人教版初二数学等边三角形教案

合集下载

人教版八年级数学上册13.3.2等边三角形教学设计

人教版八年级数学上册13.3.2等边三角形教学设计
2.教师进一步引导学生关注这些特殊三角形的边长特点,为新课的学习做好铺垫。
-提问:“这些三角形有什么特别之处?它们的边长有什么关系?”
-学生思考后回答:“这些三角形的边长都相等。”
3.教师揭示课题:今天我们要学习的等边三角形,就是具有三边相等的特殊三角形。
(二)讲授新知,500字
1.教师通过几何画板动态展示等边三角形的性质,让学生直观感受等边三角形的特征。
作业布置要求:
1.作业量适中,确保学生能在规定时间内完成;
2.注重作业质量,培养学生认真、严谨的学习态度;
3.鼓励学生主动思考、积极探索,提高解决问题的能力;
4.教师及时批改作业,给予学生反馈,指导他们改进学习方法,提高学习效果。
-教师适时引导,补充讲解,确保学生准确掌握等边三角形的性质。
3.案例分析,实际应用
-通过典型例题,引导学生运用等边三角形的性质解决问题,巩固所学知识;
-设计实际应用题,让学生体会数学与生活的联系,提高解决实际问题的能力。
4.巩固练习,分层指导
-设计有针对性的练习题,巩固学生对等边三角形性质的理解和应用;
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结等边三角形的性质、判定方法及在实际中的应用。
2.学生分享自己在学习等边三角形过程中的收获和感悟。
3.教师强调本节课的重点知识,布置课后作业,为下一节课的学习做好铺垫。
4.教师鼓励学生在生活中观察、发现等边三角形的应用,激发他们学习数学的兴趣。
-根据学生的认知水平,进行分层指导,确保每个学生都能在原有基础上得到提高。
5.总结反思,拓展延伸
-引导学生总结本节课的学习内容,形成知识结构;
-布置拓展性思考题,激发学生的思维,为下一节课的学习做好铺垫。

人教版八年级上册数学13.3.2等边三角形教学设计

人教版八年级上册数学13.3.2等边三角形教学设计
2.学生的空间想象力、逻辑思维能力发展不均衡,教师应充分运用直观教具和现代教育技术手段,帮助学生形象地理解等边三角形的性质。
3.学生在解决等边三角形相关问题时的策略和方法有待提高,教师应引导学生运用所学知识,培养学生的几何解题技巧。
4.学生在学习过程中可能存在合作意识不强、自主学习能力不足等问题,教师应注重培养学生的团队协作能力和自主学习能力。
b.面积:底乘以高,或(周长^2)/12。
(三)学生小组讨论
1.教师组织学生进行小组讨论,让学生在讨论中进一步理解等边三角形的性质。
2.小组任务:
a.探讨等边三角形的性质,并用自己的语言进行描述。
b.举例说明等边三角形在生活中的应用。
c.对比等边三角形与等腰三角形的性质,总结它们的联系与区别。
3.教师巡回指导,解答学生在讨论过程中遇到的问题。
d.等边三角形具有轴对称性,对称轴为中线、高线、角平分线。
3.等边三角形与等腰三角形的联系与区别:
a.联系:等边三角形是特殊的等腰三角形,等腰三角形的两边相等,等边三角形的三边相等。
b.区别:等边三角形的三个角相等,等腰三角形的顶角和底角不一定相等。
4.等边三角形的周长、面积计算方法:
a.周长:三边之和。
(四)课堂练习
1.设计具有代表性的练习题,让学生独立完成,巩固所学知识。
2.练习题类型:
a.判断题:判断哪些图形是等边三角形。
b.选择题:选择正确的等边三角形性质。
c.计算题:计算给定等边三角形的周长和面积。
d.应用题:运用等边三角形的性质解决实际问题。
3.教师对学生的解答进行点评,指出错误原因,指导解题方法。
3.设计丰富的教学活动,如小组讨论、自主探究、课堂讲解等,让学生在活动中掌握等边三角形的性质和应用。

