肿瘤靶向治疗药物载体的研究进展

合集下载

药物载体调研报告

药物载体调研报告

药物载体调研报告药物载体是一种将药物包裹在内部,以达到稳定、控制释放和增强药效的技术。

药物载体具有很大的应用潜力,并在药物研究和临床治疗中发挥着重要的作用。

本文将对药物载体进行调研,以便更好地了解其工作原理和应用领域。

药物载体的工作原理是将药物包裹在载体中,形成药物载体复合物。

药物载体可以是无机材料如纳米颗粒、纳米板、纳米管等,也可以是有机材料如聚合物、脂质体等。

药物通过与药物载体复合形成的结构迅速进入细胞内,并在体内释放出药物。

药物载体的选择要考虑药物的特性、目标组织以及治疗目的等因素。

而药物载体的调控则可以通过改变载体的尺寸、形状、组成、表面性质等来实现。

药物载体有许多优点。

首先,药物载体可以增加药物的稳定性,使其不易降解和代谢。

其次,药物载体可以控制药物的释放,使药物在体内有更长时间的作用。

此外,药物载体还可以提高药物在目标组织的靶向性,减少对其他组织的损伤。

最后,药物载体可以增强药物的溶解性,提高药物的生物利用度。

药物载体在药物研究和临床治疗中具有广泛的应用。

在药物研究中,药物载体可以用于药物传递系统的构建和评价。

在临床治疗中,药物载体可以用于靶向治疗、缓释治疗、肿瘤治疗等领域。

例如,纳米颗粒可以作为药物载体用于肿瘤治疗,通过改变颗粒的大小和组成,可以实现肿瘤细胞的特异性靶向,从而提高治疗效果并减低副作用。

然而,药物载体也存在一些挑战和限制。

首先,药物载体的合成和表征技术仍然不够成熟,且成本较高。

其次,药物载体的稳定性和释放控制问题仍然存在一定的难题。

此外,药物载体的靶向性和生物相容性问题也需要进一步解决。

因此,尽管药物载体具有很大的潜力,但仍需进一步研究和开发。

综上所述,药物载体是一种重要的技术,具有广泛的应用领域和潜力。

药物载体可以增加药物的稳定性和控制药物的释放,从而提高药物的疗效。

然而,药物载体仍然面临一些挑战和限制,需要进一步的研究和开发。

随着科学技术的不断进步,相信药物载体将在未来的药物研究和临床治疗中发挥越来越重要的作用。

聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展

聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展
药学 实 践 杂 志
2 0 1 3年 3月 2 5 日第 3 1卷 第 2期
J o u r n a l o f P h a r ma c e u t i c a l P r a c t i c e, Vo 1 . 3 1,No 2, Ma r c h 2 5, 2 01 3
聚 合物胶 束 作为 药 物载体 及 其在肿 瘤 靶 向方面 的研 究进 展
目前 , 对肿瘤 进行 药 物 治疗 的主要 困难 是 抗肿
列 出 的辅 料安 全性评 价 中 , 新 型 两亲 性 嵌段 共 聚 物 被列为 “ 安全” 级 别 。本 文 着重 综 述 了聚 合 物 胶 束 作 为肿瘤 靶 向药物载体 的研 究进展 。
[ Ab s t r a c t ] S o m e u n i q u e i n h e r e n t p r o p e r t i e s o f p o l y me r i c m i c e l l e s ,i n c l u d i n g s m a l l p a r t i c l e s i z e , h i g h s t a b i l i t y , l o n g r e s i d e n c e
靶 向药 物 载 体 的研 究 进 展 。 [ 关键 词 ] 聚合 物胶 束 ; 嵌段 共 聚物 ; 肿瘤 靶 向 ; 药 物 载体
[ 中图 分 类 号 ] R 9 7 9 . 1
[ 文献 标 志 码 ] A
[ 文章编号] 1 0 0 6— 0 1 1 1 ( 2 0 1 3 ) 0 2— 0 0 8 6一 O 5
吴韫 韬 , 张依 依 ( 上海交通大学 医学院附属新华 医院 , 上海 2 0 0 0 9 2 )

抗肿瘤药物靶向纳米载体的构建及应用研究

抗肿瘤药物靶向纳米载体的构建及应用研究

4、纳米粒子的制备
4、纳米粒子的制备
制备抗肿瘤药物靶向纳米载体的关键步骤是纳米粒子的制备。制备方法包括 物理法(如超声波法、喷雾干燥法等)和化学法(如乳化-交联法、沉淀法等)。 制备过程中需对工艺参数进行严格控制,以确保纳米粒子的粒径、形貌和稳定性。
二、抗肿瘤药物靶向纳米载体的 应用研究
二、抗肿瘤药物靶向纳米载体的应用研究
抗肿瘤药物靶向纳米载体的 构建及应用研究
目录
01 一、抗肿瘤药物靶向 纳米载体的构建
03 三、结论
02 二、抗肿瘤药物靶向 纳米载体的应用研究
04 参考内容
内容摘要
抗肿瘤药物靶向纳米载体是一种具有高度靶向性和高效性的新型药物传递系 统,能够将抗肿瘤药物精确地输送到肿瘤部位,从而提高药物的疗效并降低副作 用。本次演示将介绍抗肿瘤药物靶向纳米载体的构建方法及其在肿瘤治疗中的应 用研究。
二、纳米药物载体的制备方法
二、纳米药物载体的制备方法
纳米药物载体的制备方法主要包括乳化-溶剂挥发法、喷雾干燥法、超临界流 体技术等。这些方法各有特点,可根据不同的需要选择适合的方法。例如,乳化 -溶剂挥发法可用于制备脂质体,喷雾干燥法可用于制备纳米粒和纳米球,超临 界流体技术则可用于制备高分子量药物载体。
一、抗肿瘤药物靶向纳米载体的 构建
一、抗肿瘤药物靶向纳米载体的构建
抗肿瘤药物靶向纳米载体的构建主要涉及载体材料的选取、药物装载、靶向 分子的修饰以及纳米粒子的制备等步骤。
1、载体材料的选取
1、载体材料的选取
抗肿瘤药物靶向纳米载体的关键要素之一是选择合适的载体材料。载体材料 应具有良好的生物相容性、可降解性和可加工性,同时应具备一定的药物载体能 力。目前常用的载体材料包括天然高分子材料(如壳聚糖、透明质酸等)和合成 高分子材料(如聚乳酸、聚乙烯醇等)。

基于转铁蛋白受体(TfR1)的肿瘤与脑部疾病靶向治疗研究进展

基于转铁蛋白受体(TfR1)的肿瘤与脑部疾病靶向治疗研究进展

基于转铁蛋白受体(TfR1)的肿瘤与脑部疾病靶向治疗研究进展人转铁蛋白受体(TfR1)在不同组织器官中普遍表达,其主要功能是协助转铁蛋白在细胞和血脑屏障内外转运,维持细胞铁平衡。

在肿瘤细胞中以及血脑屏障中,TfR1的表达水平明显高于正常细胞组织,因此,TfR1被认为是肿瘤靶向治疗和脑部疾病靶向治疗的重要靶点。

基于TfR1靶向治疗的药物载体主要有转铁蛋白(Tf)、抗TfR1抗体、TfR1结合肽,这些生物大分子能与TfR1特异性结合,结合之后可以通过受体介导的跨胞转运机制进入细胞或穿过血脑屏障。

将小分子药与这些载体偶联可以促进许多亲水性的化疗药物或神经治疗药物进入肿瘤细胞或血脑屏障,而许多中枢神经治疗性大分子则主要通过融合蛋白的方式与抗TfR1抗体连接转运进入中枢神经系统。

Abstract:Human TfR1 was universally expressed in different tissues. The major function of TfR1 was to facilitate delivery of transferrin across cells and blood-brain barrier(BBB). As a result, iron homo-stasis was maintained. TfR1 was recognised as a critical target for tumor and brain disease therapy due to its over expression in tumor cells and BBB. In recent years, drug carriers based on TfR1 recognition were developed such as Transferrin (Tf), anti-TfR1 antibody and TfR1 binding peptide. These carriers bind to TfR1 specifically and enter into cell or BBB through receptor mediated endocytosis. Chemicals conjugated with these carriers can be facilitated to enter into tumor cells and brain tissue. Therapeutic proteins can be engineered to fused with anti-TfR1 antibody and transported across BBB.Key words:TfR1; Tumor target therapy;Brain directed delivery1轉铁蛋白受体(TfR1)简介转铁蛋白受体(TfR1)是一种在不同组织和细胞系中普遍表达的糖蛋白。

纳米药物在肿瘤靶向治疗中的研究

纳米药物在肿瘤靶向治疗中的研究

纳米药物在肿瘤靶向治疗中的研究肿瘤,一直以来都是威胁人类健康的重大疾病之一。

传统的肿瘤治疗方法,如手术切除、化疗和放疗,虽然在一定程度上能够控制肿瘤的发展,但往往伴随着严重的副作用和有限的治疗效果。

近年来,随着纳米技术的飞速发展,纳米药物在肿瘤靶向治疗领域展现出了巨大的潜力,为肿瘤治疗带来了新的希望。

纳米药物,顾名思义,是指利用纳米技术制备的药物制剂。

纳米尺度的药物具有独特的物理化学性质,如小尺寸效应、高比表面积、表面可修饰性等,这些特性使得纳米药物能够更好地实现肿瘤靶向治疗。

肿瘤组织与正常组织在生理结构和功能上存在着显著的差异,这为纳米药物的靶向输送提供了可能。

肿瘤组织中的血管通常具有高通透性和滞留效应(EPR 效应),使得纳米药物能够更容易地从血管中渗出并在肿瘤组织中积累。

此外,肿瘤细胞表面往往过度表达某些特定的受体或抗原,通过在纳米药物表面修饰相应的配体,能够实现纳米药物对肿瘤细胞的特异性识别和结合,从而提高药物的治疗效果,减少对正常组织的损伤。

