传热学第五章_对流换热原理-5
第5章 对流传热理论与计算-5-实验关联式与自然对流
六 计算中需要注意的问题
3 注意的问题
(1)判断问题的性质
这是正确求解对流传热问题的关键。流体有无发生相 变?是自然对流还是强制对流?内部流动还是外部流动? 流态是层流还是湍流?
(2)选择正确的实验关联式
切忌张冠李戴,特别注意公式的适用范围,切不可随
意外推
40
六 计算中需要注意的问题
f w
0.14
2
33
(2) Hausen公式
若 Ref Prf
L /d
10时
Nuf
3.66
1
0.0668
0.04
Ref dL
Prf d L Ref Prf
2
3
可用于热入口段或混合段的层流对流传热
34
四 过渡区强迫对流传热的计算
过渡区:难以找到既简便又精确的计算公式
气体被加热时
气体被冷却时
c t
T T 0.55 fw
ct 1
对液体
m
c t
f w
m 0.11 液体受热时
m 0.25
液体被冷却时
24
引入修正系数ct来考虑不均匀物性场对换热的影响
Nu f
0.023
Ref0.8
Prfn
c t
气体被加热时
气体被冷却时
5.5 管内强迫对流传热的实验关联式
说明:
(1)管槽的含义:流动截面是圆形、椭圆形、正 方形、矩形、三角形等
(2)本节内容的重要性: ——指导工程计算的基础、给出的关联式是工程计算 的依据,必须掌握 ——考试的必考内容
《传热学》第五章 对流换热分析PPT演示课件
24
求解结果 局部表面传热系数:
或可写成:
其中:
——准则方程
——无量纲流速 ——无量纲物性 ——无量纲换热强度
准则方程的意义——
把微分方程所反映的众多因素间的规律用少数几个准则来概括, 从而减少变量个数,以便于进行对流换热问题的分析、实验研究 和数据处理。
将上式在x,y两个方向代入牛顿第二定律,得到Navier-Stokes方程: 对于不可压缩流体:
11
将其代入Navier-Stokes方程,并采用连续方程化简,得到:
对稳态流动:
惯性力
体积力 压强梯度 黏滞力
当只有重力场作用时:
12
四、能量微分方程式
推导依据—— 内能增量=导热热量+对流热量 1.导热热量:
外掠平板全板长平均换热准则方程:
29
第六节 相似理论基础
相似原理的意义——通过实验寻找现象的规律以及指导推广应用实验。
一、物理相似的基本概念
1.几何相似
LA、LB——几何相似准则
30
2.物理现象相似
以管内流动为例,当两管各r之比满足下列 关系时:
若: 则速度场相似。 以外掠平板为例,当x,y坐标满足下列关系时:
《传热学》
1
第五章 对流换热分析
研究对象——流体与固体壁面之间的传热过程
研究目的——确定牛顿冷却定律
中的h
对流表面 传热系数
局部对流表面传热系数hx 平均对流表面传热系数
Isaac Newton(1642-1727)
确定对流表面传热系数的四种方法
分析法
类比法 数值法 实验法
传热学-5 对流传热原理
5-4 相似原理简介
1)几何相似 对应的长度量成固定比例,对应的角度相等。
若(1)(2)相似
a' a ''
b' b ''
c' c ''
h' h ''
' ''
P' P ''
CF
5-4 相似原理简介
4)初始条件和边界条件相似 保证定解条件一致。
几何相似是运动相似和动力相似的前提; 动力相似是决定流动相似的主要因素(保证); 运动相似是几何相似和动力相似的表现。
y
u
u
tw x
5-1 对流传热概述
特点: (1)导热与热对流同时存在的复杂热传递过程; (2)必须有流体和壁面的直接接触和宏观运动, 也必须有温差; (3)由于流体的黏性和受壁面摩擦阻力的影响,紧 贴壁面处会形成速度梯度很大的流动边界层; (4)紧贴壁面处同时形成温度梯度很大的热边界层。
5-1 对流传热概述
偏微分方程+定解条件
速度场和温度场
表面传热系数h
2 实验法
相似原理指导下通过实验获得表面传热系数的 计算式(是目前工程计算的主要依据)。
对流传热问题的研究方法
3 比拟法
通过研究热量传递与动量传递的共性或类似特性, 建立起表面传热系数 h 与阻力系数 cf 间的相互联系, 通过较易测定的阻力系数来获得相应的表面传热系数 值。
主流区:速度梯度为0, 0 可视为无粘性理想流
传热学第五章对流换热
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
传热学第五章对流换热
