2021年八年级数学上册 第二章 实数总复习教案 北北师大版

合集下载

八年级数学上册第二章实数第二节平方根第2课时平方根教案北师大版(2021-2022学年)

八年级数学上册第二章实数第二节平方根第2课时平方根教案北师大版(2021-2022学年)

1.了解平方根的概念、开平方的概念,进一步明确平方与开方互为逆运算.2.会求一个数的平方根,明确算术平方根与平方根的区别与联系。

1。

了解平方根、开平方的概念,会利用互逆运算关系求某些非负数的算术平上节课我们学习了算术平方根的概念、性质若一个正数x的平方等于a,即x2=a。

则x叫a的算术平方a根,记作x=,而且a也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(—2)2=4,则—2叫4的什么根呢?下面我们就来讨论这个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于4/25的数有几个?平方等于0.64的数呢?一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和—3都是9的平方根,即9的平方根有两个3和—3,9的算术平方根只有一个是3.由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?【归纳结论】联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有。

(3)0的平方根、算术平方根都是0。

区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根"。

(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。

(3)表示法不同:正数a的平方根表示为±,正数a的算术平方根表示为。

(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。

什么叫开平方呢?我们共学了几种运算?这几种运算之间有怎样的联系?2。

平方根的性质请大家思考下面的问题:(1)一个正数有几个平方根?(2)0有几个平方根?(3)负数呢?ﻬ作业布置1.习题2.4第1、2、3、4题.2.完成本课时练习部分.板书ﻬa a。

北师版八年级上册数学第2章 实数 二次根式的混合运算

北师版八年级上册数学第2章 实数 二次根式的混合运算

2.(2019·滨州)计算:-12-2-| 3-2|+ 32÷ 118=_2_+__4__3__.
3.(2018·泰州)下列运算正确的是( D )
A. 2+ 3= 5 B. 18=2 3
C. 2· 3= 5
D. 2÷ 12=2
4.(2019·重庆)估计 5+ 2× 10的值应在( B ) A.5 和 6 之间 B.6 和 7 之间 C.7 和 8 之间 D.8 和 9 之间
【点拨】 5+ 2× 10= 5+2 5=3 5. 因为 3 5= 45,36<45<49,所以 6< 45<7.
5.(中考·聊城)计算5
15-2
45÷(-
5)的结果为(
A
)
A.5 B.-5 C.7 D.-7
【点拨】原式=( 5-6 5)÷(- 5)=(-5 5)÷(- 5)=5.
6.计算:
(1)(2019·泰州) 8-
8.(2019·孝感)下列计算正确的是( A )
A.x7÷x5=x2
B.(xy2)2=xy4
C.x2·x5=x10
D.( a+ b)( a- b)=b-a
9.已知 a=2 2+3,b=2 2-3 则:(1)a+b=4 2; (2)a-b=___6_____;(3)ab=___-__1___; (4)a2+b2=___3_4____;(5)a2-2ab+b2=___3_6____.
解:原式=9-7+2 2-2+(2- 3)[(2+ 3)(2- 3)]2 021 =2 2+2- 3.
12.已知 a= 51-2,b= 51+2,求 a2+b2+7的值.
解:由已知得 a= 5+2,b= 5-2,所以 a+b=2 5,ab=1. 所以原式= (a+b)2-2ab+7= (2 5)2-2+7=5.

