电磁场与电磁波实验讲义

合集下载

电磁场与电磁波实验讲义(1).

电磁场与电磁波实验讲义(1).

电磁场与电磁波实验讲义信息学院电子系目录一、概述二、系统成套性三、机械结构的安装与调整四、使用方法1.反射实验2.极化波的产生/检测3.圆极化波左旋/右旋五、附录一、概述DH926AD型数据采集仪是专为配合DH926B型微波分光仪使用的计算机采集测试仪器。

数据采集仪根据微波、电磁场检波原理,采用微电流放大系统,检波信号经过全波整流电路后输出直流信号送A/D。

A/D为通用型8通道12位,A/D接收检波后的直流信号,经过多通道选择电路送内置采样保持放大器,使信号在转换期间内保持不变。

由光电传感器提供的场地址定位计数脉冲,同样送A/D由软件控制计数,按照工业标准完成12位模/数转换。

二、系统成套性DH926U型微波分光仪自动测试系统主要包含DH926B型微波分光仪、DH926AD型数据采集仪及DH1121B型三厘米固态信号源三部分。

下面分述每部分仪器的成套性:其中,DH1121B型三厘米固态信号源的三厘米固态振荡器发出的信号具有单一的波长(出厂时信号调在λ=32.02mm上),这种微波信号就相当于光学实验中要求的单色光束。

DH926B型微波分光仪的喇叭天线的增益大约是20分贝,波瓣的理论半功率点宽度大约为:H面是20°,E面是16°。

当发射喇叭口面的宽边与水平面平行时,发射信号电矢量的偏损方向是垂直于水平面的;可变衰减器用来改变微波信号幅度的大小,衰减器的度盘指示越大,对微波信号的衰减也越大;晶体检波器可将微波信号变成直流信号或低频信号(当微波信号幅度用低频信号调制时)。

当以上这些元件连接时,各波导端应对齐。

如果连接不正确,则信号传输可能受破坏。

三、机械结构的安装与调整1.DH926B型微波分光仪分度转台的安装与调整:本仪器为了便于运输、包装,出厂包装时将分度转台做了必要的拆卸,用户在使用前需做如下安装与调整。

(l)基座(即喷漆的大圆盘)的安装:(参看图A)。

将Φ40.5的孔向上,将四个支脚按图安置在基座上。

第三课时电磁场和电磁波讲课文档

第三课时电磁场和电磁波讲课文档
第28页,共43页。
典例剖析
【例2】 电磁波与声波比较( )
A.电磁波的传播不需要介质,声波的传播需要介质 B.由空气进入水中时,电磁波速度变小,声波速度变大 C.由空气进入水中时,电磁波波长变小,声波波长变大 D.电磁波和声波在介质中的传播速度,都是由介质决定,与频率无关
第29页,共43页。
[解析] 可以根据电磁波的特点和声波的特点进行分析选项A、B 均与事实相符,所以A、B项正确.根据λ= ,电磁波速v度变小, 频率不变,波长变小;声波速度变大,频率不变,波长变大,所f 以选项 C正确.电磁波在介质中的速度,与介质有关,也与频率有关,在同 一种介质中,频率越大,波速越小,所以选项D错误,故选ABC.
传播方 式 地波
地波和 天波 天波
主要用途
超远程无 线电 通信和导 航 调幅无线 电广播、电 报、通信
第12页,共43页。
微 米波 波
分米 波 厘米 波 毫米 波
10 m~1 m 30 MHz~300 MHz
近似 直线 传播
1 m~0.1 m 300 MHz~3000 直线
MHz
传播
10 cm~1 3000
(2)雷达用的是微波波段,因为电磁波波长越短,传播的直线性越好,反
射性越强.活学活用
第20页,共43页。
3.雷达是利用电磁波来测定物体的位置和速度的设备,它可以向一定 方向发射不连续的电磁波,当遇到障碍物时要发生反射.雷达在发射
和接收电磁波时,在荧光屏上分别呈现出一个尖形波.某型号防 空雷达发射相邻两次电磁波之间的时间间隔为5×10-4 s.现在
第31页,共43页。
典例剖析 【例3】 雷达向远处发射无线电波,每次发射的时间是1μs,两次发

电磁场与电磁波实验讲义

电磁场与电磁波实验讲义

电磁场与电磁波实验讲义(试用)实验一、电磁波的反射特性研究一、实验目的1、研究电磁波在良导体表面的反射;2、熟悉微波分光仪DH962B的使用方法。

二、实验原理如上图所示,,我们用一块金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角(如上图所示,θr =θi)。

三、实验装置(1)四、实验内容和步骤1、熟悉微波分光仪的结构、仪器的连接和系统调整:在微波分光仪的底座上有两个支臂,其中一个为固定支臂,另一个支臂则可绕中心轴旋转(带固定螺钉),发射喇叭天线和信号源安装在固定支臂上,接收喇叭天线和微安表安装在旋转支臂上。

微波分光仪底座中央有一带角度刻度线的园形工作平台。

仪器连接时,两喇叭天线的口面应正对,它们各自的轴线应在同一条直线上,两个臂的位置指针应分别指向工作平台的900刻度处。

按信号源的操作规程打开电源,调节衰减器使微安表有一适当的读数(满量程的三分之二及以上,这样可以减小读数误差对测试结果的影响)。

将带支座的金属反射板放在园形工作平台上(注意:金属反射板的平面应与支座下面的小园盘上的某一对刻度线一致),在将带支座的金属反射板放在园形工(2)作平台上时,应注意两点:(1)使小园盘的刻度线(与金属板平面一致的一对刻度线)与工作平台上相应900刻度的一对刻度线一致,这时工作平台上的00刻度线就与金属反射板的法线方向一致;(2)利用工作平台上的固定螺钉将金属反射板的支座固定。

