线y=x2+bx+c与直线y=x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC.已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MC|的值最大,并求出这个最大值;解:(1)①将A(0,3),C(﹣3,0)代入y=x2+bx+c得:,解得:,∴抛物线的解析式是y=x2+x+3;(2)将直线y=x+3表达式与二次函数表达式联立并解得:x=0或﹣4,∵A(0,3),∴B(﹣4,1)①当点B、C、M三点不共线时,|MB﹣MC|<BC②当点B、C、M三点共线时,|MB﹣MC|=BC∴当点、C、M三点共线时,|MB﹣MC|取最大值,即为BC的长,过点B作x轴于点E,在Rt△BEC中,由勾股定理得BC==,∴|MB﹣MC|取最大值为;【练习】如图,已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于C点.(1)求直线BC的解析式;(2)若点P是直线BC上方抛物线上的一点,当△PBC面积的值最大时,在y轴上找一点D,使得|AD ﹣PD|值最大,请求出D点的坐标和|AD﹣PD|的最大值;解:(1)抛物线y=﹣x2﹣2x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于C点, 令x=0,则y=3,∴C(0,3),令y=0,则,﹣x2﹣2x+3=0,解得x=1或﹣3,∴B(﹣3,0),A(1,0),设直线BC的解析式为y=kx+b,把B(﹣3,0),C(0,3)代入得,解得,∴直线BC的解析式为y=x+3;(2)设P(x,﹣x2﹣2x+3),∵OB=3=OC,∴S四边形OBPC=S△PDB+S梯形PDOC=(x+3)(﹣x2﹣2x+3)+×(﹣x)(﹣x2﹣2x+3+3)=﹣x2﹣3x+ ∴S△PBC=S四边形OBPC﹣S△BOC=﹣x2﹣3x+﹣×3×3=﹣x2﹣3x=﹣(x+1)2+∴当x=﹣1时,△PBC面积的值最大,∴P(﹣1,4),∵抛物线的顶点为(﹣1,4),∴P点是抛物线的顶点,∴PB=P A,要使|AD﹣PD|值最大,则点P、D、B三点在一条直线上,∴设直线PB:y=mx+n(m≠0),则,解得,∴直线PB:y=2x+6.当x=0时,y=6,则点D的坐标是(0,6).此时,|AD﹣PD|的最大值为:;类型四、三角形或四边形面积最值问题【例8】(2019•黄埔区一模)在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),点B(1,0)两点,与y轴交于点C(1)求抛物线的解析式:(2)若点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接PA、PC、AC.①求△ACP的面积S关于t的函数关系式.②求△ACP的面积的最大值,并求出此时点P的坐标.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),点B(1,0)两点,∴,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)①设直线AC的解析式为y=kx+b,∴,解得:,∴直线AC的解析式为y=x+3,过点P作PQ∥y轴交直线AC于点Q,设P(t,﹣t2﹣2t+3),Q(t,t+3),∴PQ=﹣t2﹣2t+3﹣t﹣3=﹣t2﹣3t,∴S=S△PQC+S△PQA===﹣.②∵S=﹣,∴t=﹣时,△ACP的面积最大,最大值是,此时P点坐标为(﹣,).【例9】(2019•东营)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标; (3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax+bx﹣4经过点A(﹣2,0),B(4,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)如图1,连接OP,设点P(x,),其中﹣4<x<0,四边形ABPC的面积为S,由题意得C(0,﹣4),∴S=S△AOC+S△OCP+S△OBP=+,=4﹣2x﹣x2﹣2x+8,=﹣x2﹣4x+12,=﹣(x+2)2+16.∵﹣1<0,开口向下,S有最大值,∴当x=﹣2时,四边形ABPC的面积最大,此时,y=﹣4,即P(﹣2,﹣4).因此当四边形ABPC的面积最大时,点P的坐标为(﹣2,﹣4).(3),∴顶点M(﹣1,﹣).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(﹣1,﹣),∴,∴直线AM的解析式为y=﹣3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE﹣AO=5﹣2=3,∴E(﹣3,0),由图可知D(1,﹣2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=﹣﹣.∴,解得:,∴G().类型五、三角形周长的最值问题【例10】(2019•宜城市模拟)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1), ∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【练习】1、(2018秋•潮南区期末)如图,已知抛物线y=x2+3x﹣8的图象与x轴交于A,B两点(点A在点B 的右侧),与y轴交于点C.(1)求直线BC的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,在抛物线的对称轴上找一点P,使得△BFP的周长最小,请求出点F的坐标和点P的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.解:(1)对于抛物线y=x2+3x﹣8,令y=0,得到x2+3x﹣8=0,解得x=﹣8或2,∴B(﹣8,0),A(2,0),令x=0,得到y=﹣8,∴A(2,0),B(﹣8,0),C(0,﹣8), 设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x﹣8.(2)如图1中,作FN∥y轴交BC于N.设F(m,m2+3m﹣8),则N(m,﹣m﹣8)∴S△FBC=S△FNB+S△FNC=•FN×8=4FN=4[(﹣m﹣8)﹣(m2+3m﹣8)]=﹣2m2﹣16m=﹣2(m+4)2+32,∴当m=﹣4时,△FBC的面积有最大值,此时F(﹣4,﹣12),∵抛物线的对称轴x=﹣3,点B关于对称轴的对称点是A,连接AF交对称轴于P,此时△BFP的周长最小,设直线AF的解析式为y=ax+b,则有,解得,∴直线AF的解析式为y=2x﹣4, ∴P(﹣3,﹣10),∴点F的坐标和点P的坐标分别是F(﹣4,﹣12),P(﹣3,﹣10).(3)如图2中,∵B(﹣8,0),F(﹣4,﹣12),∴BF==4,①当FQ1=FB时,Q1(0,0)或(0,﹣24)(虽然FB=FQ,但是B、F、Q三点一线应该舍去).②当BF=BQ时,易知Q2(0,﹣4),Q3(0,4).③当Q4B=Q4F时,设Q4(0,m),则有82+m2=42+(m+12)2,解得m=﹣4,∴Q4(0,﹣4),∴Q点坐标为(0,0)或(0,4)或(0,﹣4)或(0,﹣4).2、(2019•昆山市一模)如图,抛物线y=ax2﹣3ax+c(a≠0)与x轴交于A,B两点,交y轴于点C,其中A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)点P是线段BC上方抛物线上一动点(不与B,C重合),过点P作PD⊥x轴,垂足为D,交BC 于点E,作PF⊥直线BC于点F,设点P的横坐标为x,△PEF的周长记为l,求l关于x的函数关系式,并求出l的最大值及此时点P的坐标;(3)点H是直线AC上一点,该抛物线的对称轴上一动点G,连接OG,GH,则两线段OG,GH的长度之和的最小值等于 ,此时点G的坐标为 (,) (直接写出答案.)解:(1)将A、C代入解析式,可得c=3,a= ∴抛物线的解析式为y=﹣x2+x+3(2)设P(m,﹣m2+m+3), 直线BC的解析式为y=x+3 点E(m,m+3)∴PE=﹣m2+m+3+m﹣3=﹣m2+3m∵△OBC∽△PEF ∴= , ∴l=﹣m2+m当m=2时L的最大值为,点P坐标为(2,)(3)如图,作点O关于对称轴的对称点Q(3,0),作QH⊥AC交对称轴于G∵△AOC∽△ABH ∴= ∴= ∴QH=∵△GMQ∽△ACO ∴= ∴= ∴GM=∴G(,)3、(2019•齐齐哈尔)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为 (,﹣5) .(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)∵OA=2,OC=6 ∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C ∴解得: ∴抛物线解析式为y=x2﹣x﹣6 (2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6 ∴3k﹣6=0,解得:k=2 ∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5 ∴D(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6) ∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n) ∴﹣n= 解得:n=﹣ ∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).类型六、四边形周长的最值问题【例11】(2019•顺庆区校级自主招生)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H使D,G,H,F四点所围成的四边形周长最小?若存在,求出这个最小值及点G,H的坐标;若不存在,请说明理由.解:(1)∵抛物线顶点为(1,4)∴设顶点式y=a(x﹣1)2+4∵点B(3,0)在抛物线上∴a(3﹣1)2+4=0 解得:a=﹣1∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3(2)x轴上存在点H使D,G,H,F四点所围成的四边形周长最小.如图,作点F关于x轴对称的对称点F',连接EF'∵x=0时,y=﹣x2+2x+3=3 ∴D(0,3)∵当y=0时,﹣x2+2x+3=0 解得:x1=﹣1,x2=3 ∴A(﹣1,0)∵点E在抛物线上且横坐标为2 ∴y E=﹣22+2×2+3=3 ∴E(2,3)∴点D、E关于对称轴对称 ∴DG=EG设直线AE解析式为y=kx+e ∴解得: ∴直线AE:y=x+1 ∴F(0,1) ∴F'(0,﹣1),HF=HF',DF=3﹣1=2∴C四边形DGHF=DF+DG+GH+FH=DF+EG+GH+F'H∴当点E、G、H、F'在同一直线上时,C四边形DGHF=DF+EF'最小∵EF'=∴C四边形DGHF=2+2设直线EF'解析式为y=mx﹣1∴2m﹣1=3∴m=2∴直线EF':y=2x﹣1当y=0时,解得x=∴H(,0)当x=1时,y=2﹣1=1∴G(1,1)∴四边形DGHF周长最小值为2+2,点G坐标为(1,1),点H坐标为(,0).【练习】1、(2019•深圳)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.解:(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点C(2,3),则CD=C′D,取点A′(﹣1,1),则A′D=AE,故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=+A′D+DC′=+A′C′=+;(3)如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,则BE:AE,=3:5或5:3,则AE=或,即:点E的坐标为(,0)或(,0),将点E、C的坐标代入一次函数表达式:y=kx+3,解得:k=﹣6或﹣2,故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P的坐标为(4,﹣5)或(8,﹣45).2、(2017•日照模拟)如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.解:(1)令y=0,解得x1=﹣1或x2=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,∴C(2,﹣3),∴直线AC的函数解析式是y=﹣x﹣1,(2)设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2,∴当x=时,PE的最大值=,△ACE的面积最大值=PE[2﹣(﹣1)]=PE=,(3)D点关于PE的对称点为点C(2,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1), 连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为y=﹣2x+1,此时四边形DMNQ 的周长最小,最小值=|CM|+QD=2+2,求得M(1,﹣1),N(,0).3、(2017秋•南岸区校级期中)如图1,抛物线y=x2﹣x﹣3,与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C,过点A的直线与抛物线在第一象限的交点M的横坐标为,直线AM与y 轴交于点D,连接BC、AC.(1)求直线AD和BC的解折式;(2)如图2,E为直线BC下方的抛物线上一点,当△BCE的面积最大时,一线段FG=4(点F在G的左侧)在直线AM上移动,顺次连接B、E、F、G四点构成四边形BEFG,请求出当四边形BEFG 的周长最小时点F的坐标;解:(1)在抛物线y=中,令x=0,得y=﹣3,∴C(0,﹣3),令y=0,得,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=,得y==,∴M(,),设直线AD的解析式为y=k1x+b1,将A(﹣1,0),M(,)代入得, 解得,∴直线AD的解析式为y=x+1.设直线BC的解析式为y=k2x+b2,将B(4,0),C(0,﹣3)代入,得,解得,∴直线BC的解析式为y=x﹣3;(2)如图2,过点E作EH∥y轴交BC于H,设E(t,),H(t,),∴HE==∴===∵<0,∴当t=2时,S△BCE的最大值=6,此时E(2,),作点B关于直线y=x+1的对称点B1,连接B1G,过点F作B2F∥B1G,且B2F=B1G,∴B1(﹣1,5), ∵FG=4,且FG在直线y=x+1上,∴F可以看作是G向左平移4个单位,向下平移4个单位后的对应点,∴B2(﹣5,1),当B2、F、E三点在同一直线上时,BEFG周长最小,设直线B2E解析式为y=mx+n,将B2(﹣5,1),E(2,)分别代入,得,解得,∴直线B2E解析式为y=,联立方程组,解得.∴F(,).类型七、线段与系数线段的和差最值问题【例12】(2018•南岸区模拟)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x 轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求抛物线的对称轴和直线AC的解析式;(2)P为直线AC下方抛物线上(不与A、C重合)的一动点,PB交AC于D,当取得最大值时,M为y轴上一动点,N为抛物线对称轴上一动点且MN⊥y轴,求PM+MN+AN的最小值;解:(1)﹣=﹣1,∴抛物线的对称轴为直线x=﹣1,令x=0,y=﹣,∴C(0,﹣),令y=0,解得x1=﹣3,x2=1,∴A(﹣3,0),B(0,﹣1),设直线AC的解析式为y=kx+b,则解得∴AC的解析式为y=﹣x﹣.(2)过点P作y轴的平行线交AC于点H,过点B作y轴的平行线交y轴于点Q,当x=1时,y=﹣,∴BQ=,设点P的坐标为(m,),则点H(m,﹣),∴PH=﹣﹣()=﹣,∵△PHD∽△BDQ,∴,∴=﹣,此时点P(﹣,﹣),过点P作y轴的对称点P′,则P′(,﹣),将点A向右平移一个单位得到点A′,则点A ′(﹣2,0),连接A′P′,与y轴的交点即为点M,过M作x轴的平行线,与对称轴的交点即为点N,设直线A′P′的解析式为y=kx+b,,解得,∴y=﹣x﹣,∴M(0,﹣),N(﹣1,﹣),A′P′==,∴PM+MN+AN的最小值为:1+.【例13】已知二次函数y=x2﹣x﹣2的图象和x轴交于点A,B,与y轴交于点C,过直线BC的下抛物线上与动点P作PQ∥AC交线段BC于点Q,再过P点作PE⊥x轴于点E,交BC于点D; (1)求直线AC的解析式;(2)求△PQD周长的最大值;(3)当△PQD的周长最大时,在y轴上有两个动点M,N(M在N的上方),且MN=1,求PN+MN+AM 的最小值.解:(1)对于二次函数y=x2﹣x﹣2,令x=0得y=﹣2,令y=0,得x2﹣x﹣2=0,解得x=﹣1或2, ∴A(﹣1,0),B(2,0),C(0,﹣2),设直线AC的解析式为y=kx+b,则有,解得,∴直线AC的解析式为y=﹣2x﹣2.(2)∵B(2,0),C(0,﹣2),∴直线BC的解析式为y=x﹣2,OB=OC=2,∴∠OCB=∠OBC=45°,∵PE⊥x轴,∴∠DEB=90°,∴∠EDB=∠QDP=∠EBD=45°,∵PQ∥AC,∴∠PQC=∠ACQ,∴∠PQD,∠PDQ是定值,∴PD最长时,△PDQ的最长最大,设P(m,m2﹣m﹣2),则D(m,m﹣2),∴PD=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m=﹣(m﹣1)2+1,∵﹣1<0,∴m=1时,PD的值最大,PD最大值为1,此时P(1,﹣2),D(1,﹣1),∴直线PQ的解析式为y=﹣2x,由,解得,∴Q(,﹣),∴PD=1,PQ=,DQ= ∴△PDQ的最长的最大值为1++.(3)如图2中,作PP′∥y轴,使得PP′=MN=1,连接AP′交y轴于M,此时PN+NM+AM的值最小.由(2)可知P (1,﹣2),∴P ′(1,﹣1),∵A (﹣1,0),∴直线AP ′的解析式为y =﹣x ﹣,∴M (0,﹣),N (0,﹣),∴AM ==,PN ==,∴AM +MN +PN 的最小值为+1.【例14】如图,抛物线2142y x x =+-与x 轴交于A 、B (A 在B 的左侧),与y 轴交于点C ,抛物上的点E 的横坐标为3,过点E 作直线1l ∥x 轴。

