高二数学必修5 解三角形 ppt
高中数学人教B版必修5第1章《解三角形》(1.2 第1课时)同步课件
∴AE=2csoisn1350°°=
2×12 6+
= 2
6-
2.
4
在△ABC 中,已知 A=45°,cosB=45. (1)求 cosC 的值; (2)若 BC=10,D 为 AB 的中点,求 CD 的长.
[解析]
(1)∵A=45°,∴cosA=
22,sinA=
2 2.
又∵cosB=45,∴sinB=35.
第一章 解三角形
第一章 1.2 应用举例 第1课时 距离问题
1
课前自主预习
3
易错疑难辨析
2
课堂典例讲练
4
课时作业
课前自主预习
• 碧波万顷的大海上,“蓝天号”渔轮在A处进行海上
作业,“白云号”货轮在“蓝天号”正南方向距
“蓝天号”20n mile的B处.现在“白云号”以10n
mile/h的速度向正北方向行驶,而“蓝天号”同时
小岛A周围38 n mile内有暗
礁,一船正向南航行,在B处
测得小岛A在船的南偏东30°,
航行30 n mile后,在C处测
得小岛在船的南偏东45°,
如果此船不改变航向,继续
向南航行,有无触礁的危险?
• [分析] 船继续向南航行,有无触礁的危险,取决
于A到直线BC的距离与38 n mile的大小,于是我们 只要先求出AC或AB的大小,再计算出A到BC的距离,
∴x=503 6 n mile.
• 4.在相距2 km的A、B两点处测量目标点C,若∠CAB =75°,∠CBA=60°,则A、C两点之间的距离为
______ km.
[答案] 6
[解析] 如图所示,由题意知∠C=45°, 由正弦定理,得siAn6C0°=sinA4B5°,∴AC= 22·23= 6. 2
高中数学人教版必修5课件:1.1.1正弦定理(系列三)
典型例题 例1 已知一三角形中a=2 3 ,b=6,A=30°,判断三角形是
否有解,若有解,解该三角形.
解 a=2 3,b=6,a<b,A=30°<90°.
又因为bsinA=6sin30°=3,a>bsinA,
所以本题有两解,由正弦定理得,
sinB=bsian
A=6sin 2
30°= 3
23,故B=60°或120°.
跟踪训练1 在△ABC中,角A、B、C所对的边分别为a、b、
c,已知A=60°,a= 3,b=1,则c等于
(B )
A.1 B.2 C. 3-1 D. 3
解析 由正弦定理sina A=sinb B,可得sin 630°=sin1 B,
∴sinB=12,故∠B=30°或150°.由a>b,
得∠A>∠B,∴∠B=30°,故∠C=90°,
由勾股定理得c=2.
例2 在△ABC中,若∠A=120°,AB=5,BC=7,求△ABC 的面积.
解 如图,由正弦定理,
得sin
1720°=sin5
, C
∴sinC=5143,且∠C为锐角(∠A=120°).∴cosC=1114. ∴sinB=sin(180°-120°-∠C)=sin(60°-∠C) = 23cosC-12sinC= 23×1114-12×5143=3143.
证明 作AD⊥BC,垂足为D, 则AD=AB·sinB,又AD=AC·sinC,
∴csinB=bsinC.
∴S△ABC=12BC·AD =12acsinB=12absinC. 同理S△ABC=12absinC=12bcsinA.
∴S△ABC=12absinC=12bcsinA=12acsinB.
人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)
求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用
3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件
=
3sinA+π6≤
2π
30<A<
3
.
当A=π3时,即△ABC为等边三角形时取等号,
所以sin A+sin B的最大值为 3.
题点四:多边形面积问题 4.已知圆内接四边形ABCD的边长AB=2,BC=6,CD=DA
=4,求四边形ABCD的面积S. 解:如图,连接BD,则S=S△ABD+S△CBD =12AB·ADsin A+12BC·CDsin C. ∵A+C=180°,∴sin A=sin C, ∴S=12sin A(AB·AD+BC·CD)=16sin A. 在△ABD中,由余弦定理得
(2)求sin A+sin B的最大值. 解:(1)由题意可知
1 2absin
C=
43×2abcos
C.
所以tan C= 3.
因为0<C<π,所以C=π3.
