10狭义相对论基础习题思考题

合集下载

狭义相对论习题和答案

狭义相对论习题和答案

作业6狭义相对论基础研究:惯性系中得物理规律;惯性系间物理规律得变换。

揭示:时间、空间与运动得关系.知识点一:爱因斯坦相对性原理与光速不变K 相对性原理:物理规律对所有惯性系都就是一样得,不存在任何一个特殊(如“绝对静止”)惯性系。

2s 光速不变原理:任何惯性系中,光在真空中得速率都相等。

(A )1(基础训练1)、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部得宇航员 向飞船尾部发出一个光讯号,经过K 飞船上得钟)时间后,被尾部得接收器收到,则由此可知飞船得固 有长度为(c 表示真空中光速)(A) c ・t (B) V/ (C) (D)【解答】飞船得固有长度为飞船上得宇航员测得得长度,即为°知识点二:洛伦兹变换由牛顿得绝对时空观=> 伽利略变换,由爱因斯坦相对论时空观=> 洛仑兹变换。

(1) 在相对论中,时、空密切联系在一起(在X 得式子中含有t,t 式中含X)。

(2) 当u « c 时,洛仑兹变换=> 伽利略变换。

(3) 若UAC , P 式等将无意义1(自测与提髙5)、地而上得观察者测得两艘宇宙飞船相对于地而以速度v = 0. 90c 逆向飞行.其中一 艘飞船测得另一艘飞船速度得大小【解答】知识点三:时间膨胀(1) 固有时间:相对事件发生地静止得参照系中所观测得时间。

(2) 运动时间:相对事件发生地运动得参照系中所观测得时间。

(B )1 (基础训练2)、在某地发生两件事,静止位于该地得甲测得时间间隔为4 s,若相对于甲作匀速直线 运动得乙测得时间间隔为5 s,则乙相对于甲得运动速度就是(c 表示真空中光速)(A) (4/5) c. (B) (3/5) c ・ (C) (2/5) c ・ (D) ("5)c.【解答】飞行•当两飞船即将相遇时飞船在自己得天窗处相隔2s 发射两颗信号弹•在飞船得观测者测得两颗信 号弹相隔得时间间隔为多少?° 【解答】以地而为K 系,飞船A 为/T 系,以正东为x 轴正向侧飞船B 相对于飞船A 得相对速度-0.6c-0.8c0.8c 1一一^(一0・6。

狭义相对论作业习题及解答.doc

狭义相对论作业习题及解答.doc

4-7.某飞船自地球出发,相对地球以速率v=0.30c匀速飞向月球,在地球测得该旅程的距离为Zo=3.84xl()8m, 在地球测得该旅程的时间间隔为多少?在飞船测得该旅程的距离Z=?利用此距离求出:在飞船测得该旅程的时间间隔为多少?解:取地球为K惯性系、飞船为K,惯性系。

在地球测得该旅程的时间间隔为:Az = L Q/V M4.27(S)在地球地球测得的£o=3.84xlO8 (m),为地球〜月球的固有距离。

则在飞船测得该旅程的距离为在飞船观测,地球与月球共同以速率v=0.30c匀速运行,先是地球、随后是月球掠过飞船,则在飞船测得该旅程的时间间隔为:Ar = Z/v^4.07(s)说明:显然,飞船测自身旅程的时间间隔宜为固有时,在地球测得该旅程的&为观测时。

△t与显然满足狭义相对论时间膨胀效应,即4-8.在K惯性系测两个同时发生相距Im的事件(该两事件皆在X、X,轴)。

在K,惯性系测该两事件间距为2m, 问:在K,惯性系测该两事件发生的时间间隔为多少?解:在K系测两事件相距Ax=lm;同时发生则&=0.在K,系测两事件相距Ax,=2m;两事件发生的时间间隔为由洛伦兹变换,有Ax —M A/A X 1 Ax' ~ V3-/ = = -/ —/ = — 2 u —Jl-("/c)2 Jl-(“/c)2Jl-("/c)2 Ax 24-10.测得不稳定粒子广介子的固有寿命平均值TO=2.6X1O8S,(1)当它相对某实验室以0.80c的速度运动时,所测的平均寿命z应是多少?(2)在实验室测该介子在衰变前运行距离L应是多少?解:取花+介子、实验室为K,和K惯性系,沿该介子运行方向取为X、X,轴,在K,系中观测:也,=宣=2.6*10%, Ax,=0在K系中观测:也与皆为待求量。

由时间膨胀效应关系式,有T = M MI Jl-(v/c)2 =T J J1-(0.80C/C)2| 1~。

狭义相对论基础练习题及答案

狭义相对论基础练习题及答案

狭义相对论基础练习题一、填空1、一速度为U的宇宙飞船沿X轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为________________________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为________________________。

2、一门宽为a,今有一固有长度为L0(L>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u至少为________________________。

