含参不含参函数单调性
知识讲解_导数在函数性质中的应用——单调性
导数在函数性质中的应用——单调性编稿:张林娟审稿:孙永钊【学习目标】1. 知识与技能能用导数判断函数的单调性、求不超过三次的多项式函数的单调区间;掌握求函数单调区间的方法和步骤.2. 过程与方法通过利用导数研究函数的单调区间的过程,掌握利用导数研究函数性质的方法.总结求函数单调区间和极值的一般步骤,体会其中的算法思想,认识到导数在研究函数性质中的应用.3. 情感、态度与价值观通过用导数方法研究函数性质,认识到不同数学知识之间的内在联系,以及导数的应用价值.【要点梳理】要点一:函数的单调性与导数的关系我们知道,如果函数()f x在这一区间具有单调性.f x在某个区间是增函数或减函数,那么就说()已知函数2=-+的图象如图所示,f x x x()43由函数的单调性易知,当2f x是增函数.现在我们看看各个单f x是减函数;当2x<时,()x>时,()调区间内任意一点的切线情况:考虑到曲线()f x在改点的导数值,从图象可以看到:y f x=的在某点处切线的斜率就是函数()在区间(-∞,2)内,任意一点的切线的斜率为负,即'()240f x x =<时,()f x 为减函数.在区间(2,+∞)内,任意一点的切线的斜率为正,即'()240f x x =>时,()f x 为增函数.导数的符号与函数的单调性:一般地,设函数()y f x =在某个区间内有导数,则在这个区间上,(1)若()0f x '>,则()f x 在这个区间上为增函数;(2)若()0f x '<,则()f x 在这个区间上为减函数;(3)若恒有()0f x '=,则()f x 在这一区间上为常函数.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).要点诠释:①导函数的正负决定了原函数的增减;②在区间(a ,b )内,'()0f x >(或()0f x '<)是()f x 在区间(a ,b )内单调递增(或减)的充分不必要条件.注意:只有当在某区间上有有限个点使'()0f x =时,()0f x '≥(或()0f x '≤)≡()f x 在该区间内是单调递增(或减).例如:32()'()30'(0)0,'()0(0)f x x f x x f f x x =⇒=≥=>≠,,而()f x 在R 上递增.③当在某区间内恒有()0f x '=,这个函数()y f x =在这个区间上才为常数函数.要点二:利用导数研究函数的单调性利用导数判断函数单调性的基本方法:设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数;(2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数;(3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数.利用导数求函数()f x 单调区间的基本步骤(1)确定函数()f x 的定义域;(2)求导数'()f x ;(3)在函数()f x 的定义域内解不等式'()0f x >或'()0f x <;(4)确定()f x 的单调区间.或者:令'()0f x =,求出它在定义域内的一切实数根。
导数应用:含参函数的单调性讨论(一)
导数应用:含参函数的单调性讨论(一)一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。
二、典例讲解例1 讨论xax x f +=)(的单调性,求其单调区间 解:xax x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)('a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。
2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】
2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。
第九讲导数与函数的单调性原卷版2023届高考数学二轮复习讲义
第九讲:导数与函数的单调性【考点梳理】【典型题型讲解】考点一:求函数的单调区间(不含参)【典例例题】例1.函数()ln f x x x =的单调递减区间是( ).A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e ⎛⎫-∞ ⎪⎝⎭C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭函数单调区间的求法:解不等式法,列表格法【变式训练】2.函数ln 2f x x x =+-的单调递增区间为( )A .(),3-∞B .(),1-∞C .()1,+∞D .()1,23.已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0) B .(1,+∞) C .(-∞,1)D .(0,+∞) 4.函数()()3e x f x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,5.函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________. 【典型题型讲解】考点二:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围【典例例题】例1.如果函数()22ln f x x a x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,则a 的取值范围是( )A .1a <B .1a ≥C .1a >D .1a ≤(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围.(3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解.【变式训练】1.若函数()2()e x f x x ax a =-+在区间(1,0)-内单调递减,则实数a 的取值范围是( ) A .(,3]-∞ B .[3,)+∞ C .[1,)+∞ D .(,1]-∞2.已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( )A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-2.已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭3.已知函数()2()()x f x e x bx b R =-∈在区间1,22⎡⎤⎢⎥⎣⎦上存在单调递增区间,则实数b 的取值范围是( ) A .8(,)3-∞ B .5(,)6-∞ C .35(,)26- D .8(,)3+∞ 4.已知函数()ln 3f x ax x =++在区间()1,2上不单调,则实数a 的取值范围为( )A .12,23⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .11,2⎛⎫-- ⎪⎝⎭D .21,32⎛⎫-- ⎪⎝⎭5.函数321()53f x x x ax =-+-在区间[1,2]-上不单调,则实数a 的取值范围是( ) A .(-∞,-3]B .(-3,1)C .[1,+∞)D .(-∞,-3]∪[1,+∞)考点三:含参问题讨论单调性【典例例题】例3.已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k .讨论()f x 的单调性;例4.已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x .讨论函数()f x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明.【变式训练】1.已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程;(2)求函数()f x 的单调区间;2.(2022·广东深圳·高三期末)已知定义在R 上的函数()()1e -=-∈ax f x x a R .(1)求()f x 的单调递增区间;(2)对于()0,x ∀∈+∞,若不等式()()21ln f x x x ax ≥--恒成立,求a 的取值范围.3.已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)求函数()f x 的单调区间;4.已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;5.已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;6.(2022·广东深圳·一模)已知函数()()22ln 121f x x a x ax =-+-+(a R ∈).(1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点1x ,2x .(i )求实数a 的取值范围;(ii )求证:12x x +>【巩固练习】一、单选题1.已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-2.已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( ) A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞ 3.“函数sin y ax x =-在R 上是增函数”是“0a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2e D .()0,e 二、多选题5.已知()ln x f x x=,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解6.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12B .1C .2D .3三、填空题 7.写出一个具有性质①①①的函数()f x =____________. ①()f x 的定义域为()0,+∞;①()()()1212f x x f x f x =+;①当()0,x ∈+∞时,()0f x '>.四、解答题8.已知函数()ln R k f x x k k x=--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.9.已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.10.已知函数2()(1)=--x f x k x e x ,其中k ①R.当k 2≤时,求函数()f x 的单调区间;11.已知函数()e x f x ax -=+.讨论()f x 的单调性;12.已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;。
导数应用-含参函数的单调性讨论
导数应用:含参函数的单调性讨论(一)一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。
二、典例讲解例1 讨论xax x f +=)(的单调性,求其单调区间步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。
变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间例2.讨论x ax x f ln )(+=的单调性 小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。
即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号。
一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。
变式练习2. 讨论x ax x f ln 21)(2+=的单调性小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。
对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。
导数小专题-----单调性的分类讨论
导数小专题----单调性的分类讨论函数的单调性是求函数极值,最值(值域),恒成立问题,零点与交点个数问题的基础,所以掌握好单调性是解决函数问题的第一步,它往往出现在压轴题的第一问,为人人必得分。
那么求单调性最难的一点就是含参函数的分类讨论,这是难点、重点、考点。
这类问题的难点在于学生不知道怎么讨论,或者讨论问题不全面,某种情况没有讨论到,这里总结了含参函数单调性的分类讨论的固定套路,学会之后,不存在不知道怎么讨论或者漏讨论的情况。
以下为讨论单调性固定套路(能解决绝大多数讨论单调性问题):第一步:求定义域,函数离开定义域的讨论都是毫无意义的,求定义域要考虑4种情况(1)偶次根式,根号下整体大于0(2)分式,分母不等于0(3)对数函数,真数大于0(4)()tan ,()整体不等于ππk +≠2第二步:求函数导数,令0)(,=x f ,解出它的根21,x x注意:先通分再因式分解,因式分解的好处在于方便于我们解根和判断导数正负第三步:如果两根,要考虑4种情况;如果一根只需要考虑第一种情况;如果解不出来根,也判断不出导数正负,那我们要求该函数的二阶导数,通过二阶导的正负得一阶导的单调性,从而得到最值。