2、测量入射角和反射角:转动工作平台,使固定臂的指针指在某一角度处,该角度数就是入射角,然后转动旋转臂使微安表的读数达到最大,此时旋转臂上的指针所指的刻度就是反射角。

如果此时微安表的指示太大或太小,可调节信号源的衰减器,使微安表的指示有一适当值。

做此项实验时,入射角最好取300至650之间,因为入射角太大接收喇叭天线有可能直接接收到入射波。

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与电磁波实验报告电磁波反射和折射实验实验目的:1. 探究电磁波在不同介质中的反射和折射规律;2. 学习使用测量工具和观察现象,从实验中深化对电磁波的认知。

实验器材:1. 实验室用的电磁波发生器、接收器和天线;2. 不同介质的板子,如玻璃、塑料、水等;3. 直尺、支架、测角器等测量工具。

实验原理:1. 电磁波反射规律当电磁波从空气传播到介质边界时,如果介质的折射率大于空气,那么电磁波会被反射回来。

反射角等于入射角,即角度相等。

2. 电磁波折射规律当电磁波传播到介质边界时,如果两侧的折射率不同,电磁波会发生折射。

角度满足斯涅尔定律,即入射角和折射角的正弦之比在两个不同介质中是常数,即:sinθ1/sinθ2=n2/n1,其中θ1是入射角,θ2是折射角,n1和n2分别是两个介质的折射率。