北师大版八年级上册 第二章 2.7.2 二次根式 教案

北师大版八年级上册 第二章 2.7.2 二次根式 教案

2.7.2二次根式教学目的知识与技能:1.经历二次根式的运算法那么的探究过程,理解有理数的运算律在实数范围内仍然适用.2.会进展二次根式简单的四那么运算.过程与方法1.从详细实例出发,通过类比把有理数的运算律推广到实数范围.2.通过例题和练习,熟悉和稳固无理数的运算律.情感态度与价值观:在探究与合作活动中,开展探究才能和合作意识,感受数学的严谨性以及数学结论确实定性.教学重难点【重点】会进展二次根式简单的四那么运算.【难点】正确应用二次根式的运算法那么进展四那么运算.教学准备【老师准备】料想学生构建知识体系遇到的困难.【学生准备】复习二次根式的性质.教学过程一、导入新课导入一:[过渡语]前面学习了二次根式的性质,我们复习一下.【问题】二次根式的性质是什么?用公式如何表示? 【问题解决】积的算数平方根,等于算数平方根的积.商的算数平方根,等于算数平方根的商.√ab=√a·√b(a≥0,b≥0), √ab =√a√b(a≥0, b>0).[设计意图]借助复习,在稳固旧知识的同时,导入新课.导入二:装风筝的包装盒是一个底为正方形的长方体盒子,正方形的边长为30 cm,长方体盒子的高为5 cm,长方体盒子在包装时需用彩带沿正方形的对角线进展包装,那么所需要彩带的长度最少是多少厘米?【问题】由于长方体盒子要用彩带沿正方形的对角线进展包装,所以彩带的长最少应为4×(对角线长+高),而正方形对角线的长可以根据勾股定理求得,即√302+302,那么如何计算4(√302+302+5)呢?二、新知构建(1)活动探究思路一:[过渡语]将上节课探究的公式√ab=√a·√b(a≥0,b≥0), √ab =√a√b(a≥0, b>0)等号的左边与右边对换,可以得到二次根式的乘法法那么和除法法那么:√a·√b=√ab(a≥0,b≥0),√a√b = √ab(a≥0,b>0).思路二:计算以下各式,你能得到什么猜测? √16×√25= ,√16×25= ;√9√25= , √925= .√16×√25=4×5=20,√16×25=√400=20,所以√16×√25=√16×25.√9√25=35, √925=35,所以√9√25= √925.我们可以得到二次根式的乘法法那么和除法法那么: √a ·√b =√ab (a ≥0,b ≥0),√a√b = √ab (a ≥0,b >0).〔2〕例题讲解(教材例3)计算.(1)√6× √23; (2)√6×√3√2; (3)√2√5.〔解析〕 常常要把被开方数的分子与分母同时乘以一个适当的数,使得分母成为一个平方数,然后把分母开出来.解:(1)√6× √23= √6×23=√4=2.(2)√6×√3√2=√6×3√2= √6×32=√9=3.(3)√2√5= √25= √2×55×5=√105. (教材例4)计算.(1)3√2×2√3;(2)√12×√3-5;(3)(√5+1)2; (4)(√13+3)(√13-3);(5)(√12-√13)×√3;(6)√8+√18√2. 〔解析〕二次根式也可以进展加减运算,以前学过的有理数的运算法那么、运算律仍然适用.当然,假如运算结果中出现某些项,它们各自化简后的被开方数一样,那么应该将这些项合并.第(3)(4)题要用到乘法公式中的完全平方公式和平方差公式.解:(1)3√2×2√3=3×2×√2×3=6√6. (2)√12×√3-5=√12×3-5=√36-5=6-5=1. (3)(√5+1)2=(√5)2+2√5+1=5+2√5+1=6+2√5. (4)(√13+3)(√13-3)=(√13)2-32=4.(5)(√12-√13)×√3=√12×√3- √13×√3=√36-√1=6-1=5.(6)√8+√18√2=√8√2+√18√2=√4+√9=2+3=5.[设计意图] 从本例开场,正式进展二次根式的加、减、乘、除运算,设计时注意了题目的梯度.本例侧重于乘、除运算,只是已经开场考虑有关运算律和公式的运用(如交换律、结合律、分配律、乘法公式等)了.教学中,注意体会这些题目之间的层次性,教学中务必循序渐进地开展相关技能训练,让更多的学生感受到成功的喜悦.(教材例5)计算.(1)√48+√3;(2)√5- √15;(3)(√43+√3)×√6.〔解析〕 把二次根式化为最简二次根式,能合并的要合并. 解:(1)√48+√3=√16×3+√3=√16×√3+√3=4√3+√3=5√3.(2)√5- √15=√5- √525=√5-√5√25=√5-√55=45√5. (3)(√43+√3)×√6= √43×6+√3×6=√8+√18=2√2+3√2=5√2.[知识拓展] 1.二次根式相乘的结果是一个二次根式或一个有理式.2.在√a ·√b =√ab 中,a ,b 必须满足a ≥0,b ≥0,否那么√a ,√b 就没有意义.3.二次根式的乘法法那么可以推广到多个二次根式相乘的运算,如√x ·√y ·√z =√xyz (x ≥0,y ≥0,z ≥0).4.二次根式的除法法那么中被开方数的取值范围:由于b 为分母,因此被开方数a ,b 的取值范围分别是a ≥0,b >0.5.二次根式的除法法那么中的a ,b 既可以是数,也可以是代数式.6.在运算中应注意约分要彻底. 三、课堂总结二次根式的乘法法那么和除法法那么:√a ·√b =√ab (a ≥0,b ≥0),√a√b =√ab (a ≥0,b >0).二次根式也可以进展加减运算,实数的运算法那么、运算律仍然适用.四、课堂练习1.化简.(1)√5× √25; (2)√2√8;(3)2√12+√48; (4) √29+√50-√32;(5)3√20-√45- √15; (6)(√6-√2)2.解:(1)√5× √25=√5×25=√2.(2)√2√8= √28=12.(3)2√12+√48=2√4×3+√16×3=2×√4×√3+√16×√3=2×2×√3+4×√3=4√3+4√3=8√3.(4) √29+√50-√32=√2√9+√25×2-√16×2=√23+√25×√2-√16×√2=√23+5√2-4√2=43√2.(5) 3√20-√45- √15=3√4×5-√9×5-√525=3×√4×√5-√9×√5-√5√25=6√5-3√5-√55=145√5.(6)(√6-√2)2=(√6)2-2√6·√2+(√2)2=6-2√12+2=8-4√3. 2.化简.(1) 7√3-√13; (2)√12+√27√3; (3)√12·√6√8; (4)(√5+√3)(√5-√3).解:(1) 7√3-√13= 7√3-√33=20√33. (2)√12+√27√3=√3+3√3√3=5.(3) √12·√6√8=√22√2=3. (4)(√5+√3)(√5-√3)=(√5)2-(√3)2=5-3=2. 五、板书设计2.7.1 二次根式二次根式的乘法法那么和除法法那么:√a ·√b =√ab (a ≥0,b ≥0),√a√b = √ab (a ≥0,b >0).例3 例4 例5 六、布置作业〔1〕教材作业【必做题】教材第45页随堂练习.【选做题】教材第46页习题2.10第4题.〔2〕课后作业【根底稳固】1.化简√5×√45的结果是()A.25B.2C.√2D.√222.以下计算错误的选项是()A.√2×√3=√6B.√2+√3=√6C.√12÷√3=2D.√8=2√23.化简√23×√12=;√(-15)×(-27)=.4.化简.(1) √12×√13;(2) (1-√6)(1+√6).5.计算.(1)3√3×√3;(2)√0.5×√24;(3)√45×32√2 3.【才能提升】6.化简(√3+√2)2021(√3-√2)2021.【拓展探究】7.x =√3+√2,y =√3-√2,求x 2+xy+y 2x+y-(x +y ).【答案与解析】1.B2.B3.2√2 9√54.解:(1) √12× √13= √123=√4=2.(2)(1-√6)(1+√6)=12-(√6)2=1-6=-5.5.解:(1)3√3×√3=9. (2)√0.5×√24=2√3. (3)√45×32 √23=32√30.6.解:(√3+√2)2021(√3-√2)2021=[(√3+√2)(√3-√2)]2014(√3-√2)=√3-√2. 7.解:x 2+xy+y 2x+y-(x +y )=x 2+xy+y 2-(x+y)2x+y=-xy x+y=√3+√2)(√3-√2)√3+√2+(√3-√2)=2√3=-√36.教学反思本节课推导出二次根式的乘法法那么和除法法那么,通过不同形式的练习,学生掌握较好,理解了法那么,并会应用法那么进展计算.本节课的教学设计中未考虑学生的层次不同,对知识的要求也不同.增加知识拓展的内容,供层次高一些的学生及班级选用. 教材习题答案随堂练习(教材第45页)1.解:(1)原式= √5×920= √94=32. (2)原式=√3×√6√3=2√6. (3)原式=2+2√3-√3-3=√3-1. (4)原式=(2√3)2-4√3+1=13-4√3. (5)原式=√81+1=10. (6)原式=√9-√4=1. (7)原式=3√3-5√3=-2√3.(8)原式=2√9-2√98×23=-103. 2.解:(1)不正确. (2)不正确. (3)不正确. 习题2.10(教材第45页)1.提示:(1)1. (2)3. (3)7+2√10. (4)-1. (5)√5-1. (6)-14√2. (7)203√3. (8)52√10.2.解:(1)两个有理数相加、相减、相乘、相除,结果一定是有理数. (2)两个无理数相加、相减、相乘、相除,结果不一定是无理数.如(1+√2)+(1-√2)=2,√3-√3=0,(√5+1)(√5-1)=4,√6√6=1,结果都是有理数.3.解:S ΔABC =3×4-12×2×4-12×3×1-12×3×1=5.4.解:√3√2=√62≈2.4492=1.2245. 素材同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定纯熟掌握了吧!如今,我们又学习了二次根式,那么所有的非负数都可以看做是一个数的平方,如3=(√3)2,5=(√5)2.先阅读理解,再答复以下问题.(√2-1)2=(√2)2-2·1·√2+12=2-2√2+1=3-2√2,反之,3-2√2=2-2√2+1=(√2-1)2,所以3-2√2=(√2-1)2,所以√3−2√2=√2-1.(1)求√3+2√2;(2)求√4+2√3;(3)你会算√4−√12吗?(4)假设√a±2√b=√m±√n,那么m,n与a,b的关系是什么?并说明理由.解:(1)√3+2√2=√(√2+1)2=√2+1.(2)√4+2√3=√(√3+1)2=√3+1.(3)√4−√12=√(√3-1)2=√3-1.(4)由√a±2√b=√m±√n,得a±2√b=m+n±2√mn,那么a=m+n,b=mn.。