§5-1 §5-2 §5-3 §5-4 §5-5 §5-6 §5-7 §5-8
对流换热
Convective heat transfer
对流换热概说 对流换热的数学描写 对流换热边界层微分方程组 对流换热边界层积分方程组 相似理论与量纲分析 管内受迫流动 横向外掠圆管的对流换热 自然对流换热及实验关联式
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
同理:() dτ qm hout − qm hin ≈ ρcp (
y
H y + dy − H y =
∂t ∂v ⋅ v + ⋅ t )dxdydτ ∂y ∂y
(qm h)out − (qm h)in ∴ ∂t ∂t ∂u ∂v = ρ c p (u + v )dxdy + ρ c p t ( + )dxdy ∂x ∂y ∂x ∂y ∂t ∂t = ρ c p (u + v )dxdy (d ) ∂x ∂y
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的概念。
传热学_对流部分
第五章 对流换热分析
量[kg/s]。 单位时间内、沿X轴方向、经x表面流入微元体的质量 单位时间内、沿X轴方向、经x+dx表面流出微元体的质量
η↑→ h↓ ,有碍流体流动,不利于热对流;
α↑→自然对流换热增强。
综上所述,表面传热系数是众多因素的函数
h=f(v,tw,tf, λ,cp, ρ, η, α,l,……) 对流换热过程微分方程式 当粘性流体在壁面上流动时,由于粘性的作用,流体的流速在靠
第五章 对流换热分析
近壁面处随离壁面的距离的缩短而逐渐降低;在贴壁处被滞止, 处于无滑移状态,即y=0, u=0。 在这极薄的贴壁流 体层中,热量只能 以导热方式传递。 根据傅里叶定律
第五章 对流换热分析
圆管、管束)。
流体的热物理性质
热导率λ[W/m.K]、密度ρ[kg/m3]、比热容c[J/kg.K]、动力粘度η
[N.s/m2]、运动粘度ν=η/ρ[m2/s]和体胀系
[1/K]。
λ↑→h↑,流体内部和流体与壁面间的导热热阻小;
ρ、c↑→ h↑ ,单位体积流体能携带更多的能量;
第五章 对流换热分析
必须有直接接触(流体与壁面)和宏观运动,也必须有温差; 由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速
度梯度很大的边界层。 表面传热系数(对流换热系数):当流体与壁面温度相差1度时、 每单位壁面面积上、单位时间内所传递的热量。
单位:W/(K.m2) 如何确定h及增强换热的措施是对流换热的核心问题。 对流换热的影响因素 对流换热是流体的导热和热对流两种基本传热方式共同作用的结 果。其影响因素主要有以下五个方面:流动起因、流动状态、流 体有无相变、换热表面的几何因素、流体的热物理性质。后面将 详细学习这些影响因素的影响机理(机制)。
第五章-传热学
h
' h,x
' h,y
cpuxtvytdxdy
8
单位时间内微元体热力学能的增加为
dU
d
cp
t
dxdy
于是根据微元体的能量守恒
h
dU
d
可得
2t x2
2t y2
dxdy
cpuxtvytdxdy
cp
t
dxdy
cptux tvy ttu xv y
2t x2
2t y2
2
20
cp
uxt
v t y
=
2t x2
2t y2
1
11 1
1
2
1 1
1
2
对流换热微分方程组简化为
h t tw tf y w
u v 0 x y
简化方程组只有4个方
程,但仍含有h、u、v、 p、t 等5个未知量,方
程组不封闭。如何求解?
uuxvuy1ddpxy2u2
u t x
v t y
26
第六节 相似理论基础
相似原理指导下的实验研究仍然是解决复杂对流换 热问题的可靠方法。
相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
一、 相似原理的主要内容
1.物理现象相似的定义 2.物理现象相似的性质 3.相似特征数之间的关系 4.物理现象相似的条件
三、解的函数形式——特征数关联式
特征数是由一些物理量组成的无量纲数,例如毕 渥数Bi和付里叶数Fo。对流换热的解也可以表示成 特征数函数的形式,称为特征数关联式。
通过对流换热微分方程的无量纲化可以导出与对 流换热有关的特征数。
传热学 第五章 对流换热
t qw
n w
第三类边界条件?