中考数学《二次函数的最值》专项练习题及答案

中考数学《二次函数的最值》专项练习题及答案

中考数学《二次函数的最值》专项练习题及答案一、单选题1.定义:如果两个函数图象上至少存在一对点是关于原点对称的,我们则称这两个函数互为“守望函数”,这对点称为“守望点”.例如:点P(2,4)在函数y =x 2上,点 Q(−2,−4)在函数y =−2x −8上,点P 与点Q 关于原点对称,此时函数y =x 2和y =−2x −8互为“守望函数”,点P 与点Q 则为一对“守望点”.已知函数y =x 2+2x 和y =4x +n −2022互为“守望函数”,则n 的最大值为( ) A .2020B .2022C .2023D .40842.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为( ) A .1或B .- 或C .D .13.已知二次函数y =ax 2+bx −1(a ,b 是常数,a ≠0)的图象经过A(2,1),B(4,3),C(4,−1)三个点中的其中两个点.平移该函数的图象,使其顶点始终在直线y =x −1上,则平移后所得抛物线与y 轴交点纵坐标的( ) A .最大值为-1B .最小值为-1C .最大值为−12D .最小值为−124.二次函数y=ax 2+bx+c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 y125﹣3﹣4﹣35121)二次函数y=ax 2+bx+c 有最小值,最小值为﹣3;2)当 −12<x <2 时,y <0;3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( ) A .3B .2C .1D .05.已知二次函数 y =−(x −ℎ)2+4 (h 为常数),在自变量 x 的值满足 1≤x ≤4的情况下,与其对应的函数值 y 的最大值为0,则 h 的值为( ) A .和B . 和C .和D . 和6.经过点A (m ,n ),点B (m ﹣4,n )的抛物线y =x 2+2cx+c 与x 轴有两个公共点,与y 轴的交点在x 轴的上方,则当m >﹣12时,n 的取值范围是( )A .14<n <4B .12<n <2C .18<n <8D .14<n <27.二次函数y =x 2+2x -5有A .最大值-5B .最小值-5C .最大值-6D .最小值-68.①4的算术平方根是±2;②√2与-√8是同类二次根式;③点P (2,3)关于原点对称的点的坐标是(-2,-3); ④抛物线y=-12(x-3)2+1的顶点坐标是(3,1).其中正确的是( ) A .①②④B .①③C .②④D .②③④9.童装专卖店销售一种童装,已知这种童装每天所获得的利润y (元)与童装的销售单价x (元)之间满足关系式y=-x 2+50x+500,则要想每天获得最大利润,单价需为( ). A .25元B .20元C .30元D .40元10.已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如表:x ﹣5 ﹣4 ﹣2 0 2 y6﹣6﹣468,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =﹣5有两个不相等的实数根.其中,正确结论的是( ) A .①②③B .①③④C .①②④D .②③④11.已知抛物线y=-2(x-3)2+5,则此抛物线( )A .开口向下,对称轴为直线x=-3B .顶点坐标为(-3,5)C .最小值为5D .当x >3时y 随x 的增大而减小12.如果抛物线 y =x 2−6x +c −2 的顶点到 x 轴的距离是3,那么 c 的值等于( )A .8B .14C .8或14D .-8或-14二、填空题13.二次函数y=2x 2﹣1,∵a= ,∴函数有最 值.14.公路上行驶的汽车急刹车时的行驶路程s (m )与时间t (s )的函数关系式为s=20t-5t 2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行 m 才能停下来.15.已知二次函数y = 12x ²+2若自变量x 的取值范围是-1≤x ≤2,则函数y 的取值范围是 .16.函数y =x 2−2x(0≤x ≤3)有最大值,也有最小值,则最小值是 . 17.若二次函数y =-x 2-4x +k 的最大值是9,则k = .18.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是.三、综合题19.某农作物的生长率p与温度t ( C∘ )有如下关系:如图,当10≤t≤25 时可近似用函数p=150t−15刻画;当25≤t≤37 时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1)求ℎ的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p满足函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015②请用含t的代数式表示m③天气寒冷,大棚加温可改变农作物生长速度.在大棚恒温20℃时每天的成本为100元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天,问加温到多少度时增加的利润最大?并说明理由。

重庆中考二次函数相关的最值问题(含答案)

重庆中考二次函数相关的最值问题(含答案)

二次函数相关的最值问题例1. 如图,抛物线y=-x2-4x+5与x轴交于点A、B,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)若Q为抛物线对称轴上一动点,连接QA、QC,求|QA-QC|的最大值及此时点Q的坐标;(3)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,求点P的坐标及线段EF的长;(4)在(3)问的条件下,将P 向下平移34个单位得到点H ,在抛物线对称轴上找一点L ,在y 轴上找一点K ,连接OL ,LK ,KH ,求线段OL +LK +KH 的最小值,并求出此时点L(5)在(3)问的条件下,将线段PE 沿着直线AC 的方向平移得到线段P′E′,连接DP′,BE ′,求DP′+P′E′+E′B 取最小值时点E′的坐标.针对训练1.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(-4,0)、B(0,3),抛物线y=-x2+2x+1与y轴交于点C.(1)求直线y=kx+b的解析式;(2)若点P(x,y)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x 的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.2.如图①,已知抛物线y=-33x2+2 33x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC 交DH的延长线于点E.(1)求线段DE的长度;(2)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为线段PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少.3.如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?说明理由.4.已知,如图,二次函数y=ax2+2ax-3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B点在A点右侧),点H,B关于直线l:y=33x+3对称.(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数的解析式;(3)过点B作直线BK∥AH交直线l于点K,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.5.如图,在平面直角坐标系中,抛物线y =-12x 2+2x +3与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,连接BC ,过点A 作AD∥BC 交y 轴于点D.(1)求平行线AD 、BC 之间的距离;(2)点P 为线段BC 上方抛物线上的一动点,当△PCB 的面积最大时,Q 从点P 出发,先沿适当的路径运动到直线BC 上点M 处,再沿垂直于直线BC 的方向运动到直线AD 上的点N 处,最后沿适当的路径运动到点B 处停止.当点Q 的运动路径最短时,求点Q 经过的最短路径的长.6.如图,抛物线y=-34x2-94x+3 3交x轴于A、B两点,交y轴于点C,点Q为顶点,点D为点C关于对称轴的对称点.(1)求点D的坐标和tan∠ABC的值;(2)若点P是抛物线上位于点B、D之间的一个动点(不与B、D重合),在直线BC上有一动点E,在x 轴上有一动点F.当四边形ABPD的面积最大时,一动点G从点P出发以每秒1个单位的速度沿P→E→F的路径运动到点F,再沿线段FA以每秒2个单位的速度运动到A点后停止,当点F的坐标是多少时,动点G 在运动过程中所用时间最少?二次函数相关的最值问题答案例1. 解:(1)∵y =-x 2-4x +5=-(x 2+4x )+5=-(x +2)2+9,∴D (-2,9).当x =0时,y =5,∴C (0,5).当y =0时,x 1=1,x 2=-5,∴A (-5,0),B (1,0),∴y AC =x +5;(2)因为点Q 在抛物线对称轴上,由抛物线对称性知QA =QB ,由C (0,5)和B (1,0)可求得y BC =-5x +5,根据三角形三边关系可知,当点Q ,C ,B 三点共线时,|QB -QC |最大,即|QA -QC |最大,可求直线y BC =-5x +5与抛物线对称轴交点Q 为(-2,15),此时|QA -QC |最大值=BC =26.解:(3)过P 作PQ ∥y 轴,交AC 于Q ,再作FM ⊥PQ 于M ,如图①,直线AC :y =x +5,设P (t ,-t 2-4t +5),Q (t ,t +5),∴PQ =(-t 2-4t +5)-(t +5)=-t 2-5t .∵∠PEF =∠CAO =45°,∴PE =PQ =-t 2-5t ,∵PF ∥CD ,∴k CD =-2=k PF ,∴tan ∠MPF =12, 设FM =n =MQ ,则PM =2n ,PQ =3n ,PF =5n ,即PF =53PQ ,∴PE +PF =(3+5)n =(1+53)PQ , ∴当PQ 最大时,PE +PF 取最大值,而PQ =-t 2-5t =PE =-⎝ ⎛⎭⎪⎫t +522+254, 当t =-52时,PE +PF 取最大值, 此时P ⎝ ⎛⎭⎪⎫-52,354,EF =2PM =25 26. (4)如图②:在(3)问的条件下,P ⎝ ⎛⎭⎪⎫-52,354, ∴H ⎝ ⎛⎭⎪⎫-52,8,作H 关于y 轴的对称点H 1, 作O 关于抛物线对称轴对称点O 1,所以O 1(-4,0),H 1⎝ ⎛⎭⎪⎫52,8, 连接O 1H 1,则O 1H 1长即为OL +LK +KH 的最小值,直线O 1H 1:y =1613x +6413, ∴直线O 1H 1与抛物线对称轴交点即为L 点的位置,此时L ⎝⎛⎪⎫-2,3213OL +LK +KH 的最小值=O1H 1=5217;(5)在(3)问的条件下,P ′E ′=PE 25在线段PE 平移过程中,PE 即P′E′长度不变,将DP′沿P′E′向右平移PE 的长即254个单位,得到D′E′,如图③, 则四边形D′DP′E′为平行四边形,故DP′=D′E′,要使得DP′+P′E′+E′B 最小,即DP′+E′B 最小,即要使D′E′+E′B 最小,当D′,E ′,B 三点共线时,D ′E ′+E′B 最小,设D′B 与直线AC 交于点E″.由题意知D′⎝ ⎛⎭⎪⎫174,9,直线BD′:y =3613x -3613, ∴E ″⎝ ⎛⎭⎪⎫10123,21623,即点E ′的坐标为(10123,21623). 针对训练:1. 解:(1)∵直线y =kx +b 经过A (-4,0)、B (0,3),∴⎩⎪⎨⎪⎧-4k +b =0,b =3,解得⎩⎪⎨⎪⎧k =34,b =3.∴y =34x +3.(2)过点P 作PH ⊥AB 于点H ,过点H 作x 轴的平行线MN ,分别过点A 、P 作MN 的垂线段,垂足分别为M 、N .设H (m ,34m +3),则M (-4,34m +3),N (x ,34m +3),P (x ,-x 2+2x +1). ∵PH ⊥AB ,∴∠PHN +∠AHM =90°,∵AM ⊥MN ,∴∠MAH +∠AHM =90°.∴∠MAH =∠PHN ,∵∠AMH =∠PNH =90°,∴△AMH ∽△HNP .∵MA ∥y 轴,∴△MAH ∽△OBA .∴△OBA ∽△NHP .∴NH 3=PN 4=PH 5. ∴x -m 3=(34m +3)-(-x 2+2x +1)4=d 5. 整理得:d =45x 2-x +85,所以当x =58时,d 取最小值,此时P (58,11964).(3)抛物线的对称轴为直线x =1,作点C 关于直线x =1的对称点C ′,过点C ′作C ′F ⊥AB 于F .过点F 作JK ∥x 轴,分别过点A 、C ′作AJ ⊥JK 于点J ,C ′K ⊥JK 于点K ,则C ′(2,1).设F (m ,34m +3), ∵C ′F ⊥AB ,∴∠AFJ +∠C ′FK =90°,∵C ′K ⊥JK ,∴∠C ′+∠C ′FK =90°,∴∠C ′=∠AFJ ,∵∠J =∠K =90°,∴△AFJ ∽△FC ′K .∴AJ FK =JF C ′K ,∴34m +32-m =m +434m +2,解得m =825或m =-4(不符合题意,舍去)∴F (825,8125),∵C ′(2,1),∴FC ′=145. 142. 解:(1)对于抛物线y =-33x 2+2 33x +3, 令x =0,得y =3,即C (0,3),D (2,3),∴DH =3,令y =0,即-33x 2+2 33x +3=0,得x 1=-1,x 2=3, ∴A (-1,0),B (3,0),∵AE ⊥AC ,EH ⊥AH ,∴△ACO ∽△EAH ,∴OC AH =OA EH ,即33=1EH ,解得:EH =3,则DE =2 3;(2)如图②,找点C 关于DE 的对称点N (4,3),找点C 关于AE 的对称点G (-2,-3),连接GN ,交AE 于点F ,交DE 于点P ,即G 、F 、P 、N 四点共线时,△CPF 的周长=CF +PF +CP =GF +PF +PN 最小,直线GN 的解析式:y =33x -33;直线AE 的解析式:y =-33x -33;直线DE 的解析式:x =2.联立得:F (0,-33),P (2,33), 过点M 作y 轴的平行线交FH 于点Q ,设点M (m ,-33m 2+2 33m +3), 则Q (m ,33m -33)(0≤m ≤2); ∴S △MFP =S △MQF +S △MQP =12MQ ×2=MQ =-33m 2+33m +4 33, ∵对称轴为直线m =12,而0≤12≤2,抛物线开口向下, ∴m =12时,△MPF 的面积有最大值,为17 312.3. 解:(1)∵对称轴为直线x =2,∴设抛物线解析式为y =m ′(x -2)2+k .将A (-1,0),C (0,5)代入得:⎩⎪⎨⎪⎧9m ′+k =0,4m ′+k =5,解得⎩⎪⎨⎪⎧m ′=-1,k =9,∴y =-(x -2)2+9=-x 2+4x +5.(2)∵M (0,1),C (0,5),△PCM 是以点P 为顶点的等腰三角形,∴点P 的纵坐标为3.令y =-x 2+4x +5=3,解得x =2±6.∵点P 在第一象限,∴P (2+6,3).四边形PMEF 的四条边中,PM 、EF 长度固定,因此只要ME +PF 最小,则四边形PMEF 的周长最小. 如图,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1);作点M 1关于x 轴的对称点M 2,则M 2(1,-1);连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小.设直线PM 2的解析式为y =mx +n ,将P (2+6,3),M 2(1,-1)代入得:⎩⎨⎧(2+6)m +n =3,m +n =-1,解得:m =4 6-45,n =-4 6+15, ∴y =4 6-45x -4 6+15. 当y =0时,解得x =6+54.∴F (6+54,0). ∵a +1=6+54,∴a =6+14.∴a =6+14时, 四边形PMEF 周长最小.4. 解:(1)依题意,得ax 2+2ax -3a =0(a ≠0),解得x 1=-3,x 2=1,∵B 点在A 点右侧,∴A 点坐标为(-3,0),B 点坐标为(1,0),证明:∵直线l :y =33x +3, 当x =-3时,y =33×(-3)+3=0,∴点A 在直线l 上.(2)过顶点H 作HC ⊥AB 交AB 于C 点,∵点H 、B 关于过A 点的直线l :y =33x +3对称,∴AH =AB =4, 又∵点H 为抛物线顶点,则点H 在抛物线对称轴上,∴AH =BH =AB =4.在Rt △ACH 中,由勾股定理得CH =AH 2-AC 2=2 3,∴顶点H (-1,2 3),代入二次函数解析式,解得a =-32,∴二次函数解析式为y =-32x 2-3x +3 32.(3)直线AH 的解析式为y =3x +3 3,直线BK 的解析式为y =3x -3,由⎩⎪⎨⎪⎧y =33x +3,y =3x -3,解得⎩⎨⎧x =3,y =2 3, 即K (3,2 3),则BK =4,∵点H 、B 关于直线AK 对称,∴HN +MN 的最小值是MB ,过点K 作KD ⊥x 轴于D ,作点K 关于直线AH 的对称点Q ,连接QK ,交直线AH 于E ,则KE =KD =2 3,QM =MK ,QE =EK =2 3,AE ⊥QK ,∴BM +MK 的最小值是BQ ,即BQ 的长是HN +NM +MK 的最小值,∵BK ∥AH ,∴∠BKQ =∠HEQ =90°, 由勾股定理得QB =8,∴HN +NM +MK 的最小值为8.5. 解:(1)令y =0,即-12x 2+2x +3=0, 解得:x 1=-2,x 2=3 2,∴A (-2,0),B (3 2,0),∵当x =0时,y =3,∴C (0,3), 在Rt △BOC 中,BO =3 2,CO =3,∴BC =3 3,∴sin ∠CBO =CO BC =33. 因为AD ∥BC ,∴sin ∠BAD =sin ∠CBO =33. 过B 作BH ⊥AD 于点H ,∴sin ∠BAD =BH AB =33,∴BH =4 63; ∴平行线AD 、BC 间的距离为43 6. (2)过P 作PQ ∥y 轴,交BC 于点Q ,设P (m ,-12m 2+2m +3),∵直线BC :y =-22x +3,∴Q (m ,-22m +3), ∴S △PCB =12·PQ ·(x B -x C )=3 22(-12m 2+3 22m ), 当m =3 22时,S △CPB 最大,此时,P (3 22,154). 取点B 关于AD 的对称点B ′,将B ′沿B ′B 方向平移4 63个单位长度得B ′′,此时B ′′与点H (5 23,-83)重合. 连接HP ,交BC 于点M ,点M 即为所求.∴(PM +NM +BN )最小=PH +MN =593712+4 63.6. 解:(1)令-34x 2-94x +3 3=0,解得x 1=-4 3,x 2=3,∴A (-4 3,0),B (3,0), 在y =-34x 2-94x +3 3中,令x =0,则y =3 3, ∴C (0,3 3),∴OC =3 3,BO =3,在Rt △COB 中,∴tan ∠ABC =OC OB=3,由y =-34x 2-94x +3 3知,对称轴直线为x =-3 32,∴点D (-3 3,3 3);(2)由B (3,0),D (-3 3,3 3)可得直线BD 解析式:y =-34x +3 34, 过P 作PK ⊥x 轴交BD 于点K ,设P (m ,-34m 2-94m +3 3),则K (m ,-34m +3 34), S 四边形ABPD =S △ABD +S △PBD ,S △ABD 是定值,∴S 四边形ABPD 最大时,即S △PBD 最大. S △PBD =12(x B -x D )(y P -y K )=-32m 2-3 3m +272, 当m =-b 2a =-3时,S △PBD 最大,此时点P 坐标为(-3,9 32). 作点P (-3,9 32)关于直线BC 的对称点P ′(-310,24 35), 以A 为顶点,在x 轴下方作∠BAT =30°,过P ′作直线AT 的垂线分别交BC 、x 轴于点E 、F ,此时,点G 在运动过程中所用时间最少,3 10-245,0).点F坐标为(-。