在纳米药物的设计中,载体材料的选择至关重要。

常见的纳米药物载体包括脂质体、聚合物纳米粒、无机纳米材料等。

脂质体是由磷脂双分子层组成的封闭囊泡,具有良好的生物相容性和低毒性,能够有效地包载水溶性和脂溶性药物。

聚合物纳米粒,如聚乳酸羟基乙酸共聚物(PLGA)纳米粒,具有可调控的粒径、表面性质和药物释放特性。

无机纳米材料,如金纳米粒、氧化铁纳米粒等,不仅可以作为药物载体,还具有独特的光学、磁学等性能,可用于肿瘤的诊断和治疗。

为了实现纳米药物对肿瘤的靶向治疗,需要对其表面进行功能化修饰。

例如,通过在纳米药物表面连接抗体、多肽、叶酸等靶向分子,能够使其特异性地识别和结合肿瘤细胞表面的靶点。

同时,还可以在纳米药物表面修饰聚乙二醇(PEG)等聚合物,以延长其在体内的循环时间,提高药物的生物利用度。

纳米药物在肿瘤靶向治疗中的应用主要包括化疗药物的靶向输送、基因治疗和光热治疗等方面。

纳米药载体在肿瘤靶向治疗中的应用现状和趋势

纳米药载体在肿瘤靶向治疗中的应用现状和趋势

纳米药载体在肿瘤靶向治疗中的应用现状和趋势随着临床医学的不断发展,肿瘤的治疗手段也得到了显著进展。

在过去,放疗和化疗是肿瘤治疗中的主要手段,但其存在的副作用和限制使得其应用受到限制。

近年来,随着纳米技术的不断发展,纳米药物成为了肿瘤治疗领域的新热点。

而纳米药物的关键在于其药物载体。

纳米药物通过利用多种载体将药物精确输送至病灶,可以大大提高药效,减少副作用。

本文将介绍纳米药载体在肿瘤靶向治疗中的应用现状和趋势。

一、纳米药物的优势纳米药物通过纳米技术制备而成,具有许多传统药物无法比拟的优势。

首先,纳米颗粒大小具有尺度效应。

纳米颗粒比普通药物小很多,能够更容易地渗透至肿瘤组织中,而不会被正常组织过滤掉。

其次,纳米药物具有良好的生物相容性和生物可分解性。

药物载体在体内不会引起免疫系统的攻击,从而不会被排斥。

最后,纳米药物具有特异性。

纳米药物可以通过特定的靶向分子选择性地与肿瘤细胞结合,实现对肿瘤组织的精确识别和定位。

二、纳米药载体的类型纳米药物的药物载体是纳米技术中的关键技术之一,不同类型的药物载体对纳米药物的性质和应用具有重要影响。

当前,常见的纳米药物载体主要包括脂质体、蛋白质纳米粒子、聚合物纳米粒子、金属纳米粒子、碳纳米管等。

1、脂质体脂质体是一种由磷脂和胆固醇等组成的微小球形结构,可用于携带各种药物。

脂质体具有尺度效应和良好的生物相容性,能够稳定地携带药物并减少药物的毒性。

同时,脂质体能够通过改变其表面组分实现对靶向分子的选择性结合,因此在靶向治疗中具有广阔的应用前景。

2、蛋白质纳米粒子蛋白质纳米粒子是由蛋白质自组装形成的一种纳米粒子。

这种载体具有良好的生物相容性和生物可分解性,且在体内不会引起免疫系统的攻击。

除此之外,蛋白质纳米粒子还具有天然的靶向性质,可以通过特定靶向分子识别肿瘤细胞并实现精确的靶向治疗效果。

3、聚合物纳米粒子聚合物纳米粒子是由多种合成材料组成的一种纳米粒子,其在靶向治疗中也具有广泛的应用。

药物在肿瘤治疗中的靶向递送研究

药物在肿瘤治疗中的靶向递送研究

药物在肿瘤治疗中的靶向递送研究随着癌症发病率的增加,对于肿瘤治疗的需求也随之增加。

然而,由于肿瘤细胞的异质性和局部缺血等因素的存在,传统的药物治疗在疗效和副作用方面都存在一定的限制。

为了克服这些困难,科学家们开始研究药物在肿瘤治疗中的靶向递送。

一、背景肿瘤靶向递送是一种通过改变药物的传输路径和控制药物的释放,将药物精确地递送到肿瘤组织的治疗方法。

这种方法可以提高药物的有效浓度,减少对正常组织的损伤,从而提高治疗的疗效和减少副作用。

二、靶向递送的主要策略1.药物包装技术药物包装技术是靶向递送的关键。

常用的包装材料包括纳米粒子、微粒和聚合物等。

这些材料可以在药物内部或外部包覆一层保护壳,通过物理和化学手段控制药物的释放速率和目标组织的靶向。

2.靶向递送的主要靶点靶向递送的主要靶点包括肿瘤细胞表面的特异性受体和肿瘤内部的特异性环境。

通过选择合适的靶点,可以实现药物在局部富集并减少对正常组织的损害。

3.控制释放速率靶向递送的另一个关键是控制药物的释放速率。

通过改变包装材料的性质和结构,可以实现药物的缓慢释放和局部富集,从而提高治疗效果。

三、靶向递送的应用1.靶向递送在化疗中的应用传统化疗药物的非特异性递送会导致对正常细胞的损伤和治疗效果的降低。

靶向递送技术可以将药物精确地递送到肿瘤组织,提高药物的有效浓度,同时减少副作用。

2.靶向递送在光热治疗中的应用光热治疗是一种利用纳米粒子吸收光能在肿瘤组织中产生局部高温,从而破坏肿瘤细胞的治疗方法。

靶向递送技术可以将纳米粒子精确地递送到肿瘤组织,在光热治疗中发挥更好的治疗效果。

3.靶向递送在基因治疗中的应用基因治疗是通过引入携带特定基因的载体到肿瘤细胞中,实现对基因的修复和调控。

靶向递送技术可以将基因载体精确地递送到肿瘤细胞,提高基因治疗的效果。

四、待解决的问题尽管靶向递送技术已经在肿瘤治疗中取得了一定的进展,但仍然存在一些待解决的问题。

首先,目前的靶向递送技术在制备成本和规模化生产方面仍然存在一定的困难。

热敏脂质体_TSL_的研究进展_丁昂昂

热敏脂质体_TSL_的研究进展_丁昂昂

TSL 作用原理 肿瘤组织存在增强和滞留效 应 (enhanced permeability and retention effect, EPR)[1],即由于新 生 血 管 通 透 性 较 大、淋 巴 回 流 障 碍等生理特征,纳米级给药载体 TSL 可选择性地蓄 积在肿瘤区域。在正 常 体 温 下,TSL 质 膜 呈 致 密 的 胶 晶 态 ,故 其 内 包 埋 的 药 物 很 难 扩 散 出 来 ,起 到 药 物 储存库的作用;当随 血 液 循 环 经 过 预 先 加 热 的 靶 组 织 时,只 要 达 到 质 膜 磷 脂 液 晶 态 相 变 温 度 (transformation temperature,Tm),脂 质 体 膜 即 从
苄泽 类 表 面 活 性 剂 为 单 酰 基 表 面 活 性 剂,末 端 为聚乙二醇,与 MSPC 和 DSPE-PEG2000有相似的化 学结构,Tagami等[10]将其 加 入 DPPC 脂 质 体 中,替 代 MSPC 和 DSPE-PEG2000。 发 现 在 溶 血 活 性 及 阿 霉素 热 疗 释 放 动 力 学 方 面,TSL 的 最 佳 搭 配 为 DPPC/苄泽78(96∶4 摩 尔 百 分 比)。 苄 泽 脂 质 体 的 相变温度比 LTSL 低(41 ℃ vs.41.5℃),在释放动 力学 方 面,比 传 统 TSL 快 1.2~2 倍,热 疗 40~ 42 ℃时,2.5min内释放 90% ~100% 的 药 物,且 质 膜性质稳定(同37 ℃时相同)。May等 将 [11] 其 称 为 超 快 热 敏 脂 质 体 (ultrafast temperature sensitive liposome,uTSL),包埋不 同 的 化 疗 药 物—吉 西 他 滨 和奥沙利铂,这两种 药 物 可 溶 于 水 但 是 细 胞 通 透 性 较 差 ,也 得 到 相 似 的 结 论 。

抗肿瘤药物靶向递送系统的研究

抗肿瘤药物靶向递送系统的研究

抗肿瘤药物靶向递送系统的研究癌症,一直以来都是威胁人类健康的重大疾病之一。

传统的抗肿瘤药物治疗往往面临着诸多挑战,如药物在体内的非特异性分布、对正常组织的毒性以及较低的治疗效果等。

为了克服这些问题,科学家们致力于研究抗肿瘤药物的靶向递送系统,旨在将药物精准地输送到肿瘤部位,提高治疗效果的同时减少副作用。

靶向递送系统的概念可以简单理解为给药物装上“导航仪”,使其能够准确找到肿瘤这个“目的地”。

要实现这一目标,需要深入了解肿瘤的生物学特性以及药物的作用机制。

肿瘤组织与正常组织相比,具有一些独特的特点。

例如,肿瘤血管的结构和功能异常,导致血液中的大分子物质更容易渗透进入肿瘤组织,这一现象被称为“增强的渗透和滞留效应”(EPR 效应)。

利用这一效应,科学家们设计了纳米级的药物载体,如脂质体、聚合物纳米粒等,这些载体可以在血液循环中长时间存在,并通过 EPR 效应在肿瘤部位富集。

除了利用 EPR 效应,还可以通过在药物载体表面修饰特定的靶向分子,实现更精准的靶向递送。

常见的靶向分子包括抗体、肽类、适配体等。

以抗体为例,针对肿瘤细胞表面过度表达的特定抗原,如 HER2 等,制备相应的抗体并连接到药物载体上,使其能够特异性地识别并结合肿瘤细胞,从而将药物递送到肿瘤内部。