实验步骤:1. 将电磁波发生器的天线对准接收器,并调整距离,使得接收器接收到最大强度的信号。

2. 选择一个介质板,将其放置在天线和接收器之间。

记录下入射角和反射角的值。

3. 更换不同的介质板,如玻璃、水、塑料等,重复步骤2。

4. 对于折射实验,将介质板斜放,入射光线从上方斜射入水中,观察折射出来的角度。

5. 测量介质板的厚度,并计算出介质的折射率。

实验结果:1. 反射实验中,记录下了不同介质的入射角和反射角。

通过比较不同介质的反射角可以发现,当折射率越大的时候,反射角越小,反之越大。

2. 折射实验中,记录下了入射角和折射角的值,并计算出了水的折射率。

分析与讨论:通过实验发现,电磁波的反射和折射规律与光学的规律相同,具有相似的物理原理。

另外,实验中需要注意精确度,例如使用测角器来测量角度,要保证角度的精确度,以免影响结果。

此外,实验中不同介质的反射、折射规律的不同也需要谨慎对待。

《电磁场和电磁波》 讲义

《电磁场和电磁波》 讲义

《电磁场和电磁波》讲义一、什么是电磁场在我们生活的世界中,电磁场是一种无处不在但又常常被我们忽略的存在。

简单来说,电磁场就是由带电粒子的运动所产生的一种物理场。

想象一下,当一个电子在空间中移动时,它的周围就会产生一个电场。

这个电场会对周围的其他带电粒子产生力的作用。

与此同时,如果这个电子在移动的过程中还在不断地改变速度,那么就会产生磁场。

电场和磁场就像是一对好兄弟,它们总是同时出现,相互关联,并且相互影响。

这种相互作用的结果就是我们所说的电磁场。

电磁场的强度和方向可以用数学上的向量来描述。

电场强度用 E 表示,磁场强度用 B 表示。

它们的大小和方向会随着带电粒子的运动状态以及空间位置的变化而变化。

二、电磁场的特性电磁场具有一些非常重要的特性。

首先,电磁场可以在空间中传播。

这就像我们扔一块石头到水里,会产生一圈圈的水波向外扩散一样,电磁场也能以电磁波的形式在空间中传播能量和信息。

其次,电磁场遵循一定的规律。

比如,库仑定律描述了两个静止点电荷之间的电场力作用;安培定律则描述了电流与磁场之间的关系。

再者,电磁场具有能量。

当电磁场发生变化时,能量会在电场和磁场之间相互转换。

这也是电磁波能够传播的一个重要原因。

三、电磁波的产生电磁波的产生通常需要一个源,比如一个加速运动的电荷或者一个变化的电流。

以天线为例,当电流在天线中快速变化时,就会产生迅速变化的电磁场,并向周围空间发射出去,形成电磁波。

另外,原子内部的电子在不同能级之间跃迁时,也会释放出电磁波。

这种电磁波的频率和能量与电子跃迁的能级差有关。

四、电磁波的性质电磁波具有波动性和粒子性双重性质。

从波动性的角度来看,电磁波和其他波一样,具有波长、频率、振幅等特征。

波长是相邻两个波峰或波谷之间的距离;频率则是单位时间内波振动的次数;振幅表示波的能量大小。

电磁波的频率范围非常广泛,从极低频率的无线电波到高频率的伽马射线。

不同频率的电磁波在性质和应用上有着很大的差异。

电磁场与电磁波第10讲共42页文档

电磁场与电磁波第10讲共42页文档
50
f1 M, H z6.6 1 0 26.6 1 0 5m
16 0
f1G 0 H , z 6 .6 1 0 26 .6 1 0 7m
1 0 19 0
中北大学·信息与通信工程学院·信息工程系
电磁场与电磁波
第10讲 实验
11
表5.3.1一些金属材料的趋肤深度和表面电阻
材料名称 电导率σ /(S/m)
导电媒质中均匀平面波的传播特点
电场强度E、磁场强度H与波的传播方向相互垂直,是横电 磁波(TEM波); 媒质的本征阻抗为复数,电场与磁场不同相位,磁场滞后于
电场 角;
在波的传播过程中,电场与磁场的振幅呈指数衰减;
波的传播速度(相度)不仅与媒质参数有关,而与频率有关 (有色散)。
中北大学·信息与通信工程学院·信息工程系
电磁场与电磁波
第10讲 实验
1
本讲内容 10.1 导电媒质中的均匀平面波 10.2 均匀平面波对分界平面的垂直入射
中北大学·信息与通信工程学院·信息工程系
电磁场与电磁波
第10讲 实验
2
10.1 导电媒质中的均匀平面波
导电媒质的典型特征是电导率 ≠ 0 电磁波在导电媒质中传播时,有传导电流 J = E 存在,同时
电磁场与电磁波
第10讲 实验
7
2 电介质中的均匀平面波
低损耗媒质: 1
(1 x)1/2 1 x 2
j(1 j )1 /2j 2
2
cc
(1j )1/2
(1j2)
低损耗媒质中均匀平面波的特点
(1x)1/2 1 x 2
衰减小;
相位常数和非导电媒质中的相位常数大致相等;
电场和磁场存在较小的相位差。
振幅有衰减

电磁场与电磁波(第二章)

电磁场与电磁波(第二章)

S
s
t
dS
v
Ñl JS
g(n)
v dl )
0
对时变面电流 对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
v
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
v F12
q1 q2
4 0 R 2
evR
q1 q2
4 0 R3
v R
rv' vO
(
1
)
v ex
(
1
)
v ey
(
1
)
v ez
(1)
R x R y R z R
v ex
uv
x
x R3
' uur
v ey
y
y R3
'
v ez
zz' R3
R R3
eR R2
第二章
❖电荷、电流 2.4
❖电场强度、矢量积分公式 2.8 2.9
作业
t 0
讨论:1)
v J
vv
式中: 为空间中电荷体密度,vv 为
正电荷流动速度。
2) I Jv(rv)gdsv Jv(rv)gn)ds
S
S
S Jv(rv) cos ds
n)
S
Jv(rv)
2、面电流密度
❖当电荷只在一v个薄层内流动时,形成的电流为面电流。 ❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l
v J
线元的电流为 I ,则定义
S

《电磁场与电磁波》PDF讲稿集合

《电磁场与电磁波》PDF讲稿集合

¾ 若将两根线电荷称为一对电轴,而任一等位圆 可看成是与z轴平行的长直圆柱形导体的横截面; ¾故以上讨论的结果可用来求解平行双圆柱导体 系统的静电场问题,这种方法称为电轴法; ¾ 由于两个电轴所在的点对任一等位圆互为反演 点,即互为镜像,因此电轴法也是镜像法
两细导线的场图
§5-3 镜像法 ——3、对于柱面的镜像
z q(0,0,d) x
P(x,y,z) z R1 q(0,0,d) R2 x
¾等效问题: • 原电荷:q,位于(0,0,d) • 镜像电荷(等效电荷):q’=-q,位于(0,0,-d) • 取消导体边界面,z>0空间媒质充满整个空间。 • 与原问题边界条件相同 • 仅在上半平面是等效的
q ⎡ 1 1 ⎤ φ= + = ⎢ − ⎥ 4πε 0 R1 4πε 0 R2 4πε 0 ⎣ R1 R2 ⎦ q q'
+
q' 4πε 1 R2
=
1 ⎛ q q' ⎞ ⎜ ⎟ + ⎜ 4πε 1 ⎝ R1 R2 ⎟ ⎠
⎧φ1 = φ2 ⎪ z = 0处应满足: ∂φ 2 ⎨ ∂φ1 ε ε = 2 ⎪ 1 ∂z ∂z ⎩
Q z = 0处,R1 = R2 = R3 = R
ε1 − ε 2 q' = − q' ' = q ε1 + ε 2
解: a)取圆柱坐标系,
确定电轴位置 d = b)确定电位分布 ( 以 y 轴为参考电位)
h2 − a 2
τ ρ2 ln φp = 2πε 0 ρ 1
又h= D−d
D2 − a2 ⇒d = 2D
若选 x = 0处, φቤተ መጻሕፍቲ ባይዱ0
2 ( x + d ) + y2 τ ρ2 τ = 则导体圆柱外 φ = ln ln 2πε ρ 1 4πε ( x − d )2 + y 2