人教版数学八年级上册12.3.2《等边三角形》教学设计

人教版数学八年级上册12.3.2《等边三角形》教学设计

人教版数学八年级上册12.3.2《等边三角形》教学设计一. 教材分析等边三角形是初中数学的重要内容,它既有三角形的普遍性质,又有自己独特的性质。

人教版数学八年级上册12.3.2《等边三角形》一节,主要让学生掌握等边三角形的定义、性质和判定方法,以及了解等边三角形在实际生活中的应用。

通过学习,学生能进一步理解三角形的性质,提高解决问题的能力。

二. 学情分析学生在学习等边三角形之前,已经学习了三角形的分类、三角形的性质等知识,具备了一定的图形观念和空间想象力。

但部分学生对三角形的性质理解不深,对等边三角形的认识可能仅停留在表面。

因此,在教学过程中,需要关注学生的知识基础,引导学生深入理解等边三角形的性质。

三. 教学目标1.知识与技能:掌握等边三角形的定义、性质和判定方法,能运用等边三角形的性质解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和推理能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生对几何图形的审美观念。

四. 教学重难点1.重点:等边三角形的定义、性质和判定方法。

2.难点:等边三角形性质的证明和应用。

五. 教学方法1.情境教学法:通过生活实例引入等边三角形,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、操作、猜想、验证等边三角形的性质,培养学生的思维能力。

3.小组合作学习:让学生在小组内讨论、分享学习心得,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示等边三角形的图片、性质和判定方法。

2.教学素材:准备一些等边三角形的实物模型,如三角形纸片、塑料三角形等。

3.教学工具:准备黑板、粉笔、直尺、圆规等。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的等边三角形图片,如金字塔、自行车的三角形架等,引导学生关注等边三角形。

提问:你们知道这些图形有什么共同的特点吗?让学生思考并回答,从而引出等边三角形的定义。

2.呈现(10分钟)展示等边三角形的性质和判定方法。

八年级数学上册《等边三角形的性质》教案、教学设计

八年级数学上册《等边三角形的性质》教案、教学设计
1.基础巩固题:
(1)请学生完成教材第页的练习题,重点加强对等边三角形性质的记忆和理解。
(2)运用等边三角形的性质,计算给定等边三角形的面积和周长,并简要说明计算过程。
2.提高拓展题:
(1)探索等边三角形内角平分线、中线、高之间的关系,并运用这些性质解决பைடு நூலகம்际问题。
(2)在等边三角形中,若以一个顶点为圆心,边长为半径画圆,求圆内接三角形的其他顶点与该顶点的距离。
4.通过对等边三角形的性质的学习,让学生掌握几何图形的对称美和简洁美,提高他们对数学美的欣赏能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生通过观察、猜想、验证等过程,自主发现等边三角形的性质。
2.利用几何画板等教学工具,让学生直观感受等边三角形的性质,提高他们对几何图形的理解能力。
3.通过小组合作、讨论交流等形式,培养学生合作学习的能力,提高他们解决问题的效率。
四、教学内容与过程
(一)导入新课
1.引入实例:展示一幅美丽的等边三角形图案,如古代建筑中的窗花、艺术品等,引发学生对等边三角形的关注。
2.提出问题:请学生观察图案,思考等边三角形具有哪些特点?它们之间有何联系?
3.创设悬念:通过问题引导学生思考,为新课的学习做好铺垫,激发学生的探究欲望。
(二)讲授新知
6.课后作业,拓展延伸:布置具有挑战性的课后作业,使学生在课后继续巩固所学知识,同时培养他们的拓展思维能力。
7.教学评价,关注成长:在教学过程中,教师应关注学生的成长,采用多元化评价方式,如课堂表现、作业完成情况、小组合作表现等,全面评价学生的学习效果。
8.情感教育,培养兴趣:在教学过程中,注重激发学生对等边三角形性质的兴趣,引导学生体验数学发现的乐趣,培养他们热爱数学的情感。