中考数学复习《二次函数的最值》专项测试卷(带答案)

中考数学复习《二次函数的最值》专项测试卷(带答案)

中考数学复习《二次函数的最值》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.二次函数2(1)5y m x =++有最小值,则m 的取值范围是( ) A.1m <-B.1m <C.1m >-D.2m >-2.已知抛物线221y x x =--,则当03x ≤≤时函数的最大值为( ) A.-2B.-1C.0D.23.已知二次函数在0x a ≤≤时y 取得的最大值为15,则a 的值为( ) A.1B.2C.3D.44.关于二次函数()214y x =-++的最值,下列说法正确的是( ) A.最小值为1- B.最小值为4C.最大值为1D.最大值为45.如图,ABC △是等腰直角三角形90C ∠=︒,2AC BC ==点D 为边AB 上一点,过点D 作DE AC ⊥,DF BC ⊥垂足分别为E ,F ,点D 从点A 出发沿AB 运动至点B.设DE x =,DF y =四边形CFDE 的面积为S ,在运动过程中,下列说法正确的是( )A.y 与x 满足一次函数关系,S 与x 满足二次函数关系,且S 存在最大值B.y 与x 满足一次函数关系,S 与x 满足二次函数关系,且S 存在最小值C.y 与x 满足反比例函数关系,S 与x 满足二次函数关系,且S 存在最大值D.y 与x 满足反比例函数关系,S 与x 满足二次函数关系,且S 存在最小值6.对称轴为直线1x =的抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ≠)如图所示,小明同学得出了以下结论: ①0abc < ②24b ac > ③420a b c ++>④()a b m am b +≤+(m 为任意实数),其中结论正确的个数为( ).2241y x x =--A.1B.2C.3D.47.已知抛物线()2y x b c =-+经过()11,A n y -,()2,B n y 和()33,C n y +三点13y y =.当1n x n -≤≤时二次函数的最大值与最小值的差为16,则n 的值为( ) A.-B.3C.196D.48.在“探索函数2y ax bx c =++的系数a ,b ,c 与图象的关系”活动中,老师给出了平面直角坐标系中的四个点:(0,2)A 和(1,0)B ,(3,1)C 和(2,3)D ,如图.同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中a 的值最大为( )A.52B.32 C.56D.129.已知二次函数22(2)2y x m x m =+--+的图象与x 轴最多有一个公共点,若223y m tm =--的最小值为3,则t 的值为( )A.12-B.32或32- C.52-或32-D.52-10.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积()()()S p p a p b p c =---这个公式也被称为海伦一秦九韶公式.若5p =,4c =则此三角形面积的最大值为( ) 5B.4C.25D.511.如图,在矩形ABCD 中3DC =和3AD DC =,P 是AD 上一个动点,过点P 作PG AC ⊥,垂足为G ,连接BP ,取BP 中点E ,连接EG ,则线段EG 的最小值为( )A.34B.32C.3 312.如图,ABC △是等边三角形3AB =E 是AC 的中点,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90︒,得到线段EF ,当点D 运动时则AF 的最小值为( )A.3B.234C.8D.236二、填空题13.已知二次函数22y ax ax c =-+(a ,c 为常数,0a ≠)的最大值为2,写出一组符合条件的a 和c 的值:__________.14.已知二次函数22y x x m =-+,当04x ≤≤时函数的最大值与最小值的差是__________.15.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是22603s t t -=,则飞机着陆后滑行的最长时间为_________秒.16.某快餐店销售A ,B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40,80.该店为了增加利润,准备降低每份A 种快餐的利润,同时每份B 种快餐也提高同样的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是__________元.17.如图,在直线l :4y x =-上方的双曲线2(0)y x x=>上有一个动点P ,过点P 作x轴的垂线,交直线l 于点Q ,连接OP ,OQ ,则POQ △面积的最大值是___________.18.抛物线2y ax bx c =++(a 为整数)与直线y x c =-+如图所示,抛物线的对称轴为直线1x =,直线y x c =-+与抛物线2y ax bx c =++在第四象限交于点D ,且点D 的横坐标小于3,则a 的最大值为_________.19.如图,约定:三角形下方的数等于上方两数之和,则y 的最小值为__________.20.正方形ABCD 的边长为4,AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 面积的最大值与最小值的和为__________.三、解答题21.已知二次函数25y x =+,当12x -≤≤时求函数y 的最小值和最大值.小王的解答过程如下:解:当1x =-时6y =;当2x =时9y =,所以函数y 的最小值为6,最大值为9. 小王的解答过程正确吗?如果不正确,请写出正确的解答过程.22.某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单价(元/件) 30 34 38 40 42 销量(件)4032242016(1)计算这5天销售额的平均数(销售额=单价⨯销量)(2)通过对上面表格中的数据进行分析,发现销量y (件)与单价x (元/件)之间存在一次函数关系,求y 关于x 的函数关系式(不需要写出函数自变量的取值范围); (3)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?23.如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为P ,已知点()1,0B 和()0,3C -.(1)求抛物线的解析式;(2)当30x -≤≤时求y 的最大值与最小值;(3)点M 是抛物线上一动点,且到x 轴的距离小于3,请直接写出点M 的横坐标M x 的取值范围.24.如图,点(,3)P a 在抛物线2:4(6)C y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-,求点移动的最短路程.25.如图,在ABC △中5BC =,高4AD =,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB ,AC 上,AD 交EF 于点H.设EF x =.(1)当四边形EFPQ 为正方形时求x 的值; (2)求矩形EFPQ 的最大面积.26.如图,在平面直角坐标系中,二次函数2y x bx c =-++的图象与x 轴交于A 、B 两点,与y 轴交于()0,3C ,A 点在原点的左侧,B 点的坐标为()3,0.点P 是抛物线上一个动点,且在直线BC 的上方.(1)求这个二次函数及直线BC 的表达式.(2)过点P 作PD y ∥轴交直线BC 于点D ,求PD 的最大值.(3)点M 为抛物线对称轴上的点,问在抛物线上是否存在点N ,使MNO 为等腰直角三角形,且NMO ∠为直角,若存在,请直接写出点N 的坐标;若不存在,请说明理由.参考答案1.答案:C 解析:略 2.答案:D 解析:略P '3.答案:D解析:222412(1)3y x x x =--=--,∴抛物线的对称轴为直线1x =,顶点坐标为(1,3)-.当15y =时22(1)315x --=,解得4x =或2x =-.当0x a ≤≤时y 取得的最大值为15,4a ∴=. 4.答案:D解析:二次函数()214y x =-++中10a =-<∴函数图像开口向下 ∴函数有最大值函数图像的顶点坐标为()1,4-∴二次函数()214y x =-++的最大值为4.故选:D. 5.答案:A 解析:ABC △是等腰直角三角形,90C ∠=︒∴45A B ∠=∠=︒DF BC ⊥ DE AC ⊥AED ∴△和DFB △是等腰直角三角形,四边形CFDE 是矩形CF DE AE x ∴=== BF DF y == 2AC BC ==BF BC CF ∴=-即2y x =-∴y 与x 满足一次函数关系()()222211S CF DF x x x x x =⨯=-=-=--+,最大值为1 ∴S 与x 满足二次函数关系,且S 存在最大值.故选:A. 6.答案:B解析:①由图象可知:0a > 0c <12ba -=20b a ∴=-<0abc ∴>,故①错误;②抛物线与x 轴有两个交点240b ac ∴->24b ac ∴>,故②正确;③图像对称轴为直线1x =,与x 轴一个交点在-1和0之间 则另一个交点在2和3之间∴当2x =时图像在x 轴下方,即0y < ∴当2x =时420y a b c =++<,故③错误;④当1x =时y 取最小值,此时y a b c =++ 而当x m =时2y am bm c =++ 所以2a b c am bm c ++≤++故2a b am bm +≤+,即()a b m am b +≤+,故④正确; 即正确的结论有2个 故选B. 7.答案:B 解析:13y y =∴A ,C 两点关于对称轴对称.1322n n b -++∴==即抛物线解析式为()22y x c =-+.1n x n -≤≤∴点B 在点A 的右侧,且有1n n -≤12n ∴≥. 情况1:如图1,当点A 与点B 均在对称轴的左侧时此时2n <;当1x n =-时二次函数取到最大值为()()22121y n c n c =--+=++; 当x n =时二次函数取到最小值为()22y n c=-+()()221216n c n c ∴++---=,解得196n =(舍去). 情况2:如图2,当点A 与点B 在对称轴的两侧时此时2n ≥;A 到对称轴的水平距离为()211n n --=+.B 到对称轴的距离为2n -,当1x n =-时二次函数取到最大值为()()22121y n c n c =--+=++;当2x =时二次函数取到最小值为y c =()2116n c c ∴++-=,解得3n =或5-(舍).综上3n =. 故选:B. 8.答案:A解析:设过三个点()0,2A ,()1,0B 和()3,1C 的抛物线解析式为:2y ax bx c =++ 分别代入()0,2A ,()1,0B 和()3,1C 得:20931c a b c a b c =⎧⎪++=⎨⎪++=⎩解得561762a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩设过三个点()0,2A ,()1,0B 和()2,3D 的抛物线解析式为:2y ax bx c =++ 分别代入()0,2A ,()1,0B 和()2,3D 得:20423c a b c a b c =⎧⎪++=⎨⎪++=⎩解得52922a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩;设过三个点()0,2A ,()3,1C 和()2,3D 的抛物线解析式为:2y ax bx c =++ 分别代入()0,2A ,()3,1C 和()2,3D 得:2931423c a b c a b c =⎧⎪++=⎨⎪++=⎩解得561362a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩;设过三个点()1,0B ,()3,1C 和()2,3D 的抛物线解析式为:2y ax bx c =++ 分别代入()1,0B ,()3,1C 和()2,3D 得:0931423a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得522128a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩; 55552662>>->- ∴a 最大为52故选:A. 9.答案:D解析:二次函数22(2)2y x m x m =+--+的图象与x 轴最多有一个公共点 ∴()()222420m m ∆=---+≤⎡⎤⎣⎦ 化简得2320m m -+≤解得:12m ≤≤()222233ym tm m t t =--=---10a =>,抛物线开口向上当1t <时12m ≤≤,y 随m 增大而增大∴1m =时y 值最小,此时最小值为()221322t t t ---=-- 223y m tm =--的最小值为3∴223t --=解得:52t =-; 当12t ≤≤时当m t =时y 有最小值23t --223y m tm =--的最小值为3∴233t --=此时t 无解;当2t >时12m ≤≤,y 随m 增大而减小∴2m =,y 值最小,此时最小值为()222341t t t ---=-+ 223y m tm =--的最小值为3∴413t -+= 解得12t =-(舍去); 综上,若223y m tm =--的最小值为3,则52t =-. 故选:D.10.答案:C解析:5p = 4c =和2a b c p ++= 26a b p c ∴+=-=5(5)(5)(54)55S a b ab ∴=---=-由6a b +=,得6b a =-,代入上式,得:25(6)5565S a a a a =---+-设265y a a =-+-,当265y a a =-+-取得最大值时S 也取得最大值22+65(3)4y a a a =--=--+∴当3a =时y 取得最大值4∴S 5425=故选:C.11.答案:A解析:如图所示,取AP 的中点F ,连接EF ,作GH AD ⊥于H ,作ET GH ⊥于T设AP m =四边形ABCD 是矩形90D ∴∠=︒ 3AB CD ==3tan 33CD DAC AD CD∴∠===30DAC ∴∠=︒PG AC ⊥1122PG AP m ∴== 9060APG DAC ∠=︒-∠=︒11cos cos6024PH PG APG m m ∴=⋅∠==︒⋅ 13sin sin 602GH PG APG m =⋅∠=︒=⋅ 90PFE BAP ∠=∠=︒ EPF BPA ∠=∠EPF BPA ∴∽△△12PF EF PE AP AB BP ∴=== 1322EF AB ∴== 12PF m = 332GT GH HT GH EF ∴=-=-=- 111244ET FH PF PH m m m ==-=-= 在Rt EGT △中2222223311339()()()24416EG GT ET m m =+=-+=+ ∴当332m =时2EG 取得最小值916 0EG >EG ∴的最小值为34. 故选:A.12.答案:D解析:作DM AC ⊥于M ,FN AC ⊥于N ,如图所示:设为等边三角形,为的中点在中, 线段绕点E 逆时针旋转,得到线段,∴EDM FEN △△≌当D 在BC 上时DM EN x == 343EM NF == 在Rt AFN △中()2223343AF x x ⎛⎫=+ ⎪ ⎪⎝⎭()24333482433x =+++当D 在BC 的延长线上时如图所示:DM x=ABC △∴83AB BC AC ===60BAC B C ∠=∠=∠=︒E AC ∴43AE CE ==Rt CDM △3tan 603DM CM x ==︒ED 90︒EF ∴ED EF =90DEF ∠=︒90ENF DME ∠=∠=︒∴90FEN DEM DEM EDM ∠+∠=∠+∠=︒∴FEN EDM ∠=∠DM EN x == 343EM NF x == 在Rt AFN △中()2223333AF x x ⎛⎫=+ ⎪ ⎪⎝⎭()24333482433x =-++当333x =时2AF 有最小值48243+()2433348243482433x +++≥+∴AF ()248243236236+=+=故选:D.13.答案:2a =- 0c =(答案不唯一)解析:由题意,得24(2)24ac a a--=,2c a ∴-=,故2a =-时0c =. 14.答案:9解析:易知二次函数22y x x m =-+的图象开口向上,对称轴是直线1x =,∴当04x ≤≤时可知1x =时y 取最小值,4x =时y 取最大值.当1x =时1y m =-;当4x =时8y m =+ 8(1)9m m ∴+--=.15.答案:20解析:()2236020262300s t t t ==--+-当20t =时s 取得最大值,此时.故答案是:20.16.答案:1264解析:由题意可知,这两种快餐每天销售的总份数为4080120+=.设每份A 种快餐的利润降低x 元,这两种快餐一天的总利润为y 元,则每份B 种快餐的利润提高x 元.根据题意,得22(12)(402)(8)(802)44811204(6)1264y x x x x x x x =-+++-=-++=--+.因为40-<,所以当6x =时y 取最大值,最大值为1264,即这两种快餐一天的总利润最多是1264元.17.答案:3∴600s =解析:依题意,设2,P x x ⎛⎫ ⎪⎝⎭,则(),4Q x x - 则24PQ x x=-+ ∴()22121141223222POQ S x x x x x x ⎛⎫=-+⨯=-+=--+ ⎪⎝⎭△102-<,二次函数图象开口向下,有最大值 ∴当2x =时POQ △面积的最大值是3故答案为:3.18.答案:-2 解析:抛物线的对称轴为直线1x = 12b a∴-= 2b a ∴=-.观察题图可知,当3x =时拋物线2y ax bx c =++上对应的点在直线y x c =-+上对应的点的下方933a b c c ∴++<-+将2b a =-代入,解得1a <-.又a 为整数,∴a 的最大值为-2.19.答案:-1解析:由题意,得22222343(2)1y a b x x x x x x =+=+++=++=+-,∴当2x =-时y 有最小值-1.故答案为-1.20.答案:32解析:连接DE .12CDE ECFG S S =四边形△ 12CDE ABCD S S =正方形△ ∴矩形ECFG 与正方形ABCD 的面积相等.4416ABCD S =⨯=正方形 ∴矩形ECFG 的面积是定值16,∴矩形ECFG 面积的最大值与最小值的和为32,故答案为32.21.答案:不正确,见解析解析:不正确.正确的解答过程如下:抛物线25y x =+的开口向上,对称轴是直线0x =∴当10x -≤≤时y 随x 的增大而减小;当02x ≤≤时y 随x 的增大而增大.∴当0x =时y 取得最小值5.当1x =-时6y =;当时.当时y 取得最大值9.综上可知,当12x -≤≤时函数y 的最小值是5,最大值是9.22、2x =9y =∴2x =(1)答案:934.4元 解析:30403432382440204216934.45x ⨯+⨯+⨯+⨯+⨯==元. (2)答案:2100y x =-+解析:设所求一次函数关系式为()0y kx b k =+≠将()30,40,()40,20代入y kx b =+,得 30404020k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩2100y x ∴=-+;(3)答案:35元解析:设利润为w 元,产品的单价为x 元/件,根据题意,得22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+∴当35x =元/件时工厂获得最大利润450元.23.答案:(1)223y x x =+-(2)y 的最大值为0,最小值为4- (3)071M x <或172M x -<<-解析:(1)抛物线2y x bx c =++经过点()1,0B 和()0,3C -013b c c =++⎧∴⎨-=⎩,解得23b c =⎧⎨=-⎩∴抛物线的解析式为223y x x =+-.故答案为:223y x x =+-;(2)()222314y x x x =+-=+- ∴抛物线的对称轴为直线1x =-,开口向上30x -≤≤∴当1x =-时4y =-当3x =-时0y =当0x =时=3y -∴y 的最大值为0,最小值为4-.故答案为:y 的最大值为0,最小值为4-;(3)点M 是抛物线上一动点,且到x 轴的距离小于32233x x ∴-3<+-<.当2233x x +->-时解得0x >或<2x -当2233x x +-<时令2233x x +-=,则17x =-±1717x ∴-<<-.()222314y x x x =+-=+- ()1,4P ∴--∴P 到x 轴距离大于3∴M 点在P 的左边或在P 的右边.∴综合①和②可知,071M x <<或172M x -<<-. 故答案为:071M x <或172M x -<<-.24、(1)答案:对称轴为直线6x =,y 的最大值为4,a=7 解析:抛物线22:4(6)(6)4C y x x =--=--+∴抛物线的顶点为(6,4)Q ,对称轴为直线6x =,y 的最大值为4.当3y =时23(6)4x =--+,5x ∴=或7.点P 在对称轴的右侧(7,3)P ∴ 7a ∴=.(2)答案:5 解析:平移后的抛物线的表达式为2(3)y x =--∴平移后的抛物线的顶点为(3,0)Q '.平移前抛物线的顶点为(6,4)Q∴点P '移动的最短路程22345QQ '==+=.25.答案:(1)209(2)5 解析:(1)由题意知//EF BC ////EQ AD PF EF PQ = EQ PF =AD BC ⊥∴AD EF ⊥四边形EFPQ 为正方形 EF x =∴DH EQ EF x ===,则4AH AD DH x =-=-//EF BC∴AEF ABC∽△△∴EF AHBC AD=,即454x x-=,解得209x=∴x的值为209;(2)设EQ y=,则DH y=4AH y=-同理(1)AEF ABC∽△△∴EF AHBC AD=,即454x y-=,解得445y x=-∴244545552EFPQS xy x x x⎛⎫⎛⎫==-=--+⎪ ⎪⎝⎭⎝⎭矩形45-<∴当52x=时矩形EFPQ的面积最大,最大面积为5.26.答案:(1)二次函数的表达式为223y x x=-++,直线BC的表达式为3y x=-+ (2)94(3)存在,点N的坐标为(3132-,1132+)或(1212+,2132-)或(1212-,2132--)或(3132+,1132-)解析:(1)把点B,点C的坐标代入解析式2y x bx c=-++中得:9303b cc⎧⎨⎩++==解得:23bc⎧⎨⎩==∴二次函数得表达式为223y x x=-++;设BC的函数表达式为y=kx+b把点B,点C的坐标代入可得:033k bb=+⎧⎨=⎩解得:13kb=-⎧⎨=⎩∴直线BC 的函数表达式为:3y x =-+;(2)如图,∴PD y ∥轴∴点P 和点D 的横坐标相同设动点P 的坐标为(x ,223x x -++),则点D 的坐标为(x ,3x -+)PD =()2233x x x -++--+=2229939334424x x x x x ⎛⎫⎛⎫-+=--++=--+ ⎪ ⎪⎝⎭⎝⎭ 当x =32时PD 有最大值94; (3)分情况讨论:∴当点M 在x 轴上方,点N 在对称轴左侧时如图1,设对称轴与x 轴交于点F ,过点N 作NE ∴MF 于点E∴MNO 为等腰直角三角形,且NMO ∠为直角∴NM =MO ,∴NMO =90°∴∴NME +∴OMF =90°∴∴NME +∴MNE =90°∴∴MNE =∴OMF又∴∴MEN =∴OFM =90°∴∴MEN ∴∴OFM (AAS )∴OF =EM ,MF =NE∴二次函数223y x x =-++的对称轴为直线212x =-=- ∴OF =EM =1设点M 坐标为(1,a ),则NE =MF =a∴N (1-a ,1+a )∴点N 在抛物线223y x x =-++上第 21 页 共 21 页 ∴()()211213a a a +=--+-+ 整理得:230a a +-= 解得:1132a -+=∴N (3132-,1132+) ∴当点M 在x 轴上方,点N 在对称轴右侧时如图2 同理可得:点N 坐标为(1212+,2132-); ∴当点M 在x 轴下方,点N 在对称轴左侧时如图3 同理可得:点N 坐标为(1212-,2132--); ∴当点M 在x 轴下方,点N 在对称轴右侧时如图4 同理可得:点N 坐标为(3132+,1132-); 综上,点N 的坐标为(3132-,1132+)或(1212+,2132-)或(1212-,2132--)或(3132+,1132-).。