(2)由(1)知sin A+sin B=sin A+sinπ-A-π3
=sin A+sin23π-A
=sin
A+
ห้องสมุดไป่ตู้
3 2 cos
A+12sin
A
(√ )
(2)三角形中已知三边无法求其面积
(×)
(3)在三角形中已知两边和一角就能求三角形的面积 ( √ ) 解析:(1)正确,S=12absin C适合求任意三角形的面积.
(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正
弦值,进而求面积.
(3)正确.已知两边和两边的夹角可直接求得面积,已知两边
=a2-c2 b2
=左边,
所以a2-c2 b2=sinsiAn-CB.
与三角形有关的综合问题 题点一:与三角形面积有关的综合问题 1.在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
高中数学第二章解三角形2.1.2余弦定理课件北师大版必修5
1
2
3
4
5
1.在△ABC 中,已知 a=5,b=4,C=120°,则 c 的长为(
A. 41
C. 41或 61
)
B. 61
D. 21
1
解析: 因为 c2=a2+b2-2abcos C,所以 c2=52+42-2×5×4× - 2 =61,即
c= 61.
答案:B
1
2
3
4
5
2.在△ABC中,若bcos A=acos B,则△ABC是(
角A,B,C的对边,且b2,c2是关于x的一元二次方程x2-(a2+bc)x+m=0的
两根.
(1)求角A的大小;
(2)若 a= 3 ,设B=θ,△ABC的周长为y,求y=f(θ)的最大值.
分析:(1)利用余弦定理求出角A;(2)先利用正弦定理将△ABC的周
长y表示成关于θ的函数,再结合三角函数的性质进行求解.
探究一
探究二
探究三
思维辨析
解:(1)在△ABC中,依题意有b2+c2=a2+bc,即b2+c2-a2=bc,
所以 cos
2
+2 -2
A=
2
1
2
= ,
π
3
又因为 A∈(0,π),所以 A= .
π
3
(2)由 a= 3,A= ,及正弦定理得
sin
=
所以 b=2sin B=2sin θ,c=2sin C=2sin
1 .2
余弦定理
学 习 目 标
1.掌握余弦定理及其证明.
2.会用余弦定理解决两类解三角形问题.
3.能综合应用正弦定理与余弦定理解决三角形
高中数学必修5第一章:解三角形
外接圆法
A
BOb CFra bibliotekB`B a
c
O
C
b
A
C′
A
ObC B` B
A O bC
B
一.正弦定理: 在一个三角形中,各边和它所对角的正弦
的比相等,即
注意:
(1)正弦定理指出了任意三角形中三条边与对应角的正弦 之间的一个关系式.由正弦函数在区间上的单调性可知, 正弦定理非常好地描述了任意三角形中边与角的一种数 量关系.
2.在△ABC中,已知下列条件,解三角形(角度精确到1o, 边长精确到1cm): (1) a=20cm,b=11cm,B=30o; (2) c=54cm,b=39cm,C=115o.
3.判断满足下列条件的三角形的个数:
(1)b=11, a=20, B=30o 两解
(2)c=54, b=39, C=120o 一解
由此可知余弦定理是勾股定理的推广,勾股定理是余 弦定理的特例.
余弦定理及其推论的基本作用是什么? ①已知三角形的任意两边及它们的夹角可以求出第三边; ②已知三角形的三条边就可以求出其他角.
例1 在△ABC中,已知b=60 cm,c=34 cm,A=41° ,解三 角形(角度精确到1°,边长精确到1 cm). 解:方法一: 根据余弦定理,
用正弦定理试求,发现因A、B均
A
未知,所以较难求边c.
由于涉及边长问题,从而可以
考虑用向量来研究这个问题.
C
B
.
,
A
,
,
C
B
,
.
一、余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减
去这两边与它们的夹角的余弦的积的两倍,即
注:利用余弦定理,可以从已知的两边及其夹角求出三角 形的第三条边.
高二数学必修五 第一章 解三角形
高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。
新课标人教A版数学必修5全部课件:解三角形的应用举例
向旋转80°,求活塞移动的距离(即连杆的端点A移动的距
离 A 0 A )(精确到1mm)
单击图象动画演示
5.10 解斜三角形应用举例
例题讲解 已知△ABC中, BC=85mm,AB=34mm,∠C=80°, 求AC. 解:(如图)在△ABC中, 由正弦定理可得:
0 . 9848
5.10 解斜三角形应用举例
例题讲解
A 0 A A 0 C AC ( AB BC ) AC ( 340 85 ) 344 . 3 80 . 7 81 ( mm )
答:活塞移动的距离为81mm.