人教版八年级数学上册13.3.2《等边三角形(1)》教学设计

人教版八年级数学上册13.3.2《等边三角形(1)》教学设计

人教版八年级数学上册13.3.2《等边三角形(1)》教学设计一. 教材分析等边三角形是八年级数学上册的教学内容,它是三角形的一种特殊形式,具有三条边相等、三个角相等的性质。

本节课的教学内容主要包括等边三角形的定义、性质和判定。

教材通过引入等边三角形的概念,让学生了解等边三角形的基本性质,并通过实例演示等边三角形的判定方法。

通过本节课的学习,学生能够掌握等边三角形的基本性质,并能够运用这些性质解决相关问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察和推理能力。

然而,对于等边三角形的特殊性质和判定方法,学生可能较为陌生。

因此,在教学过程中,需要注重引导学生通过观察和推理来发现等边三角形的性质,并通过实例来巩固和应用这些性质。

三. 教学目标1.知识与技能:理解等边三角形的定义,掌握等边三角形的基本性质,学会判定一个三角形是否为等边三角形。

2.过程与方法:通过观察、推理和举例,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:等边三角形的定义和性质。

2.难点:等边三角形的判定方法。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂讨论。

2.引导发现法:通过提问和引导,让学生自主发现等边三角形的性质,培养学生的推理能力。

3.实例教学法:通过举实例,让学生更好地理解等边三角形的性质和判定方法。

六. 教学准备1.教学课件:制作课件,展示等边三角形的图片和实例。

2.教学道具:准备一些等边三角形的模型或图片,用于展示和操作。

3.练习题:准备一些有关等边三角形的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过展示一些等边三角形的图片,引导学生观察和思考:这些三角形有什么特殊的性质?你能否找出它们之间的共同点?2.呈现(10分钟)向学生介绍等边三角形的定义和性质,并通过举例来展示等边三角形的判定方法。

人教版数学八年级上册1332等边三角形教学设计

人教版数学八年级上册1332等边三角形教学设计
(3)学习判定定理:引导学生运用已知性质,推导等边三角形的判定定理,提高学生的逻辑推理能力;
(4)应用拓展:设计具有实际背景的问题,让学生运用所学知识解决,培养学生的实践能力;
(5)总结反思:通过课堂小结,让学生回顾本节课所学内容,巩固知识体系。
3.教学评价:
(1)关注学生在课堂上的参与程度,评价学生的合作交流能力;
(3)利用问题驱动的教学方法,引导学生主动探究、合作交流,突破教学难点;
(4)实施分层教学,针对不同学生的学习需求,设计梯度性问题,使每个学生都能在原有基础上得到提高。
2.教学过程:
(1)导入新课:通过展示生活中的等边三角形实例,引导学生发现等边三角形的特征,为新课学习奠定基础;
(2)探究性质:组织学生进行画图、测量、折叠等操作,探究等边三角形的性质,培养学生的几何思维;
(二)讲授新知,500字
1.教师给出等边三角形的定义,强调等边三角形的三条边相等、三个角相等的特点。
2.引导学生通过画图、测量、折叠等操作,探究等边三角形的性质,如:内角都是60度,中线、高线、角平分线重合等。
3.讲解等边三角形的判定定理,如:三边相等的三角形是等边三角形、有两边相等且夹角是60度的三角形是等边三角形等。
5.预习下一节课内容,了解等边三角形在几何证明中的应用,为课堂学习做好准备。
作业布置要求:
1.作业量适中,难度分层,使不同层次的学生都能得到有效训练。
2.鼓励学生自主完成作业,培养独立思考和解决问题的能力。
3.作业批改要及时,针对学生的错误,给出具体指导和反馈。
4.激励学生在完成作业过程中,积极与同学交流讨论,提高合作学习能力。
1.学生对等边三角形的概念已有初步了解,但对其判定和应用方面的知识掌握不足。