3、在地球上进行的一场足球赛持续的时间为90秒,在以速率为0.8cυ=飞行的飞船上观测,这场球赛的持续时间为_______________________。

4、狭义相对论的两条基本原理中,相对性原理说的是_________________________________________;光速不变原理说的是_________________________________________。

5、当粒子的动能等于它静止能量时,它的运动速度为_______________________;当粒子的动量等于非相对论动量的2倍时,它的运动速度为______________________。

6、观察者甲以4c/5的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为L,截面积为S,质量为m的棒,这根棒安放在运动方向上,则甲携带测得此棒的密度为_____________________;乙测得此棒的密度为_______________。

7、一米尺静止在'K系,且与'X轴的夹角为30,'K系相对于K系的X轴的正向的运动速度为0.8c,则K系中测得的米尺的长度为L=___________;他与X轴的夹角为θ=___________。

8、某加速器将电子加速到能量E=2×106eV时,该电子的动能Ek=_______________________eV。

狭义相对论基础习题课

狭义相对论基础习题课
2
电子的动能为:Ek E E0 4.488 MeV 电子的动量为:
p (E E )
2
2 1/ 2 0
/ c 2.66 10
2
21
kg m/s
E E ) 电子的速率为: v c( 2 E
哈尔滨工程大学理学院
2 0 1/ 2
0.995 c
狭义相对论基础习题课 6. 若给一电子为0. 5MeV的能量,并让该电子在垂直 于某均匀磁场的方向上运动,其运动轨迹是半径为 2.0cm的圆。求:该磁场的磁感应强度的大小。 解:由题意有
哈尔滨工程大学理学院
狭义相对论基础习题课 4.相对论动力学
m m0 / 1 v / c 2 2 P mv m0 v / 1 v / c dv dm F dP / dt m v dt dt 2 2 E mc E0 m0 c
2 2
E K E E0 E mc 2 E E P c
1 u 2 / c2
t2 t1
t2 t1 1 u / c
2 2
相对论中同地的相对性: x2 x1
( x2 x1 ) u (t2 t1) 1 u / c
2 2
u (t 2 t1 ) ( x2 x1 ) 2 c 相对论中同时的相对性: t 2 t1 2 2 1 u / c
2
y y0
V xyz V0
z z0
v 1 2 c
2
相应体积为:
哈尔滨工程大学理学院
狭义相对论基础习题课
观察者A测得立方体的质量:
m
m0 v 1 2 c
2
故相应密度为:
v m0 / 1 2 m0 c m /V 2 2 v v V0 (1 2 ) V0 1 2 c c

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。

请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。

2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。

参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。

参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。

请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。

2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。

参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。

参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。

狭义相对论

狭义相对论

狭义相对论习题解答6-1 S 系中平面上一个静止的圆的面积为122cm 在S '系测得该圆面积为多少?已知S '系在0='=t t 时与S 系坐标轴重合,以-0.8c 的速度沿公共轴x x '-运动。

解:在S '系中观测此圆时,与平行方向上的线度将收缩为21⎪⎭⎫⎝⎛-c v R 而与垂直方向上的线度不变,仍为2R ,所以测得的面积为(椭圆面积):22222.711cm c v R R c v ab S =⎪⎭⎫ ⎝⎛-=⋅⎪⎭⎫⎝⎛-==πππ(式中a 、b 分别表示椭圆的长半轴和短半轴)6-2 S 系中记录到两事件空间间隔m x 600=∆,时间间隔s t 7108-⨯=∆,而s '系中记录0='∆t ,求s '系相对s 系的速度。

解:设相对速度为v ,在S 系中记录到两事件的时空坐标分别为)t ,(x )t ,(x 2211、;S '系中记录到两事件的时空坐标分别),('1'1t x 为及),('2'2tx 。

由洛仑兹变换得:⎪⎪⎭⎫ ⎝⎛-γ=x 2c v t 't 得: ⎪⎭⎫ ⎝⎛∆-∆γ=⎥⎦⎤⎢⎣⎡---γ=-=∆x c v t )x x (c v )t t (t t t 212212'1'2'根据题意得: S 108t ,m 600x ,0t 1'-⨯=∆=∆=∆C 4.0s /m 102.1t x c v x c v t 0822=⨯=∆∆=⇒⎪⎭⎫ ⎝⎛∆-∆γ=6-3 一根米尺静止在's 系中,和''x o 轴成30角,如果S 系中测得该米尺与ox 轴成45角,'s 系相对s 系的速度是多少?s 系中测得米尺长度是多少?解:如图,由题意知,在'S 系中米尺在''x o 及''y o 方向上的投影的长度为:sin30l l 30cos l l y x '=''=' 其中 m 1l ='设在S 系中测得米尺长为l,则米尺在ox,oy 方向上的投影的长度为:y x y x l l 45sin l l 45cos l l ===即因为尺在oy 方向上的投影长度不变即:'y y l l = 于是有30sin l l l l 'y y x '=== 由S 系测得尺在ox 方向的投影的长度为: ⇒⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=2''2'xx c v 130cos l 30sin l c v 1ll即C 816.030cos 30sin 1c v 2=⎪⎪⎭⎫ ⎝⎛-=在S 系中测得米尺的长度为:m 707.045cos 30sin l 45cos l l 'x ===6-4宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时该飞船头部的宇航员向飞船尾部发出一个光讯号,经过t ∆(飞船上的钟)时间后,被尾部的接收器收到,则飞船的固有长度是多少?解:飞船的固有长度就是相对于飞船静止的观察者测得的飞船长度。