(赛课课件)北师大版八年级数学上册《估算》

(赛课课件)北师大版八年级数学上册《估算》


11、人总是珍惜为得到。21.8.3118:50: 5018:5 0Aug -2131-Aug -21

12、人乱于心,不宽余请。18:50:5018:50:5018:50Tuesday, August 31, 2021

13、生气是拿别人做错的事来惩罚自 己。21.8.3121.8.3118:50:5018:50:50August 31, 2021
一、新课引入
(1)公园的宽大约是多少?它有1000 m吗?
2000×1000=2000000 >400000
公园的宽没有1000 m.
2000
1000
S=2000000
一、新课引入
(2)如果要求结果精确到10 m,它的宽大约是多少?与同伴 进行交流.
x×2x=400000
2x2=400000
x2=200000

14、抱最大的希望,作最大的努力。2021年8月31日 星期二 下午6时50分50秒18:50:5021.8.31

15、一个人炫耀什么,说明他内心缺 少什么 。。2021年8月 下午6时50分21.8.3118:50August 31, 2021

16、业余生活要有意义,不要越轨。2021年8月31日 星期二 6时50分50秒18:50:5031 August 2021

11、人总是珍惜为得到。21.8.3118:50: 5018:5 0Aug -2131-Aug -21

12、人乱于心,不宽余请。18:50:5018:50:5018:50Tuesday, August 31, 2021

13、生气是拿别人做错的事来惩罚自 己。21.8.3121.8.3118:50:5018:50:50August 31, 2021

北师大版八年级上册数学第一二单元总复习

北师大版八年级上册数学第一二单元总复习

勾股定理与实数总复习勾股定理:直角三角形两直角边的平方等于斜边的平方。

如果用a ,b 和c 分别表示直角三角形的两直角边和斜边,那么a 2+b 2=c 2。

应用勾股定理时要注意:①其成立的前提条件是“直角三角形”;②应分清直角边与斜边,在一些直角三角形中,斜边未必是c ;③若没有明确直角边与斜边,应分类讨论。

勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形,就是说,在三角形ABC 中,如果有a 2+b 2=c 2,那么∠C =90。

判定直角三角形有三种方法:①三角形中有一个直角;②三角形中有两边互相垂直;③勾股定理的逆定理。

若最长边的平方大于较短两边的平方和,则三角形为钝角三角形;若最长边的平方小于较短两边的平方和,则三角形为锐角三角形。

满足a 2+b 2=c 2的三个正整数称为勾股数。

注意:①勾股数必须是正整数;②一组勾股数中各数的相同的不为零的整数倍是一组新的勾股数。

熟记常见的勾股数:①3、4、5;②6、8、10;③8、15、17;④7、24、25;⑤5、12、13;⑥9、12、15;⑦9、40、41;⑧11、60、61。

勾股定理的应用:①判定垂直:利用勾股定理的逆定理;②圆柱侧面上两点间的最短距离:把圆柱展开成平面图形,依据两点之间线段最短,以最短路线为边构造直角三角形,利用勾股定理求解;③长方体(或正方体)不同表面上两点间的最短距离:须将其转化到同一平面内,即可把四棱柱设法展开成一个平面图形,再构造直角三角形利用勾股定理解决。