人教版数学八年级上册 13 3 2等边三角形 教案

人教版数学八年级上册 13 3 2等边三角形 教案

第十三章轴对称13.3.2等边三角形(第一课时)教学目标知识与技能1.探索等边三角形的性质和判定;2.能运用等边三角形的性质和判定解决实际问题.过程与方法1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维;2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.情感与态度学生积极参与数学学习活动,增强对数学的好奇心和求知欲;并通过在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.重点等边三角形性质定理与判定定理的发现与证明.难点 1.等边三角形判定定理的发现与证明;2.引导学生全面、周到地思考问题.教法操作、演示、讲解学法观察、操作、合作学习教学设计教学环节教学内容师生活动设计意图一、情境引入对于同一类型的几何图像的研究,我们常常按照从一般到特殊的思路进行,比如我们在第十一章研究了一般三角形后,在上节课就研究了把一般三角形边特殊化后的等腰三角形,那如果我们再把等腰三角形的边特殊化,大家想想会得到什么样三角形呢?追问1:满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形.教师提问并引导学生思考回答问题.通过情境引入课题,体会等腰三角形与等边三角形的联系与区别,类比等腰三角形的性质和判定为本节课所学知识做好铺垫.二、观察探究提问:等腰三角形与等边三角形有什么区别和联系?联系:等边三角形是特殊的等腰三角形;区别:等边三角形有三条相等的边,而等腰三角形只有两条.追问1:等腰三角形有哪些特殊的性质呢?等边对等角.三线合一思考:将等腰三角形的性质用于等边三角形,你能得到什么结论?结合等腰三角形的性质,你能填出等边三角形的性质与判定吗?学生填表,并小组讨论,班内交流.引导学生探究等边三角形的性质.追问:对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.归纳:等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°.等腰三角形等边三角形图形定义性质判定学生证明,师板演.师生共同归纳.学生操作后,小组进行探究,班内汇报,师生共同总结.学生证明,师板演.对所得命题进行证明,来说明猜想的正确性.明确等边三角形的性质,并规范符号语言的表达形式.引导学生探究等边三角形的判定方法.明确等边三角形的判定定理,并规范符号语言的表达形式.思考:将等腰三角形的判定用于等边三角形,你能得到什么结论?结合等腰三角形的判定,你能填出等边三角形的判定吗?思考1:一个三角形的三个内角满足什么条件是等边三角形?思考2:一个等腰三角形满足什么条件是等边三角形?结论:三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.归纳:等边三角形的判定定理:定理1:三个角都相等的三角形是等边三角形.符号语言:在△ABC 中,∵∠A=∠B =∠C ,∴△ABC 是等边三角形.定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:在△ABC 中,∵BC =AC,∠A =60°,∴△ABC 是等边三角形.三、例题讲解例:如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D,E.求证:△ADE 是等边三角形.追问:本题还有其他证法吗?学生尝试练习.小组讨论,班内交流对等边三角形的性质与判定进行简单的综合运用.开拓学生的思维.四、巩固练习例1:已知:△ABC是等边三角形,D,E,F分别是各边上的一点,且AD = BE = CF.求证:△DEF是等边三角形.例2:如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD 与BE 相交于点F.(1)求证:△ABE ≌△CAD;(2)求∠BFD 的度数.学生练习后全班交流,师讲评.对学习本节课所学知识进行巩固应用.五、课堂测试1.下面给出的几种三角形:①有两个角是60°的三角形;②一边上的高也是这边上的中线的三角形; ③有一个外角120°的等腰三角形.其中一定是等边三角形的是 _____.2.如图,△ABC 的边BC上有D、E 两点,且学生思考并回答,师讲评.对学习本节课所学知识进行巩固应用.BD =DE =EC = AD= AE,则∠BAC =_____.3.如图,在△ABC 中,∠BAC =120°,AD平分∠BAC,DE∥AB,AD=3,CE=5,则AC 的长为_____.六、课堂小结谈谈你的收获和体会(1)本节课学习了等边三角形的性质和判定;(2)等边三角形与等腰三角形相比有哪些特殊的性质?共有几种判定等边三角形的方法?(3)结合本节课的学习,谈谈研究三角形的方法.师引导学生归纳总结.旨在让学生学会归纳总结,梳理知识,提高认识.七、实践延伸课本:P80页练习题1,2 检测学生对本节知识的掌握情况.教学反思:本节课主要研究等边三角形的性质及判定,由于等边三角形是特殊的等腰三角形,学生对等边三角形的性质及判定的探究可类比等腰三角形来完成,学生参与的好,讨论热烈,在对其性质及判定的应用上,文字语言符号转化为符号语言时,有部分学生应用的不好,今后要注意性质的应用.。