大学物理狭义相对论习题及答案

大学物理狭义相对论习题及答案

⼤学物理狭义相对论习题及答案第5章狭义相对论习题及答案1. ⽜顿⼒学的时空观与相对论的时空观的根本区别是什么?⼆者有何联系?答:⽜顿⼒学的时空观认为⾃然界存在着与物质运动⽆关的绝对空间和时间,这种空间和时间是彼此孤⽴的;狭义相对论的时空观认为⾃然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,⽽且它们都与物质运动密切相关。

在远⼩于光速的低速情况下,狭义相对论的时空观与⽜顿⼒学的时空观趋于⼀致。

2. 狭义相对论的两个基本原理是什么?答:狭义相对论的两个基本原理是:(1)相对性原理在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否⽆关。

3.你是否认为在相对论中,⼀切都是相对的?有没有绝对性的⽅⾯?有那些⽅⾯?举例说明。

解在相对论中,不是⼀切都是相对的,也有绝对性存在的⽅⾯。

如,光相对于所有惯性系其速率是不变的,即是绝对的;⼜如,⼒学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成⽴的,即相对于不同的惯性系⼒学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。

4.设'S 系相对S 系以速度u 沿着x 正⽅向运动,今有两事件对S 系来说是同时发⽣的,问在以下两种情况中,它们对'S 系是否同时发⽣?(1)两事件发⽣于S 系的同⼀地点;(2)两事件发⽣于S 系的不同地点。

解由洛伦兹变化2()vt t x cγ'?=?-?知,第⼀种情况,0x ?=,0t ?=,故'S 系中0t '?=,即两事件同时发⽣;第⼆种情况,0x ?≠,0t ?=,故'S 系中0t '?≠,两事件不同时发⽣。

5-5 飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随⽽来,⼀地⾯站测得飞船A 的速率为0.5c ,求:(1)地⾯站测得飞船B 的速率;(2)飞船B 测得飞船A 的速率。

狭义相对论课后题目解答

狭义相对论课后题目解答

狭义相对论课后题目解答思考题1 在狭义相对论中,下列说法中哪些是正确的?(A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.[A ,B ,D]解答:真空中的光速为自然界的极限速率,任何物体的速度都不大于光速;质量、长度、时间与运动是紧密联系的,这些物理量的测量结果与参考系的选择有关,也就是与观察者的相对运动状态有关;同时同地具有绝对性,同时异地则具有相对性;相对论时间膨胀效应即运动的时钟变慢。

答案:(A 、B 、D )2 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?[ 没对准 ]解答:在K ’系中,A ’、B ’点的时空坐标分别为:()(),,,A A B B A x t B x t ''''''由题意:0A B t t t '''∆=-=,A B x x x L ''''∆=-=在K 系中,这两点的时空坐标分别为:()(),,,A A B B A x t B x t根据洛仑兹变换,220A B u ut x L t t t '''∆+∆∆=-==≠ 故,在K 系中的观测者看到这两只钟没有对准。

3 静止的μ子的平均寿命约为τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,此μ子有无可能到达地面?[有可能]解答:μ子的固有寿命为:60210s τ-=⨯,根据相对论时间膨胀效应,对于地面参考系运动μ子的寿命为:653.1610s τ--==≈⨯μ子在τ时间内运动的距离为:50.998 3.16109461s u c m τ-==⨯⨯≈而μ在8km 的高空,小于它运动的距离,所以μ子可以到达地面。

狭义相对论习题和答案

狭义相对论习题和答案

作业6 狭义相对论基础研究:惯性系中的物理规律;惯性系间物理规律的变换。

揭示:时间、空间和运动的关系.知识点一:爱因斯坦相对性原理和光速不变1.相对性原理:物理规律对所有惯性系都是一样的,不存在任何一个特殊 (如“绝对静止”)惯性系。

2.光速不变原理:任何惯性系中,光在真空中的速率都相等。

( A )1(基础训练1)、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为(c 表示真空中光速)(A) c ·t (B) v ·t (C) 2/1(v /)c t c ∆⋅-(D) 2)/(1c t c v -⋅⋅∆【解答】飞船的固有长度为飞船上的宇航员测得的长度,即为c ·t 。