(正方体的展开图从哪一面上展开都一样,而长方体的展开图一定要注意打开哪一个侧面,并且向上、下与向左、向右展开会出现长度不同的路线,应通过尝试从几条路线中选一条符合要求的。

)00⎧⎧⎧⎫⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎭⎪⎪⎪→⎩⎪⎪⎧⎧⎨⎧⎪⎪⎨⎪⎨⎪⎩⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎪⎪⎧⎧⎪⎪⎪⎨⎪⎪⎨⎩⎪⎪⎪⎪⎪⎩⎩⎩正整数整数负整数有理数有限小数和无限循环小数按定义分正分数分数负分数无理数无限不循环小数实数的分类正整数正有理数正实数正分数正无理数按大小分负整数负有理数负实数负分数负无理数 实数的性质:①a 表示一个正实数,a -就表示一个负实数,a 与a -互为相反数;②非零实数a一定有倒数,它的倒数为1a,负倒数为1a-;③如果a表示实数,那么(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩有理数和无理数的区别:①有理数是有限小数或无限循环小数,而无理数是无限不循环小数;②所有的有理数都能写成分数的形式(整数可以看成是分母是1的分数),而无理数写不成分数的形式。

河北省邯郸市肥乡县八年级数学上册第二章实数复习教案新版北师大版

河北省邯郸市肥乡县八年级数学上册第二章实数复习教案新版北师大版

第二章这章我们已经学完,让我们复习这一单元的知识。

课导入第二章《实数》知识点梳理及题型解析一、知识归纳(一)平方根与开平方课1.平方根的含义aa的平方根。

,那么这个数就叫做如果一个数的平方等于2ax a?x,即的平方根。

叫做程2.平方根的性质与表示aa?a?a也称为算术平方根,的平方根用表示,⑴表示:正数叫做正平方根,讲a的负平方根。

叫做授a?(根指数2⑵一个正数有两个平方根:省略)00?,记作,负数没有平方根00有一个平方根,为平方与开平方互为逆运算⑶a的平方根的运算。

开平方:求一个数 1立方根的性质2.任何实数都有唯一确定的立方根。

正数的立方根是一个正数。

负数的立方根是一. 立方根是0个负数。

0的开立方与立方3.开立方:求一个数的立方根的运算。

??333333aa?a??a?a?a a取任何数)(这说明三次根号内的负号可以移到根号外面。

*0的平方根和立方根都是0本身。

n(三)推广:次方根naann1次方根。

,这个数就叫做次方(. 如果一个数的是大于1的整数)等于的22. 实数和数轴上的点的对应关系:每一个实数都可以用数轴上的一个点表示.实数和数轴上的点一一对应,即数轴上的每一个点都可以表示一个实数.2的画法:画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况:2①尺规可作的无理数,如……②尺规不可作的无理数,只能近似地表示,如π,1.010010001 思考:2a一定是正数吗?)-一定是负数吗?-a (1是一个无理数,那么(2)大家都知道-1在哪两个整数之间?15,则ba= , b= 。

小数部分为)(3的整数部分为a, )判(4断下面的语句对不对?并说明判断的理由。

①无限小数都是无理数; 333一、平方法:比较的大小和22332和的大小二、根号法:比较1?5的大小和三、求差法:比较12 4.实数的三个非负性及性质数范围内,正数和零统称为非负数。

(1)在实(2)非负数有三种形式0;①任何一个实数a的绝对值是非负数,即|a|≥a2②任何一个实数a的平方是非负数,即;≥0 ③任何非负数的算术平方根是非负数,即0?a)非负数具有以下性质3(①非负数有最小值零;②非负数之和仍是非负数;0 ,则每个非负数都等于③几个非负数之和等于0二、题型解析、有关概念的识别题型一.,其中,无理数,,,3π1.010010001下面几个数:例1. ,…,1.23)的个数有(4 D、3 C 、 1 A、 B2 、】下列说法中正确的是(【变式1 ) B3 的平方根是±A、、的立方根是±114、是5的平方根的相反数=C、±1 D题型二、计算类型题),则下列结论正确的是(例2.设 B. A.D.C..计算:例3 4.例先化简,再求值:b111?51?5,b=.,其中a=??)(ab?ba?ba22a33b31?1?2a互为相反数,求的值。

北师大版数学八年级上册全册复习ppt课件

北师大版数学八年级上册全册复习ppt课件
北师大版八年级上册 期末总复习典型题
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 RБайду номын сангаас△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?

北师大版八年级上册数学全册教案

北师大版八年级上册数学全册教案
3、图1—2中,A,B,C之间的面积之间有什么关系?
学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?
二、做一做
出示投影3(书中P3图1—4)提问:
1、图1—3中,A,B,C之间有什么关系?
2、图1—4中,A,B,C之间有什么关系?
3、从图1—1,1—2,1—3,1|—4中你发现什么?




学校:将乐县第四中学
*******
班 级:八(4)
2016年9月
八年级数学上册教学计划
一、学情分析
八年级是初中学习过程中的关键时期,在我们班上,两极分化问题很是严重,对优等生来说他们能够理解知识形成技能具备一定的数学能力,而对后进生来说简单的基础知识还不能够掌握成绩不容乐观。为使学生学好进一步学习所必需的代数、几何的基础知识与基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,作为教师,我将实行因材施教策略。
1、1、课文 P11§1.2 1 、2
2、选用作业。
§
教学目标:
知识与技能
1.掌握直角三角形的判别条件,并能进行简单应用;
2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
情感态度与价值观
具体教学目标如下:
1.正确理解二次根式的概念,掌握二次根式的基本运算,并能熟练地进行二次根式的化简。
2.掌握二次根式加、减、乘、除的运算法则,能够进行二次根式的运算。掌握二次根式的化简,进一步提高学生的运算能力。

