1.2 直角三角形 第2课时教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、情境导入
舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?
二、合作探究
探究点:直角三角形全等的判定
【类型一】 应用“HL ”证明三角形全等
如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .
求证:Rt △ABF ≌Rt △DCE .
解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.
证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE 都
为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,
AB =CD ,
∴Rt △ABF ≌Rt △DCE (HL).
方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.
【类型二】 利用“HL ”证明线段相等
如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:
BC =BE .
解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .
证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .
方法总结:证明线段相等可通过证明三角形全等解决.直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.
【类型三】 利用“HL ”证明角相等
如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.
解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.
证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt △ABC
和Rt △ADC 中,∵⎩
⎪⎨⎪⎧AB =AD ,
AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2.
方法总结:证明角相等可通过证明三角形全等解决.
【类型四】 利用“HL ”解决动点问题
如图,在直角三角形ABC 中,∠C =90°,AC =20,BC =10,PQ =AB .P ,Q 两点分别在线
段AC 和过点A 且垂直于AC 的射线AM 上运动,且点P 不与点A ,C 重合.那么当点P 运动到什么位置时,才能使△ABC 与△APQ 全等?
解析:本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP =BC =10,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合,不合题意.
解:根据三角形全等的判定方法HL 可知:①当P 运动到AP =BC 时,∵∠C =∠QAP =90°,∴在Rt △ABC 与Rt △QP A 中,AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QP A (HL),即AP =BC =10;②当P 运动到与C 点重合时,AP =AC ,不合题意.综上所述,当点P 运动到距离点A 为10时,△ABC 与△APQ 全等.
方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.
【类型五】 综合运用全等三角形的判定方法判定直角三角形全等
如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB
=OC .
解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,△BOD ≌△COE ,即可证得OB =OC .
证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪
⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,
∴△AOD ≌△AOE (AAS),∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪
⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△
COE (ASA).∴OB =OC .
方法总结:判定直角三角形全等的方法除“HL ”外,还有SSS 、SAS 、ASA 、AAS. 三、板书设计
一、选择题:
1. 两个直角三角形全等的条件是( )
A.一锐角对应相等;
B.两锐角对应相等;
C.一条边对应相等;
D.两条边对应相等
2. 如图,∠B=∠D=90°,BC=CD ,∠1=30°,则∠2的度数为( ) A. 30° B. 60° C. 30°和60°之间 D. 以上都不对
3. 如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的 依据是( )
A. AAS
B.SAS
C.HL
D.SSS
4. 已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和 △DEF 全等的是( )
A.AB=D E,AC=DF
B.AC=EF,BC=DF
C.AB=DE,BC=EF
D.∠C=∠F,BC=EF
5. 如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对
6. 要判定两个直角三角形全等,下列说法正确的有( )
①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个
1
2A B
C
D
第2题图 第5题图 第7题图 第8题图
7. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( ) A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠ D .90B D ==︒∠∠
8. 如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD≌△ACD 的条件是( ) A . A B=AC B . ∠BAC=90° C . B D=AC D . ∠B=45°
二、填空题:
B A
E
F
C
D