思考
对流换热微分方程表明,在边界上垂直于壁面的热量传 递完全依靠导热,那么在对流换热过程中流体的流动起 什么作用?
hx
tw t
x
t y
y0,x
c
p
t
u t x
v
t y
2t x2
2t y 2
流场决定温度场
小结
我们学习了 影响对流换热的一些因素; 对流换热微分方程:对流换热系数的定义 对流换热微分方程组:连续性方程、动量方程、能量方程
A qxdA
A
hx
tw
t
x
dA
h
1 A
A hxdA
对流换热的 核心问题
对流换热的影响因素
对流换热是流体的导热和热对流两种基本传热方式共同作用的结果。 影响因素:
1)流动的起因:强迫对流换热与自然对流换热 2) 流动的状态:层流和紊流 3) 流体有无相变 4) 流体的物理性质
5) 换热表面的几何因素
v
t y
2t x2
2t y 2
2) 对流换热的单值性条件
(1) 几何条件 (2) 物理条件 (3) 时间条件 (4) 边界条件
1904年,德国科学家普朗特(L. Prandtl)提出著名 的边界层概念后,上述方程的求解才成为可能。
第一类边界条件 t w f x, y, z,
q 第二类边界条件 w f x, y, z,
采用氢冷须注意其密封结构,否则泄露后会发生爆炸。
5) 换热表面的几何因素
强迫对流
(1)管内的流动
(2)管外的流动
自然对流
(3)热面朝上
(4)热面朝下
对流换热分类
传热学第五章
例2:流体外掠平板对流换热边界层温度场相似问题 温度沿 x、y 方向变化 如果在空间 对应点上: 几何相 似倍数
' x1 " x1
=
' r2 " r2
=
r3'
" r3
= .... =
' um " um
R'
几何相 似倍数
=
' u2 " u2
=
' u3 " u3
= .... =
' u max
∂x
∂y
∂y
Cu Cl Ca
” ∂t” ” ∂t” ” ∂ 2 t” =a u +v 2 ∂x” ∂y” ∂y”
hl — — 努谢尔特数( Nusslet ) λ ρul ul = Re = — 雷诺数 ( Reynolds ) η ν Nu = ν a ∆p Eu = ρu 2 Pr = — — 普朗特数 (Prandtl) — — 欧拉数 (Euler) ul — 贝克利数 (Peclet)20 a
17
∂u” ∂v” + =0 ∂x” ∂y”
Cu Cl u 'l ' υ " =1 ⇒ =1 Re ' = Re" Cυ υ ' u "l " C∆p Cl ∆p ' u 'l ' ρ "u "2 υ " = 1 ⇒ ' '2 ' =1 C ρ Cu Cυ ρ u υ ∆p" u "l "
Eu ' Re ' = Eu " Re "
传热学第五章
h Atw t
以后除非特殊声明外,我们所说的对流换热系数皆指平均对流换
热系数,以 h 表示.
h(x)规律说明
Laminar region
x (x) h (x) 导热
Transition region
扰动
h(x)
Turbulent region
湍流部分的热阻很小,热阻主要集中在
粘性底层中.
2.按有无相变分
单相介质传热:对流换热时只有一种流体.
相变换热:传热过程中有相变发生.
物质有三态,固态,液态,气态或称三相.
相变换热有分为:
沸腾换热:(boiling heat transfer)物质由液态变为气态时发生 的换热.
凝结换热:(condensation heat transfer)物质由气态变为 液态时发生的换热. 熔化换热(melting heat transfer) 凝固换热(solidification heat transfer) 升华换热(sublimation heat transfer) 凝华换热(sublimation heat transfer )
由上述分析可见,边界层控制着传热过程,故一些研究人员试图通过
破坏粘性底层来达到强化传热的目的,并取得了一些成果.
二、边界层微分方程组.
牛顿流体(Newtonian fluid),常物性,无内热源,耗散不计,稳态,
二维,略去重力.