八年级数学上册第二章实数第一节认识无理数教案北师大版(2021-2022学年)

八年级数学上册第二章实数第一节认识无理数教案北师大版(2021-2022学年)

认识无理数 课题 认识无理数
课型 教学目标 让学生动手剪拼,得出正方形,面积为2,怎么得出它的边长 让学生通过小组合作,得出无理数
重点 学生探索出既不是整数,又不是分数的数,不是有理数
难点 怎么得出边长是无理数
教学
用具
自制的正方形 教学
环节
说 明 二次备课 复习 ⑴一个整数的平方一定是整数吗? ⑵一个分数的平方一定是分数吗?
新课
导入
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方 , 问题:是整数(或分数)吗?
课 程 讲 授
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正
方形,你会吗?
【议一议】: 已知,请问:①可能是整数
吗?②可能是分数吗?
【释一释】:释1.满足的为什么不是整数? 释2.满足的为什么不是分数?
【忆一忆】:回顾“有理数"概念,既然不是整数也不是分数,那么一定

不是有理数,这表明:有理数不够用了,为“新数”(无理数)
的学习奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段
x x 22a =a a 22
a =a 22a =a a
a
1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会? 2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?。

专题14-10 《实数》全章复习与巩固(知识讲解)-2021-2022学年八年级数学上册基础知识专项

专题14-10 《实数》全章复习与巩固(知识讲解)-2021-2022学年八年级数学上册基础知识专项

专题14.10 《实数》全章复习与巩固(知识讲解)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【要点梳理】要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分: 实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数特别说明:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数的绝对值是非负数,即||≥0; (2)任何一个实数的平方是非负数,即≥0;(3().非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、与实数有关的基本概念1、有下列各数:一16,3.14,一15,0,一327-,π,1.3030030003,,,(每两个3之间多一个0).(1)其中无理数有 (2)请将正实数按从小到大的顺序排列,并用“< ”连接。

八年级数学上册 第二章 实数 2.7 二次根式(第3课时)教学课件上册数学课件

八年级数学上册 第二章 实数 2.7 二次根式(第3课时)教学课件上册数学课件
解:
12/11/2021
第三页,共十一页。
二、新课讲解
(jiǎngjiě)
12/11/2021
第四页,共十一页。
第( 3 )题的另解:
24
1 6
3
2
6
6 6
3
2 1 6 3 6
11 2 6
11 2 . 6
二、新课讲解
(jiǎngjiě)
在上面(第 4)题中,很容易看9出 9化,成最简二次根式后 与 25,18化简后的被开方数能不相可同,因此,结果中
No 切割的方法,先过点B作BE垂直ADCD被分割
为直角三角形ABE、直角三角形BOC和直角梯形(tīxíng)DEOC.。2.二次根式满足加法交换律、加法 结合律、乘法交换律、乘法结合律和分配律.。本课结束
Image
12/11/2021
2 1可 2/11/20以 21 保留99,不必将它化简成二最次简根.式
第五页,共十一页。
二、新课讲解
(jiǎngjiě)
化简1 a b a, b 其 a中 3, b2你 . 是怎么做进 的行 ?.交 与
1 a
b
ab
1 ab b ab a
b ab 2 .
因为 b 2 0,所以原式 b b a .
3乘法交换律: a b b a;
4乘法结合律: a b c a b c ; 5分配律: a b c a b a c.
其中a、b、 12/11/2021 c都是大于或等于 0的实数
第二页,共十一页。
二、新课讲解
(jiǎngjiě)
例 计算(jì suàn):
12/11/202 14 2 7 8 5 2 2 5 7 3 2 2 3 3 2 5 3 3 2 2 7 3 2 2 .

2021年八年级数学上册 第二章第六节 实数(二)教案 北师大版

2021年八年级数学上册 第二章第六节 实数(二)教案 北师大版

2019-2020年八年级数学上册第二章第六节实数(二)教案北师大版一、教材分析实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.二、学情分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。

当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.三、目标分析1.教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.[(3)正确运用公式:(≥0,≥0)(≥0,>0)这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律.(2)能用类比的方法解决问题,用已有知识去探索新知识.●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.2.教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.(2)发现规律:(≥0,≥0)(≥0,>0)3.教学难点(1)类比的学习方法.(2)发现规律的过程.4.教学方法(1)探索——交流法.(2)课前准备:教材、课件、电脑.电脑软件:Word,Powerpoint.四、教学过程本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.问题2:实数包含哪些数?答:有理数,无理数.问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题.意图:通过问题,回顾旧知,为导出新知打好基础。

八年级数学上册 第二章 实数 3 立方根分析与重难点突破(第2课时)素材 北师大版(2021年整理

八年级数学上册 第二章 实数 3 立方根分析与重难点突破(第2课时)素材 北师大版(2021年整理

八年级数学上册第二章实数3 立方根教材分析与重难点突破(第2课时)素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第二章实数3 立方根教材分析与重难点突破(第2课时)素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第二章实数3 立方根教材分析与重难点突破(第2课时)素材(新版)北师大版的全部内容。