5.10 解斜三角形应用举例
练习:
我舰在敌岛A南偏西50°相距12海里的B处,发现敌舰正 由岛沿北偏西10°的方向以10海里/小时的速度航行.问我舰需 以多大速度、沿什么方向航行才能用2小时追上敌舰? C 解:如图,在△ABC中由余弦定理得:
sin A BC sin C AB 85 sin 80 340
0 . 2462
因为BC<AB,所以A为税角 , A=14°15′ ∴ B=180°-(A+C)=85°45′ 又由正弦定理:
AC AB sin B sin C 340 sin 85 4 5
344 . 3 ( mm )
5.10 解斜三角形应用举例
5.10 解斜三角形应用举例
例题讲解 例1.如图,自动卸货汽车采用液压机构,设计时需要计算 油泵顶杆BC的长度(如图).已知车厢的最大仰角为60°,油
泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的
2020秋新版高中数学人教A版必修5课件:第一章解三角形 1.2.4 .pptx
在三角形中,当涉及两边的和、两边的积或两边的平方和或三角
形的面积时,常用余弦定理解答.
-11-
第4课时 几何计算问题
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四
【变式训练1】 设△ABC的内角A,B,C所对的边长分别为a,b,c,且
(1)若△ABC 的面积等于 3, 求������, ������的值;
(2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积. 分析(1)利用余弦定理和面积公式列关于a,b的方程组求解; (2)先利用正弦定理得a与b的关系,再利用余弦定理得a与b的另一 个关系,列方程组求解a,b,进而求面积.
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
反思1.有关长度问题,要有方程意识.设未知数,列方程求解是经常 用到的方法.列方程时,要注意一些隐含关系的应用.
2.要灵活运用正、余弦定理及三角形面积公式.
-18-
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
解(1)由余弦定理及已知条件得a2+b2-ab=4.
又因为△ABC 的面积等于 3,
所以
1 2
������������sin
人教版A版高中数学必修5:第一章解三角形_应用举例_课件23
一、解三角形应用题常见的几种情况 (1)实际问题经抽象概括后,已知量与未知量全部集中在 一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个 (或两个以上)三角形,这时需作出这些三角形,先解够条件的 三角形,然后逐步求出其他三角形中的解,有时需设出未知量, 从几个三角形中列出方程,解方程得出所要求的解.
解析:
设快艇驶离港口 B 后,最少要经过 xh,在 OA 上的点 D 处与考察船相遇.如图,连接 CD.则快艇沿线段 BC,CD 航行.
在△OBC 中,∠BOC=30°,∠CBO=60°,∴∠BCO=90°. 又 BO=120,∴BC=60,OC=60 3.故快艇从港口 B 到 小岛 C 需要 1h. 在△OCD 中,∠COD=30°,OD=20x,CD=60(x-2). 由余弦定理知,CD2=OD2+OC2-2OD·OCcos∠COD, ∴602(x-2)2=(20x)2+(60 3)2-2·20x·60 3cos30°,解得 x =3 或 x=38. ∵x>1,∴x=3. 故快艇驶离港口 B 后,最少要经过 3h 才能和考察船相遇.
分析:边读题,边画图形,如图,将条件中的角、长度 标上,求轮船离港口 A 还有多远,即求 AD 的长,在△ACD 中,已知一角(A)一边(CD),待求 AD,结合已知条件△BCD 三边长已知,由余弦定理可求三角,考虑沟通已知和未知, 可利用∠ADC 与∠BDC 互补,求∠BDC.
解析:
在△BDC 中,由余弦定理知, cos∠CDB=BD2+2BCDD·C2-D BC2 =-17,
测量距离的问题
[例 1] (2011·东北三校二模)港口 A 北偏东 30°方向的 C 处有一检查站,港口正东方向的 B 处有一轮船,距离检查站 为 31n mile,该轮船从 B 处沿正西方向航行 20n mile 后到达 D 处观测站,已知观测站与检查站距离 21n mile,问此时轮 船离港口 A 还有多远?
高中数学第一章解三角形122高度角度问题课件新人教A版必修5
3.如图,位于 A 处的海面观测站获悉,在其正东方向相距
40 海里的 B 处有一艘渔船遇险,并在原地等待营救.在 A 处南
偏西 30°且相距 20 海里的 C 处有一艘救援船,该船接到观测站
通知后立即前往 B 处救助,则 sin∠ACB=
21
7
.