完性分析已知:u,t,l 的量级为0(1) , t 的量级为0()
以此五个量为分析基础。
2.动量方程(momentum equation)
u v 0 x y
u
u
u x
v
u y
Fx
p x
传热学第五章 对流换热计算
2019/11/19
23
华中科技大学热科学与工程实验室
HUST Lab of Thermal Science & Engineering
例1 空气以2m/s的速度在内径为10 mm的管内流动, 入口处空气的温度为20℃,管壁温度为120℃,试确 定将空气加热至60℃所需管子的长度。
2019/11/19
20
华中科技大学热科学与工程实验室
HUST Lab of Thermal Science & Engineering
③短管 当管子的长径比l/d<60时,属于短管内流动换 热,进口段的影响不能忽视。此时亦应在按 照长管计算出结果的基础上乘以相应的修正
系数Cl。 cl 1dl0.7
充分发展区:边界层汇合于管子中心线以后的 区域,即进入定型流动的区域。
2019/11/19
3
华中科技大学热科学与工程实验室
HUST Lab of Thermal Science & Engineering
充分发展段为层流流动
为什么平均换热系数比局部换热系数高?
入口段的边界层厚度较薄,传热阻力小,表面传热系数 大(即,对流换热强)
为什么气体和液体的修正方式不一样?
2019/11/19
18
华中科技大学热科学与工程实验室
HUST Lab of Thermal Science & Engineering
② 螺旋管或弯管 弯曲的管道中流动的流体,在弯曲处由于离 心力的作用会形成垂直于流动方向的二次流 动,从而加强流体的扰动,带来换热的增强。
传热学第五章对流传热的理论基础
实验数据如何整理(整理成什么样函数关系) 强制对流:Nu f (Re,Pr); Nux f ( x' , Re,Pr)
自然对流换热:Nu f (Gr, Pr) 混合对流换热:Nu f (Re, Gr, Pr)
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
2
流体流过固体表面时,。。。
普朗特边界层理论:粘性流体流过固体表面时,粘滞性 起作用的区域仅仅局限在靠近壁面的薄层内。
3
2. 对流传热系数
u∞ ; t ∞
tw
由傅里叶定律:
q t y w
W m2
对流传热的定义式: q ht h tw t [W/m2 ]
在边界层不脱落的前提下:
q ht = t y w
x为当前点与板前缘的距离。 Pr=
a
1
1
hx x
0.332
u x
2
a
3
Nux 0.332Re1x 2 Pr1 3
上述理论解与实验值吻合。
注意:层流
18
2. 对于外掠平板层流分析解的几个讨论
(1)局部对流传热系数,平均对流传热系数
局部对流传热系数
Nux
hx x
11
0.332Rex 2 Pr 3
第五章 对流传热的理论基础
1
5.1 对流传热概述
1. 对流传热的定义、研究对象
流体流过固体表面时,流体与固体之间的热量传递。
工程上约定的计算习惯:
若tw t,Φ hA(tw t ) W 若tw t,Φ hA(t tw ) W
第五章 对 流 换 热
第五章 对 流 换 热本章内容要求:1 、重点内容: 对流换热及其影响因素;牛顿冷却公式;用分析方法求解对流换热问题的实质边界层概念及其应用相似原理无相变换热的表面传热系数及换热量的计算2 、掌握内容:对流换热及其影响因素;用分析方法求解对流换热问题的实质3 、讲述基本的内容:对流换热概述; 对流换热的数学描写; 对流换热的边界层微分方程组; 边界层积分方程组的求解及比拟理论; 相似原理及量纲分析; 相似原理的应用; 内部流动强制对流换热实验关联式; 外部流动强制对流换热实验关联式; 自然对流换热实验关联式在绪论中已经指出, 对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程, 是发生在流体中的热量传递过程的特例。
由于流体系统中流体的运动,热量将主要以热传导和热对流的方式进行,这必然使热量传递过程比单纯的导热过程要复杂得多。
本章将在对换热过程进行一般性讨论的基础上,将质量守恒、动量守恒和能量守恒的基本定律应用于流体系统,导出支配流体速度场和温度场的场方程-对流换热微分方程组。
由于该方程组的复杂性,除少数简单的对流换热问题可以通过分析求解微分方程而得出相应的速度分布和温度分布之外,大多数对流换热问题的分析求解是十分困难的。
因此,在对流换热的研究中常常采用实验研究的方法来解决复杂的对流换热问题。
在这一章,我们将 通过方程的无量纲化和实验研究方法的介绍而得到常用的准则及准则关系式。
讨论的重点放在工程上常用的管内流动、平行流过平板以及绕流圆管的受迫对流换热,大空间和受限空间的自然对流换热,以及蒸汽凝结与液体沸腾换热。
§5-1 对流换热概述本节要求:1。
对流换热的概念:流体−−→−温差固体壁面; 2.对流换热中,导热核对流通式汽作用;3.对流换热的影响因素:)(f w t t hA -=Φ,h ——过程量;4.对流换热系数如何确定:0=∂∂∆-=y y tt h λ1 对流换热过程对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程 ,( 直接接触是与辐射换热的区别),是宏观的热对流与微观的热传导的综合传热过程。
传热学-第五章-对流原理.