立方根教材分析与重难点突破第2课时1.教材分析本节课的主要内容是使用计算器求立方根和立方根的求值规律.教科书首先指出很多有理数的立方根是无限不循环小数这一结论,我们可以用有理数近似值表示它们.由于估算一个数的立方根的近似值的方法和估算一个数的算术平方根的近似值的方法相同,教科书在正文中没有给出估算的例子,只在本节练习第3题和习题6.2第8题中安排了比较大小的问题,教学时,学生会解答这类问题即可,不必深究;然后教科书结合例题,学习利用计算器求一个数的立方根的方法,指出不同的计算器操作过程或按键顺序可能是不相同的;最后设置了一个“探究”栏目,在这个栏目中,要求学生利用计算器探究并归纳出被开方数的小数点向右或向左移动时立方根的小数点的变化规律,利用所发现的这个规律求一个数立方根的近似值.本节课的教学重点是用计算器求立方根,本节课的难点是立方根的值的变化规律.2.重难点突破(1)估算或用计算器求立方根突破建议使用计算器求一个数的立方根,只需要直接按顺序按键即可.需要注意的是:①一些计算器设有键,用它可以直接求出一个数的立方根,不要将键错按成键;②有些计算器需要用第二功能键求一个数的立方根;③不同型号的计算器按键顺序有可能不同,应注意先阅读说明书,再按说明书进行操作计算;④若被开方数为负数时,防止漏按负号键.“-”号的输入可以按(-),也可以按 - ,不同型号的计算器可能不同;⑤用计算器求立方根,计算器里显示的数值中,许多都是近似值,要根据题目要求进行取舍.例1.把7的平方根和立方根按从小到大的顺序排列: .解析:本题考查数的大小比较.根据平方根和立方根的特征可得,7的平方根是,7的立方根是,因为,,,所以答案为.例2.用计算器求下列各式的值:(1);(2);(3)(精确到0.001).解析:本题考查用计算器求立方根,需要注意的是:注意按键顺序,防止漏按负号键和键,要根据题目要求对显示的近似值进行取舍.(1);(2);(3)(精确到0.001).(2)求立方根的应用突破建议求立方根的应用,主要有解特殊的一元三次方程以及实际应用等.利用开立方可解的一元三次方程的形式一般比较特殊,如只含有三次项和常数项等.一般地,解此类方程时先进行移项,然后将的系数化为1,再根据立方根的性质求解,有时需要把含有未知数的多项式作为一个整体直接开立方求解.例3.求下列各式中的值:(1);(2);(3).解析:本题考查求立方根的应用.(1)因为,所以;(2)由得,所以;(3)因为,所以,故.(3)立方根的值的变化规律突破建议当被开方数的小数点向右或向左移动3位时,它的立方根的小数点就相应地向右或向左移动1位.我们也可以这样来理解:被开方数扩大1000倍,其立方根扩大10倍;被开方数缩小1000倍,其立方根缩小10倍.在实际应用中,我们应结合算术平方根的求值规律加以记忆和巩固.例4.请同学们运用所学的方法,完成下表:0.000001.001110001000000(1)观察上表并说明当已知数的小数点向右(或向左)移动时,它的立方根的小数点的移动规律是怎样的?写出你发现的规律;(2)运用你所发现的规律,解答下列各小题.已知,求:①;②.解析:本题考查立方根的值的变化规律,由已知的值及其开立方得到的规律相比较得出规律:当被开方数的小数点向右或向左移动3位时,它的立方根的小数点就相应地向右或向左移动1位,分别利用此规律求出所给数的值.0.000001.0011100010000000.01.1110100 (1)当已知数的小数点向右或向左移动3位时,它的立方根的小数点就相应地向右或向左移动1位;(2)①;②.。

新北师大版八年级数学上册《二次根式》(第2课时)精品课件

新北师大版八年级数学上册《二次根式》(第2课时)精品课件
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/82021/11/82021/11/811/8/2021
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/82021/11/8November 8, 2021
第二章 实数
7. 二次根式(第2课时)
b(a 0,b 0)
0

ab
a b


a
a b ≥

b
例1 计算:
(1) 6 2 3
(2) 6 3 2
(3) 2 3
判断:
(1) 2 3 5 ( × )
(2) 2 22 2 ( ×)
(3) 8 4 2
( ×)
中考链接:
(重庆/常德·中考):
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/82021/11/82021/11/82021/11/8
计算 8 2 的结果是( D )
A. 6
B. 6
C. 2
D. 2
当堂检测:
(1) 2
5
(2)
2

5
(3)5 123 3(4) 24
1 6
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.

北师大版初二上册数学教案

北师大版初二上册数学教案

北师大版初二上册数学教案数学是初中教学中的重要组成部分,下面是本人为大家带来的北师大版初二上册数学教案,相信对你会有帮助的。

北师大版初二上册数学教案一一、学生情况分析及改进提高措施:学生们经过两年的学习,已经具备了初步的逻辑思维能力和简单的抽象概括能力,养成了一些良好的学习习惯,掌握了一些科学的学习方法,学会了独立思考和与人沟通、协商、合作、交流的能力,学会了探究问题,并能根据具体情况提出合理的问题,还能正确解决问题的能力。

无论是理解问题的能力,还是分析、解决问题的能力均有所提高,基础知识和基本技能打得也比较扎实,对数学学习有着浓厚的兴趣,乐于参与到学习活动中去,特别是对一些动手操作,合作学习,实践活动等学习内容尤为感兴趣,因此,在教学中应多设计一些活动,引导学生进行独立思考与合作交流,帮助学生积累参加数学学习活动的经验。

在数学知识上已经掌握了两步计算式题和有余数的除法,还有统计知识,并学会了辨认八个方位;掌握了万以内数的读法、写法和加、减法;还掌握了长度单位毫米、厘米、分米、米和千米的实际长度和简单的换算以及实际测量,并能用以上这些相应的知识解决实际生活中的问题。

总之,这些技能和知识点都为本学期进一步学习新知识打下了坚实的基础,他们爱学数学的热情,以及对数学的感悟能力会在本学期进一步得到发扬光大,他们的情感、态度、价值观会沿着良性轨道螺旋式上升。

具体提高措施是:1.从学生的年龄特点出发,多采用情境活动式教学,培养学生的参与意识。

两班学生都能根据教师给出的情境获取相关的数学信息,并能根据有效信息提出数学问题,能积极投入到探索问题的活动中去,绝大部分学生能够在课堂上主动的研究问题,获取知识。