解析:在△ABC 中,AB=40,AC=20,∠BAC=120°.由余
解:如图所示,设预报时台风中心为 B,开始影响基地时台 风中心为 C,基地刚好不受影响时台风中心为 D,则 B,C,D 在一直线上,且 AD=20,AC=20.
由题意 AB=20( 3+1),DC=20 2,BC=( 3+1)×10 2.
在△ADC 中,∵DC2=AD2+AC2,
∴∠DAC=90°,∠ADC=45°.
2.如图,D,C,B 三点在地面同一直线上,DC=100 m, 从 C,D 两点测得 A 点仰角分别是 60°,30°,则 A 点离地面的 高度 AB 等于( A )
A.50 3 m C.50 m
B.100 3 m D.100 m
解析:因为∠DAC=∠ACB-∠D=60°-30°=30°, 所以△ADC 为等腰三角形.所以 AC=DC=100 m, 在 Rt△ABC 中,AB=ACsin60°=50 3 m.
对于顶部不能到达的建筑物高度的测量,我们可以选择另一 建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、 俯角等构成的三角形,在此三角形中利用正弦或余弦定理求解即 可.
[变式训练 2] 如图,线段 AB,CD 分别表示甲、乙两楼, AB⊥BD,CD⊥BD,从甲楼顶部 A 处测得乙楼顶部 C 的仰角 α =30°,测得乙楼底部 D 的俯角 β=60°,已知甲楼高 AB=24 米, 则乙楼高 CD= 32 米.
(人教版)高中数学必修5课件:第1章 解三角形1.1.2
高效测评 知能提升
[问题3] 你会利用向量求边AC吗? [提示] 会.|B→A|=3,|B→C|=2,〈B→A,B→C〉=60°. A→C2=(B→C-B→A)2 =B→C2-2B→C·B→A+B→A2 =22-2×2×3×cos 60°+32 =7. ∴|A→C|= 7,即边AC为 7.
数学 必修5
1.利用余弦定理解三角形的步骤: (1) 两边和它们的夹角 余―弦――定→理 另一边 余―正 弦―弦 定――定 理―理 推→论 另两角
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.利用余弦定理解三角形的注意事项: (1)余弦定理的每个等式中包含四个不同的量,它们分别是 三角形的三边和一个角,要充分利用方程思想“知三求一”. (2)已知三边及一角求另两角时,可利用余弦定理的推论也 可利用正弦定理求解.利用余弦定理的推论求解运算较复杂, 但较直接;利用正弦定理求解比较方便,但需注意角的范围, 这时可结合“大边对大角,大角对大边”的法则或图形帮助判 断,尽可能减少出错的机会.
6- 2
2,
故A=60°时,C=75°,c=
6+ 2
2或A=120°时,
C=15°,c=
6- 2
2 .
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
已知两边及一边对角解三角形的方法及注意 事项
(1)解三角形时往往同时用到正弦定理与余弦定理,此时要 根据题目条件优先选择使用哪个定理.
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这 两边与它们的夹角的余弦的积的两倍.
高中数学人教A版必修五教学课件:第一章 《解三角形》 1.1.2 余弦定理
三角形中任何一边的平方等于其他两边的平方的和 减去 这两边与它们的夹角的余弦的积的 二 倍 在△ABC 中,
符号 语言
a2=b2+c2-2bccos A, b2=c2+a2-2accos B,
2 2 c2= a +b -2abcos C .
在△ABC 中, 推论 b2+c2-a2 c2+a2-b2 cos A= ,cos B= , 2bc 2ac
)
a2+c2-b2 1 解析:由题意知,cos B= =cos 120° =- ,∴a2+c2-b2 2ac 2 =-ac,∴a2+c2+ac-b2=-ac+ac=0.
答案:C
1 3.在△ABC 中,设角 A,B,C 的对边分别为 a,b,c,且 cos A= . 4 若 a=4,b+c=6,且 b<c,求 b,c 的值.
[解]
设 BD=x.在△ABD 中, 根据余弦定理, AB2=AD2+BD2-2AD· BDcos
∠BDA, ∴142=102+x2-2×10×xcos 60° ,………………………………3 分 即 x2-10x-96=0, 解得 x1=16,x2=-6(舍去),∴BD=16. ………………………6 分 ∵AD⊥CD,∠BDA=60° ,∴∠CDB=30° . ……………………9 分 在△BCD 中,由正弦定理, BC BD = , sin∠CDB sin ∠BCD
答案:120°
探究三
利用正余弦定理判断三角形的形状
[典例 3] 在△ABC 中,若 B=60° ,2b=a+c,试判断△ABC 的形状.