知识点二:洛伦兹变换由牛顿的绝对时空观伽利略变换,由爱因斯坦相对论时空观洛仑兹变换。

(1)在相对论中,时、空密切联系在一起(在x 的式子中含有t ,t 式中含x)。

(2)当u << c 时,洛仑兹变换 伽利略变换。

(3)若u c, x 式等将无意义xx x v cv vv v 21'--=1(自测与提高5)、地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 0.90c 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′=_0.994c _. 【解答】2222()220.9'0.994()1/10.91v v v cv c v v c v c --⨯====-++-知识点三:时间膨胀(1)固有时间0t ∆:相对事件发生地静止的参照系中所观测的时间。

(2)运动时间t ∆:相对事件发生地运动的参照系中所观测的时间。

201⎪⎭⎫⎝⎛-∆=∆c v t t(B )1(基础训练2)、在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . 【解答】()2220024311551/t v t v c c c t v c ∆⎛⎫⎛⎫⎛⎫∆=⇒=-⇒=-= ⎪ ⎪ ⎪∆⎝⎭⎝⎭⎝⎭-2(自测与提高12)、飞船A 以0.8c 的速度相对地球向正东飞行,飞船B 以0.6c 的速度相对地球向正西方向飞行.当两飞船即将相遇时A 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少?【解答】以地面为K 系,飞船A 为K ˊ系,以正东为x 轴正向;则飞船B 相对于飞船A 的相对速度220.60.8 1.4'0.9460.810.80.61(0.6)1B A B A B v v c c v c c v c c v c c----====-+⨯---' 6.17()t s ∆===知识点四:长度收缩(1)固有长度0l :相对物体静止的参照系测得物体的长度。

大学物理-狭义相对论习题和解答

大学物理-狭义相对论习题和解答

⎪ ⎪⎪ v第十七章 狭义相对论17—1 设有一宇宙飞船,相对于地球作匀速直线运动,若在地球上测得飞船的长度为其静止长度的一半,问飞船相对地球的速度是多少?[解] 飞船静止长度l 0 为其固有长度,地球上测得其长度为运动长度,由长度收缩公式,有:l = l 0= l 0 2解得: = c 2即: v =c = 0.866c 217—2 宇宙射线与大气相互作用时能产生 介子衰变,此衰变在大气上层放出 粒子,已知 粒子的速率为 v = 0.998c ,在实验室测得静止 粒子的平均寿命为2.2 ⨯10-6 s ,试问在 8000m 高空产生的 粒子能否飞到地面?[解] 地面上观测到的 子平均寿命与固有寿命之间的关系t = t 0子运行距离l = vt = v t 0子能飞到地面。

= 0.998c ⨯ 2.2⨯10- = 1042m17—3 在 S 系中观测到两个事件同时发生在 x 轴上,其间距离为 1m ,在 S ,系中观测这两个事件之间的距离是 2m 。

求在 S ,中测得的这两个事件发生的时间间隔。

[解] 在 S 系中两事件时间间隔∆t = 0, 由 Lorentz 变换x ' = x - ut t ' = t - u x c 2 ⎧ ∆x ' ⎪ 得: =⎨ ⎪∆t ' = ⎩∆t - ∆x ∆x c 2 = - c 2 将∆x ' = 2m , ∆x = 1m 代入上两式,得u = 3 c , 2∆t ' = -5.77 ⨯10-9 s 17—4 远方一颗星体以 0.80c 的速率离开我们,我们接收到它辐射来的闪光按 5 昼夜的周期变化,求固定在这星 1 - ( v )2 c 3 3 1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭ 1 - (u / c )2 1 - (u / c )21 - (u / c )2 1 - (u / c )21 - 0.8021 - 0.99652 1 - (u / c )2 1 - (u / c )2 0 体上的参考系中测得的闪光周期。

章狭义相对论基础习题解答

章狭义相对论基础习题解答

章狭义相对论基础习题解答狭义相对论基础习题解答一选择题1. 判断下面几种说法是否正确( )(1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有(1) (2) 正确B. 只有(1) (3) 正确C. 只有(2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1) 对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2) 在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:()A.(1) 同时,(2) 不同时B. (1)不同时,(2)同时C.(1) 同时,(2) 同时D. (1)不同时,(2)不同时解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的?()( 1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.( 2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.( 4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1) ,(3) ,(4)B. (1) ,(2) ,(4)C. (1) ,(2) ,(3)D. (2) ,(3) ,(4)解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为()A. 90mB. 54mC. 270mD. 150m解:?x x =90m, u=0.8 c, t = 90/(3 IO8)=3 IO^Sx =(. :x u. :t) / .. 1「(u / c)2二270m。