(1)某一根不存在(主要考虑根不在定义域里),得到参数取值范围(2)21x x =,得到参数取值范围 (3)21x x >,得到参数取值范围(4)21x x <得到参数取值范围第四步:判断21,x x 把定义域分得每个区域导数的正负,导数大于0,单调增,导数小于0,单调减。
判断导数正负有以下三种方法:(1)数轴穿根法:主要用于导数中只有单一的高次函数或单一的对数指数函数,用得最多(2)函数图像法:主要适用于导数中有高次函数和对数指数函数的混合相乘的式子(3)区域判断法:只需要判断每个因式的正负第五步:综述:把讨论情况单调性相同的合并在一起。
综述是很多人容易忽略的一步,没有这一步,是要扣分的【例题详解】例1.(2011,浙江高考改编)设函数ax x x a x f +-=22ln )(,求)(x f 单调区间解:该函数定义域为),(∞+0(第一步:对数真数大于0求定义域) 令0)2)((2)(2'=+--=+-=x a x a x a x x a x f ,解得2,21a x a x -== (第二步,令导数等于0,解出两根21,x x )(1)当0>a 时,)(,0)(),,0('x f x f a x >∈单调增,)(,0)(),,('x f x f a x <+∞∈单调减(第三步,1x 存在,2x 不存在得到0>a ;第四步数轴穿根或图像判断正负)(2)当0<a 时,1x 不存在)(,0)(),2-,0('x f x f a x >∈单调增,)(,0)(),,2-('x f x f a x <+∞∈单调减 (第三步,2x 存在,1x 不存在得到0<a 第四步数轴穿根或图像判断正负)(3)当0=a 时,)(,02)(),,0('x f x x f x <-=+∞∈单调减(第三步,21x x =得到0=a 第四步很显然-2x<0恒成立)综上可知:当0>a 时)(),,0(x f a x ∈单调增,)(),,(x f a x +∞∈ 单调减;当0<a )(),2-,0(x f a x ∈时,单调增,)(),,2-(x f a x +∞∈单调减;当0=a 时,)(),,0(x f x +∞∈单调减(第五步综述一定要有)小结:这是一道比较简单的分类讨论单调性,按照我们的步奏,就不会存在漏解的情况。
利用导数求函数的单调性-高考数学大题精做之解答题题型全覆盖高端精品
高考数学大题精做之解答题题型全覆盖高端精品第六篇函数与导数专题02利用导数求函数的单调性类型对应典例不含参数的函数单调性典例1含参函数中主导函数是一次函数典例2含参函数中主导函数是类一次函数典例3含参函数中主导函数是二次函数(不能因式分解)典例4含参函数中主导函数是二次函数(能因式分解)典例5含参函数中主导函数是类二次函数典例6利用函数单调性求参数取值范围典例7【典例1】已知函数()()1ln f x x a R ax=+∈在1x =处的切线与直线210x y -+=平行.(1)求实数a 的值,并判断函数()f x 的单调性;(2)若函数()f x m =有两个零点1x ,2x ,且12x x <,求证:121x x +>.【典例2】已知函数op =−En −.(1)讨论函数op 的单调性.(2)若∀>0,op ≥0,求B 的最大值.【典例3】已知函数ln ()(,)x af x bx a b R x-=-∈.(1)当0b =时,讨论函数()f x 的单调性;(2)若函数()()f x g x x=在x =e 为自然对数的底)时取得极值,且函数()g x 在(0,)e 上有两个零点,求实数b 的取值范围.【典例4】已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-.(1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【典例5】已知函数22()ln f x x ax a x =--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()0f x ≥,求a 的取值范围.【典例6】已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.【典例7】已知函数()ln ()x e f x x x ax a R =-+∈.(1)若函数()f x 在[1,)+∞上单调递减,求实数a 的取值范围;(2)若1a =,求()f x 的最大值.1.已知函数()()22122()2xf x x x e ax a R =-+-∈.(1)当a e =时,求函数()f x 的单调区间;(2)证明:当2a ≤-时,()2f x ≥.2.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.3.已知函数()()2()1ln 1(0)f x a x x x ax a =++-->是减函数.(1)试确定a 的值;(2)已知数列{}()()*123ln 11n n n n n a a T a a a a n N n +==∈+ ,求证:()ln 212n nn T +<-⎡⎤⎣⎦.4.已知函数()22ln .f x a x x =-()1讨论函数()f x 的单调性;()2当0a >时,求函数()f x 在区间()21,e 上的零点个数.5.已知函数()()ln f x x ax a R =-∈.(1)讨论()f x 的单调性;(2)若1a =-,当0x >时,函数()()()220g x x mf x m =->有且只有一个零点,求m 的值.6.设22(),()11x e f x xe ax g x nx x x a=-=+-+-.(1)求()g x 的单调区间;(2)讨论()f x 零点的个数;(3)当0a >时,设()()()0h x f x ag x =-恒成立,求实数a 的取值范围.7.已知函数2()2ln ()f x x ax x a R =-+∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.参考答案【典例1】【详解】(1)函数()f x 的定义域:()0,+∞,()11112f a =-=',解得2a =,()1ln 2f x x x ∴=+,()22112122x f x x x x -∴=-='令()0f x '<,解得102x <<,故()f x 在10,2⎛⎫⎪⎝⎭上是单调递减;令()0f x '>,解得12x >,故()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增.(2)由12,x x 为函数()f x m =的两个零点,得121211ln ,ln 22x m x m x x +=+=两式相减,可得121211ln ln 022x x x x -+-=即112212ln 2x x x x x x -=,1212122ln x xx x x x -=,因此1211212ln x x x x x -=,2121212ln x x x x x -=令12x t x =,由12x x <,得01t <<.则121111+=2ln 2ln 2ln t t t t x x t t t---+=,构造函数()()12ln 01h t t t t t =--<<,则()()22211210t h t t t t -=+-=>'所以函数()h t 在()0,1上单调递增,故()()1h t h <,即12ln 0t t t--<,可知112ln t t t->.故命题121x x +>得证.【典例2】解:(1)函数op 的定义域为(0,+∞),由op =−En −,得n(p =1−=K,当≤0时,n(p >0,所以函数op 在(0,+∞)上单调递增.当>0时,则∈(0,p 时,n(p <0,函数op 在(0,p 上单调递减;∈(s +∞)时,n(p >0,函数op 在(s +∞)上单调递增.(2)由(1)可知,当<0时,函数op 在(0,+∞)上单调递增,当→0时,op →−∞与op ≥0相矛盾;当=0时,∀>0,op ≥0,所以≤0,此时B =0.当>0时,函数op 在(0,p 上单调递减,函数op 在(s +∞)上单调递增.op min =op =−En −≥0,即−En ≥,则B ≤2−2lno >0).令op =2−2lno >0),则n(p =o1−2lnp .令n(p >0,则0<<,令n(p <0,则>,当=时,op =2,即当=,=B 的最大值为2.综上,B 的最大值为2.【典例3】【详解】(1)当0b =时,()ln x af x x-=,()()221ln 1ln x x a a x x f x x x ⋅--+-==',令()0f x '=,得1a x e +=,当()10,ax e+∈时,()0f x '>,当()1,ax e+∈+∞时,()0f x '<.所以函数()f x 在()10,ae+上单调递增,在()1,ae++∞上单调递减.(2)()()2ln f x x a g x b x x-==-,()()2431ln 2122ln x x a xa x x g x x x ⋅--⋅-=='+,∵()g x在x =∴0g '=即1210a +-=,∴0a =.所以()2ln x g x b x =-,()312ln xg x x-'=,函数()g x在(上单调递增,在)+∞上单调递减,得函数的极大值12gb e=-,∴当函数()g x 在()0,e 上有两个零点时,必有()0,10,2g e b e ⎧<⎪⎨->⎪⎩得2112b e e<<.当2112b e e <<时,210g e b e ⎛⎫=--< ⎪⎝⎭.∴()g x的两个零点分别在区间1e ⎛ ⎝与)e 中.∴的取值范围是211,2e e ⎛⎫⎪⎝⎭.【典例4】【详解】(1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>',对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立.()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数;②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得42a x --<或42a x ->,44022a a --<<,()f x ∴在40,2a ⎛-- ⎪⎝⎭为增函数,44,22a a ⎛--+ ⎪⎝⎭减函数.,2a ⎛⎫-++∞⎪ ⎪⎝⎭为增函数,当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数。
考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版
考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。
怎样讨论含参函数的单调性
如何解决与函数单调性相关的参数问题陈今碧函数是高考必考的内容之一,也是众多知识的交汇点之一。
在解答题里面,经常看见有关讨论含参数函数的单调性或者求含参数函数的最值的问题。
学生们常感到不知道怎么讨论,即分类讨论的标准不明确。
本文根据作者的教学经验,归纳出了比较系统和实用的方案供读者参考,不当之处敬请读者指正。
1.讨论含参函数的单调性:先设y=f x,x∈A,令y′=f′x,a=0,解出x0,令x0∉A,求出x0的范围,再依以下顺序讨论:1°看f′x=0在定义域内是否有解.若无解,则f′x定号,否则进入2°.2°若有解,则比较跟的大小.例1.讨论函数y=ax2−2x+1,x∈−1,1的单调性.解:1°当a=0时:y=−2x+1在−1,1↗2°当a>0时:函数的对称轴为x=1>01)当0<1a≤1即a≥1时:y在 −1,1a↘,1a,1↗2)当1a>1即0<a<1时:y在−1,1↘,3°当a<0时:,函数的对称轴为x=1a<01)当−1≤1<0即a≤−1时:y在 −1,1↗,1,1↘2)当1<−1即−1<a<0时:y在−1,1↘.综上…例2.讨论f x=1+x1−xe−ax a>0的单调性.解:定义域为:x x≠1,f′x=ae−ax2x2+2−a,令2−a≥0得:0<a≤21°当0<a≤2时:∵x2≥0,2−a≥0∴f′x≥0∴y=f x在−∞,1↗,1,+∞↗2°当a>2时:令f′x=0得x1=−a−2,x2=a−2a >2→0<1a <12→−1<−2a <0→0<1−2a <1→ a −2a<1→x 2<1练1.讨论f ′ x =ax 3+3x +1的单调性.解:1°当a ≥0时:y =f x 在R ↗;2°当a <0时:y =f x 在 −∞,− −1a ↘, − −1a , −1a ↗, −1a,+∞, ↘. 练2.讨论f ′ x =x +a x的单调性. 解:1°当a ≤0时:y =f x 在 −∞,0 ↗, 0,+∞ ↗;2°当a >0时:y =f x 在 −∞,− a ↗, − a,0 ↘, 0, a ↘, a,−∞ ↗.2.求含参函数的值域(最值):依以下顺序讨论:1°先讨论单调性(整个有意义的区间),2°再讨论极值点与定义域的关系. 例6.求值域:1)y =2x 2−ax −3,x ∈ −1,1 ;2)y = x 2− a +1 x +1 e x ,x ∈ −1,1 .解:1)函数的对称轴为:x =a ,结合图像可知: 1°当a <−1即a <−4时:f max x =f 1 =−a −1,f min x =f −1 =a −1; 2°当−1≤a <0即−4≤a <0时:f max x =f 1 =−a −1,f min x =f a =−18a 2−3; 3°当0≤a <1即0≤a <4时:f max x =f −1 =a −1,f min x =f a =−1a 2−3; 4°当a ≥1即a ≥4时:f ma x x =f −1 =a −1,f min x =f 1 =−a −1. 2)令y ′= x +1 x −a e x =0,得:x ==−1或x =a1°当a ≤−1时:y ′>0⇒y 在 −1,1 ↗⇒y ∈ f −1 ,f 1 = a +3e , 1−a e ;2°当a≥1时:y′<0⇒y在−1,1↘⇒y∈f1,f−1=1−a e,a+3;3°当−1<a<1时:列表如下:∴y min=1−a e a,y max=max,1−a e=M⇒y∈1−a e a,M.综上所述:……注:当−1<a<1时:还可因1−a e与a+3e的大小关系,进一步分类讨论为:1°当−1<a≤e2−3e2+3时:y∈1−a ea,1−a e;2°当e2−3e2+3<a<1时:y∈1−a e a,a+3e.总结:含参函数求值域,最核心的是讨论其单调性,讨论的顺序为:1)先讨论y’=0在定义域内是否有解;2)再讨论有几解;3)再讨论解的大小;4)最后比较极值与区间端点值(有时是极限值)的大小,进而求出函数的值域.。