中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=a(x+2)2+3(a<0)的图象如图所示,则以下结论:①当x>﹣2时,y随x的增大而增大;②不论a为任何负数,该二次函数的最大值总是3;③当a=﹣1时,抛物线必过原点;④该抛物线和x轴总有两个公共点.其中正确结论是()A.①②B.②③C.②④D.①④2.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,求m的最大值() A.-3B.3C.-6D.93.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√24.如图,一条抛物线(形状一定)与x轴相交于E、F两点(点E在点F左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,−3)、(4,−3),点E的横坐标的最小值为-5,则点F的横坐标的最大值为()A.6B.7C.8D.95.如图1,在矩形ABCD中,动点E从A出发,沿A−B−C方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.254C.6D.56.已知0≤x≤32,则函数y=x2+x+1()A.有最小值34,但无最大值B.有最小值34,有最大值1C.有最小值1,有最大值194D.无最小值,也无最大值7.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:x﹣5﹣4﹣202y60﹣6﹣46;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的是()A.①②③B.①③④C.①②④D.②③④8.已知二次函数y=ax2−2ax+a+2(a≠0),若−1≤x≤2时,函数的最大值与最小值的差为4,则a的值为()A.1B.-1C.±1D.无法确定9.如图,已知二次函数的图象(0≤x≤1+2 √2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值210.如图,Rt△ABC中,∠ACB=90°,AC=12BC=2点D是AB上一动点,连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE,当△BED面积最大时,AD的长为()A.2B.√5C.25√5D.4√5511.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是()A.﹣4或72B.﹣2 √3或72C.﹣4 或2 √3D.﹣2 √3或2 √3 12.若二次函数y=ax2+4x+a-1的最小值是2,则a的值为()A.4B.-1C.3D.4或-1二、填空题13.二次函数y=x2−2x+3的最小值是.14.当实数a满足2≤a≤5时,且代数式−a2+2ab−b2取最大值-1时,则b的值为.15.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x-2-1012y04664从上表可知,下列说法中正确的是.)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;②抛物线的对称轴是直线x=12;④在对称轴左侧,y随x增大而增大.16.二次函数y=﹣x2﹣4x+k的最大值是9,则k=.17.已知关于x的函数y=−x2−ax+1,当0≤x≤3时函数有最大值5,则a=.18.已知关于x的二次函数y=x2-2ax+3,当1≤x≤3时,函数有最小值2a,则a的值为.三、综合题19.已知抛物线y=ax2+bx+c与y轴交于点(0,3a),对称轴为x=1.(1)试用含a的代数式表示b、c.(2)当抛物线过点(2,3)时,求此抛物线的解析式.(3)求当b(c+6)取得最大值时的抛物线的顶点坐标.20.如图,正方形ABCD的边长为4,点G,H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E,F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF=,∠AGH=°;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若∠ABG∠∠FDH,求y与x之间的函数关系式,并求出y的取值范围.21.如图,抛物线y=12x2−32x−2与x轴交于A,B两点,与y轴交于点C,连接AC,BC,点M是线段BC下方抛物线上的任意一点,点M的横坐标为m,过点M画MN∠x轴于点N,交BC于点P.(1)填空:A(,),C(,);(2)探究∠ABC的外接圆圆心的位置,并求出圆心的坐标;(3)探究当m取何值时线段PM的长度取得最大值,最大值为多少?22.某商品现在的售价为每件50元,每天可卖出200件.市场调查反映:如调整价格,每涨价1元,每天要少卖出10件,已知商品的进价为每件40元,请你帮助分析,当每件商品涨价多少元时,可使每天的销售利润最大,最大利润是多少?设每件商品涨价x元,每天售出商品的利润为y元.(1)根据题意,填写下表:每件售价(元)505152……50+x每天售出商品的数量(件)200190……每天售出商品的利润(元)20002090……23.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.24.已知关于x的一元二次方程x2﹣(m+1)x+ 12(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+ 12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C11.【答案】C12.【答案】A13.【答案】214.【答案】1或615.【答案】①③④16.【答案】517.【答案】-418.【答案】119.【答案】(1)解:∵抛物线与y轴交于点(0,3a)∴c=3a∵对称轴为x=1∴x=−b2a=1∴b=−2a(2)解:∵抛物线过点(2,3)∴3=a×22+2(−2a)+3a∴a=1∴b=−2a=−2,c=3a=3∴抛物线为y=x2−2x+3(3)解:∵b(c+6)=−2a(3a+6)=−6a2−12a=−6(a+1)2+6∴当a=−1时,b(c+6)的最大值为6;∴抛物线y=−x2+2x−3=−(x−1)2−2故抛物线的顶点坐标为(1,−2)20.【答案】(1)1:3;90(2)解:∵正方形ABCD的边长为4,BG=3,DH=1∴CG=1,CH=3∵CG∠DF,CH∠BE∴∠CGH∠∠BGE∠∠DFH∴GCHC=BGBE=DFDH,即13=3BE=DF1解得BE=9,DF= 1 3∴Rt∠BEG中,EG= √BG2+BE2= √32+92=3 √10(3)解:∵正方形ABCD的边长为4,BG=x,DH=y ∴CG=4﹣x,CH=4﹣y由(1)可得,∠FDH∠∠GCH,而∠ABG∠∠FDH∴∠ABG∠∠GCH∴ABGC=BGCH,即44−x=x4−y∴y与x之间的函数关系式为:y= 14x2﹣x+4∵44−x=x4−y∴4﹣y= x(4−x)4=﹣14x2+x∴当x=﹣12×(−14)=2时,4﹣y有最大值,且最大值为﹣14×4+2=1∴0<4﹣y≤1解得3≤y<4.21.【答案】(1)-1;0;0;-2(2)解:|OA|=1,|OC|=2,|OB|=4∠AOC=∠COB=90°∴OAOC=OCOB=12∴∠AOC∠∠COB∴∠ACO=∠OBC∠ACO+∠OCB=90°∠OBC+∠OCB=90°=∠ACB∴Rt∠ACB的外接圆圆心为AB的中点∵A(-1,0)B(4,0)∴圆心的坐标( 32,0 ).(3)解:C (0,-2),B (4,0) 又∵直线BC 解析式y =12x −2 p(m ,12m −2) ,M (m , 12m 2−32m −2 )PM=( 12m −2 )-( 12m 2−32m −2 )PM =−12m 2+2m =−12(m −2)2+2 当m=2时,PM 最大值=2.22.【答案】(1)180;200﹣10x ;2160;(200﹣10x )(10+x )(2)解:y =(200﹣10x )(10+x )=﹣10x 2+100x+2000=﹣10(x ﹣5)2+2250 ∴当x =5时,y 取得最大值,此时y =2250即y =﹣10x 2+100x+2000,当每件商品涨价5元时,可使每天的销售利润最大,最大利润是2250元23.【答案】(1)解:∵AB=xm ,铝合金材料长为18m∴AD=BC=18−3x 2∴S =x·18−3x2=−32x 2+9x即S 与x 的函数表达式为:S =−32x 2+9x.(2)解:由题意得:2≤x <18−3x 2解得:2≤x <3.6∵S =−32x 2+9x =−32(x -3)2+272∵−32<0,对称轴是直线x =3,且2≤x <3.6∴当x =3时,S 取得最大值,此时S =272当x =2时,S 取得最小值,此时S =−32(2-3)2+272=12答:窗户总面积S 的最大值272m 2,最小值是12m 2.24.【答案】(1)解:对于一元二次方程x 2﹣(m+1)x+ 12(m 2+1)=0∠=(m+1)2﹣2(m 2+1)=﹣m 2+2m ﹣1=﹣(m ﹣1)2 ∵方程有实数根∴﹣(m﹣1)2≥0∴m=1.(2)解:由(1)可知y=x2﹣2x+1=(x﹣1)2图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)解:由{y=2x+ny=−x2−4x−2消去y得到x2+6x+n+2=0由题意∠≥0∴36﹣4n﹣8≥0∴n≤7∵n≤m,m=1∴1≤n≤7令y′=n2﹣4n=(n﹣2)2﹣4∴n=2时,y′的值最小,最小值为﹣4n=7时,y′的值最大,最大值为21∴n2﹣4n的最大值为21,最小值为﹣4.。