狭义相对论 习题解

狭义相对论 习题解

七、狭义相对论一、选择题1、下列几种说法(1)所有惯性系对物理基本规律都是等价的。

(2)在真空中光的速度与光的频率、光源的运动无关。

(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。

其中哪些说法是正确的? (A ) (1)、(2) (B ) (1)、(3) (C ) (2)、(3) (D ) (1)、(2)、(3)2、一光子火箭相对于地球以0.96c 的速度飞行,火箭长100m,一光脉冲从火箭尾部传到头部,地球上的观察者看到光脉冲经过的空间距离是 (A)54.88; (B)700; (C)714.3; (D)14.33、K 系和K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿OX 轴正方向向右匀速直线运动,一根刚性尺静止在K '系中,与X O ''轴成ο30角,今在K 系中观测得该尺与OX 轴成ο45,则K '系相对于K 系的速度是 (A )c32 (B )c 31 (C )c 32 (D )c 314、一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为1v ,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹,在火箭上测得子弹从射出到击中靶的时间是 (A )21v v L + (B )2v L (C )12v v L - (D )211)/(1c v v L-5、两个惯性系S 和S ',沿x(x ')轴方向作相对运动,相对速度为u ,设在S '系中某点现后发生的两个事件,用固定在该系的钟测出两件事的时间间隔为0τ,而用固定在S 系中的钟测出这两件事的时间间隔为τ。

又在S '系x '轴上放置一固有长度为0l 的细杆,从S 系测得此杆的长度为l ,则(A)τ<0τ, l <0l (B)τ<0τ, l >0l (C)τ>0τ, l >0l(D)τ>0τ, l <0l6、边长为a 正方形薄板静止于惯性系K 的XOY 平面内,且两边分别与X 、Y 轴平形,今有惯性系K '以0.8c (c 为真空光速)的速度相对于K 系沿X 轴作匀速直线运动,则从K '系测得薄板的面积为 (A )2a (B )0.62a (C )0.82a(D )2a /0.6 7、(1)对于观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说它们是否同时发生?(2)在某一惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生? 关于上述两个问题正确答案是 (A )(1)同时,(2)不同时 (B )(1)同时,(2)同时 (C )(1)不同时,(2)不同时 (D )(1)不同时,(2)同时 8、把一个静止质量为0m 的粒子,由静止加速到v=0.6c (c 为真空中的光速)需作的功为 (A )0.1820c m (B )0.2520c m (C )0.3620c m (D )1.2520c m9、质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的( )倍 (A )5 (B )6 (C )3 (D )810、在参照系S 中,有两个静止质量都是0m 的粒子A 和B ,分别以速度v 沿同一直线相向运动,相碰后合在一起成为一个粒子,则其静止质量M的值为(A )20m(B )20)/(12c v m - (C )20)/(12c v m -(D )20)/(12c v m - (c 为真空中光速)11、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过Δt (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (A)c ·Δt (B) v ·Δt(C)c ·Δt 2)/(1c v - (D) c ·Δt/2)/(1c v -12、根据相对论力学,动能为1/4Mev 的电子,其运动速度约等于 (A)0.1c (B)0.5c (C)0.75c(D)0.85c (c 表示真空中的光速,电子的能量Mev c m 5.020=)二、填空题1、有一速度为u 的宇宙飞船沿X 轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观测者测得光源发出的光脉冲的传播速度大小为 ,处于船头的观测者测得光源发出的光脉冲的传播速度大小为2、一列高速火车以速度u 驶过车站时,固定在站台的两只机械手在车厢上同时划出两个痕迹,静止在站台上的观察者同时测出两痕迹之间的距离为1m ,则车厢上的观察者应测出两痕迹之间的距离为 。

狭义相对论思考题讨论

狭义相对论思考题讨论
1
解:
S
S′
u
天津
1
北京
x x′
(x1, t1)
已知: 已知:
(x2 , t2 )
求:
x2 − x1 = 120km t2 −t1 = 0.0003s
′ ′ t2 −t1
x2 − x1 = 120km t2 −t1 = 0.0003s
S
S′
u
x x′
北京
天津
(x1, t1)
(t2 − t1) −u(x2 − x1) c2 t′ −t′ =
讨论: 讨论: 两个事件的时序可能是颠倒吗? 事件的因果关系会颠倒吗?
1
思考题: 思考题:
天津和北京相距120km,在北京于某日上 , 天津和北京相距 时正有一工厂因过载而断电, 午9时正有一工厂因过载而断电,同日在天津于 时正有一工厂因过载而断电 9时0分0.0003秒有一自行车与卡车相撞。试求在 秒有一自行车与卡车相撞。 时 分 秒有一自行车与卡车相撞 的速率沿北京到天津方向飞行的飞船中, 以u=0.8c的速率沿北京到天津方向飞行的飞船中, 的速率沿北京到天津方向飞行的飞船中 观察到的两个事件的时间间隔。 观察到的两个事件的时间间隔。哪一个发生在 前?
系中:仍然是开枪在前,鸟死在后。 在S'系中:仍然是开枪在前,鸟死在后。 所以由因果率联系的两事件的时序不会颠倒。 所以由因果率联系的两事件的时序不会颠倒。
答: 两个独立事件的时序在不同惯性系中 可能是不同的
1
两个有因果关系的事件,时序不会 颠倒,因果关系不变。
讨论题: 讨论题: 一列火车ab以高速 经过一涵洞AB,已知火车和 一列火车 以高速 u经过一涵洞 已知火车和 地面观察者看到, 涵洞的静长都为 l0 ,地面观察者看到,当b到达涵 到达涵 端时, 洞B端时,有一道闪电击打涵洞 端, 端时 有一道闪电击打涵洞A端 此闪电会击中火车a端吗 端吗? 问:此闪电会击中火车 端吗?