函数与导数重点题型01:含参函数单调性、极值、零点问题研究
重点题型一:含参函数的单调性、极值、最值及零点问题【问题分析】含参函数的单调性、极值点及零点问题,在高考中考查频次非常高,主要考查利用分类讨论来研究函数单调性和由函数极值、最值及零点求解参数范围。
此类问题难度较大,经常出现在试卷T20或T21,属于高考压轴题型。
该题型主要考查考生的分类讨论思想、等价转化思想。
解决此类问题的本质就是确定函数定义域上的单调性,基本思想就是“分类讨论”,解题的关键就是参数“分界点”的确定。
所以,要解决好此类问题,首先要明确参数“分界点”,其次确定在参数不同的分段区间上函数的单调性,进而可以确定函数的极值点、最值及零点,达到解题目的。
图1-1 含参函数问题解题思路【知识回顾】图1-2 函数f (x )单调性、极值、最值及零点关系图特别提醒:1.函数f (x )单调性、极值、最值及零点必须在函数定义域内研究,所以解决问题之前,必须先确定函数的定义域。
2.函数f (x )的极值点为其导函数变号的点,亦即导函数f ′(x )的变号零点。
3.函数f (x )的极值点为函数单调区间的“分界点”,经过极大值点函数由增变减,经过极小值点函数由减变增。
函数f(x)的单调性函数f(x)的极值点导函数f ′(x)的变号零点函数f(x)的最值确定分界点有影响分类讨论函数单调性参数导函数f ′(x)值/f ′(x )=0的根函数f(x)4. 函数f (x )单调区间不能写成并集,也不能用“或”连接,只能用逗号“,”或“和”连接。
【“分界点”确认】参数对导函数f ′(x )的值符号有影响,就必须根据参数对导函数的影响确定参数“分界点”,然后在进行分类讨论函数的单调性。
常见的“分界点”确认方法如下: 1.观察法:解决问题的过程中,我们会发现导函数形式比较简单的情况下,我们可以通过观察直接确定参数的“分界点”,例如:当导函数f ′(x )的值与y =x 2+a 函数有关,可以直接观察得到:当a ≥0时,y ≥0;当a <0时,y =0有两个根x 1=−√−a,x 2=√−a,当x ∈(−∞,−√−a)∪(√−a,+∞)时,y >0,当x ∈(−√−a,√−a)时,y <0.所以我们可以根据常见函数的性质及其之间的不等关系,通过直接观察确定“分界点”,常见函数性质及其之间的关系如下: ①x 2≥0 (x ∈R ), 完全平方式不小于0 ②tanx >x >sinx (0<x <π2)③e x ≥x +1 (x ∈R ),仅当x =0时,等号成立e x =x +1 ④lnx ≤x −1 (x >0),仅当x =1时,等号成立lnx =x −1 ⑤lnx <x <e x (x >0) ⑥a x >0 (x ∈R )2.由二次函数引发的“分界点”当函数f (x )求导后,导函数f ′(x )值符号由一个含参的二次函数(二次三项式)决定,一般可以从两个方面进行“分界点”的确定:(1)通过二次函数(一元二次方程)的∆判别式进行“分界点”的确定. 对于一个二次函数y =ax 2+bx +c (a ≠0): ① {a >0∆≤0⟹y ≥0或{a <0∆≤0⟹y ≤0.② {a >0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数大于0,两根之内函数小于0.③ {a <0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数小于0,两根之内函数大于0. 特别提醒:当二次函数有两个零点时,需要确定两个零点是否在函数定义域之内,若不在需要舍弃. (2)由二次函数零点分布(一元二次方程实根分布)进行“分界点”确定设x 1,x 2(x 1<x 2)是二次函数y =ax 2+bx +c (a >0)的两个零点(一元二次方程ax 2+bx +c =0(a >0)的两个根),则x 1,x 2的分布情况与二次函数系数之间的关系如下(k,k 1,k 2∈R,k 1<k 2):零点分布函数图像等价条件x 1<x 2<k{∆>0f (k )>0−b 2a<kk <x 1<x 2{∆>0f (k )>0−b 2a>kx 1<k <x 2f (k )<0k 1<x 1<x 2<k 2{∆>0f (k 1)>0f (k 2)>0k 1<−b 2a<k2 x 1,x 2中仅有一个在(k 1,k 2)内\f (k 1)∙f (k 2)<0或f (k 1)=0,k 1<−b2a <k 1+k 22或f (k 2)=0,k 1+k 22<−b2a <k 2或{∆=0k 1<−b 2a<k 2当二次函数定义域受限,可以根据上表情况进行“分界点”确认,进而进行分类讨论。
2023年新高考数学大一轮复习专题15 单调性问题(原卷版)
专题15单调性问题【考点预测】知识点一:单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题 类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); (2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); (5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. (7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); (5)导数图像定区间; 【方法技巧与总结】1.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性. 注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.【题型归纳目录】题型一:利用导函数与原函数的关系确定原函数图像 题型二:求单调区间题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围 题型四:不含参数单调性讨论 题型五:含参数单调性讨论 情形一:函数为一次函数 情形二:函数为准一次函数 情形三:函数为二次函数型 1.可因式分解 2.不可因式分解型情形四:函数为准二次函数型 题型六:分段分析法讨论 【典例例题】题型一:利用导函数与原函数的关系确定原函数图像例1.(2022·陕西·汉台中学模拟预测(文))设函数()f x 在定义域内可导,()f x 的图象如图所示,则其导函数()'f x 的图象可能是( )A .B .C .D .例2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-例3.(2022·安徽马鞍山·三模(理))已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列结论正确的是( )A .()()()f b f c f a >>B .()()()f b f c f e >=C .()()()f c f b f a >>D .()()()f e f d f c >>【方法技巧与总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间例4.(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)例5.(2021·西藏·林芝市第二高级中学高三阶段练习(理))函数()()3e xf x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,例6.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.【方法技巧与总结】求函数的单调区间的步骤如下: (1)求()f x 的定义域 (2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围例7.(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m的取值范围为( ) A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-例8.(2021·河南·高三阶段练习(文))已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭例9.(2022·全国·高三专题练习)若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =( ) A .-12B .-10C .8D .10例10.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______.例11.(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.例12.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.例13.(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.例14.(2022·全国·高三专题练习(文))若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上存在单调递减区间”,则实数a 的取值范围为________.例15.(2020·江苏·邵伯高级中学高三阶段练习)若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.例16.(2022·全国·高三专题练习(文))已知函数f (x )=3xa-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则实数a 的取值范围是________.【方法技巧与总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围. (3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解. 题型四:不含参数单调性讨论例17.(2022·山东临沂·三模)已知函数()21ln ax f x x-=,其图象在e x =处的切线过点()22e,2e .(1)求a 的值;(2)讨论()f x 的单调性;例18.(2022·天津·模拟预测)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;例19.(2022·天津市滨海新区塘沽第一中学三模)已知函数()()ln 1x a x a f x x+++=(1)若函数()f x 在点()()e,e f 处的切线斜率为0,求a 的值.(2)当1a =时.设函数()()()xf x G x f x '=,求证:()y f x =与()y G x =在[]1,e 上均单调递增;例20.(2022·浙江·杭州高级中学模拟预测)已知函数()()ln ln e1,,0x af x x a x a a +=+-+>->. 当1a =时,求()f x 的单调区间题型五:含参数单调性讨论 情形一:函数为一次函数例21.(2022·江西·二模(文))己知函数()ln 1(),()e 1x f x ax x a R g x x =++∈=-. 讨论()f x 的单调性;例22.(2022·北京八十中模拟预测)已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例23.(2022·广东·模拟预测)已知函数()ln(1)(),()22f x x mx m g x x n =--∈=+-R . 讨论函数()f x 的单调性;情形二:函数为准一次函数例24.(2022·全国·模拟预测(文))设函数()1ln a xf x x+=,其中R a ∈. 当0a ≥时,求函数()f x 的单调区间;例25.(2022·江苏·华罗庚中学三模)已知函数()()2e 3x R f x ax a =-+∈ ,()ln e x g x x x =+(e 为自然对数的底数,25e 9<). 求函数()f x 的单调区间;例26.(2022·云南师大附中模拟预测(理))已知函数()()21ln 12f x x x ax a x =-+-,其中0a .讨论()f x 的单调性;例27.(2022·云南师大附中高三阶段练习(文))已知函数()ln f x x x ax =-. 讨论()f x 的单调性;情形三:函数为二次函数型 1.可因式分解例28.(2022·全国·模拟预测)已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k . 讨论()f x 的单调性;例29.(2022·天津·二模)已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例30.(2022·安徽师范大学附属中学模拟预测(文))已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;例31.(2022·浙江省江山中学模拟预测)函数2()ln 1(,0)x f x x a R a a=-+∈≠.