[解析] ∵B=60° , ∴b2=a2+c2-2accos 60° , 1 ∴ (a+c)2=a2+c2-ac, 4 ∴(a-c)2=0, ∴a=c, ∴a=b=c. 故△ABC 为等边三角形.
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课件_25
c
B
1 a2c2 4
1 4
a
2c
2
a2
c2 b2 2ac
2
1 [a2c2 (a2 c2 b2 )2 ]
4
2
即 S 1 [a2c2 (a2 c2 b2 )2] .
4
2
思考:除了 S 1 acsin B ,我们还学习过哪些三角形面积公式? 2
方法:利用余弦定理求出 cos B ,再根据 S 1 acsin B 进行证明.
2
证明:由余弦定理: cos B a2 c2 b2 2ac
S 1 ac sin B 1 ac
2
2
1 cos2 B 1 ac 2
1
a2
c2 2ac
b2
2
C
b
a
A
秦九韶的“大衍求一术”
比西方 1801 年著名数学家高斯建立的同余理论早 554 年,被西方 称为“中国剩余定理”。
秦九韶的任意次方程的数值解
领先英国人霍纳 572 年。
秦九韶的三斜求积术
秦九韶在 1247 年独立提出了“三斜求积术”, 虽然它与海伦公式形式上有所不同,但它完全与 海伦公式等价,它填补了中国数学史中的一个空 白,从中可以看出中国古代已经具有很高的数学 水平。
2、《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的 一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水 平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜 幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即
人教版高中数学必修5第1章《解三角形》PPT课件
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
由sina A=sinc C得,
c=assiinnAC=8×sinsin457°5°=8×
2+ 4 2
6 =4(
3+1).
2
∴A=45°,b=4 6,c=4( 3+1).
数学 必修5
第一章 解三角形
自主学习 新知突破
高效测评 知能提升
当B=60°时,C=90°, c= a2+b2=4 3; 当B=120°时,C=30°,c=a=2 3. 所以B=60°,C=90°,c=4 3或 B=120°,C=30°,c=2 3.
8分 10分
12分
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: 正弦定理适用于任意三角形,故①②均不正确; 由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦 的比就确定了,故③正确;由比例性质和正弦定理可推知④正 确.
答案: B
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
自主学习 新知突破
合作探究 课堂互(1)已知b=4,c=8,B=30°,求C,A,a; (2)在△ABC中,B=45°,C=75°,b=2,求a,c,A.
解析: (1)由正弦定理得sin C=c·sinb B=8sin430°=1. ∵30°<C<150°,∴C=90°, 从而A=180°-(B+C)=60°, a= c2-b2=4 3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ A≈84°.
√ 73· 2√5 2 = . √365
4:已知向量a、b夹角为120°, B
C
120°
且|a| =5,|b|=4,求|a – b| 、 b
|a+b| 及a+b与a的夹角. 解:在AOB中,
O
a
A
∵ |a – b|2 = |a|2+|b| 2 – 2|a||b|cos120° =61, ∴ |a – b|=√61.
证明:由于正弦定理:令 a k sin A, B k sin B, c k sin C
代入左边得:
左边= k (sin A sin B sin A sin C sin B sin C sin B sin A sin C sin A sin C sin B) 0 =右边
4:已知向量a、b夹角为120°, B
C
120°
且|a| =5,|b|=4,求|a – b| 、 b
|a+b| 及a+b与a的夹角. 在OAC中, =21, ∴ a+b =√21. ∵ cos∠COA= a 2+ a+b 2 – b 2
O
a
A
∵ |a + b|2 = |a|2+|b| 2 – 2|a||b|cos60°
三 (、 余 弦已 定 理知 )三 边
(
B=180°-(A+C)≈100°. c sinA ∵sinC= a ≈0.5954, ∴ C ≈ 36°或144°(舍).
)
3:ABC三个顶点坐标为(6,5)、 (-2,8)、(4,1),求A. y 解法一: B ∵ AB =√[6-(-2)]2+(5-8)2 =√73 , BC =√(-2-4)2+(8-1)2 =√85 , A O 2 = √365 C x
≈0.6546,
2 a a+b ∴ ∠COA即a+b与a的夹角约为49°.