第10章狭义相对论习题

第10章狭义相对论习题
vx v u x 1 uv x c
2

0 . 85 c 0 . 9 c 1 0 . 9 c 0 . 85 c c
2
0 . 992 c
最小速率 :
vx v u x 1 uv x c
2

( 0 . 85 c ) 0 . 9 c 1 0 . 9 c ( 0 . 85 c ) c
2
n 1
c
9. 把一个静止质量为m0的粒子由静止加速到0.1c所需的功是多少?由速率 0.89c加速到0.99c所需的功又是多少?
解:粒子的静能量为:
E0 m0c
E1 m 1c
2
2
速度为0.1c时,该粒子的总能量为:
m 0c
2
1 0 .1
2
1 .0 0 5 m 0 c
2
因此将粒子由静止加速到0.1c所需要做的功为:
u c
2 2
x c
2 )
t (1
u x c
2 2
t c
2
)
l 0 (1
u c
2 2
v) )
1 (u
1 (u
)
v 1 (u
c
2
3.一个静止的K0介子能衰变成一个+介子和一个 — 介子,这两个介子的速率均 为0.85c.现有一个以速率0.90c相对于实验室运动的K0介子发生上述衰变。以实验 室为参考系,两个介子可能有的最大速率和最小速率是多少? 解:最大速率 :
2 1 ( 0 .9 6 c ) c
x1
x 1 ut 1 1 (u
2

2 )
100 0 . 96 c 0
2 1 ( 0 . 96 c ) c

狭义相对论基础练习题及答案

狭义相对论基础练习题及答案

狭义相对论基础练习题一、填空1、一速度为U的宇宙飞船沿X轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为________________________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为________________________。

2、一门宽为a,今有一固有长度为L0(L>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u至少为________________________。

3、在地球上进行的一场足球赛持续的时间为90秒,在以速率为0.8cυ=飞行的飞船上观测,这场球赛的持续时间为_______________________。

4、狭义相对论的两条基本原理中,相对性原理说的是_________________________________________;光速不变原理说的是_________________________________________。

5、当粒子的动能等于它静止能量时,它的运动速度为_______________________;当粒子的动量等于非相对论动量的2倍时,它的运动速度为______________________。

6、观察者甲以4c/5的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为L,截面积为S,质量为m的棒,这根棒安放在运动方向上,则甲携带测得此棒的密度为_____________________;乙测得此棒的密度为_______________。

7、一米尺静止在'K系,且与'X轴的夹角为30,'K系相对于K系的X轴的正向的运动速度为0.8c,则K系中测得的米尺的长度为L=___________;他与X轴的夹角为θ=___________。

8、某加速器将电子加速到能量E=2×106eV时,该电子的动能Ek=_______________________eV。

狭义相对论习题思考题

狭义相对论习题思考题

习题6-1. 设固有长度m 50.20=l 的汽车,以m/s 0.30=v 的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:)(122c v l l -= 2222211)(1cv c v-≈- m cv l l l l 1422001025.121-⨯=⨯=-=∆ 6-2. 在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系s c v t t 866.0)(122=-∆='∆6-3. 从加速器中以速度c v 8.0=飞出的离子在它的运动方向上又发射出光子。

求这光子相对于加速器的速度。

解:设加速器为S 系,离子为S '系c cv u u v v xx x ='++'=21 6-4. 两个宇宙飞船相对于恒星参考系以0.8c 的速度沿相反方向飞行,求两飞船的相对速度。

解:设宇宙船A 为S 系,速度0.8c ,宇宙船B 为S '系,速度0.8c -根据洛伦兹速度变换公式:''21x x x v uv uv c+=+,有: 20.80.80.81c uc cu c -+=-+0.976u c =6-5. 从S 系观察到有一粒子在01=t 时由m 1001=x 处以速度c v 98.0=沿x 方向运动,s 10后到达2x 点,如在S '系(相对S 系以速度c u 96.0=沿x 方向运动)观察,粒子出发和到达的时空坐标2211,,,x t x t ''''各为多少?(0='=t t 时,S '与S 的原点重合),并算出粒子相对S '系的速度。