讨论函数()y f x =的单调性;例32.(2022·广东·潮州市瓷都中学三模)已知函数()()()322316R f x x m x mx x =+++∈.讨论函数()f x 的单调性;例33.(2022·湖南·长沙县第一中学模拟预测)已知函数()()()21ln 2a f x x a x x a R =+--∈. 求函数()f x 的单调区间;例34.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈ (1)当1a =-时,求()f x 在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调递增区间.2.不可因式分解型例35.(2022·江苏徐州·模拟预测)已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x . 讨论函数()f x 的单调性;例36.(2022·天津南开·三模)已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明. 情形四:函数为准二次函数型例37.(2022·安徽·合肥市第八中学模拟预测(理))设函数23ln 2()2,()2,e e x xx x f x ax ax g x ax a x =+-=++∈R . 讨论()f x 的单调性;例38.(2022·全国·二模(理))已知函数()()2x e 2e xf x a ax =+++.讨论()f x 的单调性;例39.(2022·安徽·合肥一六八中学模拟预测(理))已知函数()e e x x f x ax -=--(e 为自然对数的底数),其中R a ∈.试讨论函数()f x 的单调性;例40.(2022·浙江·模拟预测)已知函数()()2e 2e x x f x a a x =+--.讨论()f x 的单调性;题型六:分段分析法讨论例41.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()12211ln x f x a x x x a -+=+-++-(0a >,且1a ≠)求函数()f x 的单调区间;【方法技巧与总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.【过关测试】 一、单选题1.(2022·江西·上饶市第一中学模拟预测(理))已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-2.(2022·全国·哈师大附中模拟预测(理))已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( )A .B .C .D .3.(2022·江西师大附中三模(理))下列函数中既是奇函数又是增函数的是( )A .1()f x x x=-B .122()xxf x ⎛+⎫⎪⎝⎭= C .3()tan f x x x =+ D .)()lnf x x =4.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞6.(2022·江西宜春·模拟预测(文))“函数sin y ax x =-在R 上是增函数”是“0a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2022·江西宜春·模拟预测(文))已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2eD .()0,e8.(2022·江苏·南京市天印高级中学模拟预测)已知1,1a b >>,且1(1)e e (e a b b a a ++=+为自然对数),则下列结论一定正确的是( )A .ln()1a b +>B .ln()0-<a bC .122a b +<D .3222a b +< 二、多选题9.(2022·广东·信宜市第二中学高三开学考试)已知()ln x f x x =,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+ B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解 10.(2022·全国·模拟预测)已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12 B .1 C .2 D .311.(2022·全国·高三专题练习)下列函数在区间(0,+∞)上单调递增的是( )A .y =x ﹣(12)x B .y =x +sin x C .y =3﹣x D .y =x 2+2x +112.(2022·广东·模拟预测)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 三、填空题13.(2022·山西运城·模拟预测(理))若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________.14.(2022·重庆八中模拟预测)写出一个具有性质①②③的函数()f x =____________.①()f x 的定义域为()0,+∞;②()()()1212f x x f x f x =+;③当()0,x ∈+∞时,()0f x '>.15.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.16.(2022·江西萍乡·二模(文))已知函数()f x 是R 上的奇函数,且()33f x x x =+,若非零正实数,m n 满足()()20f m mn f n -+=,则11m n+的小值是_______.四、解答题17.(2022·北京工业大学附属中学三模)已知函数()ln R k f x x k k x =--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.18.(2022·青海·大通回族土族自治县教学研究室二模(文))已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.19.(2022·全国·高三专题练习)已知函数2()(1)=--x f x k x e x ,其中k ∈R.当k 2≤时,求函数()f x 的单调区间;20.(2022·全国·高三专题练习)已知函数()e x f x ax -=+.讨论()f x 的单调性;21.(2022·全国·高三专题练习)已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;22.(2022·全国·高三专题练习)讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>.。
专题12 导数与函数的单调性--《2023年高考数学命题热点聚焦与扩展》【解析版】
【热点聚焦】单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具.在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临分类讨论.从高考命题看,对函数单调性的考查主要有:利用导数求函数的单调区间、判断单调性、已知单调性,求参数等.【重点知识回眸】(一)函数的单调性与导数的关系 条件 结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数优先”原则. (二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. 2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零. (三)常见问题解题方法1.导数求单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间.即确定定义域→求出导函数→令()'0f x >解不等式→得到递增区间后取定义域的补集(减区间)→单调性列出表格.2.求含参函数单调区间的实质——解含参不等式,而定义域对x 的限制有时会简化含参不等式的求解3.求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4.含参数问题分类讨论的时机分类时机:并不是所有含参问题均需要分类讨论,当参数的不同取值对下一步的结果影响不相同时,就是分类讨论开始的时机.【典型考题解析】热点一 不含参数的函数的单调性【典例1】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)- B .(0,1)C .(1,)+∞D .(0,2)【答案】B【分析】求导,解不等式()0f x '<可得. 【详解】()f x 的定义域为(0,)+∞ 解不等式1(1)(1)()0x x f x x x x-+'=-=<,可得01x <<, 故函数21()ln 2f x x x =-的递减区间为(0,1). 故选:B .【典例2】(广东·高考真题(文))函数的单调递增区间是 ( )A .B .(0,3)C .(1,4)D .【答案】D 【解析】 【详解】试题分析:由题意得,()()(3)(3)(2)x x x f x x e x e x e '=-+-=-'',令()0f x '>,解得2x >,所以函数()f x 的单调递增区间为,故选D .【典例3】(2023·全国·高三专题练习)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________. 【答案】(0,)6π,5(,)6ππ【分析】对()f x 求导,令f ′(x )=0,得x =6π或x =56π,求出()0f x '> 的解即可求出答案. 【详解】f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =6π或x =56π, 当0<x <6π时,f ′(x )>0, 当6π<x <56π时,f ′(x )<0,当56π<x <π时,f ′(x )>0, ∴f (x )在(0,)6π和5(,)6ππ上单调递增,在5(,)66ππ上单调递减.故答案为:(0,)6π,5(,)6ππ.【典例4】(2023·全国·高三专题练习)已知函数211,0()2,0x f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 【答案】20,2⎛⎫ ⎪ ⎪⎝⎭,[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<,所以当1≥x 时,12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增,当01x <<时,21122()loglog g x x x =-+,则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=,由()0g x '>,得1212log 0x -<,解得202x <<, 所以()g x 在20,2⎛⎫ ⎪ ⎪⎝⎭上递增, 综上得函数()g x 的单调递增区间为20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. 故答案为:20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. (1)函数的一阶导数可以用来研究函数图象的上升与下降,函数的二阶导数可以用来研究函数图象的陡峭及平缓程度,也可用来研究导函数图象的上升与下降. (2)求函数的单调区间时,一定要先确定函数的定义域,否则极易出错. 热点二 含参数的函数的单调性【典例5】(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【典例6】(2023·全国·高三专题练习)已知函数()ln R kf x x k k x=--∈,,讨论函数()f x 在区间(1,e)内的单调性. 【答案】见解析 【分析】先求出2()x kf x x +'=-,然后分k -与(1,e)的关系进行分类讨论,从而得出答案. 【详解】由()ln kf x x k k R x=--∈,,(1,e)x ∈ 221()k x k f x x x x+'∴=--=- ①当1k -≤,即1k ≥-时,10x k x +≥->, ()0f x '∴< ,()f x ∴在(1,e)单调递减;②当e k -≥,即e k ≤-时,e 0x k x +≤-<, ()0f x '∴> ,()f x ∴在(1,e)单调递增;③当1e k <-<,即e 1k -<<-时,当1x k <<-时,()0f x '>,()f x 单调递增; 当e k x -<<时,()0f x '<,()f x 单调递减; 综上所述,当1k ≥-时,()f x 在(1,e)单调递减 当e k ≤-时,()f x 在(1,e)单调递增当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减.【方法总结】解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.热点三 已知函数的单调性求参数的取值范围【典例7】(全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是( ) A .(],2-∞- B .(],1-∞- C .[)2,+∞ D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .【典例8】(全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】 【详解】试题分析:()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【典例9】(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞ 【规律方法】由函数的单调性求参数的取值范围的方法(1)可导函数在区间D 上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,从而构建不等式,求出参数的取值范围,要注意“=”是否可以取到.(2)可导函数在区间D 上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间D 上的单调性,区间端点含有参数时,可先求出f (x )的单调区间,令D 是其单调区间的子集,从而求出参数的取值范围. 热点四 函数单调性与函数图像【典例10】(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>,所以舍去C ;因此选B.【典例11】(2023·全国·高三专题练习)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .【答案】D【分析】根据导函数的图象判断原函数的单调性,即可判断选项.【详解】原函数先减再增,再减再增,且0x =位于增区间内.符合条件的只有D. 故选:D【典例12】(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解. 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,221202164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D. 【规律方法】有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 热点五 函数单调性与比较大小、解不等式 【典例13】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>, 故选:A【典例14】(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.【典例15】(2022·重庆南开中学高三阶段练习)已知函数()()3log 912xf x x =+-+,则不等式()()21f x f x -<的解集为( ) A .()1,3 B .(),1-∞ C .[)1,+∞D .1,13⎛⎫⎪⎝⎭【答案】D【分析】根据导数判断出函数的单调性,根据解析式可判断函数为偶函数,从而可求不等式的解.【详解】函数的定义域为R ,()()()9ln 92991119191ln 391x x x x x x f x ⋅-'=-=-=+++,当0x <时,0f x ;当0x >时,0f x ,故()f x 在(),0-∞上为减函数,在()0,+∞上为增函数. 又()()3391log 912log 29x xx f x x x -+-=+++=++()()3log 9122x x x f x =+-++=,故()f x 为R 上的偶函数,故()()21f x f x -<等价于()()21f x f x -<, 即21x x -<,两边平方得23410x x -+<,故1,13x ⎛⎫∈ ⎪⎝⎭.故选:D.'()f x 当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f x g x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.【典例17】(2021·山东·临沂市兰山区教学研究室高三开学考试)已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()20f x x xf '+>,则不等式()()()220212021420x f x f +++-<的解集为( )A .()2019,+∞B .()2021,2019--C .(),2019-∞-D .()2019,0-【答案】C【分析】根据已知条件构造函数2()()g x x f x =,可得()g x 在(0,)+∞上为增函数,且()g x 为奇函数,然后将()()()220212021420x f x f +++-<可转化为(2021)(2)g x g +<,从而可求出不等式的解集.【详解】令2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因为当0x >时,有()()20f x x xf '+>, 所以当0x >时,()0g x '>, 所以()g x 在(0,)+∞上为增函数,因为()f x 为奇函数,所以()()f x f x -=-, 所以22()()()()()g x x f x x f x g x -=--=-=-, 所以()g x 为R 上的奇函数, 所以()g x 在R 上为增函数,由()()()220212021420x f x f +++-<,得()()()22021202142x f x f ++<--, ()()()2220212021(2)2x f x f ++<---,所以(2021)(2)g x g +<--,因为()g x 为奇函数,所以(2021)(2)g x g +<, 所以20212x +<,得2019x <-,所以不等式的解集为(),2019-∞-, 故选:C【典例18】(2022·湖北·襄阳五中高三阶段练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【分析】利用导数研究函数()sin f x x x =-,()ln(1)g x x x =-+,6()ln(1)5h x x x =-+在(0,1)上的单调性,利用函数的单调性可比较,,a b c 的大小.【详解】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<. 构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果. 常见构造的辅助函数形式有: (1)f (x )>g (x )→F (x )=f (x )-g (x );(2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′;(5)f ′(x )-f (x )→()[]'x f x e′.(6)()()f x f x '<→()()x f x g x e = (7)()()xf x f x '<→()()f x g x x=(8)()()0xf x f x '+<→()()g x xf x =.【精选精练】一、单选题1.(2022·全国·高三专题练习)函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦【答案】C【分析】()0f x '≥的解集即为()y f x =单调递增区间,结合图像理解判断. 【详解】()0f x '≥的解集即为()y f x =单调递增区间 结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦故选:C .2.(2023·全国·高三专题练习)已知函数()f x 的导函数()f x '的图像如图所示,则下列判断正确的是( )A .在区间()1,1-上,()f x 是增函数B .在区间()3,2--上,()f x 是减函数C .2-为()f x 的极小值点D .2为()f x 的极大值点【答案】D【分析】利用函数与导函数的关系及其极值的定义即可求解. 【详解】由导函数()f x '的图像可知,在区间()1,0-上为单调递减,在区间()0,1上为单调递增,则选项A 不正确; 在区间()3,2--上,()0f x '>,则()f x 是增函数,则选项B 不正确;由图像可知()20f '-=,且()3,2--为单调递增区间,()2,0-为单调递减区间,则2-为()f x 的极大值点,则选项C 不正确;由图像可知()20f '=,且()1,2为单调递增区间,()2,3为单调递减区间,则2为()f x 的极大值点,则选项D 正确; 故选:D.3.(2023·全国·高三专题练习)函数()3221343f x x ax a x =---在()3,+∞上是增函数,则实数a 的取值范围是( ) A .0a ≥ B .1a ≥ C .3a ≤-或1a ≥ D .31a -≤≤【答案】D【分析】结合函数单调性得到()22230f x x ax a -'=-≥在()3,+∞上恒成立,分0a =,0a >和0a <三种情况,数形结合列出不等式,求出实数a 的取值范围. 【详解】∵函数()3221343f x x ax a x =---在()3,+∞上是增函数,∴()22230f x x ax a -'=-≥在()3,+∞上恒成立, ∵()()()22233f x x ax a x a x a =--=-+',∴当0a =时,()20f x x '=≥恒成立,满足题意;当0a >时,()0f x '>在()(),3,a a ∞∞--⋃+上恒成立,()0f x '<在(),3a a -上恒成立,故只需33a ≤,解得:1a ≤,故可得:(]0,1a ∈ 当0a <时,()0f x '>在()(),3,a a ∞∞-⋃-+上恒成立,()0f x '<在()3,a a -上恒成立,故只需3a -≤,解得:3a ≥-,故可得:[)3,0a ∈- 综上可得:实数a 的取值范围是[]3,1-, 故选:D .4.(2022·全国·长垣市第一中学高三开学考试(理))已知函数()12ln f x x x x=+-,则不等式()()211f x f x -<-的解集为( ) A .20,3⎛⎫ ⎪⎝⎭B .2,13⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .12,23⎛⎫ ⎪⎝⎭【答案】B【分析】利用导数说明函数的单调性,再根据函数的单调性及定义域将函数不等式转化为自变量的不等式,解得即可.【详解】解:由题意可知,函数()12ln f x x x x=+-的定义域为()0,∞+. 因为()22211110f x x x x ⎛⎫'=--=--≤ ⎪⎝⎭恒成立,所以()f x 在()0,∞+上单调递减.则由()()211f x f x -<-可得21010211x x x x->⎧⎪->⎨⎪->-⎩,解得213x <<,即原不等式的解集为2,13⎛⎫⎪⎝⎭.故选:B.a A .ln ln ab a b -<-e e B .ln ln b a a b < C .e a b ba-> D .sin sin 1a ba b-<-【答案】D【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误. 【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e x y x'=-,故12|e 20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除; B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=, 所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减; 故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除; C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增, 所以e e a b a b >,即e a b ba-<,排除; D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增, 所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D6.(2022·四川成都·高三期末(理))若函数()在区间()上单调递增,则实数k 的取值范围是( ) A .[)1,+∞ B .[)2,+∞ C .(]0,1 D .(]0,2【答案】B【分析】根据已知条件等价为()20f x k x =-≥'在()1,+∞上恒成立,即2k x≥在()1,+∞上恒成立,求解()()21g x x x=>的取值情况即可得出结果. 【详解】()2ln f x kx x =-由题意,已知条件等价为()20f x k x=-≥'在()1,+∞上恒成立, 即2k x≥在()1,+∞上恒成立, 令()()21g x x x=>, ()g x 在()1,+∞上单调递减,()2g x ∴<,2k ∴≥,k ∴的取值范围是[)2,+∞.故选:B.7.(2023·全国·高三专题练习)已知函数()3ln 3f x x x ax =--在()2,+∞上单调递增,则实数a 的取值范围为( )A .72a >-B .72a ≥-C .72a <D .72a ≤【答案】D【分析】由已知可得()210f x x a x '=--≥在()2,+∞恒成立,从而进行参变分离求最值即可.【详解】解:()210f x x a x'=--≥,因为函数()31ln 3f x x x ax =--在()2,+∞上单调递增,所以()210f x x a x '=--≥在()2,+∞恒成立,即21a x x≤-在()2,+∞恒成立,令()()212g x x x x =->,则()2120g x x x '=+>在()2,+∞恒成立, 故()g x 在()2,+∞单调递增,所以()()722g x g >=, 故a 的取值范围是72⎛⎤-∞ ⎥⎝⎦,,故选:D .8.(2023·全国·高三专题练习)已知R α∈,则函数()ex x f x =的图象不可能是( )A .B .C .D .