初高中衔接-第五讲-二次函数的最值问题

初高中衔接-第五讲-二次函数的最值问题

二次函数的最值问题二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a-,无最大值;当0a <时,函数在2b x a =-处取得最大值244ac b a-,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值.【例3】当0x ≥时,求函数(2)y x x =--的取值范围..【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .3.求下列二次函数的最值:(1) 2245y x x =-+; (2) (1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数23532y x x =---的最大值和最小值.7.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围..8.如图,某农民要用12m 的竹篱笆在墙边围出一块一面为墙、另三面为篱笆的矩形地供他圈养小鸡.已知墙的长度为6m ,问怎样围才能使得该矩形面积最大?。

二次函数的最值问题(中考题)(含答案)

二次函数的最值问题(中考题)(含答案)

典型中考题(有关二次函数的最值)屠园实验 周前猛一、选择题1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( )A. a<bB.a=b C a>b D 不能确定答案:C2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( )A 、-74 B 、 C 、 2或 D 2或或- 74答案:C∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m.当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2765y x 416⎛⎫=-++ ⎪⎝⎭此时,它在-2≤x≤l 的最大值是6516,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符.当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在-2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符.综上所述,实数m 的值为2或. 故选C .3. 已知0≤x≤12,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6答案:C解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤12,∴当x=12时,y取最大值,y最大=-2(12-2)2+2=-2.5.故选:C.4、已知关于x的函数.下列结论:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。

真确的个数是()A,1个B、2个 C 3个D、4个答案:B分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,b5-=2a4,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最=224ac-b24k+1=-4a8k,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.二、填空题:1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是答案:122、已知直角三角形两直角边的和等于8,两直角边各为时,这个直角三角形的面积最大,最大面积是答案:4、4,8解:设直角三角形得一直角边为x,则,另一边长为8-x;设其面积为S.∴S= x·(8-x)(0<x<8). 配方得S=- (x2-8x)=- (x-4)2+8∴当x=4时,S最大=8.及两直角边长都为4时,此直角三角形的面积最大,最大面积为8.-≤≤的最大值与最小值分别是3、函数y=2(0x4)答案:2,0最小值为0,当4x-x2最大,即x=2最大为4,所以,当x=0时,y最大值为2,当x=2时,y取最小值为04、已知二次函数y=x2+2x+a (0≤x≤1)的最大值是3,那么a的值为答案:0解:二次函数y=x 2+2x+a 对称轴为x=-1,当0≤x ≤1时y 随x 的增大而增大,当x=1时最大值为3,代入y=x 2+2x+a 得a=0.5、如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,则这样线段的最小长度 .三、解答题:1某产品第一季度每件成本为50元,第二、第三季度每件产品平均降低成本的百分率为x⑴ 请用含x 的代数式表示第二季度每件产品的成本;⑵ 如果第三季度该产品每件成本比第一季度少9.5元,试求x 的值⑶ 该产品第二季度每件的销售价为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、第三季度每件产品平均降低成本的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求y 的最大值(注:利润=销售价-成本)解:(1)()x -150 ⑵()5.9501502-=-x 解得1.0=x (3)(),48160≥-x 解得2.0≤x 而0 x ,∴2.00≤x而()()2150160x x y ---==1040502++-x x=()184.0502+--x ∵当4.0≤x 时,利用二次函数的增减性,y 随x 的增大而增大,而2.00≤x , ∴当2.0=x 时,y 最大值=18(元)说明:当自变量取值范围为体体实数时,二次函数在抛物线顶点取得最值,而当自变量取值范围为某一区间时,二次函数的最值应注意下列两种情形:若抛物线顶点在该区间内,顶点的纵坐标就是函数的最值。