电磁场与电磁波ppt完美版课件

电磁场与电磁波ppt完美版课件

探究一
探究二
随堂检测
画龙点睛变化的磁场周围产生电场,与是否有闭合电路存在无关。
2.对麦克斯韦电磁场理论的理解
探究一
探究二
随堂检测
实例引导例1根据麦克斯韦电磁场理论,下列说法正确的是( )A.有电场的空间一定存在磁场,有磁场的空间也一定能产生电场B.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场C.均匀变化的电场周围一定产生均匀变化的磁场D.周期性变化的磁场周围空间一定产生周期性变化的电场解析:根据麦克斯韦电磁场理论,只有变化的电场才能产生磁场,均匀变化的电场产生恒定的磁场,非均匀变化的电场产生变化识
自我检测
1.正误判断。(1)电磁波也能产生干涉、衍射现象。( )答案:√(2)电磁波的传播不需要介质,可以在真空中传播。答案:√2.探究讨论。为什么电磁波是横波?答案:根据麦克斯韦电磁场理论,电磁波在真空中传播时,它的电场强度和磁感应强度是相互垂直的,且二者均与波的传播方向垂直。因此,电磁波是横波。
探究一
探究二
随堂检测
规律方法理解麦克斯韦的电磁场理论的关键掌握四个关键词:“恒定的”“均匀变化的”“非均匀变化的”“周期性变化的(即振荡的)”,这些都是对时间来说的,是时间的函数。
探究一
探究二
随堂检测
变式训练1如图所示的四种电场中,哪一种能产生电磁波( )
解析:由麦克斯韦电磁场理论,当空间出现恒定的电场时(如A图),由于它不激发磁场,故无电磁波产生;当出现均匀变化的电场时(如B、C图),会激发出磁场,但磁场恒定,不会激发出电场,故也不会产生电磁波;只有振荡的电场(即周期性变化的电场)(如D图),才会激发出振荡的磁场,振荡的磁场又激发出振荡的电场……如此周而复始,便会形成电磁波。答案:D

北邮电磁场与电磁波演示实验讲解学习

北邮电磁场与电磁波演示实验讲解学习

北邮电磁场与电磁波演示实验频谱特性测量演示实验1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz2.ESPI 测试接收机的RF输入端口最大射频信号: +30dbm,最大直流:50v3.是否直观的观测到电磁波的存在?(回答是/否)否4.演示实验可以测到的空间信号有哪些,频段分别为:广播:531K~1602KHzGSM900:上行:890~915 MHz 下行:935~960 MHzGSM1800:上行:1710~1755 MHz 下行:1805~1850 MHzWCDMA:上行:1920~1980MHz 下行:2110~2170MHzCDMA2000:上行:1920~1980MHz 下行:2110~2170MHzTD-SCDMA:2010~2025MHz5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视?模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。

模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。

数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。

6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图:GSM900上行:GSM900下行:CDMA下行:3G下行:7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率)可以该频谱仪能检测的频谱范围为9KHz—3GHz所以,能够观察到:WIFI:2.4G电磁炉:20KHz—30KHz蓝牙:2.4G网络参量测量演示实验1矢量网络分析仪所测频段:300KHz—3GHz2端口最大射频信号: 10DBM3矢量网络分析仪为何要校准:首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。

《电磁场与电磁波》 讲义

《电磁场与电磁波》 讲义

《电磁场与电磁波》讲义在我们的日常生活中,电磁场与电磁波无处不在,从手机通信到广播电视,从微波炉加热食物到 X 射线的医疗应用,它们都在默默地发挥着重要作用。

那么,什么是电磁场与电磁波呢?这就是我们接下来要深入探讨的内容。

首先,让我们来了解一下电磁场。

电磁场是由带电物体产生的一种物理场。

电荷的存在会导致周围空间产生电场,而当电荷运动时,就会产生磁场。

电场和磁场相互关联、相互作用,形成了电磁场。

想象一下,一个静止的电荷会在其周围产生一个静电场,就像一颗石子投入平静的湖面,引起的涟漪向外扩散一样。

而当电荷开始移动,比如电流在导线中流动时,就会产生磁场,这个磁场就像是围绕着导线的一圈圈“磁力线”。

电磁波则是电磁场的一种运动形式。

当电场和磁场以一定的规律变化时,就会产生电磁波,并以光速向周围空间传播。

电磁波具有很宽的频谱,包括无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。

不同频率的电磁波具有不同的性质和应用。

例如,无线电波常用于通信,像我们熟悉的广播、电视和手机信号都是通过无线电波来传输的。

微波则在雷达、微波炉等设备中得到应用。

红外线具有热效应,常用于遥控器和热成像仪。

可见光让我们能够看到周围的世界。

紫外线可以用于杀菌消毒。

X 射线在医学成像和工业检测中发挥着重要作用。

伽马射线则具有很强的穿透力,常用于医疗放疗和放射性检测。

那么,电磁波是如何产生的呢?一种常见的方式是通过电荷的加速运动。

比如,在天线中,电流的快速变化会产生电磁波。

另外,原子和分子内部的电子跃迁也会产生电磁波。

例如,当一个原子中的电子从高能级跃迁到低能级时,就会释放出光子,也就是电磁波。

接下来,我们来看看电磁波的传播特性。

电磁波在真空中以光速传播,速度约为 3×10^8 米/秒。

在介质中传播时,电磁波的速度会变慢,并且会发生折射、反射和衍射等现象。

折射就像是光线从空气进入水中时发生的弯曲;反射则类似于光线照在镜子上被反弹回来;衍射则是指电磁波在遇到障碍物时,会绕过障碍物继续传播。

电磁场与电磁波第二章讲义

电磁场与电磁波第二章讲义

(r )
第二章 静 电 场
当r<a时,
Er 4r2

0 0
4
3
r3
所以
Er

0r 30
(r )
第二章 静 电 场
例 2 - 3 已知半径为a的球内、 外的电场强度为
E

er E0
a2 r2
(r a)
E

er E0 5

r 2a

3
r3 2a3

(r a)
们的连线, 同号电荷之间是斥力, 异号电荷之间是引力。点电
荷q′受到q的作用力为F′,且F′=-F,可见两点电荷之间的作用力 符合牛顿第三定律。
第二章 静 电 场
库仑定律只能直接用于点电荷。所谓点电荷,是指当带电体 的尺度远小于它们之间的距离时,将其电荷集中于一点的理想化 模型。 对于实际的带电体, 一般应该看成是分布在一定的区域 内,称其为分布电荷。用电荷密度来定量描述电荷的空间分布情 况。电荷体密度的含义是,在电荷分布区域内,取体积元ΔV, 若其中的电量为Δq,则电荷体密度为
(r)