2.在课堂教学中,多增添一些与学生生活相关的利于孩子理解的问题,让学生在解决问题的过程中能够联系到实际,便于对问题的理解。

结合学生的生活实际,将问题生活化,让学生从生活中获取到更多的解决问题的素材。

3.课后练习注重增添以学习内容为主的相关实践练习,加强各学科之间的联系,少一些呆板的练习,提高练习的实践性和趣味性。

八年级数学上册《实数》考点解析北师大版

八年级数学上册《实数》考点解析北师大版
(7)实数大小的比较:利用法则比较大小;利用数轴比较大小
(8)实数的运算:在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方.实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算.正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键.
中考零距离:计算:
(1) .
(2)( )-1- - +(-1- )2;
解:(1) ;(2)0
例6、小东在学习了 后,认为 也成立,因此他认为一个化简过程: = 是正确的.你认为他的化简对吗?说说你的理由.
分析:二次根式的化简要根据其基本性质进行,对于性质: ,是有条件的即: , ,做题时应注意这一点.
例1、在-π,-2, , ,3.14, ( )0中,有理数的个数是()
A、2B、3C、4D、5
分析:本题考查有理数和无理数的概念,要深刻理解这两个概念,关建在于对无理数的认识,应是无限不循环小数.
解答:-π是无理数, 是无理数,其余-2, =2,,3.14, ( )0=1均为有理数,共有4个,应选C.
解答:有数轴可知,a>b>0,且 ,从而有a>a+b>0,a-b>a,又因为b<0,所以a+b>b,这样就有a-b>a>a+b>b,故选D.
点评:根据在数轴上的位置,既能知道他们的大小,又可以根据绝对值的几何意义,来确定a+b和a-b的结果的运算符号.
中考零距离:
(1)实数a, b在数轴上的位置如图所示,则下列关系式成立的是( )
解答:他的化简过程是错误的,这是因为:根据性质: ,应有条件 , ,
而该同学在 的化简过程中,显然出现了违背条件的情况, 与 是
没有意义的,因此他的化简过程是错误的.正确的应是:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年八年级数学上册第二章实数总复习教案北北师大版●教学目标(一)教学知识点1.本章知识的网络结构.2.重点内容归纳.(1)数怎么又不够用了,引出了无理数.(2)有理数与无理数的联系与区别.(3)算术平方根、平方根的定义,会求正数的算术平方根和平方根.(4)立方根,开立方的定义,会求一个数的立方根.(5)估算的方法.(6)用计算器开方.(7)实数的定义,实数的运算法则和运算律.(二)能力训练要求1.熟练掌握本章的知识网络结构.2.理解无理数,实数,算术平方根,平方根,立方根,开立方的定义.3.理解有理数与无理数的区别与联系.4.开方运算和乘方运算有什么联系?5.掌握估算的方法.6.正确运用实数的运算法则和运算律.(三)情感与价值观要求通过本章内容的小结与复习培养学生学会归纳,整理所学知识的能力,从而激发学生的学习兴趣、求知欲望,并培养良好的学习品质.●教学重点本章知识的网络结构,知识间的相互关系.●教学难点知识的运用.●教学方法启发引导式归纳教学法.●教具准备投影片两张:第一张:本章知识网络结构图(记作§2.7 A);第二张:小测验(记作§2.7 B).●教学过程Ⅰ.导入[师]本章的内容已全部学完.请同学们回忆并归纳本章所学的知识.[生]本章的内容有:数怎么又不够用了;平方根,算术平方根的定义及求法;立方根的定义及求法;估算的方法,用计算器开方,实数的概念,实数的运算法则和运算律.[师]本节将对本章知识内容进行系统归纳,总结.Ⅱ.讲授新课1.[师]请看本章知识网络结构图投影片:(§2.7 A)2.重点内容归纳[师]同学们根据网络结构图,可看出本章知识的主要内容及相互之间的关系,下面请同学们回顾主要知识点.首先回顾无理数的引入.(1)无理数的引入及它与有理数的联系与区别.[生]由a2=2得a既不是整数,也不是分数,所以a不是有理数,是无理数,就引入了无理数.[师]对.在小学我们学的是正整数,正分数,零,在初一因为要表示具有相反意义的量就引入了负数,这时就由小学学的正数和零扩充到有理数范围,本章我们在解决实际问题时发现有一些数如a2=2中的a既不是整数,也不是分数,所以不是有理数,而是无理数.像a这样的数还有很多,所以就引入了无理数.那么无理数和有理数有什么联系呢?请大家分析一下.[生]从定义看,有理数包括整数和分数,整数和分数都可化为有限小数或无限循环小数,无理数是无限不循环小数.所以它们都能化为小数,但有理数能化为有限小数或无限循环小数,而无理数是无限不循环小数;另外,有理数和小数可以互化,而无理数与小数不能互化.(2)算术平方根与平方根的联系与区别.[师]这位同学总结得很好.下面继续回顾算术平方根与平方根的概念,以及它们之间的联系与区别.[生]若一个正数x2=a,则x叫a的算术平方根;若一个数x2=a,则x叫a的平方根.它们的联系有:(1)平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根与算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.区别是:(1)从定义看不同.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同.正数a的平方根表示为±,正数a的算术平方根表示为.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.(3)立方根的有关知识.[师]非常棒.下面总结立方根的有关知识.[生]若x 3=a ,则x 叫a 的立方根.立方根的性质有:一个正数的立方根是一个正数.一个负数有一个负的立方根,零的立方根为零.