一、复习 正弦定理
练习: (1)在 ABC 中,一定成立的等式是( C )
A. a sin A b sin B C . a sin B b sin A B . a cos A b cos B D. a cos B b cos A
正弦定理可以用来解两种类型的三角问题:
(1) 已知两角和任意一边,可以求出其他两边和一 角; (2)已知两边和其中一边的对角,可以求出三角形 的其他的边和角。
二、复习 余弦定理
1.余弦定理是解三角形的又一重要工具 2+c2-a2 b ; c2=a2+b2-2abcosC; cosA= 2bc 2+a2-b2 c ; b2=c2+a2-2cacosB; cosB= 2ca 2+b2-c2 a a2=b2+c2-2bccosA; cosC= . 2ab 2.余弦定理可解以下两种类型的三角形:
A 30
二、已知两边、一边所对的角 (正弦定理)
例题讲解 例3 在
ABC 中,已知
得
a 6, b 6 3, A 30 ,求 C 。
a b 解:由 sin A sin B
sin B
b sin A 3 a 2
60
∵ ∴
在 ABC 中 a b B 为锐角或钝角 B
5.9 正弦定理、余弦定理
解三角形复习(1)
一、复习 正弦定理
正弦定理 相等,即
在一个三角形中,各边和它所对角的正弦的比
a b c 2R sin A sin B sin C
1 S△ABC= 2
absinC
1 S△ABC= 2
acsinB
1 S△ABC= 2
bcsinA
一、复习 正弦定理
一、已知两角、一边(正弦定理)
例题讲解 例1 在 ABC 中,已知 c 10, A 45, C 30 ,求b(保 留两个有效数字). b c 解:∵ 且 B 180 ( A C ) 105 sin B sin C
c sin B 10 sin 105 b 19 sin C si0或120
C 90 或30
0
二、已知两边、一边所对的角 (正弦定理)
练习: 1 在 ABC 中,已知 c 2, a 3, A 60 ,那么_____ A.有一个解 B.有两个解 C.无解 D.不能确定 。
sin C 1
2:在ABC中,已知a=7,b=10, c=6,求A、B和C. 解: ∵ ∴ ∵ ∴ ∴ b2+c2-a2 cosA= =0.725, 2bc A≈44° 2 a +b2-c2 cosC= =0.8071, 2ab C≈36°,
(1)已知三边;
(2)已知两边及夹角.
在三角形中由已知的边与角求出未知 的边与角,称为解三角形. 三个独立的条件确定一个三角形. C C b b b a a (1)已知两角一边; B A A cc A (2)已知两边及其中一边的对角;
(3)已知三边;(余弦定理) (4)已知两边及夹角.(余弦定理)
A、A、S 三角形唯一
二、已知两边、一边所对的角 (正弦定理)
例题讲解 例2 在 ABC 中,已知a 4, b 4 2 , B 45 ,求 A 。 a b a sin B 1 sin A 解:由 得 sin A sin B b 2 ∵ ∴ 在 ABC 中 a b A 为锐角 B C a b A
AC =√
∴ cosA=
(6-4)2+(5-1)2=2
√5 ,
AB 2+ AC 2- BC 2 2 AB AC
,
∴ A≈84°.
3:ABC三个顶点坐标为(6,5)、 (–2,8)、(4,1),求A. 解法二:
y
B A
∵ AB=(–8,3),AC=(–2,–4).
AB· AC ∴ cosA= AB AC = (– 8)×(– 2)+3×(– 4) O C x
(2)在ABC 中,已知 a 2 3, b 6, A 30 , 则 B 等于( D ) A. 30º B. 60º C. 120º D. 60º 或120º
一、复习 正弦定理
练习: (3)在任一 ABC 中,求证: a(sin B sin C ) b(sin C sin A) c(sin A sin B) 0
∴ 等式成立
一、复习 正弦定理
练习:
B 45, C 60, a 2( 3 1) ,求 ABC 中, 在
ABC 的面积S.
解: A 180 ( B C ) 75 A
2 2( 3 1)( h ) a sin B 2 4 ∴由正弦定理得 b sin A 三角形面积公式 B 6 2 C 4 1 1 1 1 ab sin C ac sin B bc sin3A S ABC aha 1 1 2 24 ( ) 6 2 3 S 2 ab sin C 2 2( 3 1) ABC 2 2 2