二次函数的最值精选题道参考答案

二次函数的最值精选题道参考答案

二次函数的最值精选题参考答案与试题解析一.选择题(共14小题)1.【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.2.【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【解答】解:抛物线的对称轴是直线x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.【点评】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.3.【分析】min{a,b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论.【解答】解:在同一坐标系xOy中,画出二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=或,∴A(,),B(,).观察图象可知:①当x≤时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为;②当<x<时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为小于;③当x≥时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为.综上所述,min{﹣x2+1,﹣x}的最大值是.故选:A.【点评】本题考查了二次函数与正比例函数的图象与性质,充分理解定义min{a,b}和掌握函数的性质是解题的关键.4.【分析】先求出二次函数的对称轴为直线x=﹣1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【解答】解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,x=﹣1时y有最小值,是﹣4,故选:B.【点评】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.5.【分析】根据已知条件得到CP=6﹣t,得到PQ===,于是得到结论.【解答】解:∵AP=CQ=t,∴CP=6﹣t,∴PQ===,∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是2,故选:C.【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.6.【分析】先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是﹣,得出m≤﹣;再求得当x=1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m的下限.【解答】解:解法一:∵函数y=x2+x﹣1的对称轴为直线x=﹣,∴当x=﹣时,y有最小值,此时y=﹣﹣1=﹣,∵函数y=x2+x﹣1在m≤x≤1上的最小值是﹣,∴m≤﹣;∵当x=1时,y=1+1﹣1=1,对称轴为直线x=﹣,∴当x=﹣﹣[1﹣(﹣)]=﹣2时,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,且m≤﹣;∴﹣2≤m≤﹣.解法二:画出函数图象,如图所示:y=x2+x﹣1=(x+)2﹣,∴当x=1时,y=1;当x=﹣,y=﹣,当x=﹣2,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,最小值是﹣,∴﹣2≤m≤﹣.故选:C.【点评】本题考查了二次函数在给定范围内的最值问题,熟练掌握二次函数的性质是解题的关键.7.【分析】用a表示出b、c并求出a的取值范围,再代入S整理成关于a的函数形式,然后根据二次函数的增减性求出m、n的值,再相减即可得解.【解答】解:∵a+b=2,c﹣3a=4,∴b=2﹣a,c=3a+4,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥﹣,∴﹣≤a≤2,又∵a是非负数,∴0≤a≤2,S=a2+b+c=a2+(2﹣a)+3a+4,=a2+2a+6,∴对称轴为直线a=﹣=﹣1,∴a=0时,最小值n=6,a=2时,最大值m=22+2×2+6=14,∴m﹣n=14﹣6=8.故选:B.【点评】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出s关于a的函数关系式.8.【分析】抛物线y=(x+1)2﹣2开口向上,有最小值,顶点坐标为(﹣1,﹣2),顶点的纵坐标﹣2即为函数的最小值.【解答】解:根据二次函数的性质,当x=﹣1时,二次函数y=(x﹣1)2﹣2的最小值是﹣2.故选:D.【点评】本题考查对二次函数最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.【分析】把二次函数解析式整理成顶点式形式,然后根据二次函数最值问题解答即可.【解答】解:y=x2+2x﹣5=(x+1)2﹣6,∵a=1>0,∴当x=﹣1时,二次函数由最小值﹣6.故选:D.【点评】本题考查了二次函数的最值问题,整理成顶点式形式求解更简便.10.【分析】利用配方法将原函数关系式化为顶点式,即可求出二次函数的最小值.【解答】解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.【点评】本题考查了二次函数的最值,将原式化为顶点式是解题的关键.11.【分析】根据题意判定抛物线开口向上,对称轴在0和1之间,然后根据点到对称轴的距离的大小即可判断.【解答】解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间,∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小,∴y3最小,y1最大,故选:A.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,判定对称轴的位置是解题的关键.12.【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣1)2+2,∴当x=1时,函数有最小值2.故选:D.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣,函数最大值y=.13.【分析】根据二次函数的图象,可知函数y的最大值和最小值.【解答】解:观察图象可得,在0≤x≤4时,图象有最高点和最低点,∴函数有最大值2和最小值﹣2.5,故选:A.【点评】本题考查二次函数的最值,解题的关键是灵活运用所学知识解决问题,学会利用图象解决最值问题.14.【分析】把(﹣1,﹣3)代入y=x2+mx+n确定m,n之间的数量关系,代入mn+1讨论.【解答】解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.【点评】本题考查二次函数图象上点的特征.根据二次函数性质确定m,n的数量关系是解答关键.二.填空题(共18小题)15.【分析】由a+b2=2得出b2=2﹣a,代入a2+5b2得出a2+5b2=a2+5(2﹣a)=a2﹣5a+10,再利用配方法化成a2+5b2=(a﹣)2+,即可求出其最小值.【解答】解:∵a+b2=2,∴b2=2﹣a,a≤2,∴a2+5b2=a2+5(2﹣a)=a2﹣5a+10=(a﹣)2+,当a=2时,a2+5b2可取得最小值为4.故答案为:4.【点评】本题考查了二次函数的最值,根据题意得出a2+5b2=(a﹣)2+是关键.16.【分析】设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.【解答】解:设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.故答案为100.【点评】本题考查了函数的最值,熟练运用配方法是解题的关键.17.【分析】根据题目中的函数解析式和二次函数的性质,可以求得a的取值范围,本题得以解决.【解答】解:∵函数y=﹣x2+2x+1=﹣(x﹣1)2+2,当﹣1≤x≤a时,函数的最大值是2,∴当x=1时,函数取得最大值,此时y=2,∴a≥1,故答案为:a≥1.【点评】本题考查二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.18.【分析】分类讨论抛物线对称轴的位置确定出m的范围即可.【解答】解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,当m≥2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m的值是﹣1.5或,故答案为:﹣1.5或.【点评】此题考查了二次函数的最值,利用了分类讨论的思想,熟练掌握二次函数性质是解本题的关键.19.【分析】化成顶点式,根据二次函数的性质即可求得.【解答】解:y=x2﹣16x﹣8=(x﹣8)2﹣72,由于函数开口向上,因此函数有最小值,且最小值为﹣72,故答案为:﹣72.【点评】本题考查了二次函数的最值、顶点式的运用及顶点坐标的求法.20.【分析】根据二次函数的增减性利用对称轴列出不等式求解即可.【解答】解:∵0≤x≤4时,y仅在x=4时取得最大值,∴﹣<,解得a<5.故答案为:a<5.【点评】本题考查了二次函数的最值问题,熟练掌握二次函数的增减性和对称轴公式是解题的关键.21.【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案是:2或﹣1.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.22.【分析】根据二次函数的性质,可以得到在2≤x≤5范围内,该函数的最小值.【解答】解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.【点评】本题考查二次函数的最值、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.23.【分析】由当x=﹣1时y取得最大值知﹣=﹣1且m<0,解关于m的方程可得答案.【解答】解:根据题意知,﹣=﹣1,且m<0,整理该方程可得m2﹣2m﹣3=0,解得:m=﹣1或m=3(舍),故答案为:﹣1.【点评】本题主要考查二次函数的最值,解题的关键是根据二次函数的性质得出关于m 的方程.【点评】本题考查了二次函数的最值:对于二次函数y=a(x﹣k)2+h,当a>0时,x=k时,y有最小值h,当a<0时,x=k时,y有最大值h.24.【分析】根据抛物线解析式得到顶点坐标(﹣3,5);然后由抛物线的增减性进行解答.【解答】解:∵y=﹣(x+3)2+5,∴该抛物线的开口方向向下,且顶点坐标是(﹣3,5).∴当x<﹣3时,y随x的增大而增大,∴当x=a时,二次函数y=﹣(x+3)2+5恰好有最大值3,把y=3代入函数解析式得到3=﹣(x+3)2+5,解得x1=﹣5,x2=﹣1.∴a=﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.25.【分析】根据三角形的面积公式,△ABE底边BE上的高AO不变,BE越小,则面积越小,可以判断当AD与⊙C相切时,BE的值最小,根据勾股定理求出AD的值,然后根据相似三角形对应边成比例列式求出OE的长度,代入三角形的面积公式进行计算即可求解.【解答】解:如图所示,当AD与⊙C相切时,线段BE最短,此时△ABE面积的最小,∵A(2,0),C(﹣1,0),⊙C半径为1,∴AO=2,AC=2+1=3,CD=1,在Rt△ACD中,AD===2,∵CD⊥AD,∴∠D=90°,∴∠D=∠AOE,在△AOE与△ADC中,,∴△AOE∽△ADC,∴=,即=,解得EO=,∵点B(0,2),∴OB=2,∴BE=OB﹣OE=2﹣,∴△ABE面积的最小值=×BE×AO=(2﹣)×2=2﹣.故答案为:2﹣.【点评】本题考查了坐标与图形的性质,勾股定理,相似三角形的判定与性质,根据相似三角形对应边成比例列式求出OE的长度是解题的关键.26.【分析】根据题意:二次函数y=ax2+4x+a﹣1的最小值是2,则判断二次函数的系数大于0,再根据公式y最小值=2列出关于a的一元二次方程,解得a的值即可.【解答】解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值===2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.故答案为4.【点评】本题主要考查二次函数的最值的知识点,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好.37.【分析】根据题意求出当菱形EGFH的面积最大时所满足的条件,然后根据条件求出GH长度,即可求出面积.【解答】解:根据题意可得,由勾股定理可得EF=;∵四边形EGFH为菱形,根据菱形面积公式,S EGFH=,∴若要菱形EGFH的面积最大,只需GH值最大,∴根据题意可得G,H在图象上的位置为:过点E作EM⊥BC,垂足为M;过点G作GN⊥CD,垂足为N;又∵EF⊥GH,∴∠MEF=∠NGH,又∵∠EMF=∠GNH,EM=GN,∴△EMF≌△GNH(AAS),∴GH=EF=2,∴=34.【点评】本题考查了求最大面积时所满足的条件以及菱形的面积公式,根据临界值即可求出答案,属于中档题.28.【分析】根据二次函数的性质解答即可.【解答】解:二次函数y=(x﹣4)2﹣5的最小值是﹣5.故答案为:﹣5.【点评】本题考查的是二次函数的最值的确定,掌握二次函数的性质是解题的关键.29.【分析】将二次函数配方,即可直接求出二次函数的最小值.【解答】解:∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.三.解答题(共8小题)30.【分析】(1)根据max{a,b}表示a、b两数中较大者,即可求出结论;(2)根据max{3x+1,﹣x+1}=﹣x+1,即可得出关于x的一元一次不等式,解之即可得出结论;(3)联立两函数解析式成方程组,解之即可求出交点坐标,画出直线y=﹣x+2的图象,观察图形,即可得出max{﹣x+2,x2﹣2x﹣4}的最小值.【解答】解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.【点评】本题考查了二次函数的最值、一次函数的图象、一次函数的性质以及二次函数的图象,解题的关键是:(1)读懂题意,弄清max的意思;(2)根据max{3x+1,﹣x+1}=﹣x+1,找出关于x的一元一次不等式;(3)联立两函数解析式成方程组,通过解方程组求出交点坐标.31.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,y随x的增大而增大,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,y随x的增大而减小,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x=﹣,当﹣≤﹣2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣2<﹣<2,即﹣4<k<4时,把x=﹣,y=﹣4代入关系式得:k=±2(不合题意)当﹣≥2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.32.【分析】(1)先求出抛物线的对称轴为直线x=﹣1,然后确定当x=4时取得最大值,代入函数解析式进行计算即可得解;(2)先求出抛物线的对称轴为直线x=﹣1,再根据对称性可得x=﹣4和x=2时函数值相等,然后分p≤﹣4,﹣4<p≤2讨论求解;(3)根据(2)的思路分t<﹣2,t≥﹣2时两种情况讨论求解.【解答】解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣5.【点评】本题考查了二次函数的最值问题,主要利用了二次函数的对称性,确定出抛物线的对称轴解析式是确定p和t的取值范围的关键,难点在于读懂题目信息.33.【分析】(1)根据表中的数据得出对称轴是直线x=2,根据对称点的特点得出即可;(2)根据表得出图象有最小值,根据顶点坐标得出即可;(3)根据二次函数的性质得出即可.【解答】解:(1)∵根据表可知:对称轴是直线x=2,∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为:5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y有最小值,最小值是1;(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2,∴当m>2时,点A(m1,y1),B(m+1,y2)都在对称轴的右侧,y随x的增大而增大,∵m<m+1,∴y1<y2.【点评】本题考查了二次函数的图象和性质,能根据表中的熟记得出正确信息是解此题的关键.34.【分析】(1)过A作AE⊥BC于E,根据含30度的直角三角形三边的关系得到AE=x,利用平行四边的周长可表示出BC=4﹣x,则0<x<4;然后根据平行四边形的面积公式即可得到y(cm2)与x的函数关系式;(2)把(1)中的关系式配成顶点式得到y=﹣(x﹣2)2+2,然后根据二次函数的最值问题即可得到x取什么值时,y的值最大,并得到最大值.【解答】解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为2.【点评】本题考查了二次函数的最值问题:先把二次函数配成顶点式:y=a(x﹣h)2+k,当a<0时,x=h,y有最大值k;当a>0,x=h,y有最小值k.也考查了平行四边形的性质以及含30度的直角三角形三边的关系.35.【分析】(1)把抛物线的解析式化成顶点式即可;(2)把点B坐标代入抛物线的解析式,求出抛物线的解析式,结合图形,再求当0<m<3时,n的取值范围;(3)分别讨论m和b的大小关系,根据n≤2,求出b的取值范围.【解答】解:(1)∵y=x2﹣2bx+b2﹣2=(x﹣b)2﹣2,∴顶点坐标为(b,﹣2);(2)把(0,2)代入y=x2﹣2bx+b2﹣2(b>0),得b=2,或b=﹣2(舍去),∴b=2,∴解析式为:y=x2﹣4x+2,对称轴为x=2;顶点坐标为(2,﹣2),结合函数图象可得,在顶点处n取得最小值﹣2;当x=0时,y=2,∴当0<m<3时,﹣2≤n<2.(3)如图,①若3≤m≤5≤b时,y max=(3﹣b)2﹣2≤2,∴1≤b≤5,矛盾,不成立;②若3≤b≤5时,则当x=3时,y=(3﹣b)2﹣2≤2,得1≤b≤5,且当x=5时,y=(5﹣b)2﹣2≤2,得3≤b≤7,∴3≤b≤5;③当b≤3≤m≤5时,y max=(5﹣b)2﹣2≤2,得3≤b≤7,矛盾;综上,b的取值范围为3≤b≤5.【点评】本题主要考查二次函数的取值范围问题,涉及待定系数法求解析式,数形结合思想等,利用数形结合思想结合图象求取值范围是常见方法.36.【分析】物线的顶点式解析式y=a(x﹣h)2+k,代入顶点坐标另一点求出a的值即可.【解答】解:∵抛物线l1的最高点为P(3,4),∴设抛物线的解析式为y=a(x﹣3)2+4,把点(0,1)代入得,1=a(0﹣3)2+4,解得,a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+4.【点评】此题考查待定系数法求函数解析式,根据题目中的已知条件,灵活选用二次函数解析式的形式解决问题.37.【分析】直接利用对角线互相垂直的四边形面积求法得出S=AC•BD,再利用配方法求出二次函数最值.【解答】解:设AC=x,四边形ABCD面积为S,则BD=12﹣x,则:S=AC•BD=x(12﹣x)=﹣(x﹣6)2+18,当x=6时,S最大=18;所以AC=BD=6时,四边形ABCD的面积最大.【点评】此题主要考查了二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.。

二次函数的最值问题(含答案)

二次函数的最值问题(含答案)

---二次函数的最值问题一、内容概述对二次函数2(0)y ax bx c a =++≠,若自变量为任意实数,则取最值情况为:(1)当0,2b a x a >=-时,244ac b y a -=最小值(2)当0,2b a x a <=-时,244ac b y a-=最大值若自变量x 的取值范围为()x αβαβ≤≤≠,则取最值分0a >和0a <两种情况,由α、β与2b a-的大小关系确定。

1.对于0a >:(1)当2baαβ<≤-,因为对称轴左侧y 随x 的增大而减小,所以y 的最大值为()y α,最小值为()y β。

这里()y α、()y β分别是y 在x α=与x β=时的函数值。

(2)当2baαβ-≤≤,因为对称轴右侧y 随x 的增大而增大,所以y 的最大值为()y β,最小值为()y α。

(3)当2b a αβ≤-≤,y 的最大值为()y α、 ()y β中较大者,y 的最小值为()2b y a-. 2.对于0a <(1)当2baαβ<≤-,y 的最大值为()y β,最小值为()y α。

(2)当2baαβ-≤≤,y 的最大值为()y α,最小值为()y β。

(3)当2b a αβ≤-≤,y 的最小值为()y α、 ()y β中较大者,y 的最大值为()2b y a-. 综上所述,求函数的最大、最小值,需比较三个函数值:()y α、()y β、()2b y a- 二、例题解析例1 已知12,x x 是方程22(2)(35)0x k x k k --+++=的两个实数根,求2212x x +的最大值和最小值。

解:由于题给出的二次方程有实根,所以0∆≥,解得443k -≤≤- ∴y =2212x x +=21212()2x x x x +-=2106k k ---∵函数y 在443k -≤≤-随着k 的增大而减小 ∴当4k =-时,8y =最大值;当43k =-时,509y =最小值例2 (1)求函数243y x x =--在区间25x -≤≤中的最大值和最小值。

二次函数的最值问题举例附练习测试参考答案

二次函数的最值问题举例附练习测试参考答案

二次函数的最值问题举例附练习测试参考答案 The pony was revised in January 2021二次函数的最值问题举例(附练习、答案) 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a=-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 12x ≤≤时,求函数21y x x =--+的最大值和最小值.【例2】当解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1)当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2)当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3)当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1)写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适最大销售利润为多少解:(1)由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.(2)由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组1.抛物线2(4)23y x m x m =--+-,当m =_____时,图象的顶点在y 轴上;当m =_____时,图象的顶点在x 轴上;当m =_____时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为________.3.求下列二次函数的最值:(1)2245y x x =-+; (2)(1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数3y =-7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?B 组1.已知关于x 的函数222y x ax =++在55x -≤≤上.(1)当1a =-时,求函数的最大值和最小值;(2)当a 为实数时,求函数的最大值. 2.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b的值.4.已知函数221y x ax=++在12x-≤≤上的最大值为4,求a的值.5.求关于x的二次函数221y x tx=-+在11x-≤≤上的最大值(t为常数).第五讲二次函数的最值问题答案A组1.414或2,3 22.22 16lm3.(1)有最小值3,无最大值;(2)有最大值94,无最小值.4.当34x=时,min318y=;当2x=-时,max19y=.5.5y≥-6.当56x=时,min3y=-23x=或1时,max3y=.7.当54t=-时,miny=.B组1.(1)当1x=时,min 1y=;当5x=-时,max 37y=.(2)当0a≥时,max 2710y a=+;当0a<时,max 2710y a=-.2.21m-≤≤-.3.2,2a b==-.4.14a=-或1a=-.5.当0t≤时,max 22y t=-,此时1x=;当0t>时,max 22y t=+,此时1x=-.。

初中数学二次函数的最值问题--练习题+答案

初中数学二次函数的最值问题--练习题+答案

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a-,无最小值. 【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值.解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【例3】当0x ≥时,求函数(2)y x x =--的取值范围.解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.练习A 组1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .3.求下列二次函数的最值:(1) 2245y x x =-+; (2) (1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数3y =7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?B 组1.已知关于x 的函数222y x ax =++在55x -≤≤上.(1) 当1a =-时,求函数的最大值和最小值;(2) 当a 为实数时,求函数的最大值.2.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b 的值.4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).答案解析A 组1.4 14或2,322.2216l m 3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值. 4.当34x =时,min 318y =;当2x =-时,max 19y =.5.5y ≥- 6.当56x =时,min 36y =-23x =或1时,max 3y =. 7.当54t =-时,min 0y =. B 组1.(1) 当1x =时,min 1y =;当5x =-时,max 37y =.(2) 当0a ≥时,max 2710y a =+;当0a <时,max 2710y a =-.2.21m -≤≤-. 3.2,2a b ==-.4.14a=-或1a=-.5.当0t≤时,max22y t=-,此时1x=;当0t>时,max 22y t=+,此时1x=-.。

初升高数学衔接班第6讲——二次函数的最值问题

初升高数学衔接班第6讲——二次函数的最值问题

初升高数学衔接班第6讲——二次函数的最值问题初升高数学衔接班第6讲——二次函数的最值问题一、学习目标:1.会求自变量在某个范围内取值时二次函数的最值。

2.了解二次函数最值问题在实际生活中的简单应用,能建立二次函数模型,从而解决实际问题。

二、学习重点:会求二次函数在给定区间上的最值问题三、新课讲解:[旧知复习]对于二次函数当时,函数在处取得最小值,无最大值;当时,函数在处取得最大值,无最小值.[新知探秘]二次函数的图象和性质二次函数y=ax2+bx+c(a≠0)具有下列性质:(1)当a>0时,函数图象开口向上;顶点坐标为,对称轴为直线;当x<时,y随着x的增大而减小;当x>时,y随着x的增大而增大;当时,函数取最小值y=.(2)当a<0时,函数图象开口向下;顶点坐标为,对称轴为直线;当x<时,y随着x的增大而增大;当x>时,y随着x的增大而减小;当x=时,函数取最大值y=.【典型例题】例1.求二次函数y=-3x2-6 x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小),并画出该函数的图象。

思路导航:借助二次函数的图象,能够很好地得出函数的性质解:∵y=-3x2-6x+1=-3(x+1)2+4,∴函数图象的开口向下;对称轴是直线x=-1;顶点坐标为(-1,4);当x=-1时,函数y取最大值y=4;当x<-1时,y随着x的增大而增大;当x>-1时,y随着x的增大而减小。

点津:函数的图象,能够直观地刻画出变量间的对应关系,使得函数的有关性质明显地从图形上反映出来,因此,很多问题的解决,如果能借助于函数的图象,往往起到事半功倍的效果。

【直击高中】(一)求一元二次函数的最值例2.求一元二次函数的最值思路导航:在求一元二次函数的最值时,如果函数的表达式不宜配方,我们可以先判断函数图象的开口方向,再把二次函数顶点的横坐标值代入表达式,得到相应的最值解:因为函数的图象开口向下,所以函数有最大值,无最小值又该函数顶点的横坐标为,代入表达式,得函数的最大值为点津:二次函数求最值,除配方法、顶点法外,还可直接用公式法,即先判断二次项系数的正负,再把对应的系数代入求出最值。