[师]立方根、平方根、算术平方根都是通过什么运算得到的.这种运算和乘方运算之间有什么关系呢?[生]立方根、平方根、算术平方根都是通过开方运算得到的,开方运算和乘方运算是互为逆运算.(4)估算.[师]下一个内容是什么呢?[生]是公园有多宽,也就是估算.估算就是利用乘方运算来进行的.估算的步骤大致为:(1)估计是几位数;(2)确定最高位上的数字(如百位);(3)确定下一位上的数字(如十位);(4)依次类推,直到确定出个位上的数或者按要求精确到小数点后的某一位.[师]用计算器开方给我们减少了不少麻烦,不用我们去查表,只要轻轻一按计算器上的功能键就能得到我们想要的数.但是你必须掌握它的程序才行,否则还不如查表呢.因为大家用的不是同一类型的计算器,所以我们不能在这里统一步骤.每位同学首先要探索出你所拿计算器的步骤才能轻松地完成任务.下面我们继续最后一部分的回顾,是有关实数的知识.(5)实数的定义及实数的运算法则和运算律.[生]a.有理数和无理数统称为实数.b.实数的分类有:(1)按定义分⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数负整数负有理数零正分数正整数正有理数有理数实数 (2)按大小分:实数⎪⎩⎪⎨⎧负实数零正实数c.实数大小的比较在数轴上表示的两个实数,右边的数总比左边的数大.d.实数和数轴上点的对应关系.实数和数轴上的点是一一对应的关系.e.实数的几个概念.(1)相反数;(2)倒数;(3)绝对值都和有理数范围内的概念相同.f.实数的运算法则和运算律.在实数范围内的运算法则和运算律和有理数范围内的运算法则和运算律相同.3.知识点的运用[师]大家对本章的知识点掌握得很好.那么运用情况如何呢?下面请同学们讨论解下列各题:[例1]判断题:(1)4的算术平方根是±2;(2)4的平方根是2;(3)8的立方根是±2;(4)无理数就是“没有理由的数”;(5)不带根号的数都是有理数;(6)无理数就是开方开不尽的数;(7)两个无理数的和还是无理数.[生](1)错.4的算术平方根只有一个2.(2)错.因为4的平方根有两个是±2.(3)错.因为一个正数8有一个立方根2.(4)错.无理数不是没有理由的数,而是无限不循环小数.(5)错.不带根号的数不一定是有理数.如π,反过来,带根号的数也不一定是无理数.如=2是有理数.(6)错.一般开方开不尽的数是无理数,但无理数不一定是开方开不尽的数,如π是无理数,但它不是开方开不尽的数.(7)错.两个无理数的和可能是无理数,也可能是有理数.如是无理数,=0是有理数.[师]上题主要是从概念上考查大家的理解程度,也是最容易出现错误的题,希望大家要认真分析,作出准确判断.[例2]把下列各数写入相应的集合中.-1,,0.3,,,0,0.1010010001…(相邻两个1之间0的个数逐次加1).(1)正数集合{ …};(2)负数集合{ …};(3)有理数集合{ …};(4)无理数集合{ …}.分析:正、负数集合是从数的符号来考虑的;有理数、无理数集合是从实数的分类来考虑的,正、负数可能是有理数或无理数,有理数,无理数包含正、负有理数,无理数.[生]解:(1)正数集合{,0.3,,,0.1010010001…};(2)负数集合{-1,…};(3)有理数集合{-1,0.3,,,0…};(4)无理数集合{,,0.1010010001…}.[例3]你会估算吗?请估算下列各组数的大小,并作比较.(1),3.965;(2) ,.[生]解:(1),即4<<5∴>3.965(2)∵,即2<<3,即4<<5∴<[例4]求下列各数的平方根与算术平方根:(1)2.25;(2)361;(3);(4)10-4.分析:10-4应先化为.[生]解:(1)∵(±1.5)2=2.25∴2.25的平方根为±1.5,即±=±1.52.25的算术平方根为1.5,即=1.5;(2)∵(±19)2=361∴361的平方根为±19,即±=±19361的算术平方根为19,即=19;(3)∵(±)2=,∴的平方根为±,即±=±的算术平方根为,即= ;(4)∵(±)2=∴的平方根为±,即±=±的算术平方根为,即= .注:这个题主要是区分算术平方根与平方根的概念而设置的.[例5]用计算器求下列各式的值(精确到0.01).(1);(2)-;(3);(4);(5)-.[生]解:(1) ≈8.66;(2)-≈-5.37;(3) ≈2.49;(4) ≈10.48;(5)-≈-89.44.[例6]化简:.8121332)3(;7218)2();35)(35)(1(+---+ [生]解: (1);235)3()5()35)(35(22=-=-=-+ (2);23262323629236297218-=-=⨯-⨯=⨯-⨯=- (3)42223216282221321681213322+⨯-⨯=⨯+⨯-⨯=+- .24114222324=+-=[例7]一个圆的半径为1厘米,和它等面积的正方形的边长是多少厘米?(结果精确到0.01厘米)[生]解:设正方形的边长是x厘米,得x2=π解得x=≈1.77(厘米)答:正方形的边长是1.77厘米.Ⅲ.课堂练习小测验投影片:(§2.7 B)1.1,2,3,4,5,6,7,8,9,10的平方根和立方根中,哪些是有理数?哪些是无理数?2.化简(1);(2);(3);(4).Ⅳ.课时小结本节课重点复习归纳了本章内容中的各知识点,并对知识点进行了练习.Ⅴ.课后作业复习题Ⅵ.活动与探究如下图所示,15只空桶(每只油桶底面的直径均为50厘米)堆在一起,要给它们盖一个遮雨棚,遮雨棚起码要多高?解:设油桶底面的直径为d.由图根据勾股定理得h==2d∴h+d=2d+d=(2+1)d=(2+1)×50≈223.20(厘米)答:遮雨棚起码要223.20厘米高.●板书设计25275 62BB 抻37608 92E8 鋨25721 6479 摹30102 7596 疖31972 7CE4 糤U23935 5D7F 嵿34929 8871 衱N{22149 5685 嚅34205 859D 薝28400 6EF0 滰。

相关文档
最新文档