【答案】C【分析】令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】当12α=时,()e x xf x =且0x ≥,则12()e x x f x x-'=,所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =,所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=,所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能; 当1α=-时,1()e x f x x =且0x ≠,则21()e xxf x x +'=-,所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >, 所以D 图象可能; 综上,排除A 、B 、D. 故选:C3232b b =,03c <<且33c c =,则( )A .a b c <<B .c b a <<C .b a c <<D .a c b <<【答案】A【分析】构造函数()ln xf x x=,求导,根据函数的单调性比大小即可. 【详解】由88a a =,两边同时以e 为底取对数得ln ln 88a a =, 同理可得ln ln 3232b b =,ln ln33c c =, 设()ln xf x x=,0x >,则()()8f a f =,()()32f b f =,()()3f c f =, ()21ln xf x x -'=,令()0f x '=,解得e x =,当()0,e x ∈时,()0f x '>,函数()f x 单调递增, 当()e,x ∈+∞时,()0f x '<,函数()f x 单调递减, 则(),,0,e a b c ∈,且()()()3832f f f >>, 所以()()()f c f a f b >>, 故c a b >>, 故选:A.10.(2022·江苏·扬中市第二高级中学高三开学考试)已知()f x '是函数()f x 的导数,且()()f x f x -=,当0x ≥时,()3f x x '>,则不等式3()(1)32f x f x x --<-的解集是( ) A .1(,0)2-B .1(,)2-∞-C .1(,)2+∞D .1(,)2-∞【答案】D【分析】构造函数23()()2g x f x x =-,根据导数判断单调性,再利用奇偶性求出解集.【详解】设23()()2g x f x x =-,则()()3g x f x x '='-,因为当0x ≥时,()3f x x '>,所以当0x ≥时,()0g x '>, 即()g x 在[0,)+∞上单调递增,因为()()f x f x -=,所以()f x 为偶函数,则()g x 也是偶函数,所以()g x 在(,0]-∞上单调递减. 因为3()(1)32f x f x x --<-,所以2233()(1)(1)22f x x f x x -<---, 即()(1)g x g x <-, 则1x x <-,解得12x <, 故选:D.b a b =下列正确的是( ) A .1ab >B .1(1)b a a b +<+C .11a b a b a a b b ++->-D .52+>a b 【答案】B【分析】利用指对数互化及对数的运算性质可得1b a =,进而可得1121a b b<=<<+,然后构造函数,利用函数的单调性即得. 【详解】由log b a a b =,可得1log log log b a b a b a==,所以log 1b a =,或log 1b a =-, ∴b a =(舍去),或1b a=,即1ab =,故A 错误; 又02b a b <<<,故120a a a<<<, ∴12a <<,对于函数()112y x x x=+<<, 则2221110x y x x-'=-=>,函数()112y x x x =+<<单调递增,∴1322,2a b a a ⎛⎫+=+∈ ⎪ ⎪⎝⎭,故D 错误; ∵02b a b <<<,112a b<=<, ∴1212a b b <<<+<, 令()()ln 12x g x x x=<<,则()21ln 0xg x x -'=>,∴函数()()ln 12xg x x x=<<单调递增, ∴()ln 1ln 1b a a b +<+,即()()1ln ln 1b a a b +<+, ∴()1ln ln 1ab a b +<+,即1(1)b a a b +<+,故B 正确; ∵011b a b <<<<+,∴函数,x x y a y b ==-单调递增,故函数x x y a b =-单调递增, ∴11a a b b a b a b ++-<-,即11a b a b a a b b ++-<-,故C 错误. 故选:B. 12.(2023·全国·高三专题练习)已知0a <,函数322()2f x x ax a x =+-+的单调递减区间是________ . 【答案】,3a a ⎛⎫- ⎪⎝⎭【分析】求出函数导数,由()0f x '<即可求出单调递减区间. 【详解】22()32(3)()f x x ax a x a x a '=+-=-+,令()0f x '<,解得3ax a <<- , 所以()f x 的单调递减区间为,3a a ⎛⎫- ⎪⎝⎭.故答案为:,3a a ⎛⎫- ⎪⎝⎭.13.(2021·河南宋基信阳实验中学高三开学考试(文))若函数4y x x=+在()0,a 上为单调减函数,则实数a 的取值范围是_________. 【答案】(]0,2【分析】由题可得函数4y x x=+在区间(0,2]上是减函数,结合条件即得. 【详解】对于函数4y x x=+,0x >, ∴()()222222441x x x y x x x+--'=-==,0x >, 由0y '<,可得02x <<, 因为函数4y x x=+在()0,a 上为单调减函数, 所以02a <≤,即实数a 的取值范围是(]0,2. 故答案为:(]0,2.14.(2022·江苏·扬中市第二高级中学高三开学考试)函数()2x x f x =的单调递增区间为__________. 【答案】2(0,)ln 2【分析】先求得导函数,并令'0f x ,再判断导函数的符号,由此可得函数的单调递增区间.【详解】函数2()2x xf x =,则()()()2'22ln 2ln 222222x x xxx fx x x x -⋅-⋅⋅⋅==,令()0f x '=解得20,ln 2x x ==, 当(),0x ∈-∞时,()0f x '<,函数()f x 单调递减,当20,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增,当2,ln 2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减, 故答案为:2(0,)ln 2. 15.(2023·全国·高三专题练习)()3211232f x x x ax =-++,若()f x 在,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______【答案】1,9⎛⎫-+∞ ⎪⎝⎭【分析】分析可知,2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()212a x x >-,求出函数()212y x x =-在2,3⎛⎫+∞ ⎪⎝⎭上的值域,可得出实数a 的取值范围.【详解】因为()3211232f x x x ax =-++,则()22f x x x a '=-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()0f x '>,即()212a x x >-,当()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-.故答案为:1,9⎛⎫-+∞ ⎪⎝⎭.16.(2022·重庆巴蜀中学高三阶段练习)已知奇函数()的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时, ()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e 2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞. 故答案为: ()(2,02,)-⋃+∞. 三、解答题17.(2022·四川成都·高三期末(理))设函数()()321113f x x x a x =-++--,其中a ∈R .若函数()f x 的图象在0x =处的切线与x 轴平行. (1)求a 的值;(2)求函数()f x 的单调区间. 【答案】(1)1a =(2)单调递增区间为()0,2;单调递减区间为(),0∞-,()2,+∞【分析】(1)根据导数的几何意义求解即可;(2)由(1)得()32113f x x x =-+-,再求导分析函数的单调区间即可(1)()221f x x x a '=-++-.∵函数()f x 的图象在0x =处的切线与x 轴平行,∴()010f a =-=',解得1a =.此时()010f =-≠,满足题意.∴1a =. (2)由(1)得()32113f x x x =-+-,故()()222f x x x x x '=-+=--.令()0f x '=,解得0x =或2x =.当x 变化时,()f x ',()f x 的变化情况如下表:x(),0∞-0 ()0,22 ()2,+∞()f x ' - 0 +0 -()f x单调递减1- 单调递增13单调递减∴函数()的单调递增区间为();单调递减区间为(),().18.(2023·全国·高三专题练习)已知函数()22ln x f x x a =-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程. (2)讨论函数()f x 的单调性; 【答案】(1)2ln 2y x =- (2)答案见解析【分析】(1)求得函数的导数,根据导数的几何意义即可求得切线方程;(2)求出函数的导数,分类讨论a 的取值,判断导数的正负,从而确定函数的单调性. (1)当2a =时,()22ln 2x f x x =-,所以()22n2l 2f =-,()2f x x x'=-,所以()22212f '=-=,所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-. (2)()f x 的定义域为(0)+∞,, 22()x f x a x'=-,当0a <时, ()0f x '<恒成立,所以()f x 在(0)+∞,上单调递减; 当0a > 时, ()()222()x f x x a x a a x ax'=-=+-,在()0,a 上,()0f x '<,所以()f x 单调递减;在(),a +∞上,()0f x '>,所以()f x 单调递增.。
导数专题:含参函数单调性讨论问题(解析版)
导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。
讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。
三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。
高中数学含参数函数的单调区间
x
x
例 4:讨论函数 f x a 1 ln x ax 2 1 的单调区间
解: f ' x a 1 2ax 2ax 2 a 1 令 f ' x 0
x
x
即 2ax2 a 1 0 2ax2 a 1 (注意定义域为 0, + ,所以导函数分母恒正,去掉后简
化所解不等式)
的取值决
定,所以自然考虑再结合小大根进行进一步讨论了。(重视①③的对比)
x1
x2
0
a
1 时,不等式解集为
,1
1 a
,
x1 x2 a 1时,不等式化为 x 12 0 x 1
x1
x2
a
1
时,不等式解集为
,
1 a
1,
希望通过此例能够体会分类讨论的时机与分界,若能领悟,其分类讨论不再是一个难点,而
a
f x 的单调区间为:
第 2 页 共 11 页
x
0,
1 a
1 a
,
f ' x
+
f x
当 a 0 时, ax 1 0,a 0 f ' x 0 恒成立
f x 为增函数:
例 2:已知函数 f x ax3 3x2 1 3
a
(1)若 f x 的图像在 x 1 处的切线与直线 y 1 x 1垂直,求实数 a 的值
①当 a 0 时,此时不等式的解集为小大根之间,而由于 a 0 ,以此为前提 x1 0 1 x2 ,
故小大根不存在问题,解集为
1 a
,1
②当 a 0 时,不等式变为 x 1 0 x ,1
③当
a
0 时,不等式解集为小大根之外,而
x1
含参函数的单调性
例题:已知 f(x)=ex-ax-1,求 f(x) 的单调增区间. 解: ∵f(x)=ex-ax-1,∴ f′(x)=ex-a. 当 a=0 时,f′(x)>0 在R上恒成立;
当 a<0 时,f′(x)>0 在R上恒成立;
当 a>0 时,令 f′(x)=0,得 ex=a,x=ln a, 当 x≥ln a 时,f′(x)≥0,f(x) 单调增.
综上:当 a≤0 时,f(x) 的单调增区间为 (-∞,+∞);
当 a>0 时,f(x) 的单调增区间为 [ln a,+∞).
例题:已知函数 f(x)=x2-(a+1)x+aln x,其中 a∈R,求函数 f(x) 的单调增区间
解 f ( x ) x (a 1) x :
a
( x a )( x 1) 令f′(x)=0,得 x=a 或 x=1 x
含参函数的单调性
单调性求法
1、函数的单调性: 函数f(x)在某个区间(a,b)内,若f′(x)>0,则f(x)为增函数;若f′(x)<0,
则f(x)为减函数,若f′(x)=0,则f(x)为常函数.