二次函数最值问题(含标准答案)

二次函数最值问题(含标准答案)

二次函数最值问题(含答案)————————————————————————————————作者:————————————————————————————————日期:二次函数最值问题一.选择题(共8小题)1.如果多项式P=a2+4a+2014,则P的最小值是()A.2010 B.2011 C.2012 D.20132.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.63.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣34.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.06.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或37.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9二.填空题(共2小题)9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,=6.当线段OM最长时,点M的坐标为.点M在x轴负半轴上,S△ABM三.解答题(共3小题)11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.12.已知关于x的函数y=kx2+(2k﹣1)x﹣2(k为常数).(1)试说明:不论k取什么值,此函数图象一定经过(﹣2,0);(2)在x>0时,若要使y随x的增大而减小,求k的取值范围;(3)试问该函数是否存在最小值﹣3?若存在,请求出此时k的值;若不存在,请说明理由.13.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y 随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x 的增大而减小.二次函数最值问题(含答案)一.选择题(共8小题)1.A;2.D;3.D;4.B;5.C;6.B;7.D;8.C;9.1;9;10.(﹣3,0);三.解答题(共3小题)11.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又∵A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.12.解:(1)将x=﹣2代入,得y=k(﹣2)2+(2k﹣1)•(﹣2)﹣2=0,故不论k取何值,此函数图象一定经过点(﹣2,0).(2)①若k=0,此函数为一次函数y=﹣x﹣2,当x>0时,y随x的增大而减小,∴k=0符合题意.②若k≠0,此函数为二次函数,而图象一定经过(﹣2,0)、(0,﹣2)∴要使当x>0时,y随x的增大而减小,开口向下,须满足k<0即可.综上,k的取值范围是k≤0.(3)若k=0,此函数为一次函数y=﹣x﹣2,∵x的取值为全体实数,∴y无最小值,若k≠0,此函数为二次函数,若存在最小值为﹣3,则=﹣3,且k>0,解得:k=符合题意,∴当k=时,函数存在最小值﹣3.13.解:(1)根据题意得m+2≠0且m2+m﹣4=2,解得m1=2,m2=﹣3,所以满足条件的m值为2或﹣3;(2)当m+2>0时,抛物线有最低点,所以m=2,抛物线解析式为y=4x2,所以抛物线的最低点为(0,0),当x≥0时,y随x的增大而增大;(3)当m=﹣3时,抛物线开口向下,函数有最大值;抛物线解析式为y=﹣x2,所以二次函数的最大值是0,这时,当x≥0时,y随x的增大而减小.。

二次函数最值问题参考答案

二次函数最值问题参考答案

二次函数最值问题二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+224222()函数的最大值为f ()22=,最小值f ()02=-。

练习. 已知232x x ≤,求函数f x x x ()=++21的最值。

解:由已知232x x ≤,可得032≤≤x ,函数f x ()的最小值为f ()01=,最大值为f 32194⎛⎝ ⎫⎭⎪=。

2、轴定区间变例2. 如果函数f x x ()()=-+112定义在区间[]t t ,+1上,求f x ()的最小值。

解:函数f x x ()()=-+1121<t ,当x t =时,函数取得最小值f x f t t ()()()min ==-+112。

t t ≤≤+11,即01≤≤t 。

当x =1时,函数取得最小值f x f ()()min ==11。

t +<11,即t <0。

当x t =+1时,函数取得最小值f x f t t ()()min =+=+112综上讨论,⎪⎩⎪⎨⎧<+≤≤>+-=0110,11,1)1()(22min t t t t t x f 例3. 已知2()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值. 解:由已知可求对称轴为1x =.(1)当1t >时,2min max ()()23()(1)2f x f t t t f x f t t ∴==-+=+=+,.(2)当11t t +≤≤,即01t ≤≤时,.根据对称性,若2121≤++t t 即102t ≤≤时,2max ()()23f x f t t t ==-+. 若2121>++t t 即112t <≤时,2max ()(1)2f x f t t =+=+. (3)当11t +<即0t <时,2max ()()23f x f t t t ==-+.综上,⎪⎪⎩⎪⎪⎨⎧≤+->+=21,3221,2)(22max t t t t t x f 3、轴变区间定 例4. 已知x 21≤,且a -≥20,求函数f x x ax ()=++23的最值。

中考数学总复习《二次函数的最值存在性问题》专题训练-附答案

中考数学总复习《二次函数的最值存在性问题》专题训练-附答案

中考数学总复习《二次函数的最值存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,抛物线26(0)y ax x c a =-+≠与x 轴负半轴交于(5,0)A -,B 两点,与y 轴交于点(0,5)C -.(1)求抛物线的表达式;(2)若M 是直线AC 上方抛物线上一点,过点M 作MN AC ⊥交直线AC 于点N .设点M 的横坐标为m . ①若N 点与A 点重合,求M 的坐标;①请用含m 的代数式表示出线段MN 的长,并求出线段MN 的最大值.2.如图,在平面直角坐标系中,抛物线24y ax bx =++与x 轴分别交于()4,0A -,()2,0B 两点,与y 轴交于C 点.(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上任意一点,过点P 作PD y ∥轴交直线AC 于点D ,过点D 作DH x ∥轴,交y 轴于点H ,求PD DH +的最大值及此时点P 的坐标;(3)将抛物线沿着水平方向向右平移2个单位长度得到新的抛物线,点E 为原抛物线与平移后的抛物线的交点,点M 为平移后的抛物线对称轴上一动点,点N 为坐标平面内一点,直接写出所有使得以点B ,E ,M ,N 为顶点的四边形是菱形的点N 的坐标,并把求其中一个点N 的坐标的求解过程写出来.3.如图,抛物线212y x mx n =-++与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知()1,0A -和()0,2C .(1)求抛物线的表达式; (2)求BDC 的面积;(3)线段BC 上有一动点P ,过点P 作y 轴的平行线,交抛物线于点Q ,求线段PQ 的最大值.4.如图,抛物线y =2ax bx c ++与x 轴交于A ,B 两点,点A 的坐标为()3,0-,与y 轴交于点C ,抛物线的对称轴是直线=1x -,连接BC ,AC .(1)用含a 的代数式求ABC S; (2)若6ABC S =,求抛物线的函数表达式;(3)在(2)的条件下,当11m x -≤≤-时,y 的最大值是2,求m 的值.5.如图,已知二次函数2y x bx c =-++经过A ,B 两点,BC x ⊥轴于点C ,且点()1,0A -,()2,0C 和AC=BC .(1)求抛物线的解析式;(2)点E 是AB 上方抛物线上的一个动点(不与A ,B 重合),求ABE S 的最大值以及此时E 点的坐标;(3)判断在抛物线的对称轴上是否存在点P ,使得ABP 是以AB 为腰的等腰三角形,如果存在,直接写出P 点的坐标,如果不存在,说明理由. 6.如图,点A 、B 在反比例函数()0,0k y k x x=>>的图像上,点(),2A m ,点B 的横坐标是4,过点B 作BC x ⊥轴于点C ,连接AC 、AB .(1)用含m 的式子表示BC ,则BC =______;(2)当04m <<时,求ABC 的面积S (用含m 的式子表示);(3)在(2)的条件下,当ABC 的面积S 最大时,求反比例函数k y x=的解析式. 7.如图,抛物线2y x bc c =-++与x 轴交于点(1,0)A -,(4,0)B 与y 轴交于点C ,连接BC ,点P 为线段CB 上一个动点(不与点C ,B 重合),过点P 作PQ y ∥轴交抛物线于点Q .(1)求抛物线的表达式和对称轴;(2)设P 的横坐标为t ,请用含t 的式子表示线段PQ 的长,并求出线段PQ 的最大值;(3)已知点M 是抛物线对称轴上的一个点,点N 是平面直角坐标系内一点,当线段PQ 取得最大值时,是否存在这样的点M ,N ,使得四边形PBMN 是菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.8.如图,抛物线22y x x c =-++与x 轴交于A ,()1,0B -两点(点A 在点B 右侧),与y 轴交于点C .(1)求抛物线的解析式及顶点坐标. (2)设点(),P x y 为抛物线上一点,当1322x -≤≤时,点P 的纵坐标y 满足m y n ≤≤,求n m -的值. 9.如图,二次函数23y ax bx =+-的图像经过点()1,0A -,()3,0B 直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式.(2)点M 为该二次函数图像上一动点.①若点M 在图像上的B ,C 两点之间,求DME 的面积的最大值.①若MED EDB ∠∠=,求点M 的坐标.10.已知抛物线2y ax bx c =++与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于点()0,3C -.(1)求抛物线的表达式;(2)点P 为直线BC 下方的抛物线上一个动点,当PBC 面积最大时,求点P 的坐标;(3)点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,当PM AM 最大时,求点P 的横坐标及PM AM的最大值. 11.如图,抛物线23y ax bx =++与x 轴交于A ,B 两点,且点B 的坐标为()20,,与y 轴交于点C ,抛物线对称轴为直线=1x -.连接AC BC ,,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG AC ⊥于点G .(1)求抛物线的解析式.(2)P 点在运动过程中线段PQ 有最大值吗?有求出最大值.(3)求PQG 周长的最大值及此时点P 的坐标.12.已知点()13A --,在直线2l y kx =-:上,点()1M m y ,是抛物线()2420y ax ax a =-+≠上一个动点.(1)如图,若抛物线与直线l 交于点A .①求a 和k 的值;①过点M 作y 轴的平行线交直线l 于点N ,当点M 在直线l 上方的抛物线上运动时,求线段MN 长度的最大值及此时点M 的坐标;(2)点()22B x y ,是抛物线与直线l 在第一象限内的交点,若12y y ≤接写出m 的取值范围.13.如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于C 点,点A 的坐标为()3,0,点C 的坐标为()0,3.(1)求b 与c 的值;(2)求函数的最大值;(3)(),M m n 是抛物线上的任意一点,当74n ≥时,利用函数图像写出m 的取值范围. 14.综合与探究.如图,抛物线228=+-y x x 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求,,A B C 三点的坐标.(2)连接AC ,直线(40x m m =--<<)与抛物线交于点E ,与AC 交于点D ,m 为何值时线段DE 的长度最大,最大值是多少?(3)点M 在y 轴上,点N 在直线AC 上,点P 为抛物线对称轴上一点,是否存在点M 使得以C M N P 、、、为顶点的四边形是菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.15.如图,抛物线2=23y x x --与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于点E ,求线段PE 长度的最大值.参考答案:1.(1)265y x x =---(2)①(2,3)-;①当52m =-时,MN 最大,最大值为25282.(1)2142y x x =--+(2)92 53,2P ⎛⎫- ⎪⎝⎭ (3)()1,419-+或()1,419--或()3,19或()3,19-3.(1)213222y x x =-++; (2)52(3)2.4.(1)6ABC S a =△.(2)抛物线的函数表达式为223y x x =+-.(3)6m =-.5.(1)223y x x =-++;(2)278,E 的坐标为12,154⎛⎫ ⎪⎝⎭; (3)()1,14或 ()1,14-或 ()1,317+或 ()1,317-.6.(1)12m (2)214m m -+ (3)4y x=7.(1)234y x x =-++,直线32x =(2)24PQ t t =-+,最大值为4(3)3(2,7)2或3(2,7)2-) 8.(1)2(1)4y x =--+,顶点坐标为()14, (2)949.(1)2=23y x x --(2)①当2m =时,S 最大值52=;①点M 的坐标是11041022,39⎛⎫++- ⎪ ⎪⎝⎭或()12,2--10.(1)抛物线为:2134y x x =--; (2)153,4P ⎛⎫- ⎪⎝⎭ (3)此时P 的横坐标为:3,MP AM 有最大值916.11.(1)283384y x x =--+; (2)PQ 有最大值32; (3)185()2,3P -. 12.(1)①1,1a k =-=;①线段MN 长度的最大值为254,点M 的坐标为323()24, (2)0m ≤或4m ≥13.(1)2b = 3c =(2)4(3)1522m -≤≤14.(1)()()()4,0,2,0,0,8A B C --(2)2m =时,DE 最大为4(3)存在,()()()1234270,85,85,0,,0,124M M M M ⎛⎫=-+--=-- ⎪⎝⎭15.(1)()()1,0,3,0,1A B y x -=--(2)94。

二次函数中的最值问题(解析版)

二次函数中的最值问题(解析版)

二次函数中的最值问题目录题型一【铅垂高系列】2023·四川凉山·中考真题2022·天津·中考真题2022·湖北襄阳·统考中考真题2023·湖南娄底·中考真题2023·湖南中考真题2023·青海西宁·中考真题2023·四川广安·中考真题2023·湖南永州·中考真题2022·四川广元·中考真题题型二【线段和差最值篇】2023·湖南张家界中考真题2022·山东淄博·统考中考真题2022·四川遂宁中考真题2023·山东东营·中考真题2023·四川巴中·中考真题2023·湖南张家界中考真题2023·山东聊城·中考真题2022·湖北襄阳中考真题2023·湖北荆州中考真题2022·江苏连云港中考真题2022·湖南岳阳·中考真题2023·宁夏·中考真题2023·湖北襄阳中考真题题型四【加权线段最值】2023·四川内江·中考真题2023·黑龙江绥化·中考真题题型五 【几何构造最值篇】2022·天津·统考中考真题满分*技巧母题:如图,已知抛物线过A (4,0)、B (0,4)、C (-2,0)三点,P 是抛物线上一点 (1) 求抛物线解析式【答案】2142y x x =++【铅垂高系列】本来这个属于构造二次函数型最值问题,但是比较特殊所以单独拿出来 (2) (☆)若P 在直线AB 上方,求四边形PBCA 面积最大值,【答案】16 补充二级结论212max 2x x PD a − =⋅【思路分析】先分离出面积为定值的△ABC ,△ABC 面积为12 设P 21(,4)2m m m −++,()4H m m −+,2122PH m m =−+(上面的点减去下面的点)当22b m a=−=时,PH 取最大值2,此时△APB 面积为:1=42S PH AO ⋅=(AO 是△PBH ,△PAH 两个三角形高之和)(3) (☆)若P 在直线AB 上方,作PF ⊥AB ,F 在线段AB 上,求PF 最大值H【思路分析】过P作PH平行y轴,H在AB上导角可知△PFH~△AOB为等腰直角三角形,PH取最大时,PF也取到最大(4)(★)若P在直线AB上方,作PF⊥AB,交线段AB于F,作PE∥y轴交AB于E,求△PEF 周长和面积的最大值【答案】2+和1【思路分析】△PEF形状固定,PF FE PE==(5)若P在直线AB上方,连接OP,交AB于D,求PDOD的最大值【答案】【思路分析】化斜为直,平行线,构造8字相似转换PD PH OD BO=(6) (★☆)若P 在直线AB 上方,连接CP ,交AB 于D ,△PDA 面积为S 1,△CDA 面积为S 2,求21S S 的最小值【答案】13【思路分析】化斜为自第一步:面积比转换为共线的边之比21S CDS PD=第二步:构造,共线的边之比转换成平行边之比6CD CG PD PH PH==(7) (★☆)点D 是点B 关于关于x 轴的对称点,连接CD ,点P 是第一象限上一点,求△PCD 面积最大值【答案】12 【思路分析】过动点P 作y 轴平行线交对边(延长)于点H2112538222PCD PCH PDM S S S PH CO PH m m =−=⋅==−++≤△△△ 推导过程如下:以PH 为底,设△PHC 的高为h 1,△PDH 的高为2h12121111()2222PH h PM h PH h h PH CO ⋅−⋅=⋅−=⋅【几何构造最值篇】(8) (☆)点E 是对称轴与x 轴交点,过E 作一条任意直线l ,(点B 、C 分别在直线l 的异侧),设C 、B 两点到直线l 的距离分别为m 、n ,求m +n 的最大值x【答案】【思路分析】m n BC ≥+特殊位置时有最小值,大多数题目都是共线时有最值,所以要重点去分析共线时的情况(9) (☆)已知线段BC 上有两点E (1,3),F (3, 1),试在x ,y 轴上有两动点M 和N ,使得四边形FMNE 周长最小。