在众多的靶向递送系统中,脂质体是研究较为广泛的一种。

脂质体是由磷脂双分子层组成的封闭囊泡,具有良好的生物相容性和载药能力。

通过改变脂质体的组成和结构,可以调节其药物释放特性和体内分布。

例如,长循环脂质体表面修饰聚乙二醇(PEG),可以减少巨噬细胞的吞噬,延长在血液中的循环时间。

聚合物纳米粒也是一种有潜力的靶向递送载体。

它们可以通过化学合成的方法进行精确的设计和调控,实现对药物的控制释放。

同时,聚合物纳米粒的表面可以进行多种修饰,以增加其靶向性和稳定性。

除了纳米载体,还有一些其他的靶向递送策略。

例如,基于细胞的载体,如红细胞、巨噬细胞等,可以利用细胞自身的特性将药物输送到肿瘤部位。

介孔二氧化硅纳米粒作为抗癌药物递送载体研究进展

介孔二氧化硅纳米粒作为抗癌药物递送载体研究进展

㊀收稿日期:2022-11-06基金项目:辽宁省民生科技计划项目(2021JH2/10300067)ꎻ辽宁省教育厅2021年度科学研究经费项目(LJKZ0099)作者简介:陈立江(1969-)ꎬ女ꎬ湖南永州人ꎬ教授ꎬ博士生导师ꎬ研究方向:药物新剂型及其机理.㊀∗通信作者:陈立江ꎬE ̄mail:chlj16@163.com.㊀㊀辽宁大学学报㊀㊀㊀自然科学版第51卷㊀第1期㊀2024年JOURNALOFLIAONINGUNIVERSITYNaturalSciencesEditionVol.51㊀No.1㊀2024介孔二氧化硅纳米粒作为抗癌药物递送载体研究进展陈立江∗ꎬ马㊀艳ꎬ潘㊀昊(辽宁大学药学院ꎬ辽宁沈阳110036)摘㊀要:介孔二氧化硅纳米粒在抗癌药物递送系统中被广泛应用ꎬ因其具有孔径可调控㊁表面易被修饰㊁亲水性较好㊁生物兼容性良好等优势被制备成纳米药物递送载体.本文将从介孔二氧化硅纳米粒的合成方法㊁机理㊁生物降解及其在抗癌药物递送系统中的应用等方面对其进行总结ꎬ希望能为其作为纳米药物递送载体的研究提供帮助.关键词:介孔二氧化硅ꎻ制备ꎻ应用ꎻ降解中图分类号:R944㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1000-5846(2024)01-0001-07ReviewsofMesoporousSilicaNanoparticlesastheApplicationofAnticancerDrugDeliveryCarriersCHENLi ̄jiang∗ꎬMAYanꎬPANHao(SchoolofPharmaceuticalSciencesꎬLiaoningUniversityꎬShenyang110036ꎬChina)Abstract:㊀Mesoporoussilicananoparticlesarewidelyusedinanticancerdrugdeliverysystemsandarepreparedasnanodrugdeliverycarriersbecauseoftheiradvantagesofadjustableporesizeꎬeasysurfacemodificationꎬgoodhydrophilicityꎬandhighbiocompatibility.Thisarticlewillsummarizethesynthesismethodꎬmechanismꎬbiodegradationandapplicationofmesoporoussilicananoparticlesinanticancerdrugdeliverysystemsꎬhopingtoprovidehelpfortheirresearchasnanodrugdeliverycarriers.Keywords:㊀mesoporoussilicananoparticlesꎻpreparationꎻapplicationꎻdegradation0㊀引言癌症是一类常见的恶性肿瘤ꎬ死亡率极高ꎬ已经困扰了人类几个世纪.到目前为止ꎬ人类与癌症㊀㊀之间的拉锯战仍在焦灼地进行ꎬ2020年全球新发癌症患者19292789人ꎬ死亡9958133人ꎬ死亡率高达51.6%ꎬ其中乳腺癌㊁肺癌㊁结直肠癌㊁前列腺癌㊁胃癌及肝癌等为主要病症[1].癌症的治疗一直都是全球关注的热点ꎬ目前较为常见的是以手术为 主 ㊁药物为 辅 的治疗手段ꎬ阿霉素㊁顺铂㊁紫杉醇等广谱抗癌药被广泛用于癌症的治疗ꎬ但其常规制剂多具有全身毒性较大㊁水溶性较差以及多药耐药等弊端[2-4].近年来ꎬ研究人员将抗癌药物制备成脂质体㊁纳米粒以及载药胶束等新型纳米制剂ꎬ可以改善药物的水溶性㊁降低药物毒副作用㊁增强药物作用效果[5-7].介孔二氧化硅纳米粒(MesoporoussilicananoparticlesꎬMSNs)是一种介孔型无机纳米材料ꎬ因其具有较高的药物负载能力㊁较大的比表面积㊁孔径均匀可调㊁表面易被修饰且生物兼容性良好等特点被广泛用作抗癌药物的递送载体[8-9].1㊀MSNs的制备1.1㊀MSNs的合成机理MSNs的合成机理尚未完全明确ꎬ目前比较受大众认可的包括液晶模板机理㊁协同作用机理和膨胀收缩机理.液晶模板机理(见图1)指先将表面活性剂分子分散在水中形成胶束ꎬ等待胶束自组装形成液晶模板再加入硅源(二氧化硅前驱体化合物)ꎬ使其水解形成二氧化硅(SiO2)附着在其表面并缩合ꎬ最后通过酸刻蚀或煅烧等手段除去表面活性剂分子ꎬ该机理适用于解释直径大于100nm的MSNs的形成过程[10].协同作用机理建立在液晶模板机理基础之上ꎬ该机理认为液晶相是在硅源加入后才开始形成的ꎬ硅源的水解产物促使液晶模板形成ꎬ液晶模板的前驱体促进硅源水解ꎬ二者是相互促进㊁互助共生的关系ꎬ该机理适用于解释表面活性剂浓度较低时MSNs的形成过程[11].膨胀收缩机理(见图2)是指表面活性剂分子先在水中形成椭圆体胶束ꎬ硅源在胶束的疏水核心中溶解ꎬ使胶束从椭圆体转变为球体ꎬ硅源水解将亲水单体释放到水环境中ꎬ带负电荷的单体通过静电吸引力将带正电的表面活性剂分子吸附到胶束表面ꎬ胶束收缩变小ꎬ邻近的胶束聚集ꎬ生长形成具有介孔结构的颗粒ꎬ该机理适用于解释直径小于20nm的MSNs的形成过程[12].图1㊀液晶模板机理示意图[10]图2㊀膨胀收缩机理示意图[12]1.2㊀MSNs的合成方法溶胶-凝胶㊁微波辅助合成以及水热合成法是药物递送系统中MSNs较为常见的制备方法.溶胶-凝胶法的合成过程是让硅源在含有表面活性剂的体系中水解缩合形成溶胶后再形成凝胶ꎬ反应条件温和ꎬ操作简便ꎬ且对实验器材要求较低ꎬ但反应时间稍长ꎬ是最为常用的合成方法[13].微波辅助合成法建立在溶胶-凝胶法基础之上ꎬ在形成前驱体凝胶后利用微波辐射进行加热ꎬ使之迅速结2㊀㊀㊀辽宁大学学报㊀㊀自然科学版2024年㊀㊀㊀㊀晶化ꎬ大量成核ꎬ具有反应迅速㊁产率更高等优点ꎬ但该法制备MSNs的孔径大小和结构的可调节性较小[14-15].水热合成法是指在酸性或碱性条件下ꎬ将表面活性剂与硅源混合后装入高压釜ꎬ经水热处理得到结晶ꎬ反应速度介于溶胶-凝胶法与微波辅助合成法之间ꎬ但该法制备的MSNs纯度较高ꎬ粒度易被控制ꎬ且分散性较好[16].依据MSNs的介孔结构特征可分为多个系列ꎬ其中MCM系列(包括MCM-41㊁MCM-48等)和SBA系列(包括SBA-15㊁SBA-16等)是药物递送系统中的常见应用类型[17].MCM系列等常以阳离子表面活性剂如十六烷基三甲基氯化铵等为模板剂ꎬSBA系列多数以非离子三嵌段共聚物如聚环氧乙烷-聚环氧丙烷-聚环氧乙烷等为模板剂ꎬ两个系列的MSNs在合成过程中均需加入适量的酸性或者碱性物质来调控反应条件ꎬ然后加入正硅酸乙酯或硅酸钠等硅源ꎬ待反应完成后进行后处理ꎬ最后通过煅烧或选择性刻蚀等方法除去模板剂ꎬ得到纯净的MSNs[18-19].1.3㊀MSNs的结构改造MSNs作为药物递送载体一直是比较热门的研究对象ꎬ根据不同的需求ꎬ可对MSNs的结构进行升级和改造.中空介孔二氧化硅纳米粒(HollowmesoporoussilicananoparticlesꎬHMSNs)内部的空腔结构使其具有更大的比表面积和更高的载药量ꎬ适用于封装各种客体分子[20].HMSNs的合成方法包括两种ꎬ可选用单模板自组装法ꎬ即将已合成的MSNs放入热水中孵化ꎬ使其内部的介孔硅层自动溶解ꎬ形成中空空腔.也可选用双模板法ꎬ先制备出一个内核模板ꎬ例如金纳米粒㊁SiO2纳米粒和聚乙烯微球等硬质模板或囊泡㊁乳液㊁胶束等软质模板ꎬ之后利用溶胶-凝胶法在其表面合成MSNsꎬ最后再除去内核模板和介孔壳中的模板剂以此获得HMSNs[21-22].MSNs的孔径介于2~50nm之间ꎬ可容纳小分子药物ꎬ但对于蛋白质㊁酶㊁核酸㊁抗体等生物大分子药物ꎬ传统孔径的MSNs就无法满足载药需求ꎬ可对其进行扩孔ꎬ提升其药物负载能力.在MSNs的合成过程中ꎬ可通过改变pH㊁温度或反应物配比等条件来调节MSNs的孔径大小ꎬ也可以通过直接模板法对MSNs进行扩孔ꎬ即以疏水链较长的表面活性剂为模板剂或添加孔隙膨胀剂ꎬ使其进入胶束中心的疏水部分ꎬ进而扩大孔径[23-24].此外ꎬ还可在MSNs合成后对其进行后处理ꎬ用复盐浸渍法或硫酸辅助水热法对MSNs进行扩孔[25-26].虽然大孔径的MSNs在载药能力上有所提高ꎬ但孔径提升的同时可能会影响其被细胞摄取的能力ꎬ且结构可能会出现坍塌.此外ꎬMSNs还被制备成棒状㊁褶皱状及树突状等多种形态ꎬ用于改善其药物装载㊁递送或释放等性能[27-29].图3㊀HMSNs的合成及载药示意图[30]2㊀MSNs的表面功能化及其在抗癌药物递送系统中的应用如图3所示ꎬMSNs的介孔结构有利于其负载药物ꎬ将药物包覆在其内部后一般会选择适当的材料对MSNs的介孔结构进行修饰ꎬ即对MSNs进行 堵孔 ꎬ防止药物在递送途中发生泄漏ꎬ无法到达治疗部位.由于MSNs的表面具有亲水性和电负性ꎬ通过对其表面的硅烷醇基团进行官能化ꎬ可使其成为具有功能性的药物递送载体ꎬ实现缓㊁控释放药物或者靶向病变部位释放药物等目的[30].目前ꎬ关于功能型MSNs的研究ꎬ较为常见的可大致分为3类ꎬ包括主动靶向型MSNs㊁刺激响应型MSNs以及膜包覆型MSNs.2.1㊀主动靶向型MSNsMSNs的粒径一般小于200nmꎬ因此载药的MSNs可借助高通透性和滞留(Enhanced3㊀第1期㊀㊀㊀陈立江ꎬ等:介孔二氧化硅纳米粒作为抗癌药物递送载体研究进展㊀㊀permeabilityandretentionꎬEPR)效应实现药物在病变部位的蓄积ꎬ但这并不能促进肿瘤细胞对MSNs的选择性摄取.某些多糖㊁肽类及小分子受体等在肿瘤细胞表面会过度表达ꎬ通过物理吸附㊁静电结合或共价键偶联等方法将其配体修饰在MSNs表面ꎬ可将药物靶向递送至肿瘤部位ꎬ促进肿瘤细胞对载药MSNs的选择性吸收ꎬ降低药物对正常组织和细胞的毒副作用.Xu等[31]以聚多巴胺(PDA)改性的透明质酸(HA)修饰HMSNsꎬ成功制备了一种具有靶向和光热双重治疗作用的阿霉素(DOX)纳米制剂ꎬ在降低DOX全身毒性的同时ꎬ实现药物在肿瘤酸性微环境下的响应释放.Ghosh等[32]用3-羧基苯基硼酸和聚丙烯酸修饰MSNsꎬ用于递送4-异丙基苯甲醛ꎬ在小鼠乳腺癌模型中ꎬ表现出良好的体内抗肿瘤活性.Xu等[33]用叶酸(FA)和聚乙二醇(PEG)的共轭体修饰MSNsꎬ用于负载紫杉醇(PTX)ꎬ细胞实验结果表明ꎬFA修饰的MSNs能增强肝癌细胞对载药MSNs的摄取ꎬPEG的包覆可提高MSNs的生物兼容性ꎬ可显著改善紫杉醇的抗肿瘤效果.2.2㊀刺激响应型MSNs在肿瘤部位ꎬ肿瘤细胞的恶性增殖会导致肿瘤组织内部氧气供给不足ꎬ细胞进行无氧代谢ꎬ造成乳酸等酸性物质大量蓄积ꎬ导致肿瘤微环境整体呈现弱酸性[34].另外ꎬ相比于正常组织ꎬ肿瘤部位的谷胱甘肽(GSH)及某些生物酶的浓度较高ꎬ可根据该类特性设计刺激响应型药物递送载体ꎬ让修饰材料在特定的环境中降解ꎬ使药物尽可能地到达靶部位ꎬ防止药物在递送途中被提前释放[35-36].Wang等[37]以碳酸钙和脂质体双层膜包覆MSNsꎬ其中碳酸钙可在溶酶体内的酸性环境中分解ꎬ使溶酶体内部渗透压升高ꎬ破坏溶酶体结构ꎬ触发MSNs的溶酶体逃逸机制ꎬ同时以脂质体膜的包覆来增强纳米粒子的生物兼容性.Shin等[38]用HA修饰HMSNsꎬ引入二硫键形成HMSN SS HAꎬ用于负载DOXꎬ成功制备了一种可在高GSH浓度环境下响应释放药物的靶向制剂.除此之外ꎬ还可在MSNs中掺杂磁性氧化铁等纳米粒子ꎬ使其具有磁性响应功能[39]ꎬGao等[40]将四氧化三铁(Fe3O4)纳米粒杂交到MSNs中ꎬ以FA为堵孔剂ꎬ成功制备了一种具有主动靶向和磁性响应效果的阿霉素纳米制剂ꎬ可用于磁共振成像(MagneticresonanceimagingꎬMRI)引导的放射治疗.2.3㊀膜包覆型MSNs外源性纳米粒子一般会具有免疫原性或毒性ꎬ进入人体后会被免疫系统识别并清除ꎬ使得大部分粒子都聚集在肝㊁脾等器官ꎬ无法到达肿瘤部位[41].为增强MSNs的生物兼容性ꎬ延长药物作用时间ꎬ可选择亲水性高分子材料PEG或聚(乙二醇)甲基丙烯酸酯(Poly(ethyleneglycol)methacrylateꎬPPEGMA)对MSNs的表面进行修饰ꎬ也可用磷脂双层膜对其进行包覆[42].脂质体的化学成分和双层结构与生物膜相似ꎬ可与生物环境高度相容ꎬ提高药物的递送效率ꎬ但脂质体难以完全模仿生物膜的复杂机制[43].近年来ꎬ 复合类药物载体 成了研究人员的关注热点ꎬ以生物膜包覆合成类药物载体ꎬ利用细胞间相互作用的特点ꎬ可增强肿瘤细胞对载药纳米粒子的摄入ꎬ降低免疫系统的抑制外排作用ꎬ提高药物的生物利用度[44].Zhang等[45]构建了一种多层纳米药物载体ꎬ以PDA包覆MSNs使其具有光热刺激响应性ꎬ以生物素包覆使其具有肿瘤细胞靶向性ꎬ最后以红细胞膜包覆增强其逃避免疫系统清除的能力ꎬ结果表明约21.39%的纳米粒在注射24h后仍可存在于血液循环系统.除红细胞膜外ꎬ细菌外膜及癌细胞膜等也被广泛用于 复合类药物载体 的制备.Wang等[46]以大肠杆菌的外膜囊泡包覆PDA修饰MSNsꎬ其中大肠杆菌的外膜囊泡可诱导免疫应答ꎬ借助中性粒细胞的吞噬作用和趋化作用来增强对肿瘤细胞的靶向性.此外ꎬXie等[47]以癌细胞膜包覆MSNsꎬ合成了一种可以逃避宿主免疫系统攻击且同时具有同源靶向能力的纳米颗粒ꎬ增强纳米粒子的细胞内化能力ꎬ提高药物的生物利用度.3㊀MSNs的降解MSNs的降解是一个水解过程ꎬ水性介质中的羟基与其表面的非桥联氧( Si O Si )发生4㊀㊀㊀辽宁大学学报㊀㊀自然科学版2024年㊀㊀㊀㊀亲核反应ꎬ使可溶性硅酸浸出.传统的MSNs需要几天时间才能完成体内降解ꎬ排出体外也需要几周的时间ꎬ这可能导致MSNs在人体内蓄积ꎬ从而暴露生物安全问题ꎬ因此ꎬ以MSNs为药物递送载体时需考虑其在人体内的降解能力[48].扩大孔径㊁增加MSNs的比表面积可以提升水分子与MSNs之间的接触概率ꎬ为水解反应提供更多的反应位点[49].有研究表明ꎬ将Mn2+㊁Ca2+㊁Zn2+㊁Fe3+及Sr2+等金属离子杂化到MSNs的骨架中ꎬ以M Si O(M为金属离子)结构替代MSNs中的Si O Si结构ꎬ利用M Si键在酸性或氧化还原条件下比Si O键更易断裂的性质ꎬ提高MSNs在生物体内的降解能力[50-53].此外ꎬ在MSNs表面引入硫基等有机基团ꎬ也能使MSNs在特定的内环境中依靠氧化还原反应或酶解反应发生降解[54].4㊀结论与展望MSNs作为抗癌药物的递送载体对药物具有较大的包容性ꎬ无论是亲水性药物还是疏水性药物ꎬ都可被包覆在MSNs的内部.此外ꎬMSNs允许多药负载ꎬ对于具有p糖蛋白外排作用或需要联合治疗的抗癌药物ꎬMSNs可允许其与p糖蛋白外排抑制剂或其他抗癌药物联合负载ꎬ增强药物的作用效果ꎬ提高其生物利用度.MSNs的合成对环境和条件的要求并不苛刻ꎬ合成原料较为常见且操作简便ꎬ在抗癌药物递送载体中占据重要席位.目前MSNs已经被广泛用于生物医学成像㊁癌症治疗㊁基因治疗以及疫苗开发等多个重点领域.需要注意的是ꎬ用于药物递送载体的MSNs需保持高度分散和稳定ꎬ若MSNs发生聚集ꎬ则会影响肿瘤细胞的摄取效率ꎬ因此除流体动力学尺寸外ꎬ分散系数和稳定性也可以作为其在合成过程中的考察指标.此外ꎬ关于MSNs的体内降解问题也尚未得到完全解决ꎬ虽然金属离子接枝可增强MSNs的降解性能ꎬ但人体只能控制微量的金属元素代谢ꎬ过量摄入会产生生物毒性.另外ꎬ对于 复合类药物载体 ꎬ生物膜的包覆则会涉及体内的免疫应答ꎬ与该类机制相关的研究相对来说还比较少见ꎬ若能将其研究透彻ꎬ那么以MSNs作为抗癌药物递送载体的制剂就会有更大的希望进入临床转化.参考文献:[1]㊀WorldCancerResearchFundInternational.Worldwidecancerdata[EB/OL].(2022-03-23)[2022-11-05].https://www.wcrf.org/cancer ̄trends/worldwide ̄cancer ̄data/.[2]㊀HaftcheshmehSMꎬJaafariMRꎬMashreghiMꎬetal.Liposomaldoxorubicintargetingmitochondria:Anovelformulationtoenhanceanti ̄tumoreffectsofDoxil?invitroandinvivo[J].JournalofDrugDeliveryScienceandTechnologyꎬ2021ꎬ62:102351.[3]㊀PavanSRꎬPrabhuA.Advancedcisplatinnanoformulationsastargeteddrugdeliveryplatformsforlungcarcinomatreatment:Areview[J].JournalofMaterialsScienceꎬ2022ꎬ57(34):16192-16227.[4]㊀翟瑞东ꎬ刘哲鹏ꎬ赵守进.口服紫杉醇制剂的研究进展[J].实用药物与临床ꎬ2022ꎬ25(1):92-96.