三个准则数分别称为努谢尔特准则,雷诺 准则和普朗特准则,相应地用符号Nu、Re 和Pr表示,代入式(d)中,得
N uARcePer
写成一般形式的无量纲关系式,则为
u=f〔Re,Pr)
上两式称之为准则方程式,式中的系 数和指数,或方程的具体形式由试验确
定。
至于自然对流换热,无论是理论分析还 是试验分析,都觉察正是由于壁面和流 体之间存在的温度差,使流体密度不均 匀所产生的浮升力,导致了自然对流运 动的发生和进展。自然对流换热系数α 与其影响因素的一般关系式为
如下图,流体接触管道后,便从两侧流过, 并在管壁上形成边界层。正对着来流方向 的圆管最前点,即φ=0处,流速为零, 边界层厚度为零。此后,在圆管壁上形成 层流边界层,并随着φ角的增大而增厚。 当厚度增加到肯定程度时,便过渡到紊流 边界层。在圆管壁φ=80°四周处,流体 脱离壁面并在圆管的后半部形成旋涡。
明显,流体温度的分布与流体的流淌有关, 深受速度边界层的影响。流体呈层流状态时, 流体微团沿相互平行的流线进展,没有横向 流淌,不发生物质交换,壁面法线方向上的 热量传递,根本上靠分子的导热进展,层内 温度变化较大,温度分布呈抛物线型。对于 紊流边界层,其中层流底层的热量传递也是 靠导热,而在紊流核心层的热交换,除靠分 子的导热外,主要靠流体涡流扰动的对流混 合,从而使得层流底层的温度梯度最大,而 在紊流核心层温度变化平缓比较均匀全都。
二、
从上节可以知道,在大多数状况下, 影响无相变对流换热过程的换热系数 α的物理因素可归结为流体流态、物 性、换热壁面状况和几何条件、流淌 缘由四个方面。争论说明,对于管内 受迫流淌,假设假定物性是常数,不 随温度而变,争论的是平均对流换热 系数。影响换热系数α的因素有流速V, 管径D,流体密度ρ,动力粘度μ,比 热cp和导热系数λ。
大学传热学第五章 第五节、第六节
• 代入 • 整理后得到
chh"ct t"
c
"
ct cy
t" y"
y" 0
chcy h" " t"
c
t" y" y" 0
换热方程的相似分析
• 比较得到
chcy 1 c
• 将相似倍数的定义式h代' y入' 式' h" y" "
•令
ly
y' y"
l' l"
cl
h' y' h" y"
' " h'l' h"l"
• 此时方程可改写为
tw t f t tw t f
•
将上述换热方程无量纲化,h有tw t f
t
y y0
hl
tw
t/tw
y /l
t
f
y0
换热相似的条件
• 根据相似的定义可以知道:两个彼此相似的物理 现象,它们的同名物理量场应该相似。
• 对于彼此相似的两个换热现象,它们的无量纲温 度场应用相似,即现象1与现象2的无量纲温度场 相似。
• 既然两个现象的无量纲温度场相似,那么无量纲 的温度梯度也应该相等。因此,对于两个彼此相 似的对流换热现象1和2,应该有
hl
1
hl
2
努塞尔数(努塞尔准则)
• 定义
hl Nu
• 物理意义:壁面上流体的无量纲温度梯度,表征换热强度
的大小。 • 与毕渥数的区别: (1)准则数的物理意义不同; (2)准则数中各量的物理意义也不完全相同; (3)毕渥数中导热系数指固体材料的,而努塞尔数中的导
传热学(第四版)第五章:对流传热的理论基础
第五章 对流换热
9
层流到湍流的转变:Reynolds数(1880年~1883年)
澄清了当时流体流动实验结果 的混乱。
第五章 对流换热
10
边界层理论(1904年、1908年)
普朗特边界层理论在流体力学 发展史上具有划时代的意义。
第五章 对流换热
11
对流传热理论蓬勃发展(1910年以后)
1921年 波尔豪森 热边界层 1930年 Schmit等 竖壁附近空气的自然对流 。。。。。。
第五章 对流换热
14
边界层的特征: (1)薄;(2)沿平板长度层流过渡到湍流。
第五章 对流换热
15
N-S方程
u v 0 x y
u
u
u
x
v
u
y
Fx
p x
(
2u x2
2u y 2
)
v
u
v
x
v
v
y
Fy
p y
(
2v x2