P(r' )V '
4 0

r r' r r' 3
整个极化介质产生的电位是上式的积分:
(r) 1
4 0
V
P(r' ) (r r r' 3
4 0R2
R

q' q
4 0
R R3
式中:R=r-r′表示从r′到r的矢量;R是r′到r的距离;R°是R的单
位矢量;ε0是表征真空电性质的物理量,称为真空的介电常数,
其值为

《电磁场与电磁波》 讲义

《电磁场与电磁波》 讲义

《电磁场与电磁波》讲义一、什么是电磁场与电磁波在我们的日常生活中,电和磁的现象无处不在。

从电动机的转动到手机的通信,从微波炉的加热到卫星的导航,都离不开电磁场与电磁波的作用。

电磁场,简单来说,就是由带电物体产生的一种物理场。

电荷的运动或者静止都会产生电场,而电流的流动则会产生磁场。

当电场和磁场相互作用、相互影响时,就形成了电磁场。

电磁波呢,则是电磁场的一种运动形态。

它是由同相且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面。

二、电磁场的基本原理要理解电磁场,首先得了解库仑定律和安培定律。

库仑定律描述了两个静止点电荷之间的电场力的大小和方向,它表明电场力与两个电荷的电荷量成正比,与它们之间的距离的平方成反比。

安培定律则阐述了电流元之间的磁场相互作用规律。

通过这两个定律,我们可以初步认识到电场和磁场的产生和作用方式。

麦克斯韦方程组是电磁场理论的核心。

这组方程由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培麦克斯韦定律。

电场的高斯定律表明,通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷量除以真空介电常数。

磁场的高斯定律指出,通过任何一个闭合曲面的磁通量恒为零,这意味着不存在磁单极子。

法拉第电磁感应定律说明,当穿过一个闭合回路的磁通量发生变化时,会在回路中产生感应电动势。

安培麦克斯韦定律则将安培定律进行了扩展,引入了位移电流的概念,使得在时变电磁场中,磁场的旋度不仅与传导电流有关,还与位移电流有关。

三、电磁波的特性电磁波具有很多独特的特性。

首先是波动性,它以正弦波的形式传播,具有波长、频率和波速等特征。

波长是指相邻两个波峰或波谷之间的距离,频率则是单位时间内电磁波振动的次数,而波速等于波长乘以频率。

电磁波在真空中的传播速度是恒定的,约为 3×10^8 米/秒。

不同频率的电磁波在介质中的传播速度会有所不同。

电磁波还具有偏振性。

大学物理讲义电磁场与电磁波PPT课件

大学物理讲义电磁场与电磁波PPT课件


S
(
j0

D) t
d
S
(11.12)
12 首 页 上 页 下 页退 出
在一般情况下,电介质中的电流主要是位移电流, 传导电流可忽略不计;而在导体中主要是传导电流, 位移电流可忽略不计. 在超高频电流情况下,导体内的传导电流和位移电 流均起作用,不可忽略.
因为在电介质中D=ε0E+P,所以位移电流密度jD
s D d S q0
l E dl 0
(11.1)
(11.2)
3 首 页 上 页 下 页退 出
对于稳恒磁场,由毕奥—萨伐尔定律和场强叠加原 理,可以导出描述稳恒磁场性质的“高斯定理”和 安培环路定理
s BdS 0
l H dl I0
ቤተ መጻሕፍቲ ባይዱ
(11.3)
(11.4)
s BdS 0
4.磁场强度沿任意闭合曲线的线积分等于穿过以 该曲线为边界的曲面的全电流。
l H dl


I0

s
D t

d
S
19 首 页 上 页 下 页退 出
归纳起来,麦克斯韦方程组的积分形式为
s D d S q0

B

l E dl S t d S
t
具有电流密度的性质,麦克斯韦把它称做位移电流
密度jD
11 首 页 上 页 下 页退 出

dD j D dt
(11.10)
而把
dD dt
称为位移电流ID
ID

dD dt

d dt
DdS
S
D dS S t
S jD dS

电磁场与电磁波讲课讲稿

电磁场与电磁波讲课讲稿

Zc=vi =1 22iv=1 2RL
1.4.3 用传输线变压器构成的 魔 T 混合网络
一、功率合成
如图 1-4-8 所示, Tr1 为魔 T 混合网络, Tr2 为对称 – 不对称变 换器。
输入信号接在 A 端和 B 端,根据节点 方程
i = ia - id,i = id - ib
求出
i = ia - id,
Rd 4
-Rc
RdRc
ia
=va
Rd 4
Rc
RdRc
-vb
Rd 4
-Rc
RdRc
ib
=vb
Rd 4
Rc
RdRc
-va
Rd 4
-Rc
RdRc
若取
Rc
=
1 4
Rd
ia 仅与 va 有关,ib 仅与 vb 有关。实现了 A 端和 B 端的隔 离,称为 A、B 间的隔离条件。
二、功率分配 1.同相功率分配
设上限频率 fH 对应的
波长为 min ,取
l =18 ~110min
可以认为: v1 = v2 = v,
i1 = i2 = i
图 1-4-3 传输线变压器
二、传输线变压器的工作原理
传输线变压 器原理图如图 1– 4–4(a)所示。
将传输线绕 于磁环上便构成 传输线变压器。 传输线可以是同 轴电缆、双绞线、 或带状线,磁环 一般是镍锌高磁 导率的铁氧体。
(a) 对称 – 不对称
(b) 不对称 – 对称
2.阻抗变换器
传输线变压器可以构成阻抗变换器,由于结构的限制,
通常只能实现特定的阻抗比的变换。
4 : 1 阻抗变换器如图 1–4–7(a)所示,图中阻抗关系为