[5]㊀OlusanyaTOBꎬHajAhmadRRꎬIbegbuDMꎬetal.Liposomaldrugdeliverysystemsandanticancerdrugs[J].Moleculesꎬ2018ꎬ23(4):907.[6]㊀JoMJꎬJinISꎬParkCWꎬetal.Revolutionizingtechnologiesofnanomicellesforcombinatorialanticancerdrugdelivery[J].ArchivesofPharmacalResearchꎬ2020ꎬ43(1):100-109.[7]㊀QiSSꎬSunJHꎬYuHHꎬetal.Co ̄deliverynanoparticlesofanti ̄cancerdrugsforimprovingchemotherapyefficacy[J].DrugDeliveryꎬ2017ꎬ24(1):1909-1926.[8]㊀刘梦瑶.紫杉醇和槲皮素共载功能性介孔二氧化硅纳米粒的构建及逆转乳腺癌多药耐药研究[D].济南:山东大学ꎬ2020.[9]㊀史巧ꎬ黄星月ꎬ吴凯ꎬ等.载姜黄素的介孔二氧化硅及中空介孔二氧化硅的制备及释药性能研究[J].中国药师ꎬ2021ꎬ24(7):209-214.[10]㊀NarayanRꎬNayakUYꎬRaichurAMꎬetal.Mesoporoussilicananoparticles:Acomprehensivereviewonsynthesis5㊀第1期㊀㊀㊀陈立江ꎬ等:介孔二氧化硅纳米粒作为抗癌药物递送载体研究进展㊀㊀andrecentadvances[J].Pharmaceuticsꎬ2018ꎬ10(3):118.[11]㊀江悦.介孔氧化硅基药物缓释载体制备及性能研究[D].唐山:华北理工大学ꎬ2021.[12]㊀YiZFꎬDuméeLFꎬGarveyCJꎬetal.AnewinsightintogrowthmechanismandkineticsofmesoporoussilicananoparticlesbyinsitusmallangleX ̄rayscattering[J].Langmuirꎬ2015ꎬ31(30):8478-8487.[13]㊀KrishnanVꎬVenkatasubbuGDꎬKalaivaniT.Investigationofhemolysisandantibacterialanalysisofcurcumin ̄loadedmesoporousSiO2nanoparticles[J].AppliedNanoscienceꎬ2023ꎬ13(1):811-818.[14]㊀GolezaniASꎬFatehASꎬMehrabiHA.SynthesisandcharacterizationofsilicamesoporousmaterialproducedbyhydrothermalcontinuespHadjustingpathway[J].ProgressinNaturalScience:MaterialsInternationalꎬ2016ꎬ26(4):411-414.[15]㊀DeyRꎬSamantaA.Microwave ̄synthesizedhigh ̄performancemesoporousSBA-15silicamaterialsforCO2capture[J].KoreanJournalofChemicalEngineeringꎬ2020ꎬ37(11):1951-1962.[16]㊀KamarudinNHNꎬJalilAAꎬTriwahyonoSꎬetal.Variationofthecrystalgrowthofmesoporoussilicananoparticlesandtheevaluationtoibuprofenloadingandrelease[J].JournalofColloidandInterfaceScienceꎬ2014ꎬ421:6-13.[17]㊀李艳梅ꎬ张宇佳ꎬ陈明曦ꎬ等.介孔二氧化硅纳米粒作为药物载体研究进展[J].中国药剂学杂志ꎬ2021ꎬ19(2):52-60.[18]㊀TrendafilovaIꎬLazarovaHꎬChimshirovaRꎬetal.NovelkaempferoldeliverysystemsbasedonMg ̄containingMCM ̄41mesoporoussilicas[J].JournalofSolidStateChemistryꎬ2021ꎬ301:122323.[19]㊀HuYCꎬZhiZZꎬZhaoQFꎬetal.3Dcubicmesoporoussilicamicrosphereasacarrierforpoorlysolubledrugcarvedilol[J].MicroporousandMesoporousMaterialsꎬ2012ꎬ147(1):94-101.[20]㊀RahmanZUꎬWeiNꎬLiZXꎬetal.Preparationofhollowmesoporoussilicananospheres:Controllabletemplatesynthesisandtheirapplicationindrugdelivery[J].NewJournalofChemistryꎬ2017ꎬ41(23):14122-14129.[21]㊀LiYHꎬLiNꎬPanWꎬetal.Hollowmesoporoussilicananoparticleswithtunablestructuresforcontrolleddrugdelivery[J].ACSAppliedMaterials&Interfacesꎬ2017ꎬ9(3):2123-2129.[22]㊀SunSQꎬZhaoXYꎬChengMꎬetal.Facilepreparationofredox ̄responsivehollowmesoporoussilicaspheresfortheencapsulationandcontrolledreleaseofcorrosioninhibitors[J].ProgressinOrganicCoatingsꎬ2019ꎬ136:105302.[23]㊀曹渊ꎬ魏红娟ꎬ王晓.介孔材料的调孔方法及机理[J].材料导报ꎬ2010ꎬ24(11):27-31.[24]㊀孙蕊.介孔二氧化硅纳米粒子的制备及介孔结构调控的研究[D].沈阳:东北大学ꎬ2019.[25]㊀SunRꎬQiaoPCꎬWangZꎬetal.Monodispersedlarge ̄mesoporemesoporoussilicananoparticlesenabledbysulfuricacidassistedhydrothermalprocess[J].MicroporousandMesoporousMaterialsꎬ2021ꎬ317:111023.[26]㊀王平ꎬ朱以华ꎬ杨晓玲ꎬ等.介孔二氧化硅微球的扩孔及组装磁性纳米铁粒子[J].过程工程学报ꎬ2008ꎬ8(1):162-166.[27]㊀RahmaniSꎬDurandJOꎬCharnayCꎬetal.Synthesisofmesoporoussilicananoparticlesandnanorods:Applicationtodoxorubicindelivery[J].SolidStateSciencesꎬ2017ꎬ68:25-31.[28]㊀SoltaniRꎬMarjaniAꎬShirazianS.Novelmesoporouscrumpledpaper ̄likesilicaballs[J].MaterialsLettersꎬ2020ꎬ281:128230.[29]㊀AnWTꎬDefausSꎬAndreuDꎬetal.Invivosustainedreleaseofpeptidevaccinemediatedbydendriticmesoporoussilicananocarriers[J].FrontiersinImmunologyꎬ2021ꎬ12:684612.[30]㊀YanHJꎬYouYꎬLiXJꎬetal.PreparationofRGDpeptide/folateaciddouble ̄targetedmesoporoussilicananoparticlesanditsapplicationinhumanbreastcancerMCF ̄7cells[J].FrontiersinPharmacologyꎬ2020ꎬ11:898.[31]㊀XuQNꎬChangCꎬWangXLꎬetal.Aself ̄coatedhollowmesoporoussilicananoparticlefortumortargetingandchemo ̄photothermaltherapy[J].JournalofMaterialsScienceꎬ2022ꎬ57(10):6013-6025.[32]㊀GhoshSꎬKunduMꎬDuttaSꎬetal.Enhancementofanti ̄neoplasticeffectsofcuminaldehydeagainstbreastcancerviamesoporoussilicananoparticlebasedtargeteddrugdeliverysystem[J].LifeSciencesꎬ2022ꎬ298:120525.[33]㊀XuXYꎬWuCꎬBaiADꎬetal.Folate ̄functionalizedmesoporoussilicananoparticlesasalivertumor ̄targeteddrug6㊀㊀㊀辽宁大学学报㊀㊀自然科学版2024年㊀㊀㊀㊀deliverysystemtoimprovetheantitumoreffectofpaclitaxel[J].JournalofNanomaterialsꎬ2017ꎬ2017:2069685.[34]㊀WorsleyCMꎬVealeRBꎬMayneES.Theacidictumourmicroenvironment:Manipulatingtheimmuneresponsetoelicitescape[J].HumanImmunologyꎬ2022ꎬ83(5):399-408.[35]㊀TangHXꎬChenDFꎬLiCQꎬetal.DualGSH ̄exhaustingsorafenibloadedmanganese ̄silicananodrugsforinducingtheferroptosisofhepatocellularcarcinomacells[J].InternationalJournalofPharmaceuticsꎬ2019ꎬ572:118782.[36]㊀Molinier ̄FrenkelVꎬCastellanoF.Immunosuppressiveenzymesinthetumormicroenvironment[J].FEBSLettersꎬ2017ꎬ591(19):3135-3157.[37]㊀WangYWꎬZhaoKꎬXieLYꎬetal.Constructionofcalciumcarbonate ̄liposomedual ̄filmcoatedmesoporoussilicaasadelayeddrugreleasesystemforantitumortherapy[J].ColloidsandSurfacesBꎬ2022ꎬ212:112357.[38]㊀ShinDꎬLeeSꎬJangHSꎬetal.Redox/pH ̄dualresponsivefunctionalhollowsilicananoparticlesforhyaluronicacid ̄guideddrugdelivery[J].JournalofIndustrialandEngineeringChemistryꎬ2022ꎬ108:72-80.[39]㊀PopovaMꎬKosevaNꎬTrendafilovaIꎬetal.DesignofPEG ̄modifiedmagneticnanoporoussilicabasedmiltefosinedeliverysystem:Experimentalandtheoreticalapproaches[J].MicroporousandMesoporousMaterialsꎬ2021ꎬ310:110664.[40]㊀GaoQꎬXieWSꎬWangYꎬetal.AtheranosticnanocompositesystembasedonradialmesoporoussilicahybridizedwithFe3O4nanoparticlesfortargetedmagneticfieldresponsivechemotherapyofbreastcancer[J].RSCAdvancesꎬ2018ꎬ8(8):4321-4328.[41]㊀马徵薇.生物膜包载的纳米药物传递系统在结肠癌治疗的研究[D].沈阳:辽宁大学ꎬ2019.[42]㊀ZhouZHꎬZhangRQꎬJiaGFꎬetal.ControlledreleaseofDOXmediatedbyglutathioneandpHdual ̄responsivehollowmesoporoussiliconcoatedwithpolydopaminegraftpoly(poly(ethyleneglycol)methacrylate)nanoparticlesforcancertherapy[J].JournaloftheTaiwanInstituteofChemicalEngineersꎬ2020ꎬ115:60-70.[43]㊀TanSWꎬWuTTꎬZhangDꎬetal.Cellorcellmembrane ̄baseddrugdeliverysystems[J].Theranosticsꎬ2015ꎬ5(8):863-881.[44]㊀石金燕.基于生物膜包裹的介孔二氧化硅载药纳米粒的构建与抗肿瘤活性研究[D].沈阳:辽宁大学ꎬ2021.[45]㊀ZhangYFꎬYueXYꎬYangSCꎬetal.Longcirculationandtumor ̄targetingbiomimeticnanoparticlesforefficientchemo/photothermalsynergistictherapy[J].JournalofMaterialsChemistry.Bꎬ2022ꎬ10(26):5035-5044.[46]㊀WangZYꎬShiJYꎬPanHꎬetal.Membrane ̄cloakedpolydopaminemodifiedmesoporoussilicananoparticlesforcancertherapy[J].Nanotechnologyꎬ2022ꎬ33(34):345101.[47]㊀XieWꎬDengWWꎬZanMHꎬetal.Cancercellmembranecamouflagednanoparticlestorealizestarvationtherapytogetherwithcheckpointblockadesforenhancingcancertherapy[J].ACSNanoꎬ2019ꎬ13(3):2849-2857.[48]㊀HuYꎬBaiSꎬWuXZꎬetal.Biodegradabilityofmesoporoussilicananoparticles[J].CeramicsInternationalꎬ2021ꎬ47(22):31031-31041.[49]㊀ParisJLꎬBaezaAꎬVallet ̄RegíM.Overcomingthestabilityꎬtoxicityꎬandbiodegradationchallengesoftumorstimuli ̄responsiveinorganicnanoparticlesfordeliveryofcancertherapeutics[J].ExpertOpiniononDrugDeliveryꎬ2019ꎬ16(10):1095-1112.[50]㊀WangXPꎬLiXꎬItoAꎬetal.Biodegradablemetalion ̄dopedmesoporoussilicananospheresstimulateanticancerTh1immuneresponseinvivo[J].ACSAppliedMaterials&Interfacesꎬ2017ꎬ9(50):43538-43544.[51]㊀WangLYꎬHuoMFꎬChenYꎬetal.Coordination ̄accelerated ironextraction enablesfastbiodegradationofmesoporoussilica ̄basedhollownanoparticles[J].AdvancedHealthcareMaterialsꎬ2017ꎬ6(22):1700720.[52]㊀LiXLꎬZhangXꎬZhaoYBꎬetal.FabricationofbiodegradableMn ̄dopedmesoporoussilicananoparticlesforpH/redoxdualresponsedrugdelivery[J].JournalofInorganicBiochemistryꎬ2020ꎬ202:110887.[53]㊀GuoXꎬShiHSꎬZhongWBꎬetal.Tuningbiodegradabilityandbiocompatibilityofmesoporoussilicananoparticlesbydopingstrontium[J].CeramicsInternationalꎬ2020ꎬ46(8):11762-11769.[54]㊀何芳.仿生空心介孔有机硅纳米载药系统的构建与抗肿瘤评价[D].沈阳:辽宁大学ꎬ2022.(责任编辑㊀郭兴华)7㊀第1期㊀㊀㊀陈立江ꎬ等:介孔二氧化硅纳米粒作为抗癌药物递送载体研究进展。