二次函数的最值问题--初升高数学衔接课程 (教师版含解析)

二次函数的最值问题--初升高数学衔接课程 (教师版含解析)

第7章 二次函数的最值问题【知识衔接】————初中知识回顾————二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少. 二次函数的最值 一般二次函数求最值根据最值公式计算即可,或把对称轴代入表达式,对应的函数值就是最值。

————高中知识链接————给定自变量取值范围求二次函数的最值①如果给定的范围在对称轴的一侧,只需要计算两个端点的函数值,两个值中最大的为最大值,最小的为最小值。

②如果给定的范围包含对称轴,需要计算两个端点的函数值和顶点的纵坐标,三个值中最大的为最大值,最小的为最小值。

具体归纳如下:1、一元二次函数)0(2≠++=a c bx ax y044,02min<-=>••a a b ac y a 时,ab ac y 442max -=2、一元二次函数)0()(2>++==a c bx ax x f y 在区间[m,n]上的最值。

1°当m ab<-2 ,)()(),()(min max m f x f n f x f ==2°当22n m a b m +≤-≤,a b ac x f n f x f 44)(),()(2min max -==3°当n ab n m ≤-<+22时, a bac x f m f x f 44)(),()(2min max -==4°n ab>-2时, )()(),()(min max n f x f m f x f ==3、一元二次函数)0()(2<++==a c bx ax x f y 在区间[m,n]上的最值类比2可求得。

【经典题型】初中经典题型1.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3).D 是抛物线26y x x =-+上一点,且在x 轴上方.则△BCD 的最大值为 .【答案】152.2.已知当x 1=a ,x 2=b ,x 3=c 时,二次函数21y x mx 2=+对应的函数值分别为y 1,y 2,y 3,若正整数a ,b ,c 恰好是一个三角形的三边长,且当a <b <c 时,都有y 1<y 2<y 3,则实数m 的取值范围是 . 【答案】5m >2-.3.已知二次函数2y x bx c =++(b ,c 为常数). (Ⅰ)当b =2,c =-3时,求二次函数的最小值;(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式; (Ⅲ)当c=b 2时,若在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.【答案】(Ⅰ)二次函数取得最小值-4. (Ⅱ)542++=x x y 或542+-=x x y .(Ⅲ)772++=x x y 或1642+-=x x y .(Ⅲ)当c=b 2时,二次函数的解析式为22b bx x y ++=,它的图象是开口向上,对称轴为2bx -=的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即2b-<b ;②对称轴位于b≤x≤b+3这个范围时,即b≤2b-≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即2b ->b+3,根据列出的不等式求得b 的取值范围,再根据x 的取值范围b≤x≤b+3、函数的增减性及对应的函数值y 的最小值为21可列方程求b 的值(不合题意的舍去),求得b 的值代入也就求得了函数的表达式.(Ⅲ)当c=b 2时,二次函数的解析式为22b bx x y ++=.它的图象是开口向上,对称轴为2bx -=的抛物线. ①若2b-<b 时,即b >0, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而增大,故当x=b 时,2223b b b b b y =+⋅+=为最小值.∴2132=b ,解得 71=b ,72-=b (舍去).②若b≤2b-≤b+3,即-2≤b≤0, 当x=2b -时,22243)2()2(b b b b b y =+-⋅+-=为最小值.∴21432=b ,解得 721=b (舍去),722-=b (舍去).高中经典题型1.二次函数213222y x x =-++的图象如图所示,当﹣1≤x≤0时,该函数的最大值是( )A .3.125B .4C .2D .0【答案】C .2.已知函数()42f x x x x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81 【解析】根据题意, ()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知, 126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅ ()()2111166x x x x =⋅-⋅-+= ()22116x x -+=()22139x ⎡⎤--+⎣⎦, ()()21123,398,9x x <<∴--+∈, ()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81. 3.已知函数,其中为常数.(1)若函数在区间上单调递减,求实数的取值范围; (2)若,都有,求实数的取值范围.【答案】(1)(2)【解析】分析:(1)根据二次函数性质得对称轴不在区间 内,解不等式可得实数的取值范围,(2) 根据二次函数图像得得在x 轴上方,即,解得实数的取值范围.详解:(1)因为开口向上,所以该函数的对称轴是因此,解得所以的取值范围是. (2)因为恒成立,所以,整理得解得因此,的取值范围是.4.如图,抛物线21251233y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C .若点P 是线段AC 上方的抛物线上一动点,当△ACP 的面积取得最大值时,点P 的坐标是( )A .(4,3)B .(5,3512)C .(4,3512) D .(5,3) 【答案】C .【分析】连接PC 、PO 、P A ,设点P 坐标(m ,21251233m m -++),根据S △P AC =S △PCO +S △POA ﹣S △AOC 构建二次函数,利用函数性质即可解决问题.【解析】连接PC 、PO 、P A ,设点P 坐标(m ,21251233m m -++) 令x =0,则y =53,点C 坐标(0,53),令y =0则212501233x x -++=,解得x =﹣2或10,∴点A 坐标(10,0),点B 坐标(﹣2,0),∴S △P AC =S △PCO +S △POA ﹣S △AOC =21511251510()10232123323m m m ⨯+⨯⨯-++-⨯⨯=25125(5)1212m --+,∴x =5时,△P AC 面积最大值为12512,此时点P 坐标(5,3512).故选C .【实战演练】————先作初中题 —— 夯实基础————A 组1.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或﹣5B .﹣1或5C .1或﹣3D .1或3 【答案】B .【分析】由解析式可知该函数在x =h 时取得最小值1、x >h 时,y 随x 的增大而增大、当x <h 时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.2.一次函数与二次函数交于x轴上一点,则当时,二次函数的最小值为( )A.15 B.-15 C.16 D.-16【答案】D【解析】分析:首先根据一次函数得出与x轴的交点坐标,从而得出二次函数的解析式,根据二次函数的增减性得出函数的最值.详解:根据一次函数解析式可得与x轴的交点坐标为(-5,0),将(-5,0)代入二次函数可得:25-10-b=0,解得:b=15,∴二次函数的解析式为:,∴在中当x=-1时,函数的最小值为-16,故选D.点睛:本题主要考查的是二次函数的性质以及一次函数与x轴的交点坐标问题,属于中等难度题型.解决这个问题的关键就是得出一次函数与x轴的交点,从而得出二次函数解析式.3.二次函数y=x2-2x-3,当m-2≤x≤m时函数有最大值5,则m的值可能为___________【答案】0或4【解析】分析:根据二次函数的图像和解析式,判断出函数的最值的自变量x的值,然后根据m的范围求出m的值即可.详解:令y=5,可得x2-2x-3=5,解得x=-2或x=4所以m-2=-2,m=4即m=0或4.故答案为:0或4.点睛:此题主要考查了二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图像直接得出,第二种配方法,第三种公式法,此题关键是根据最值构造一元二次方程求解.4.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为______.【答案】8【解析】分析:当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD 间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.详解:当点C横坐标为−3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选:D.点睛:本题主要考查二次函数的性质,待定系数法求二次函数的解析式,用直接开平方法解一元二次等知识点,理解题意并根据已知求二次函数的解析式是解此题的关键.5.已知二次函数,当时,函数值的最小值为,则的值是________.【答案】或【解析】分析:将二次函数配方成顶点式,分m<-1、m>2和-1≤m≤2三种情况,根据y的最小值为-2,结合二次函数的性质求解可得.详解:y=x²−2mx=(x−m)²−m²,①若m<−1,当x=−1时,y=1+2m=−2,解得:m=−;②若m>2,当x=2时,y=4−4m=−2,解得:m=<2(舍);③若−1⩽m⩽2,当x=m时,y=−m2=−2,解得:m=或m=−<−1(舍),∴m的值为−或,故答案为:−或.点睛:本题主要考查了二次函数的最值,根据二次函数的增减性分类讨论是解答本题的关键.6.若实数a,b满足a+b2=1,则2a2+7b2的最小值是_____.【答案】2【解析】分析:根据得到代入所求式子,用配方法即可求出最小值.详解:∵∴,∴∵∴∴当,即b=0时,的值最小.∴最小值是2.7.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.【答案】(1)3(2)-15(3)m=2,n=-3【解析】分析:(1)根据一次函数与x轴的交点,求出A点的坐标,然后把A点坐标和m的值代入可求出n 的值;(2)表示出二次函数的对称轴,由m的值以及二次函数的图像与性质得到二次函数的最值;(3)根据函数的对称轴的位置,分类讨论即可求出m、n的值.详解:(1)当y=x+3=0时,x=﹣3,∴点A的坐标为(﹣3,0).∵二次函数y=x2+mx+n的图象经过点A,∴0=9﹣3m+n,即n=3m﹣9,∴当m=4时,n=3m﹣9=3.(2)抛物线的对称轴为直线x=﹣,当m=﹣2时,对称轴为x=1,n=3m﹣9=﹣15,∴当﹣3≤x≤0时,y随x的增大而减小,∴当x=0时,二次函数y=x2+mx+n的最小值为﹣15.(3)①当对称轴﹣≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x2+mx+n的最小值为0,∴此情况不合题意;②当﹣3<﹣<0,即0<m<6时,如图2,有,解得:或(舍去),∴m=2、n=﹣3;③当﹣≥0,即m≤0时,如图3,有,解得:(舍去).综上所述:m=2,n=﹣3.点睛:此题主要考查了二次函数与一次函数的综合,正确判断二次函数的对称轴,以及函数的图像与性质,利用二次函数的图像与性质判断其最值是关键,解题时应用到分类讨论思想和方程思想.8.如图, 已知抛物线经过A(-2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.学科-网【答案】(1);(2)最大值为;(3)符合条件的点的坐标为或.【解析】分析:(1)将A(-2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)由于二次项系数a=-<0,所以抛物线有最大值,最大值为,代入计算即可;(3)先将点D(2,m)代入(1)中所求的抛物线的解析式,求出m的值,得到点D的坐标,然后假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,再分三种情况进行讨论:①PB=PD;②BP=BD;③DP=DB;每一种情况都可以根据两点间的距离公式列出关于y的方程,解方程即可.详解:(1)将A(-2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,得,解得:,所以此抛物线的解析式为y=-x2+x+4;(2)∵y=-x2+x+4,a=-<0,∴抛物线有最大值,最大值为;(3)∵点D(2,m)在抛物线y=-x2+x+4上,∴m=-×22+2+4=4,∴D(2,4),∵B(4,0),∴BD=.假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,分三种情况:①如果PB=PD,那么42+y2=22+(y-4)2,解得y=,所以P1(0,);②如果BP=BD ,那么42+y 2=20,解得y=±2(负值舍去),所以P 2(0,2);③如果DP=DB ,那么22+(y-4)2=20,解得y=0或8,y=0不合题意舍去,y=8时,(0,8)与D ,B 三点共线,不合题意舍去;学=科网综上可知,所有符合条件的P 点的坐标为P 1(0,),P 2(0,2).点睛:本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,抛物线的最值的求法,等腰三角形的性质等知识,难度适中.运用分类讨论、方程思想是解题的关键.————再战高中题 —— 能力提升————B 组1、函数242-+-=x x y 在区间]4,1[上的最小值是( )A 、-7B 、-4C 、-2D 、2 2、已知函数322+-=x x y 在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )A 、),1[+∞B 、[0,2]C 、[1,2]D 、]2,(-∞ 3、如果函数c bx x x f ++=2)(对任意实数都有)2()2(t f t f -=+,那么( )A 、)4()1()2(f f f <<B 、)4()2()1(f f f <<C 、)1()4()2(f f f <<D 、)1()2()4(f f f <<4、若0,0≥≥y x ,且12=+y x ,那么232y x z +=的最小值为( )A 、2B 、43C 、32D 、05、设21,,x x R m ∈是方程01222=-+-m mx x 的两个实数根,则2221x x +的最小值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★ 专题六 二次函数的最值问题
【要点回顾】
1.二次函数2 (0)y ax bx c a =++≠的最值.
二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值244ac b a
-,无最小值.
2.二次函数最大值或最小值的求法.
第一步确定a 的符号,a >0有最小值,a <0有最大值;
第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.
3.求二次函数在某一范围内的最值.
如:2y ax bx c =++在m x n ≤≤(其中m n <)的最值.
第一步:先通过配方,求出函数图象的对称轴:0x x =;
第二步:讨论:
[1]若0a >时求最小值或0a <时求最大值,需分三种情况讨论:
①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧;
②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部;
③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧。

[2] 若0a >时求最大值或0a <时求最小值,需分两种情况讨论: ①对称轴02
m n x +≤
,即对称轴在m x n ≤≤的中点的左侧; ②对称轴02m n x +>,即对称轴在m x n ≤≤的中点的右侧; 说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值范围相应位置,具体情况,参考例4。

【例题选讲】
例1求下列函数的最大值或最小值.
(1)5322--=x x y ; (2)432+--=x x y .
答案:(1)4
7)2(531 例2当12x ≤≤时,求函数21y x x =--+的最大值和最小值.
答案:5;1min max -=-=y y
例3当0x ≥时,求函数(2)y x x =--的取值范围.
答案1-≥y
例4当1t x t ≤≤+时,求函数21522
y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522
y x x =
--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时:当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时: 当1x =时,2m i n 1511322
y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =
+-+-=-.
综上所述:2213,0
23,0115,12
2t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩
【巩固练习】
1.抛物线2
(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.
2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .
3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b 的值.
4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.
5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).
答案:1.23142;4===m m m ;或 2.16
2
L 3.2,2-==b a 4.1-41或-
5.t y t t y t 22,022,0min max +=>-=≤。

相关文档
最新文档