2、利用导数判断函数单调性的一般步骤: (1)求 f′(x);(注意:一般有分式则通分,注意定义域范围) (2)在定义域内解方程 f′(x)=0,再在根的左右判断 f′(x) 的符号; (3)根据(2)的结果确定 f(x) 的单调区间.
当 a= 0 时,由 f′(x)>0 得 x>1 ,此时 f(x) 的单调增区间为 (1,+∞). 当 a<0 时,由 ′(x)>0 得 x>1 ,此时 f(x) 的单调增区间为 (1,+∞).
求函数的单调性
求函数的单调性,根据导函数的类型分类
一、不含参数的一次函数类(单调函数)
例1,求下列函数的单调区间
1、y =x e x ;2、f (x )=ln x x -1;3、f (x )=x e
x .二、含参数的一次函数类
1、参数在常数项位置
例2,f (x )=(x +a )e x
2、参数在系数位置
例3,y =ae x +x
三、不含参数的二次函数类(有增有减)
例4,已知函数f (x )=ln x +x 2-3x ,求f (x )的单调区间;
四、二次项系数不含参数的含参二次函数类
1、能因式分解
例五,(1)已知函数f (x )=2x 3-ax 2+b ,讨论f (x )的单调性;
(2)已知函数f (x )=ln(x +1)-ax 2+x (x +1)2
,且1<a <2,试讨论函数f (x )的单调性.2、不能因式分解
例六、已知函数f (x )=x 2+ax +3ln x ,求单调区间.
五、二次项系数含参数的含参二次函数类
1、能因式分解
例七、已知函数f (x )=ln x +ax 2-(2a +1)x ,求f (x )的单调区间;
3、不能因式分解
例八、已知函数f (x )=ln x -ax 2+x ,a ∈R .讨论f (x )的单调性.。
2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)
2023年高考数学总复习第三章导数及其应用第2节导数与函数的单调性考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.利用导数研究函数的单调性,并会解决与之有关的方程(不等式)问题.1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.3.单调性的应用若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上不变号.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数在(a,b)内单调递减与函数的单调递减区间为(a,b)是不同的.()(4)函数f(x)=x-sin x在R上是增函数.()答案(1)×(2)√(3)√(4)√解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.2.(易错题)函数f(x)=x+ln(2-x)的单调递增区间为()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案A解析由f(x)=x+ln(2-x),得f′(x)=1-12-x=1-x2-x(x<2).令f′(x)>0,即1-x2-x>0,解得x<1.∴函数f(x)=x+ln(2-x)的单调递增区间为(-∞,1).3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是()答案D解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R答案B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.5.(易错题)若函数f(x)=13x3-32x2+ax+4的单调递减区间为[-1,4],则实数a的值为________.答案-4解析f′(x)=x2-3x+a,且f(x)的单调递减区间为[-1,4],∴f′(x)=x2-3x+a≤0的解集为[-1,4],∴-1,4是方程f′(x)=0的两根,则a=(-1)×4=-4.6.(2021·青岛检测)已知函数f(x)=sin2x+4cos x-ax在R上单调递减,则实数a 的取值范围是________.答案[3,+∞)解析f′(x)=2cos2x-4sin x-a=2(1-2sin2x)-4sin x-a=-4sin2x-4sin x+2-a=-(2sin x+1)2+3-a.由题设,f′(x)≤0在R上恒成立.因此a≥3-(2sin x+1)2恒成立,则a≥3.考点一不含参函数的单调性1.函数f(x)=x+3x+2ln x的单调递减区间是()A.(-3,1)B.(0,1)C.(-1,3)D.(0,3)答案B 解析法一函数的定义域是(0,+∞),f ′(x )=1-3x 2+2x ,令f ′(x )=1-3x 2+2x<0,得0<x <1,故所求函数的单调递减区间为(0,1),故选B.法二由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln 2,故排除D选项.故选B.2.函数f (x )=(x -3)e x 的单调递增区间为________.答案(2,+∞)解析f (x )的定义域为R ,f ′(x )=(x -2)e x ,令f ′(x )>0,得x >2,∴f (x )的单调递增区间为(2,+∞).3.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________.答案0,π6,5π6,π解析f ′(x )=1-2sin x ,x ∈(0,π),令f ′(x )=0,得x =π6或x =5π6,当0<x <π或5π<x <π时,f ′(x )>0,∴f (x )0,π6,5π6,π.感悟提升确定函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.考点二讨论含参函数的单调性例1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数f (x )的定义域为(0,+∞),f′(x)=ax-(a+1)+1x=ax2-(a+1)x+1x=(ax-1)(x-1)x.(1)当0<a<1时,1a>1,∴x∈(0,1)f′(x)>0;x f′(x)<0,∴函数f(x)在(0,1)(2)当a=1时,1a=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;(3)当a>1时,0<1a<1,∴x(1,+∞)时,f′(x)>0;x f′(x)<0,∴函数f(x)(1,+∞).综上,当0<a<1时,函数f(x)在(0,1)减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)(1,+∞).感悟提升 1.含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.训练1已知f (x )=a (x -ln x )+2x -1x 2,a >0,讨论f (x )的单调性.解f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3=a (x -1)x 3x -2a x +2a (1)当0<a <2时,2a>1,当x (0,1)∪2a,+∞时,f ′(x )>0,当x 1,2a 时,f ′(x )<0.(2)当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )递增.(3)当a >2时,0<2a <1,当x 0,2a ∪(1,+∞)时,f ′(x )>0,当x 2a,1时,f ′(x )<0.综上所述,当0<a <2时,f (x )在(0,1)2a ,+∞内递增,在1,2a 内递减.当a =2时,f (x )在(0,+∞)内递增;当a >2时,f (x )0,2a (1,+∞)2a,1.考点三根据函数单调性求参数值(范围)例2(经典母题)已知x =1是f (x )=2x +bx +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.解(1)f (x )=2x +bx+ln x ,定义域为(0,+∞).∴f ′(x )=2-b x 2+1x =2x 2+x -bx2.因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=0,即2-b+1=0.解得b=3,经检验,适合题意,所以b=3.所以f′(x)=2x2+x-3x2,令f′(x)<0,得0<x<1.所以函数f(x)的单调递减区间为(0,1).(2)g(x)=f(x)-3+ax=2x+ln x-ax(x>0),g′(x)=2+1x+ax2(x>0).因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x+ax2≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立,所以a≥(-2x2-x)max,x∈[1,2].因为在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围是[-3,+∞).迁移在本例(2)中,若函数g(x)在区间[1,2]上不单调,求实数a的取值范围.解∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-+18在(1,2)内有解,易知该函数在(1,2)上是减函数,∴a=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).感悟提升 1.已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.2.如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.3.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.训练2(1)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A.13,+∞ B.-∞,13C.13,+∞ D.-∞,13(2)(2022·郑州调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案(1)C(2)(1,2]解析(1)由y =x 3+x 2+mx +1是R 上的单调函数,所以y ′=3x 2+2x +m ≥0恒成立,或y ′=3x 2+2x +m ≤0恒成立,显然y ′=3x 2+2x +m ≥0恒成立,则Δ=4-12m ≤0,所以m ≥13.(2)易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x.又x >0,令f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,a -1>0,a +1≤3,解得1<a ≤2.考点四与导数有关的函数单调性的应用角度1比较大小例3(1)已知函数f (x )=x sin x ,x ∈R ,则π5f (1),f -π3的大小关系为()A.-π3f (1)>π5B.f (1)>-π3π5C.π5f (1)>-π3D.-π3π5>f (1)(2)已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3·f (30.3),b =log π3·f (log π3),c =log 319·则a ,b ,c 的大小关系是()A.a >b >cB.c >b >aC.a >c >bD.c >a >b答案(1)A(2)D解析(1)因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以又当x f ′(x )=sin x +x cos x >0,所以函数f (x )f (1)<f (1)> A.(2)设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数,知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数,∴c =g (-2)=g (2),又0<log π3<1<30.3<3<2,∴g (log π3)<g (30.3)<g (2),即b <a <c .角度2解不等式例4已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x -1的解集为()A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)答案D解析f (x )>f ′(x )ln 2⇔f ′(x )-ln 2·f (x )<0.令g(x)=f(x)2x,则g′(x)=f′(x)-f(x)·ln22x,∴g′(x)<0,则g(x)在(-∞,+∞)上是减函数.由f(-2)=2,且f(x)在R上是奇函数,得f(2)=-2,则g(2)=f(2)22=-12,又f(x)>-2x-1⇔f(x)2x>-12=g(2),即g(x)>g(2),所以x<2.感悟提升 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.训练3(1)已知函数f(x)=3x+2cos x.