解:s c c c ccv x c u t t 62222121110147.1)96.0(110096.00)(1-⨯=-⨯-=--=' s c c cc c cv x c u t t 11.2)96.0(18.996.010)(122222222=-⨯-=--='m cc c cuut x x 14.357)96.0(1096.0100)(1222111=-⨯-=--='m cc c c cuut x x 82222221014.2)96.0(11096.08.9)(1⨯=-⨯-=--=''8220.980.96 1.014100.96110.98x x x v u c cv u cv c --===⨯--⨯m/s 6-6 .一飞船静长0l 以速度u 相对于恒星系作匀速直线飞行,飞船内一小球从尾部运动到头部,宇航员测得小球运动速度为v ,试算出恒星系观察者测得小球的运动时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10狭义相对论基础习题思考题习题1010-1.一观察者测得运动着的米尺长0.5m ,问此尺以多大的速度接近观察者?解:由动尺缩短公式 2201cv l l -=,可得 22115.0cv -⨯=m/s 106.2238⨯==c v10-2.在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系,利用221()t u c '∆=∆-8281.5101()0.866310t s ⨯'∆=-=⨯。

10-3.长度01ml=的米尺静止于'S 系中,与x′轴的夹角'θ=30°,'S 系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45°。

试求:(1)'S 系和S 系的相对运动速度。

(2)S 系中测得的米尺长度。

解:(1)米尺相对S '静止,它在,x y ''轴上的投影分别为:0cos 0.866m xL L θ''==,0sin 0.5m yL L θ''==。

米尺相对S 沿x 方向运动,设速度为v ,对S系中的观察者测得米尺在x 方向收缩,而y 方向的长度不变,即:221x v L L c=-,yyL L '=故 :22tan 1yy xxxLL L LL vL c θ''==='-。

把ο45θ=及,y L L ''代入,则得:220.510.866v c -=,故 :0.816v c=(2)在S 系中测得米尺长度为0.707msin 45y L L ==︒。

10-4.一门宽为a ,今有一固有长度0l (0l >a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少?解:门外观测者测得杆长为运动长度,21()u l l c=-当1a ≤时,可认为能被拉进门,则:21()u a lc≤-解得杆的运动速率至少为:21()a u c l =-10-5.两个惯性系中的观察者O 和O '以0.6c (c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇?解: O 测得相遇时间为t ∆:0200.6Lt vc∆==O '测得的是固有时t '∆:∴201L tt βγ-∆'∆==88.8910s -=⨯,或者,O '测得长度收缩:22110.60.8LL L L L t vβ'=-=-=∆=n 8080.80.8208.8910s 0.60.6310L t c -⨯'∆===⨯⨯⨯10-6.一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解: 22233151,15l l βββ'==-=-=-n∴ 941255v c c =-=10-7.从S 系观察到有一粒子在01=t 时由m 1001=x 处以速度c v 98.0=沿x 方向运动,s 10后到达2x 点,如在S '系(相对S 系以速度c u 96.0=沿x 方向运动)观察,粒子出发和到达的时空坐标2211,,,x t x t ''''各为多少?(0='=t t 时,S '与S 的原点重合),并算出粒子相对S '系的速度。

解:利用洛仑兹变换:2221()u t x c t u c -'=-,221()x uc '=-,2221()10.960.28u c-=-=,有:1122612220.960100 1.147100.961()1()u c t x c c t s c u c c---⨯'===-⨯--;222222220.96109.8 2.110.961()1()u c t x cc c t s c u c c--⨯'===--;mc c c c u ut x x 14.357)96.0(1096.0100)(1222111=-⨯-=--='; mc c c c cu ut x x 82222221014.2)96.0(11096.08.9)(1⨯=-⨯-=--=';'8220.980.96 1.014100.96110.98x x x v u c c v u cv c c c--===⨯--⨯m/s。

10-8.1000m 的高空大气层中产生了一个π介子,以速度0.8v c =飞向地球,假定该π介子在其自身的静止参照系中的寿命等于其平均寿命62.410s -×,试分别从下面两个角度,即地面上观测者相对π介子静止系中的观测者来判断该π介子能否到达地球表面。

解:(1)地面上的观察者认为时间膨胀: 有221t uc ∆=-,∴6622410(0.8)1t sac c -∆==⨯-由860.83104109601000l v t m m-=∆=⋅⨯⋅⨯=<,∴到达不了地球;(2)π介子静止系中的观测者认为长度收缩: 有221u l l c=-22(0.8)10001600c l mc =-=而682.4100.8310576600s v t m m-=∆=⨯⋅⋅⨯=<,∴到达不了地球。