电磁场与电磁波实验讲义(必做)

电磁场与电磁波实验讲义(必做)
电磁场与电磁波实验
邵小桃 李一玫 张 波 郭 勇
北京交通大学国家电工电子教学基地
1
实验教学的基本要求
一、实验教学的目标
电磁场与电磁波实验是培养电子信息类工程技术人员实验技能的重要 环节,是理论联系实际的重要手段。通过电磁场与电磁波实验教学应该达到 以下目标:
培养学生严谨的科学态度和实事求是的科学作风。 训练学生基本的实验技能。 培养学生通过实验来观察和研究基本电磁现象及规律的能力,以加
4
实验一 静电场模拟
一、实验目标
1. 学习用恒定电场模拟静电场的实验方法。 2. 了解电路原理图与测量仪器的对应关系。 3. 研究和描绘五种给定模拟电极的电场分布。 4. 掌握找到各种形状电极等位点的分布规律的方法。 5. 提高实验数据的处理方法及能力,强化等位线和场矢量线的空间关系。
二、实验原理
深对理论知识的理解。 培养学生独立设计实验的初步能力。 培养学生相关仪器的使用能力。
二、实验课前的准备工作
实验效果与实验预习的好坏密切相关。预习时一定要认真阅读实验 教材中的有关内容和附录,对实验目标、要求、实验原理和可能采取的方法 等有所了解,对被测量以及可能出现的现象和结果有一个事先的分析和估 计,对要完成的每个实验做到心中有数。
图 3.1 四个导体部分电容电网络图
其中 C10、C20、C30 分别是 1、2、3 导体的自部分电容,C12、C23、C13 是导 体间的互部分电容(C12=C21,C23=C32,C13=C31)。 2.部分电容的测定
根据静电网络图,可以测得在某种状态下(将一些导体用导线相联)两
9
个导体之间的等效电容值,由该电容值与各部分电容的关系,可得出各部分 电容。
8

电磁场与电磁波课件

电磁场与电磁波课件

电磁波的散射与衍射
散射
当电磁波遇到尺寸远小于其波长 的障碍物时,会产生散射现象, 散射波向各个方向传播。
衍射
当电磁波遇到尺寸接近或大于其 波长的障碍物时,会产生衍射现 象,衍射波在障碍物后形成复杂 的干涉图样。
03
电磁波的辐射与接收
天线的基本概念与分类
天线的基本概念
天线是用于发射和接收电磁波的设备,在通信、雷达、无线电等系统中广泛应 用。
再经过信号处理得到目标的图像。
02
系统组成
红外成像系统主要由光学系统、红外探测器和信号处理系统组成。
03
电磁场与电磁波在红外成像中的应用
电磁场与电磁波在红外成像中用于接收目标的辐射信息,经过处理得到
目标的图像。
05
电磁场与电磁波实验
电容与电感测量实验
总结词
掌握电容和电感的基本测量方法
详细描述
通过实验学习如何使用电桥、交流电桥等基本测量工具,了解不同类型电容和电感的工作原理和测量方法,掌握 电容和电感的基本特性。
折射率与波长有关
不同媒质对不同波长的电磁波有不 同的折射率。
电磁波的反射与折射
反射定律
当电磁波遇到不同媒质的分界面时, 一部分能量返回原媒质,一部分能量 进入新媒质。反射波和入射波的振幅 和相位关系遵守反射定律。
折射定律
当电磁波从一种媒质进入另一种媒质 时,其传播方向发生改变,这种现象 称为折射。折射定律描述了折射角与 入射角、折射率之间的关系。
电磁场与电磁波课件
目录
• 电磁场的基本概念 • 电磁波的传播特性 • 电磁波的辐射与接收 • 电磁场与电磁波的应用 • 电磁场与电磁波实验 • 总结与展望
01
电磁场的基本概念

电磁场与电磁波实验

电磁场与电磁波实验

电磁场与电磁波实验LT实验一 电磁波参量的测量一、实验目的1.在学习均匀平面电磁场特性的基础上,观察电磁波传播特性。

2.熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定相位常数和波速。

二、实验原理两束等幅,同频率的均匀平面电磁波,在自由空间以相同或相反方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。

本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ值,再由β=2πλ⁄,ν=λf =ωβ⁄得到电磁波的主要参数:β,ν等。

图1-1其中λ的测量方法如下:设入射波为:E i=E0i e−jϕ。

当入射波以入射角θ1向介质板斜投射时,则在分界面上产生反射波E r和折射波E t。

设介质板的反射系数为R,由空气进入介质板的折射系数为T0,由介质板进入空气的折射系数为T c,另外,可动板P r2固定板P r1都是金属板,其电场反射系数为-1。

在一次近似的条件下,接收喇叭P r3处的相干波分别为E r1=−RT0T c E0i e−jϕ1,E r2=−RT0T c E0i e−jϕ2。

在P r3处相干波合成为E r=E r1+E r2=−RT0T c E0i(e−jϕ1+e−jϕ2)式中Δϕ=ϕ1−ϕ2=2β∗ΔL为了准确测量,一般采用P r3零指示法,⁄)=0或Δϕ=(2n+1)π即cos(Δϕ2n=0,1,2…这里n表示相干波合成驻波场的波节点(E r=0)数。