2v y 2
)
由于 u v, y x
u v 0 x y
u
u
x
v
u
y
dp dx
第五章 对流换热
12
5 速度边界层理论(回忆流体力学知识)
研究背景
边界层理论是在研究流体流过固体表面时阻力特性这一问题
时提出来的。 Fd
A
wdA,
w
u
y w
第五章 对流换热
13
流体流过固体表面时,。。。
普朗特边界层理论:粘性流体流过固体表面时,粘滞性起作用 的区域仅仅局限在靠近壁面的薄层内。 Prandtl’s idea of the boundary layer: a thin region on the surface of a body in which viscous effects are very important and outside of which the fluid behaves essentially as if it were inviscid.
传热学5-对流换热分析
Mx
M x dx x
M y vdx
单位时间内、沿x轴方向、 经x表面流入微元体的质量 单位时间内、沿x轴方向、经 x+dx表面流出微元体的质量
M x udy
M x M x dx M x dx x
单位时间内、沿x轴方向流入微元体的净质量:
M x M x dx
无论流体流动与否, p 都存在;而 ii只存在于流动时
同一点处各方向的 p 都相同;而 ii与表面方向有关
推导过程见P110 动量微分方程 — Navier-Stokes方程(N-S方程)
u u u p u u ( u v ) Fx ( 2 2 ) x y x x y
M x ( u ) dx dxdy x x
单位时间内、沿 y 轴方向流入微元体的净质量:
M y M y dy
单位时间内微元体 内流体质量的变化:
( v) dy dxdy y y
M y
( dxdy) dxdy
Mx
速度场和温度场由对流换热微分方程组确定: 质量守恒方程、动量守恒方程、能量守恒方程
2 质量守恒方程(连续性方程) 流体的连续流动遵循质量守恒规律
(x, y) 处取出边长为 dx、dy 的微元体(z方向为单位长度),M 为质量 流量 [kg/s]
从流场中
Mx
M x dx x
M y vdx
热的核心问题
研究对流换热的方法:
(1)分析法 (2)实验法 (3)比拟法 (4)数值法
传热系数大致范围
5 对流换热的影响因素
对流换热是流体的导热和对流两种基本传热方式 共同作用的结果。其影响因素主要有以下五个方面: (1)流动起因 (2)流动状态 (3)流体有无相变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=0.0276W/m℃,=16.96×10-6m2/s, Pr=0.699;
于是,Re=(u∞*L)/ = 35*0.7/(16.96×10-6)=1.445×106
于是,全板平均换热系数为
Nu (0.037Re 870) * Pr
0.8
1/ 3
Nu (0.037 (1.445106 )0.8 870) * 0.6991/ 3 2009
C f ,x 2/3 Stx * Pr j ——j为科尔伯因子,无量纲表面传热系数 2 St * Pr2 / 3 C f 2
上式称为柯尔朋类比律。 ④外掠平板的湍流换热
理论分析与实验测定得到,外掠平板的湍流边界层局部 阻力系数为
C f , x 0.0592Re x
上式适用于
1/ 5
5×105≤ Re ≤107 结合柯尔朋类比律,由上式,可得湍流换热的努塞尔 数为
Nu x
hx ,t * x
0.0296Re x
xc L
4/5
* Pr1/ 3
而外掠平板湍流换热的全板平均换热系数为
h ( hx ,l dx hx ,t dx ) / L
0 xc
则得 引入 则得
Cf w h 2 c pu u 2
St Nu Re* Pr
——斯坦 顿数
Cf h St c p u 2
同理,对于层流(湍流)的局部换热系数和摩擦系数 存在
Stx
C f ,x 2