10-9.某人测得一静止棒长为l ,质量为m ,于是求得此棒线密度为/ρ=m l 。

假定此棒以速度v 在棒长方向上运动,此人再测棒的线密度为多少?若棒在垂直度方向上运动,它的线密度又为多少? 解:棒以速度v 运动时,质量变为2211cv mm -=在棒长方向上运动,长度缩短为2211cvl l -=, 则棒的线密度为222211111c v c v l m l m -=⎪⎪⎭⎫⎝⎛-==ρρ棒在垂直度方向上运动时,长度不变,因此它的线密度为22121cv l mlm -==ρ10-10.一个电子从静止开始加速到c 1.0,需对它做多少功?,若速度从c 9.0增加到c 99.0又要做多少功?解:由相对论动能:22kE m c m c =-: (1)2610222(1)0.5110(1)10.11k E m c v c ==⨯---2.57MeV =;(2)220222122(11k Em c vvc c =-- 6220.5110(10.9910.9=⨯-- 2.44MeV= 。

10-11.一静止电子(静止能量为MeV 51.0)被1.3MeV 的电势差加速,然后以恒定速度运动。

求:(1)电子在达到最终速度后飞越m 4.8的距离需要多少时间?(2)在电子的静止系中测量,此段距离是多少? 解:(1)∵MeV c m 51.020=,MeV E k3.1=∴MeV E c m mc k81.1202=+=,考虑到:221cv m m -=,得:220221m c v c mc -=,可求得:810.96 2.8810v c m s -==⨯⋅ ,那么,sv l t 881092.21088.24.8-⨯=⨯==;(2)由221vl c'=-,有28.410.96 2.37l m '=-=。

10-12.一电子在电场中从静止开始加速,电子的静止质量为kg 1011.931-⨯. (1)问电子应通过多大的电势差才能使其质量增加%4.0?(2)此时电子的速率是多少?解:(1)由220k E m c m c =-,且eU E k=,004.00=-mmm , 有:222000.004eU mc m c m c =-=,∴2030.004 2.0510m c U Ve==⨯;(2)∵01.004m m =,∴2021m v c m-=,可求得:17107.2-⋅⨯=s m v 。

10-13.已知一粒子的动能等于其静止能量的n 倍,求:(1)粒子的速率,(2)粒子的动量。

解:(1)依题意知:2c nm E k=,又∵22kE m c m c =-,222000221m c nm cv c =-,有:22211(1)v c n -=+整理得:1)2(++=n n n cv ;(2)由420222c m c P E +=,而:20)1(c m n E +=, 得:)2(0+=n n c m P 。

10-14.太阳的辐射能来源于内部一系列核反应,其中之一是氢核(H 11)和氘核(H 21)聚变为氦核(He 32),同时放出γ光子,反应方程为:γ+→+He H H 322111已知氢、氘和He 3的原子质量依次为u 007825.1、2.014102u 和3.016029u . 原子质量单位kg 1066.1u 127-⨯=. 试估算γ光子的能量。

解: 1.007825 2.014102 3.016029m u u u ∆=+-290.0058980.97910u kg -==⨯ 根据质能方程:29822190.97910(310)5.5MeV 1.610E mc --⨯⨯⨯∆=∆==⨯。

思考题1010-1.关于狭义相对论,下列几种说法中错误的是下列哪种表述:(A)一切运动物体的速度都不能大于真空中的光速;(B)在任何惯性系中,光在真空中沿任何方向的传播速率都相同;(C)在真空中,光的速度与光源的运动状态无关;(D)在真空中,光的速度与光的频率有关。

答:(D)10-2.下面两种论断是否正确?(1)在某个惯性系中同时、同地发生的事件,在所有其他惯性系中也一定是同时、同地发生的。

(2)在某个惯性系中有两个事件,同时发生在不同地点、而在与该系有相对运动的其他惯性系中,这两个事件却一定不同时。

解:(1)正确;(2)正确。

10-3.在惯性系S 和S ',分别观测同一个空间曲面。

如果在S 系观测该曲面是球面,在S '系观测必定是椭球面。

反过来,如果在S '系观测是球面,则在S 系观测定是椭球面,这一结论是否正确?答:根据运动的相对性这个结论是正确的。

10-4.一列以速度v 行驶的火车,其中点C '与站台中点C 对准时,从站台首尾两端同时发出闪光。

从看来,这两次闪光是否同时?何处在先?答:根据)(2x c u t t ∆-∆='∆γ,由于0t ∆=,0≠∆x ,所以0t '∆<,即对C '点的观测者来说两次闪光不同时发生,尾部在先。

10-5.一高速列车穿过一山底隧道,列车和隧道静止时有相同的长度0l ,山顶上有人看到当列车完全进入隧道中时,在隧道的进口和出口处同时发生了雷击,但并未击中列车。

相关文档
最新文档