同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。

故把n=0时E r=0的驻波节点为参考节点的位置L0,又因Δϕ=2∗(2πλ⁄)∗ΔL⁄)∗ΔL或4ΔL=故(2n+1)π=2∗(2πλ(2n+1)λ(n为半波长数,一般n=4可得λ=2(L n−L0)n已足够)图2-2 相干波E r1和E r2分布图三、实验内容1.了解电磁波综合测试仪的工作特点,使用方法,特别要熟悉和掌握利用相干波原理测试电磁波波长的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波实验讲义(试用)实验一、电磁波的反射特性研究一、实验目的1、研究电磁波在良导体表面的反射;2、熟悉微波分光仪DH962B的使用方法。

二、实验原理如上图所示,射,我们用一块金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角(如上图所示,θr =θi)。

三、实验装置(1)四、实验内容和步骤1、熟悉微波分光仪的结构、仪器的连接和系统调整:在微波分光仪的底座上有两个支臂,其中一个为固定支臂,另一个支臂则可绕中心轴旋转(带固定螺钉),发射喇叭天线和信号源安装在固定支臂上,接收喇叭天线和微安表安装在旋转支臂上。

微波分光仪底座中央有一带角度刻度线的园形工作平台。

仪器连接时,两喇叭天线的口面应正对,它们各自的轴线应在同一条直线上,两个臂的位置指针应分别指向工作平台的900刻度处。

按信号源的操作规程打开电源,调节衰减器使微安表有一适当的读数(满量程的三分之二及以上,这样可以减小读数误差对测试结果的影响)。

将带支座的金属反射板放在园形工作平台上(注意:金属反射板的平面应与支座下面的小园盘上的某一对刻度线一致),在将带支座的金属反射板放在园形工(2) 作平台上时,应注意两点:(1)使小园盘的刻度线(与金属板平面一致的一对刻度线)与工作平台上相应900刻度的一对刻度线一致,这时工作平台上的00刻度线就与金属反射板的法线方向一致;(2)利用工作平台上的固定螺钉将金属反射板的支座固定。

2、测量入射角和反射角:转动工作平台,使固定臂的指针指在某一角度处,该角度数就是入射角,然后转动旋转臂使微安表的读数达到最大,此时旋转臂上的指针所指的刻度就是反射角。

如果此时微安表的指示太大或太小,可调节信号源的衰减器,使微安表的指示有一适当值。

做此项实验时,入射角最好取300至650之间,因为入射角太大接收喇叭天线有可能直接接收到入射波。

按下表所示入射角,分别测出它们所对应的反射角。

注意:实验时应注意周围环境对测试结果的影响;实验装置附近不可有运动物体,甚至测量者头部的移动都有可能影响测量结果,所以测量者应坐在接收天线后面读数。

五、实验仪器1、DH926B微波分光仪;2、三厘米固态信号源;3、带支座的金属反射板;4、角锥喇叭天线;5、微安表。

(3)六、预习要求1、熟悉实验目的、实验原理、实验内容和步骤;2、设计出记录数据的表格,写出预习报告。

七、实验报告要求1、写出实验名称、作者、合作者、实验目的、实验原理、实验内容和步骤、画出实验装置示意图;2、实验结果;3、分析可能引起测量误差的因素。

实验二、电磁波的极化特性研究一、实验目的1、研究线极化波、圆极化波和椭圆极化波的形成和特点;2、了解线极化波、圆极化波和椭圆极化波特性参数的测试方法;3、进一步熟悉微波分光仪DH962B的使用方法。

二、实验原理平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。

若E的末端总在一条直线上周期性变化,称为线极化波。

若E的末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。

若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。

线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。

设同频率的两个正交线极化波的电场为:E x=E xm cos(ωt-Φ1) ……(1) (4)E y=E ym cos(ωt-Φ2) (2)1、线极化波的合成:当E x、E y的相位相同时,即Φ1=Φ2=Φ,合成电场为E=e x E xm cos(ωt-Φ)+e y E ym cos(ωt-Φ)合成电场的大小为:E=[E xm2+E ym2]1/2cos(ωt-Φ) (3)合成电场的方向为(与x轴的夹角):α=tg-1[E y/E x]=tg-1[E ym/E xm]=常数 (4)由式(3)和式(4)可以看出,合成电场的大小随时间作周期性变化,但方向不变,始终在一条直线上,合成后为线极化波,如图一所示。

图一线极化波2、圆极化波的合成:(暂不做)在式(1)和式(2) 中,当E xm=E ym=E m,相位差为900时E x=E m cos(ωt-Φ1)E y=E m cos(ωt-Φ1-π/2)=E m sin(ωt-Φ1)合成电场的大小为: (5) E=E m=常数 (5)合成电场的方向为(与x轴的夹角):α=tg-1[E y/E x]=ωt-Φ1 (6)由式(5)和式(6)可以看出,合成电场的大小不变,但方向随时间变化。

合成电场矢量的末端在一圆周上以角速度ω旋转,这就是圆极化波,如图二所示。

图二圆极化波设电磁波沿Z轴传播,当E y较E x滞后900时,合成电场矢量沿逆时针方向旋转,是右旋圆极化波;当E y较E x超前900时,合成电场矢量沿顺时针方向旋转,是左旋圆极化波。