若a=f(32),b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<cB.c<b<aC.b<a<cD.b<c<a(2)(2021·西安模拟)函数f(x)的导函数为f′(x),对任意x∈R,都有f′(x)>-f(x)成立,若f(ln2)=12,则满足不等式f(x)>1e x的x的取值范围是()A.(1,+∞)B.(0,1)C.(ln2,+∞)D.(0,ln2)答案(1)D(2)C解析(1)由题意,得f′(x)=3-2sin x.因为-1≤sin x≤1,所以f′(x)>0恒成立,所以函数f(x)是增函数.因为2>1,所以32>3.又log 24<log 27<log 28,即2<log 27<3,所以2<log 27<32,所以f (2)<f (log 27)<f (32),即b <c <a .(2)对任意x ∈R ,都有f ′(x )>-f (x )成立,即f ′(x )+f (x )>0.令g (x )=e x f (x ),则g ′(x )=e x [f ′(x )+f (x )]>0,所以函数g (x )在R 上单调递增.不等式f (x )>1e x 即e xf (x )>1,即g (x )>1.因为f (ln 2)=12,所以g (ln 2)=e ln 2f (ln 2)=2×12=1.故当x >ln 2时,g (x )>g (ln 2)=1,所以不等式g (x )>1的解集为(ln 2,+∞).1.如图是函数y =f (x )的导函数y =f ′(x )的图像,则下列判断正确的是()A.在区间(-2,1)上f (x )单调递增B.在区间(1,3)上f (x )单调递减C.在区间(4,5)上f (x )单调递增D.在区间(3,5)上f (x )单调递增答案C解析在区间(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数f (x )=ln x -ax (a >0)的单调递增区间为()D.(-∞,a)答案A解析函数f(x)的定义域为(0,+∞),f′(x)=1x-a,令f′(x)=1x-a>0,得0<x<1a,所以f(x)3.函数y=f(x)的图像如图所示,则y=f′(x)的图像可能是()答案D解析由函数f(x)的图像可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足. 4.(2021·德阳诊断)若函数f(x)=e x(sin x+a)在R上单调递增,则实数a的取值范围为()A.[2,+∞)B.(1,+∞)C.[-1,+∞)D.(2,+∞)答案A解析因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数f(x)在R上单调递增,需使f′(x)≥0恒成立,即sin x+a+cos x≥0恒成立,所以a≥-sin x-cos x.因为-sin x-cos x=-2sin所以-2≤-sin x-cos x≤2,所以a≥ 2.5.(2021·江南十校联考)已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是()A.a>-12B.0<a<116C.a>116或-12<a<0 D.a>116答案D解析f′(x)=2ax-4a-1x=2ax2-4ax-1x,令g(x)=2ax2-4ax-1,则函数g(x)=2ax2-4ax-1的对称轴方程为x=1,若f(x)在(1,4)上不单调,则g(x)在区间(1,4)上有零点.当a=0时,显然不成立;当a≠0>0,(1)=-2a-1<0,(4)=16a-1>0,<0,(1)=-2a-1>0,(4)=16a-1<0,解得a>116或a<-12.∴a>116是f(x)在(1,4)上不单调的一个充分不必要条件.6.已知函数y=f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x-x,设a=b=f(3),c=f(0),则a,b,c的大小关系为()A.b<a<cB.c<a<bC.b<c<aD.a<b<c答案A解析由函数y=f(x+1)是偶函数,可得函数f(x)的图像关于直线x=1对称,则a=b=f(3),c=f(0)=f(2),又当x∈(1,+∞)时,f′(x)=cos x-1≤0,所以f(x)=sin x-x在(1,+∞)上为减函数,所以b<a<c,故选A.7.若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值范围为________.答案(-3,0)∪(0,+∞)解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,≠0,=36+12a >0,解得a >-3且a ≠0.8.(2022·哈尔滨调研)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.答案1解析f ′(x )=4x -1x =(2x -1)(2x +1)x(x >0),令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.-1≥0,-1<12<k +1,解之得1≤k <32.9.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案(-∞,-2)∪(0,2)解析令φ(x )=f (x )x,∵当x >0时,f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数,由数形结合知x∈(-∞,-2)时,f(x)>0.故x2f(x)>0的解集为(-∞,-2)∪(0,2).10.已知函数f(x)=ln x+ke x(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求实数k的值;(2)求函数f(x)的单调区间.解(1)f′(x)=1x-ln x-ke x(x>0).又由题意知f′(1)=1-ke=0,所以k=1.(2)由(1)知,f′(x)=1x-ln x-1e x(x>0).设h(x)=1x-ln x-1(x>0),则h′(x)=-1x2-1x<0,所以h(x)在(0,+∞)上单调递减.由h(1)=0知,当0<x<1时,h(x)>0,所以f′(x)>0;当x>1时,h(x)<0,所以f′(x)<0.综上f(x)的单调增区间是(0,1),减区间为(1,+∞).11.讨论函数g(x)=(x-a-1)e x-(x-a)2的单调性.解g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①当a>ln2时,x∈(-∞,ln2)∪(a,+∞)时,f′(x)>0,x∈(ln2,a)时,f′(x)<0;②当a=ln2时,f′(x)≥0恒成立,∴f(x)在R上单调递增;③当a<ln2时,x∈(-∞,a)∪(ln2,+∞)时,f′(x)>0,x∈(a,ln2)时,f′(x)<0,综上,当a>ln2时,f(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减;当a=ln2时,f(x)在R上单调递增;当a<ln2时,f(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.12.已知a=ln33,b=e-1,c=3ln28,则a,b,c的大小关系为()A.b>c>aB.a>c>bC.a>b>cD.b>a>c答案D解析依题意,得a=ln33=ln33,b=e-1=ln ee,c=3ln28=ln88.令f(x)=ln xx(x>0),则f′(x)=1-ln xx2,易知函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以f(x)max=f(e)=1e=b,且f(3)>f(8),即a>c,所以b>a>c.13.(2021·成都诊断)已知函数f(x)是定义在R上的偶函数,其导函数为f′(x).若x>0时,f′(x)<2x,则不等式f(2x)-f(x-1)>3x2+2x-1的解集是________.答案1解析令g(x)=f(x)-x2,则g(x)是R上的偶函数.当x>0时,g′(x)=f′(x)-2x<0,则g(x)在(0,+∞)上递减,于是在(-∞,0)上递增.由f(2x)-f(x-1)>3x2+2x-1得f(2x)-(2x)2>f(x-1)-(x-1)2,即g (2x )>g (x -1),于是g (|2x |)>g (|x -1|),则|2x |<|x -1|,解得-1<x <13.14.(2021·全国乙卷)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解(1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞(1+1-3a 3,+∞)上单调递增,在.(2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .=(1+a )x ,=x 3-x 2+ax +1,=1,=1+a=-1,=-1-a .所以曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,1+a)和(-1,-1-a).。
含参函数单调性讨论 高考数学
−
−
− ,
当 ∈ [− , ]时, ′ ≥ ,则 在 , +∞ 上是增函数.
当 ∈ −∞, − 时,对于>,有 ′ >,则 在 , +∞ 上是
增函数.
试卷讲评课件
当 ∈ , +∞ 时,
′
令
令 ′
− −
试卷讲评课件
例4.设函数f x = lnx − a − 1 x a ∈ R ,讨论函数f x 的单调性;
解析函数f x = lnx − a − 1 x a ∈ R 的定义域为 0, +∞ ,
f′
1
x
x = − a−1
当a − 1 ≤ 0,即a
当a −
1− a−1 x
=
.
x
≤ 1时,f ′ x
1>0时,令f ′
<时,函数 单调递增区间为 −∞, , , +∞ ,单调递减区间为
, .
1
2
3
4
5
6
试卷讲评课件
例2.已知函数f x = x 2 + ax + 1 ex ,讨论f x 的单调性;
解析 因为 = + + ,所以
′ = [ + + + + ] ,
+ −+
′
若>,令 =
= ,解得 = − , = .
′
, ′
当>时, , 的变化情况如下表
,
′
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参不含参函数单调性
————————————————————————————————作者:————————————————————————————————日期:
利用导数研究函数单
调性
不含参函数单调性
【题型一】因式分解
【例1】 求函数的单调区间。
【变式1】求函数421()342
f x x x x =
-+的单调区间。
【例2】 求函数2()322
x
x e f x e x =-+的单调区间。
【变式1】求函数2()ln 7ln f x x x x x x =-+的单调区间。
【例3】 求函数()2()2x x x f x x e e
-=
+-的单调区间。
【变式1】求函数22
ln 3()ln 224
x x x f x ex x ex =--+的单调区间。
3227()154()32f x x x x x R =
+-+∈
【例4】 求函数()2
()ln 22
x f x x x e x =+-+的单调区间。
【变式1】求函数()()ln 1x
f x e x =-+的单调区间。
【例5】 求函数2()ln f x x x x =-的单调区间。
【变式1】求函数ln 1()x e x e f x e +-=
的单调区间。
【变式2】求函数2()mx f x e
x mx =+-的单调区间。
【例6】 求函数2311()26
x f x e x x x =-+
-的单调区间。
【变式1】求函数2
()cos 12
x f x x =+-的单调区间。
【例7】 求函数()2311()123x f x x ex e x =
-+-的单调区间。
【变式1】求函数()41()24x f x x e x x =--+,112,⎛⎤∈ ⎥⎝⎦x 的单调区间。
含参函数单调性讨论
例题:
【例1】已知函数()ln f x x a x =-,讨论()f x 的单调性;
【例2】讨论函数x
a x a x x f 1ln )(++
-=的单调性;
【例3】讨论函数x a ax x x f )2(ln )(2-+-=的单调性;
【例4】已知函数2()(2ln ),()=-
+-∈f x x a x a R x
,讨论()f x 的单调性;
【例5】已知函数()2()ln 0f x ax bx x a =+-≥,求()f x 的单调性;
【例6】设函数()x
f x e ax =-,求)(x f 的单调区间;
变式训练:
1、已知()ln f x ax x =-,讨论()f x 的单调性;
2、讨论函数()2
3()223ln 2
x f x ax a x =+-+的单调性;
3、已知函数1()ln ,()a f x x ax a R x
-=-+
∈,讨论()f x 的单调性;
4、讨论函数()ln(1)()1ax f x x a R x
=+-∈-的单调区间;
5、设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性;
6、设函数()2()12
x
x e f x a e ax =-++,求)(x f 的单调区间;。