PLGA纳米粒作为药物载体的靶向作用研究进展

PLGA纳米粒作为药物载体的靶向作用研究进展

动物医学进展,2020,41(12):96 101ProgressinVeterinaryMedicinePLGA纳米粒作为药物载体的靶向作用研究进展 收稿日期:2020 06 06 基金项目:国家自然科学基金项目(31872511) 作者简介:胡 馨(1997-),女,重庆人,硕士研究生,主要从事兽药学研究。

通讯作者胡 馨,支 慧,杨 艳,杨 杰,柴东坤,林 浪,刘云杰,宋振辉 ,封海波(西南大学动物科学学院,重庆402460) 摘 要:纳米科技在现代医学及药学的应用方面广泛发展,纳米药物载体在实现靶向性给药、缓释药物、降低药物的毒副作用等方面有重大优势。

聚乳酸 羟基乙酸聚合物(PLGA)是一种高分子有机化合物,具有生物相容性及生物可降解性,当前聚乳酸 羟基乙酸聚合物纳米粒(PLGANPs)被广泛地作为药物载体进行靶向治疗。

论文归纳总结了近年来国内外的相关文献报道,概述了PLGANPs的特点、制备方法与表征以及靶向作用的研究进展,着重讨论了PLGANPs作为药物载体在肿瘤组织、心脑血管、骨组织、免疫和基因类疾病中靶向作用的研究进展,并对未来发展前景进行了展望,为相关的科研提供参考。

关键词:聚乳酸 羟基乙酸聚合物;纳米粒;药物载体;靶向作用中图分类号:S854.53;S859.797文献标识码:A文章编号:1007 5038(2020)12 0096 06 靶向制剂是指通过局部给药的方式将药物输送至特定的组织、器官、细胞内,以提高药物的疗效和生物利用度,并减少毒副作用带来的危害。