3、椭圆极化波的合成:在式(1)和式(2)中,当E y和E x具有不同振幅和不同相位,则合成波矢量的端点轨迹是一个椭圆,因此,这种平面波就是椭圆极化波。

当E y分量较E x分量滞后时,合成电场矢量沿逆时针方向旋转,与传播方向(Z轴正方向)形成右旋椭圆极化波;当E y分量较E x分量超前 (6) 时,合成电场矢量沿顺时针方向旋转,与传播方向(Z轴正方向)形成左旋椭圆极化波。

三、实验装置介绍实验装置如图三所示介质分光板将发射天线辐射出的电磁波分为两路:一路反射到垂直金属丝栅板,另一路折射到水平金属丝栅板。

垂直金属丝栅板反射垂直极化波(滤除水平极化波);水平金属丝栅板反射水平极化波(滤除垂直极化波)。

把发射喇叭天线转动一个角度α,可同时产生E⊥和E∥两个同频率的入射波:E+⊥=E i+sinα......(7) (7) E+∥=E i+cosα (8)E+⊥经介质分光板的反射,垂直金属丝栅板的反射和介质分光板的折射到达接收喇叭天线处的场强为E+2⊥; E+∥经介质分光板的折射,水平金属丝栅板的反射和介质分光板的反射到达接收喇叭天线处的场强为E+2∥。

由式(7)和式(8)可知,调整发射喇叭天线的转角α, 可改变E+⊥和E+∥的幅度,从而可改变E+2⊥和E+2∥的幅度(注意:当α=450时, E+⊥=E+∥,但由于R⊥≠R∥,T⊥≠T∥, 故E+2⊥和E+2∥的幅度并不相等);当前后调节水平金属丝栅板的位置,就可以改变E+2∥在空间传播的波程,从而可改变E+2⊥和E+2∥之间的相位差∆Φ。

因此,适当调整发射喇叭天线的转角α和前后调节水平金属丝栅板的位置,就可改变E+2⊥和E+2∥的幅度及二者之间的相位差∆Φ。

当E+2⊥和E+2∥的幅度相等, ∆Φ=±π/2时,就可在接收喇叭天线处获得园极化波;当∆Φ=±π时,就可在接收喇叭天线处获得线极化波。

当E+2⊥和E+2∥的幅度不同,相位也不同时,就可在接收喇叭天线处获得椭园极化波。

四、实验内容和实验方法1、圆极化波的调试与测试:两个同频率的正交场,幅度相等,相位差为π/2时,可产生圆极化波。

为此,先把发射喇叭天线旋转大约500角(α),再把接收喇叭天线的E面垂直放置,可接收E+2⊥,然后把接收喇叭天线的E面水平放置,可接收E+2∥。

若E+2⊥≠E+2∥,可适当调整发射喇叭天线的转角α,使E+2⊥=E+2∥。

最后前后调节水平金属丝栅板的(8)位置,使接收喇叭天线转动任何角度的输出指示值都相等,那么在接收天线处就获得了圆极化波。

当接收喇叭天线转动角度为0、10、20 、……170度时记录测量数据填入表一中,并计算出圆极化波的椭圆度e的值。

表一由于实验误差, E+2⊥和E+2∥总有差别,所得圆极化波非纯圆极化波,因此用圆极化波的椭圆度e=[I min/I max]1/2来表示, I min是输出指示的最小值, I max是输出指示的最大值。

数据记录发射喇叭天线的转角:α1=水平金属丝栅板位置参数:L1=圆极化波的椭圆度e=(注:接收喇叭天线:E∝I1/2 )2、线极化波的调试与测试:在前面产生圆极化波的基础上,前后调节水平金属丝栅板的位置,使E+2⊥和E+2∥之间的相位差∆Φ=±π即可产生线极化波(注:由于此时E+2⊥和E+2∥的幅度可以不必相等,所以可以调整发射喇叭天线转角α,也可以不作调整)。

调整水平金属丝栅板的位置L0产生的波程差为2∆L,由此产生的相位差∆Φ=β•2 ∆L。

由±π= 2π/λ•2 ∆L,(9) 可以解出∆L=±λ/4,所以把水平金属丝栅板的位置前后调节λ/4就可以产生线极化波(实际上在前面产生圆极化波的基础上,把水平金属丝栅板的位置前后调节λ/8(f=9GHz)就可以产生线极化波)。

当接收喇叭天线转动角度为0、10、20 、……170度时记录测量数据填入表二中。

表二数据记录发射喇叭天线的转角:α2=水平金属丝栅板位置参数:L2=3、椭圆极化波的调试与测试:在前面产生线极化波的基础上,适当前后调节水平金属丝栅板的位置,即可产生椭圆极化波。

当接收喇叭天线转动角度为0、10、20 、……170度时记录测量数据填入表三中,并计算出椭圆极化波的椭圆度e的值。

表三数据记录发射喇叭天线的转角:α3=?水平金属丝栅板位置参数:L3= (10)椭圆极化波的椭圆度e=注:椭圆极化波的椭圆度e=[I min/I max]1/2, I min是输出指示的最小值,I max是输出指示的最大值。

五、实验仪器1、DH926B微波分光仪;2、三厘米固态信号源;3、介质分光板;4、垂直、水平金属丝栅板;5、角锥喇叭天线;6、微安表。

六、预习要求1、熟悉实验目的、实验原理、实验内容和步骤;2、设计出记录数据的表格,写出预习报告。

七、实验报告要求1、写出实验名称、作者、合作者、实验目的、实验原理、实验内容和步骤、画出实验装置示意图;2、实验结果;3、分析可能引起测量误差的因素。

(11)(本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档