——简单雷诺类比定律, 仅适用于Pr=1的流体
如 Pr≠1 ,雷诺类比定律可用下式修正
对于边界层内的层流流动,有
于是,有
dt d ( c pt ) / dy 1 d ( c pt ) / dy ( ) l du c p d ( u) / dy Pr d ( u) / dy
ql
上式反映了层流流动能量传递(热量交换速率)和 动量传递的类比关系。 q dt 若Pr=1,则上式可写为
)]* Pr1/ 3
如果取xc=5×105;则得常壁温外掠平板湍流换热的 全板平均换热系数为
Nu (0.037Re 870) * Pr
0.8
1/ 3
适用条件为
5 10 Re 10
5
8
0.6 Pr 60
例:常压20℃的空气以u∞=35m/s的速度外掠平板, 板长L=70cm,壁温tw=60℃,试求平均换热系数和换 热量(设板宽为1m)。 分析:定性温度tm=(tw+tf)/2=40℃,查物性表得
l
l
c p
du
对于边界层内的湍流流动,由于 m>> ; h>>a dt du q c p h m 于是,有 dy dy
q
c p
h dt m du
令
h Pr t m
dt c p du
t
ql qw
若 Prt=1,则得 于是,
q
以单相流体在固体表面的对流换热为例,设有a、b 两对流换热现象相似,则 t h(t w t f ) ( ) w 对于现象 a, 有 y a 写成无量纲形式, 有 ha a a ( ) w (a)
Ya
同理,对于现象 b, 有
b hb b b ( )w Yb
③动量传递与热量传递的类比—— 比拟理论
目的:利用流动阻力的实验数据解决对流换热问题
3-1:湍流中的动量传递和热量传递 1)湍流中的瞬时真实速度和真实温度
u v t u u' v v' t t'
u为平均速度,t为平均温度,u’,v’,t’为脉动值
2)雷诺应力
t u' v'
h Nu * 0.0276 2009 79.2W / m 2℃ L 0.7
换热量为
Q h * A * t 79.2 0.7 1.0 40 2217 .6W
5-5 相似原理与量纲分析
几个概念: (1)同类现象:用相同形式并具有相同内容的微分 方程式(包括控制方程和单值性条件)所描述的现象。 只有属于同类物理现象才能谈论相似问题。 (2)同类物理现象的相似:两个同类物理现象,如 果在相应的时刻与相应的地点上与现象有关的物理量 一一对应成比例,则称这两个物理现象彼此相似。 相似现象的性质 (1)凡是相似的物理现象,其物理量的场一定可以 用一个统一的无量纲的场来表示; (2)凡是相似的物理现象,描写该现象的同名准则 数必定对应相等;
qt
c p
q dt l du l
这意味着,湍流与层流之两传类比服从同一方程。 若假定 const 在整个边界层内成立,则积分可得 l w
w
qw c p t f tw u h(t w t f )
w
考虑到
q w h (t w t f ) u 2 w Cf * 2
湍流脉动传递的热量为
湍流中总的热流通量为
dt dt q ql qt ( c p h ) dy dy
改写为
3-2:雷诺类比
dt q c p (a h ) dy
dt dt ql c p a dy dy du du l dy dy
其中,u’,v’为x和y方向速度的瞬时脉动值
习惯上,令
du t u' v' m dy
du 2 其中,m为湍流粘度,m /s; dy
为湍流时均速度梯度。
湍流中总的粘滞应力为
du l t ( m) dy
dt qt c p v' t ' c p h dy dt 2 其中,h为湍流导温系数,m /s; 为湍流时均温度梯 dy 度。
其中,xc为层流向湍流转变的临界距离。而hx,l可根 据下式计算
hx ,l 0.332 Re1/ 2 Pr1/ 3 x
则,对于Re>5×105的外掠等温平板流动,全板的平 均表面传热系数可按下式计算
Num [0.664Re
ห้องสมุดไป่ตู้
1/ 2 c
0.037(Re Rec
4/ 5
4/ 5