聚乳酸 羟基乙酸聚合物[poly(lactic co glycolicacid),PLGA]是由乳酸和羟基乙酸的单体聚合而成的可降解的高分子有机化合物。

纳米粒(nanoparticles,NPs)是大小介于1nm~1000nm之间的一种固态胶体颗粒,可作为药物靶向传递的载体。

PLGA是乳酸(lacticacid,LA)与羟基乙酸(glycolicacid,GA)共聚合而成,当PLGA进入体内,通过酯键水解生成相应的单体酸、乳酸和羟基乙酸,然后经过三羧酸循环后转变成二氧化碳和水,因此该聚合物对人体无刺激性,无毒且拥有良好的生物相容性和降解性[1];PLGANPs极易于被吞噬细胞摄取,因此通过在纳米颗粒偶联吸附相应的配体可定位到需要的组织和器官。

纳米颗粒作为药物载体在肿瘤治疗中应用前景

纳米颗粒作为药物载体在肿瘤治疗中应用前景

纳米颗粒作为药物载体在肿瘤治疗中应用前景随着科技的发展,纳米技术在各个领域都得到了广泛的应用,其中之一就是在肿瘤治疗中的应用。

纳米颗粒作为一种药物载体,具有小尺寸、高比表面积、稳定性好的特点,能够改善药物的溶解性、提高药物的生物利用度、降低药物的副作用,因此在肿瘤治疗中有着广阔的应用前景。

首先,纳米颗粒能够提高药物的溶解度和稳定性。

很多常用的抗肿瘤药物因其溶解度低而难以发挥药效,而通过将这些药物包裹在纳米颗粒中,可以有效提高其溶解度,并且保护药物不受外界环境的影响,提高药物的稳定性。

这样一来,患者在服药过程中就能够更好地吸收药物,从而提高治疗效果。

其次,纳米颗粒具有高比表面积,有利于药物的靶向输送。

纳米颗粒尺寸小,表面积大,这为药物的靶向输送提供了有利条件。

通过表面修饰纳米颗粒,可以使其选择性地与肿瘤细胞表面的分子结合,从而实现药物的靶向输送。

这种靶向输送的方式,既可以减少对正常细胞的毒副作用,又可以提高药物在肿瘤细胞中的浓度,进而增强治疗效果。

此外,纳米颗粒还可以延长药物在体内的循环时间。

常规的抗肿瘤药物往往在体内的循环时间很短,使得药物很难达到治疗的最佳浓度。

而将药物包裹在纳米颗粒中,既能够提高药物的稳定性,延长药物的循环时间,又能够减少药物在体内的代谢和排泄,从而增加药物对肿瘤的作用时间,进一步提高治疗效果。

同时,纳米颗粒还可以实现多药联合治疗。

肿瘤治疗往往需要采用多种不同的药物联合使用,以增强抗肿瘤效果。

然而,多药联合使用往往伴随着药物的相互干扰和毒副作用的增加。

而通过将多种药物同时封装在纳米颗粒中,可以实现不同药物的同时释放,避免了药物之间的相互干扰,并且能够减少毒副作用,提高抗肿瘤效果。

纳米颗粒作为药物载体在肿瘤治疗中的应用前景广阔,但也面临一些挑战。

首先,纳米颗粒的制备和表面修饰技术仍然存在一定的难度,需要不断的研发和改进。

其次,纳米颗粒在体内的分解和代谢途径尚不完全清楚,需要进一步深入研究。

靶向制剂的应用与研究进展(全)

靶向制剂的应用与研究进展(全)

靶向制剂的应用于研究进展(全)从剂型的发展来看,人们把药物剂型人为地划分为四代:第一代是指简单加工供口服与外用的汤、酒、炙、条、膏、丹、丸、散剂。

随着临床用药的需要,给药途径的扩大和工业机械化与自动化,产生了以片剂、注射剂、胶囊剂和气雾剂等为主的第二代剂型。

以后又发展到以疗效仅与体内药物浓度有关而与给药时间无关这一概念为基础的第三代缓控释剂型,它们不需要频繁给药,能在较长时间内维持药物的有效浓度。

第四代剂型是以将药物浓集于靶器官、靶组织、靶细胞或细胞器为目的的靶向给药系统。

显然,这种剂型提高了药物在病灶部位的浓度,减少在非病灶部位的分布,所以能够增加药物的治疗指数并降低毒副作用。

对于药剂学的发展, 第一代: 常规制剂, 以工艺学为主, 生产以手工为主, 质量以定性评价为主; 第二, 缓释长效制剂, 以物理化学为基础理论指导, 生产以机械化为主, 质量控制定量、定性结合; 第三代, 控释制剂, 制剂质量控制要求有体内的生物学指标; 第四代, 靶向制剂, 将有效药物通过制剂学方法导向病变部分, 防治与正常的细胞作用, 以降低毒性的最佳的质量效果。

缓释制剂(SRP):是指通过延缓药物从该剂型中的释药速率,降低药物进入机体的吸收速率,从而起到更加的治疗效果的制剂,但药物从制剂中的释放速率受到外界环境如PH 等因素影响。

《中国药典》规定,缓释制剂系指口服药物在规定释放介质中,按要求缓慢的非恒速释放,与其他相应的普通制剂相比,每24h用药次数应从3~4次减少至1~2次的制剂。

控释制剂(CRP):是通过控释衣膜定时、定量、匀速地向外释放药物的一种剂型,使血药浓度恒定,无“峰谷”现象,从而更好地发挥疗效。

缓释和控释制剂的主要区别是在药物释放速度方面缓释制剂是药物在体内先快后慢地缓慢释放,常为一级过程;控释制剂是控制释药速度一般是恒速的.为零缘或接近零级过程.指用药后能在较长时间内持续缓慢释放药物以达到长效作用的一类制剂。

白蛋白作为抗肿瘤药物递送系统载体的研究进展

白蛋白作为抗肿瘤药物递送系统载体的研究进展

第18卷第5期 中国药剂学杂志Vol. 18 No.5 2020年9月Chinese Journal of Pharmaceutics Sep. 2020 p.250 文章编号:2617–8117(2020)05–0250–12 DOI:10.14146/ki.cjp.2020.05.003 白蛋白作为抗肿瘤药物递送系统载体的研究进展王小巍,刘锐,张红艳,王东凯*(沈阳药科大学药学院,辽宁沈阳110016)摘要:目的综述白蛋白作为抗肿瘤药物递送系统载体的研究现状与进展。

方法查阅近些年国内外关于白蛋白作为递送系统载体研究的相关文献,并对其进行归纳、整理和总结。

结果白蛋白在人体内含量最高,是一种含有585 种氨基酸残基的单链多肽。

可以应用于包载抗肿瘤药物,避免药物被血液清除,增加肿瘤的靶向性;同时白蛋白也是一种可生物降解、安全无毒、生物相容性比较好的载体。

结论白蛋白作为抗肿瘤药物递送系统载体在癌症的治疗中有着重要的临床意义以及发展前景。

关键词:白蛋白;载体;综述;抗肿瘤药物中图分类号:R94文献标志码:A白蛋白是指在人体内含量最高(通常占血浆蛋白总含量的50% 以上),且含有585 种氨基酸残基的一种单链多肽。

它是血浆中存在的最小蛋白质之一,分子量约为66 458[1]。

同时,白蛋白也是一种通用的大分子载体,有利于帮助溶解度有限的各种内源性化合物(包括脂肪酸和胆红素),在全身循环中的运输。

白蛋白还可与紫杉烷类、磺胺类、青霉素类和苯并二氮杂类等治疗剂结合,来影响药物的生物分布、生物活性和代谢[2]。

由于具备上述功能,在临床上白蛋白已被广泛证明是一种安全的生物材料,可用于设计药物输送系统。

白蛋白作为药物载体,能够避免难溶性药物被血液清除,从而发挥靶向作用;还可减少抗肿瘤药物所产生的不良反应和毒副作用;同时,还能增加患者的顺从性[3],具有广阔的应用前景。

本文主要从白蛋白的结构、白蛋白作为抗肿瘤药物载体所具有的优势、白蛋白的制备方法和质量评价等方面来展开介绍,以期使其能够更好地应用于临床抗肿瘤药物载体的研究。

纳米技术在肿瘤靶向治疗中的应用进展

纳米技术在肿瘤靶向治疗中的应用进展

纳米技术在肿瘤靶向治疗中的应用进展引言:肿瘤是一种严重威胁人类生命健康的疾病,传统的治疗方法如手术切除、放化疗等存在诸多问题和副作用。

而近年来,纳米技术在肿瘤靶向治疗中的应用不断取得突破性进展。

本文将就纳米技术在肿瘤靶向治疗中的应用进展进行探讨。

一、纳米载体在药物传递方面的应用随着纳米技术的发展,人们开始探索利用纳米载体实现药物的精确输送至肿瘤部位。

纳米载体具有较大比表面积以及与药物结合能力强等特点,在药物传递方面有着显著优势。

1. 通过纳米载体提高药物稳定性和生物可利用率传统化学制剂由于其化学性质以及颗粒大小等原因,在体内容易遭受分解或排泄,导致药效低下。

而纳米载体可以有效地改善这些问题,通过封装药物进入载体内部,增加药物的稳定性,并提高药物在体内的生物利用率。

2. 实现药物对肿瘤的靶向治疗纳米载体可以通过不同途径实现针对肿瘤细胞的精确释放。

例如,通过改变载体表面的功能基团,使其在血液循环中避免被吞噬细胞识别并迅速清除,从而达到更长时间地保持在血液中。

而当纳米载体进入肿瘤组织后,则会受到靶向生物分子或表观特性的作用,从而发生定位至肿瘤组织、释放药物的效应。

二、纳米技术在光动力治疗中的应用光动力治疗是一种新型肿瘤治疗方法,在纳米技术的辅助下取得了潜在突破。

1. 纳米光敏剂协同治疗纳米光敏剂是指一种带有特定功能,能够吸收外界光能,并将其转化为活性氧等形式来杀死癌细胞或抑制其生长的纳米颗粒。

纳米光敏剂在光动力治疗中的应用,可以实现对肿瘤组织的靶向治疗,减少对正常组织的损伤。

2. 纳米载体介导的光敏剂输送纳米载体不仅可以用来输送药物,在光动力治疗中也有广泛的应用。

通过将光敏剂封装进纳米载体内部,在输送过程中保证其稳定性,并实现对肿瘤组织的定向释放。

这种方法能够提高光敏剂的生物利用率,并增强其在肿瘤组织中的积累效果。

三、其他纳米技术在肿瘤靶向治疗中的应用除了纳米载体和纳米光敏剂,在肿瘤靶向治疗中还存在其他一些重要应用。

聚氨基酸胶束作为肿瘤靶向药物载体的研究进展

聚氨基酸胶束作为肿瘤靶向药物载体的研究进展

聚氨基酸胶束作为肿瘤靶向药物载体的研究进展贾纳;刘佳;马琛;顾艳丽;赛那;吕晓洁【摘要】聚氨基酸作为一种毒副作用低、生物相容性好的高分子材料,被广泛应用于肿瘤以及基因治疗。

聚氨基酸链的活性基团丰富,可通过多种反应途径与目的基团连接,从而实现药物的主动靶向性。

同时又因为聚合物胶束的粒径为1~100纳米,而肿瘤组织毛细血管壁与正常组织血管壁相比间隙较宽,可以形成“渗透滞留”效应(EPR效应),使载药纳米粒在肿瘤组织中不断蓄积,进而实现药物在肿瘤中的被动靶向性,本文简要综述了载药聚天冬氨酸、聚谷氨酸以及聚赖氨酸聚合物胶束的理化性质及优势,如肿瘤靶向性、缓释性等,并对近年来聚氨基酸胶束的研究进展进行综述。

%Poly amino acids as a low toxicity, good biocompatibility of polymer materials, has been widely applied to gene therapy of cancer, and so on. Poly amino acid chain reactive group rich, more reactive way to connect with the destination group through in order to achieve active drug targeting. While since the polymer micelle particle size of about 1 to 100 nm, and the tumor tissue and normal tissue wall of the capillary gap is wider compared to the blood vessel wall, may be formed“permeate retention” effect(EPR effect), so that drug loaded particles continuously accumulate in tumor tissue, and thus achieve better drug in the tumor passive targeting, this article briefly reviews the drug polyaspartic acid, polyglutamic acid and poly-lysine polymer micelle physicochemical the nature and advantages, such as tumor targeting, sustained release, etc., amino acids and poly micelles in recent years were reviewed.【期刊名称】《北方药学》【年(卷),期】2016(013)008【总页数】3页(P102-103,104)【关键词】聚氨基酸胶束;靶向性;肿瘤【作者】贾纳;刘佳;马琛;顾艳丽;赛那;吕晓洁【作者单位】内蒙古医科大学药学院呼和浩特010100;内蒙古医科大学药学院呼和浩特010100;广东省珠海市高新区唐家湾镇卫生院珠海 519080;内蒙古医科大学药学院呼和浩特010100;内蒙古医科大学药学院呼和浩特010100;内蒙古医科大学药学院呼和浩特010100【正文语种】中文【中图分类】R979.1近年来,恶性肿瘤的发病率明显升高,成为人类健康和生命的一大杀手。

纳米抗肿瘤药物及其研究进展

纳米抗肿瘤药物及其研究进展

纳米抗肿瘤药物及其研究进展纳米抗肿瘤药物是指将化学药物修饰为纳米级颗粒,具有较小的尺寸和改善的生物分布特性,可用于治疗肿瘤疾病。

纳米药物具备增加生物利用度、减少副作用和提高药物疗效的优势,因此在肿瘤治疗领域具有广阔的应用前景。

1. 纳米载体的设计与制备:常用的纳米载体包括聚合物纳米粒子、纳米乳液、纳米胶束等。

这些载体具有较高的药物载量和稳定性,能够实现药物的控制释放,提高药物的靶向性和细胞内渗透能力。

2. 靶向药物输送系统:通过表面修饰纳米载体或制备具有特异性识别能力的药物载体,实现对肿瘤细胞的选择性靶向。

常用的靶向途径包括受体介导的内吞作用、靶向配体识别和靶向磁性导向等。

3. 多药联合纳米载体:将多种抗肿瘤药物结合在一起,通过纳米载体实现多药联合释放,有效提高疗效。

还可通过合理设计药物的释放速率和比例,避免肿瘤细胞对单一药物的耐药问题。

4. 纳米光热治疗技术:通过将药物与纳米材料结合,如金属纳米颗粒等,在外界光照射的条件下,产生热效应杀灭肿瘤细胞。

这种光热治疗不仅能够物理上破坏肿瘤组织,还具有激活免疫系统的作用,从而提高治疗效果。

5. 纳米成像技术:通过将荧光染料等成像剂修饰在纳米载体上,实现对肿瘤组织的实时成像监测。

这种纳米成像技术可以提供非侵入性的诊断手段,帮助医生监测肿瘤病灶的大小和发展情况,并指导治疗决策。

纳米抗肿瘤药物在临床研究中已取得了一些较为显著的进展。

美国食品药品监督管理局(FDA)已批准了多种纳米药物用于肿瘤治疗,如临床应用广泛的纳米阿根廷和纳米多沙普利。

尽管纳米抗肿瘤药物在治疗肿瘤方面取得了一些进展,但目前的研究仍然面临着一些挑战。

如药物的稳定性、靶向性和药物释放的控制等问题,还需要进一步研究和改进。

纳米药物的生产成本较高,限制了其在临床应用中的推广。

纳米抗肿瘤药物具有很大的潜力,并在不断的研究中不断取得新的突破。

随着技术的不断进步和临床实践的积累,相信纳米抗肿瘤药物将逐渐在临床上得到广泛应用,为肿瘤患者提供更加有效和个性化的治疗手段。

靶向释药载体中药物递送途径的研究与优化策略

靶向释药载体中药物递送途径的研究与优化策略

靶向释药载体中药物递送途径的研究与优化策略随着药物递送领域的快速发展,靶向释药载体作为一种重要的递送系统,在药物传递中发挥了重要作用。

靶向释药载体能够通过针对特定的目标组织或细胞释放药物,提高药物的生物利用度并减少副作用。

因此,研究和优化靶向释药载体中药物递送途径是目前药物递送领域的热点研究方向之一。

1. 靶向递送途径介绍靶向递送途径是指将药物有效地引导到特定的目标组织或细胞区域,减少药物在非目标区域的分布。

常用的靶向递送途径包括主动靶向、被动靶向和外部触发靶向。

主动靶向递送途径通过与目标区域表面的特异性受体结合,提高药物的目标区域富集程度。

被动靶向递送途径则是利用特定组织或细胞的特性,如血管分布和渗透性等,使药物在目标区域富集。

外部触发靶向递送途径则是通过外部刺激(如光、热、声波等)引发靶向释药。

2. 药物递送途径的研究进展针对靶向释药载体中药物递送途径的研究,近年来取得了许多重要的进展。

其中,主动靶向递送途径的研究较为广泛。

通过改变靶向递送途径中的配体或受体,研究人员成功实现了对特定细胞或组织的药物递送。

例如,利用多肽、抗体或寡核苷酸等生物材料,能够与癌细胞表面的特异性受体结合,实现药物的靶向释放。

此外,被动靶向递送途径的研究也取得了突破。

通过改变靶向递送载体的表面性质或物理性质,可以增加载体在目标组织或细胞内的停留时间,实现药物递送的增强。

外部触发靶向递送途径的研究尚处于起步阶段,但已有研究证明通过外部刺激可以实现精确的药物递送控制。

3. 靶向释药载体中药物递送途径的优化策略为了进一步提高靶向释药载体中药物递送途径的效率和精确性,研究人员提出了一系列的优化策略。

首先,针对主动靶向递送途径,研究人员通过引入靶向配体的修饰,提高配体与受体的亲合性和稳定性,从而使药物更加精确地靶向到目标区域。

其次,对于被动靶向递送途径,通过调整载体的物理性质,如大小、形状和表面电荷等,可以增加载体与目标细胞或组织的相互作用能力,提高药物在目标区域的富集程度。

利用新型药物载体平台提高肿瘤靶向治疗效果

利用新型药物载体平台提高肿瘤靶向治疗效果

利用新型药物载体平台提高肿瘤靶向治疗效果肿瘤治疗一直是医学领域的重大难题。

传统的癌症治疗方式,例如手术和放疗,虽然可以有效地消除肿瘤,但是容易造成副作用和复发。

而针对肿瘤的药物治疗虽然有很多药物可以选择,但是由于药物分布的广泛性,往往会给正常细胞带来不可弥补的损伤。

利用新型药物载体平台提高肿瘤靶向治疗效果,成为了解决这个难题的一种有效手段。

新型药物载体平台是指近年来不断涌现的以纳米材料为基础,对药物进行包装、载体修饰等操作,使药物具有更好的稳定性、溶解性和药物分布等特性的治疗技术。

这种技术在肿瘤治疗中具有无可替代的优势。

一方面,新型药物载体平台可以针对性地将药物带入肿瘤生长区域,具有精准的肿瘤靶向作用。

另一方面,由于其分布在肿瘤生长区域内,可以降低药物对正常细胞产生的毒性。

在新型药物载体平台上,将药物纳米粒子化,增加了药物的包容度和选择性。

纳米粒子的体积较小,可穿过细胞膜,靶向到达肿瘤细胞内部,对肿瘤细胞发挥更好的作用。

同时纳米粒子也具有扩散能力和非特异性的摄取能力,肿瘤细胞对纳米粒子的识别和摄取往往更大程度则,因此纳米粒子可以更大程度上将药物运送到肿瘤内部基因层面,发挥更好的药效。

另一方面,新型药物载体平台可以通过表面修饰,增加药物在肿瘤内的存留时间。

例如,在纳米粒子表面修饰一定数目的PEG(polyethyleneglycol),药物可以形成一个“糖衣”保护层,使药物不容易被人体免疫系统识别,有效降低肿瘤内的药物排斥反应,增加药物的停留时间,达到更好的药物导入效果。

新型药物载体平台的另一个好处是,可以同时装载多种药物,进行多种治疗。

对于少数肿瘤,多种药物联合使用可以大幅提升疗效。

而这些药物可以用如信息储存体的方式,装在药物载体上,有效的保护药物的化学活性,防止化学反应的发生,可以获得长效的治疗效果。

综合来看,利用新型药物载体平台提高肿瘤靶向治疗的效果是非常值得研究和推广的。

目前这种技术已经有很多公司进行了研发,可期待的是,新型药物载体平台将成为肿瘤治疗领域的重要手段,让肿瘤患者能够获得更为有效的治疗。

药物在肿瘤治疗中的药物递送系统研究

药物在肿瘤治疗中的药物递送系统研究

药物在肿瘤治疗中的药物递送系统研究一、引言肿瘤是当今世界上威胁人类健康和生命的主要疾病之一。

虽然传统的肿瘤治疗手段包括手术、化疗和放疗等已经取得了一定的成果,但是由于药物在体内的稳定性差、生物利用度低以及对正常细胞的毒副作用等问题,限制了肿瘤治疗效果的提高。

因此,研究和开发药物递送系统成为当前肿瘤治疗领域的热点。

二、药物递送系统的概念及类型药物递送系统是指将药物载体与药物结合,通过特定的途径将药物输送到靶组织或细胞内的系统。

根据递送系统的性质和功能,目前常见的药物递送系统主要包括纳米粒子、脂质体、聚合物及基因递送系统等。

1. 纳米粒子纳米粒子是指粒径在1-100纳米范围内的颗粒,具有较大的比表面积和特殊的光学、电学和磁学性质。

纳米粒子递送系统可以通过改变药物表面的性质、尺寸和形状等来调控药物的释放速率和靶向性,提高药物的生物利用度和治疗效果。

2. 脂质体脂质体是由类脂物质组成的球状结构,可以包裹和运载药物。

脂质体递送系统可以通过调节脂质体的成分和性质来控制药物的释放速率和稳定性,提高药物在体内的分布和靶向性。

3. 聚合物聚合物递送系统是利用聚合物作为载体将药物包裹或吸附以实现递送的系统。

聚合物递送系统具有良好的生物相容性、稳定性和可调控性,可以通过改变聚合物的结构和功能来调控药物的递送行为。

4. 基因递送系统基因递送系统是指将基因药物输送到靶细胞内并实现高效表达的系统。

常见的基因递送系统包括病毒载体和非病毒载体两种形式,通过改变载体的结构和性质来提高基因递送的效率和特异性。

三、药物递送系统的优势与挑战药物递送系统具有许多优势,可以解决传统药物在治疗肿瘤过程中的诸多问题。

首先,药物递送系统可以提高药物的生物利用度和稳定性,增加药物在体内的滞留时间;其次,药物递送系统可以改善药物的靶向性,减少对正常组织的毒副作用;此外,药物递送系统还可以实现药物的递时递量,提高治疗效果。

然而,药物递送系统的开发也面临一些挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的载体系统至关重要, 它一般应具备以下特点: 颗粒
药、 无毒和可生物降解这 4 个要素。因此, 靶向药物
小, 可缓控释药, 靶向性良好; 载药量高, 无突释效 应; 良好的生物相容性, 半衰期长; 无毒及无免疫原 性; 不在体内蓄积; 大分子类的可生物降解, 降解产 物无毒并可被机体清除; 保持原药的药理活性和生 物活性; 热源性小, 不易形成血栓。目前, 成为研究 热点并取得进展的靶向抗癌药物载体系统有: 大分
进行了的综述。
计模式、 靶向治疗药物载体系统、 靶向药物载体的研究现状 肿瘤休眠动物模型、 带荧光标记的肿瘤转移模型
Research progress on anti - tumor targeting drug carriers SUN Rui, ZHU Yan, LIU Yu-qin ( Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005 , China)
癌药的最适宜剂型
。靶向制剂按药物载体的性
质和靶向原理分为被动靶向制剂、 主动靶向制剂和 特殊靶向制剂。其中特殊靶向制剂又被称为物理化 学靶向制剂。靶向制剂利用特定的导向机制, 将抗 癌药物浓集于癌细胞, 使药物优先分布于癌细胞。 在抗肿瘤靶向药物的临床和实验室研究中, 目前主 1. 1 要研究设计的几种靶向设计模式如下 基于靶区特殊的生理学特征
称为特殊靶向制剂。如利用卟啉具有光敏化作用, Fe3 O4 ) 在外加磁场的作用下, 选择性的到达肿瘤靶
可以在肿瘤组织中吸收和滞留。利用磁性材料 (如 区, 药物以受控的方式从载体中释放而对正常组织 无影响。例如载药磁微球在足够强的体外磁场引导 下, 通过血管时可避免网状内皮系统的快速清除, 选 择性地到达并定位于肿瘤靶区, 具有高效、 低毒、 高 滞留性的特点。近年随着对磁流体研究的深入 (靶 向载药磁性微球、 磁控血管内磁性微球栓塞、 磁流体 热疗) , 一些新型磁性载体逐渐引起重视, 如某些金 金属微粉, 一方面具有良好的靶向作用, 另一方面还 热疗过程。 采用两重或多重上述机制 利用上述两种以 上的机理制备的靶向制剂, 如在被动靶向载体上连 接磁性材料, 增强药物的导向性和缓释作用。 2 靶向治疗药物载体系统 理想的靶向给药系统应具备定位蓄积、 控制释 属磁性微粉 ( Fe、 Co) 、 碳铁微粉、 合金微粉和某些非
Abstract: The maximum deficiency of traditional anti - tumor drugs is not selective. The drugs not only kill tumor cells, but also
geting drug carriers to increase the efficiency of anti - tumor drugs has made progress. The design patterns of targeting anti - tumor drugs, the drug carrier systems and current advance of drug carriers were discussed in this paper. Key Words: Tumor; Targeting therapy; Targeting drug delivery system; Drug carrier
1. 2
而小于 100 nm 的微粒可被骨髓细胞吞噬。 基于靶区特殊的病理学特征
指利用癌变区
特殊的生物化学环境而设计的靶向给药制剂。肿瘤 组织由于瘤细胞生长过快, 虽然新生血管丰富, 但仍 缺乏营养, 易出现缺血、 坏死的炎症区域, 因此肿瘤 灶常伴有酸中毒和过高热以及缺氧区。这使得可利 用某些对温度、 pH 值或低氧敏感的载体材料制成靶 向肿瘤的药物制剂。如根据肿瘤部位的温度要比正
[ 26 , 27 ] 不错的研究结果 。
大分子、 合成大分子载体以及抗体。肿瘤组织具有 较大的血管通透性及间质压较高, 间质扩散性大可 以阻止大分子的外渗, 同时缺乏功能性淋巴引流淋 巴管系也导致大分子以被动机制蓄积在肿瘤组织 中, 从而有利于抗肿瘤药物对癌细胞的杀伤。天然 大分子类包括人血白蛋白、 脂蛋白、 转铁蛋白、 淀粉、 壳聚糖以及聚氨基酸类等。其中由淀粉微球 载药壳聚糖纳米粒
究的热点, 目前采用靶向性强的药物载体来提高抗肿瘤药物 资源中心主任。以肿瘤侵袭转移复发机理及防
刘玉琴, 女, 博士, 中国医学科学院基础医学 毒副作用。因此针对癌组织的肿瘤靶向治疗成为国内外研 研究所, 北京协和医学院基础学院研究员, 细胞

专家简介
的有效利用率取得了不错的研究进展。本文就靶向制剂设 治为研究方向, 建立了肿瘤复发转移动物模型、
相互作用可设计针对瘤组织的靶向制剂, 这类靶向 制剂通常称为主动靶向制剂, 而相应的配体或抗体
药学研究·Journal of Pharmaceutical Research 2014 Vol. 33 , No. 5
· 251·
子载体系统, 脂质体载体系统, 微粒 ( 微囊) 载体系 2. 1 统, 磁性药物载体系统。 大分子载体系统 大分子载体系统包括天然
为靶向给药的载体, 多采用可生物降解的高分子材 料, 常用的有聚乳酸、 聚乙醇酸、 白蛋白、 明胶、 葡聚 糖、 壳聚糖衍生物、 聚氢基丙烯酸烷酯、 大分子嵌段 微球、 微囊或微乳。粒径在 100 ~ 1 000 nm 为亚微 米体系, 即微粒体系, 粒径在 1 ~ 100 nm 为纳米体 系统可改变药物在体内的分布、 药物释放速率和有 效利用率。微粒可物理吸附或化学交联单抗、 受体 或特殊基团等, 能增强高分子药物微粒的特异靶向 性。单抗形成的纳米微粒具有双重靶向性, 一方面 它属于纳米微粒体系, 可通过控制粒径大小选择性 地滞留在特定的靶器官; 另一方面, 可通过抗体对特 异抗原的识别, 使药物集中于靶部位。近年来, 纳米 粒载体系统构成的新型靶向制剂在临床实验中取得 2. 4
[ 16 ~ 20 ] [ 13 ~ 15 ]
[ 2 ~ 4] 内外药剂学研究的重点之一 。靶向给药转运系
靶标在细胞分子水平发挥作用, 可选择性的针对异 常细胞, 而对正常的组织细胞生长无影响, 是研制靶 向抗癌药物的重要依据。
· 250·
药学研究·Journal of Pharmaceutical Research 2014 Vol. 33 , No. 5
可以随外加磁场的改变伴随控温、 恒温的肿瘤物理 1. 5
值比正常组织低而设计的 pH 敏感脂质体, 以及根 据低氧特性设计的益生菌双歧杆菌为药物载体的化 疗制剂
[ 11 , 12 ]
常体温高设计的热敏感脂质体, 根据肿瘤组织的 pH
。这些达到缓释和增强药物疗效, 1. 3 减轻毒副反应的目的。 基于靶区特殊的生物免疫学特性 肿瘤组织 相对于正常组织通常特异表达某类分子或高表达某 种与细胞增殖、 侵袭和转移相关的信号分子或受体。 利用针对特异肿瘤蛋白的抗体 - 抗原之间的专一性 利用受体 - 配体之间特异、 高效、 专一性的结合, 或
机体不同组织
部位对粒径大小不同的药物微粒具有不同的截留 性, 微粒粒径大小和微粒表面性质不同, 靶向性也各 有不同。利用这种特性合成的靶向制剂一般属于被 动靶向制剂。属于被动靶向的药物微粒载体一般利 用其疏水性及表面电荷的静电作用等理化相互作 用, 以及载体的大小、 质量等物理因素实现靶向给 药。一些微粒载体在血液循环过程中由于其疏水性 较大, 易被体内网状内皮系统 ( RES) 摄取, 降低了药 物的有效利用率, 但却可以用于网状内皮系统丰富 体系统在它们到达靶部位前都要通过毛细血管内 组织的肿瘤治疗, 例如肝、 脾和淋巴等部位。微粒载 皮, 粒径在 7 ~ 30 μm 的药物微粒可被动靶向肺组 织; 粒径在 100 ~ 3 000 nm 的微粒可被肝和脾摄取;
[ 5] 胞器, 如线粒体和高尔基体等 ( 三级靶标) 。三级
。靶向药物治疗是指药物选择地到达特定
的生理部位、 器官、 组织或细胞, 并在该靶部位发挥 治疗作用, 近年来靶向给药系统的研究已经成为国 统 ( TDDS) , 又称靶向制剂, 是一种新的制剂技术与 工艺方法, 靶向制剂可以控释给药和提高药物的稳
药学研究·Journal of Pharmaceutical Research 2014 Vol. 33 , No. 5
· 249·
·专家论坛·
肿瘤靶向治疗药物载体的研究进展
孙 蕊, 朱 琰, 刘玉琴
( 中国医学科学院基础医学研究所, 北京协和医学院基础学院, 北京 100005 ) 摘要: 传统抗肿瘤药物最大的治疗缺陷是药物作用多是 非选择性的, 在杀伤癌细胞的同时, 对正常组织产生较强的
cause damage to normal tissues. Therefore, the present research focuses on tumor - targeting therapies, and the strategy of adopting tar-
目前临床上对癌症患者最主要的治疗方式之一 仍是药物疗法, 但传统的抗肿瘤药物发挥药效需要 很高的血药浓度, 且这些药物的作用机理一般是针 对代谢旺盛、 增殖较快的细胞发挥毒性作用, 选择性 较差, 因此对正常组织细胞也具有杀伤作用, 产生明 显毒副作用, 使这些药物的抗肿瘤治疗价值大大降 低。为了提高抗癌药物的疗效, 药物靶向治疗在提 高化疗药物疗效, 降低毒副作用方面具有广阔应用 前景
[ 1]
定性, 改变药物的半衰期, 增加药物的靶向性, 降低 毒性, 使药物具有药理活性的专一性, 减少用药剂量 和用药次数, 提高药物的生物利用度和临床有效性。 寻找合适的药物载体是靶向制剂的重点, 它决定了 药物作用的靶控性和有效性。 靶向制剂是靶向治疗的基础, 能将药物带至特 定部位并在特定部位释放所携带的药物。根据靶向 药物载体的性质不同, 靶向治疗的靶标可以是一个 器官 ( 一级靶标) , 或某一器官的特定组织 ( 二级靶 标) , 亦可以是特殊的病变细胞及细胞内特定的细
相关文档
最新文档