《等边三角形》教案(最终五篇)

《等边三角形》教案(最终五篇)

《等边三角形》教案(最终五篇)第一篇:《等边三角形》教案等边三角形一、教学目标(1)知识与技能:掌握等边三角形的性质和判定方法,并能运用等边三角形的性质和判定方法解决有关数学问题.(2)过程与方法:通过讨论,发现和归纳等边三角形的判定方法,并用演绎推理的方法进行证实.(3)情感态度与价值观:通过对等边三角形有关知识的学习,感悟数学思想在现实生活中的应用,并从中感受图形的魅力之处。

二、教学重难点(1)教学重点:等边三角形的性质及判定及其应用。

(2)教学难点:探索等边三角形性质及判定的过程。

三、教学策略:(1)教学方法:运用小组合作学习,独立思考与小组合作相结合,发挥学生之间的相互合作、相互帮助的精神。

(2教学手段:课上运用多媒体课件激发学生的学习兴趣。

四、教学过程:1、旧识回顾,导入新课与学生一起回顾等腰三角形的定义、性质以及判定。

师:等腰三角形与等边三角形有什么样的关系呢? 生:等边三角形是特殊的等腰三角形,所以等边三角形具有等腰三角形的所有性质。

设计意图:复习知识为本节课新知类比学习做准备,引导学生自己探究等腰三角形与等边三角形的关系。

2、创设情景,探究新知1.创设问题:根据等边三角形的定义结合等腰三角形的性质,你能得出等边三角形有什么性质?并进行证明。

设计意图:让学生在已有知识的基础上,启发学生运用类比的思想得出等边三角形的性质。

2.归纳总结等边三角形的性质。

设计意图:让学生对等边三角形的性质由系统的认识。

进一步让学生体会定义既是性质又是判定。

3.创设问题情境:猜想一个三角形满足什么条件就是等边三角形?一个等腰三角形满足什么条件就是等边三角形?以小组为单位先猜想,再进行讨论探究,在已有知识结论的基础上验证自己的猜想。

设计意图:采用分类讨论的方法,即从边与角两方面来考虑,使学生能从中领悟数学分类讨论思想。

4.归纳总结等边三角形的判定方法。

设计意图:让学生对等边三角形的的判定方法有系统认识。

强化在应用中的思维技巧。

人教版八年级上册数学 13.3.2 等边三角形《等边三角形》参考教案

人教版八年级上册数学   13.3.2 等边三角形《等边三角形》参考教案

等边三角形(一)教学目标(一)教学知识点经历探索等腰三角形成为等边三角形的条件及其推理证明过程.(二)能力训练要求1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.(三)情感与价值观要求1.积极参与数学学习活动,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点等边三角形判定定理的发现与证明.教学难点1.等边三角形判定定理的发现与证明.2.引导学生全面、周到地思考问题.教学方法探索发现法.教具准备多媒体课件,投影仪.教学过程Ⅰ.提出问题,创设情境[师]我们在前两节课研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形──三条边都相等的三角形,叫等边三角形.回答下面的三个问题.(演示课件)1.把等腰三角形的性质用到等边三角形,能得到什么结论?2.一个三角形满足什么条件就是等边三角形?3.你认为有一个角等于60°的等腰三角形是等边三角形吗?•你能证明你的结论吗?把你的证明思路与同伴交流.(教师应给学生自主探索、思考的时间)[生甲]由等边对等角的性质可知,等边三角形的三个角相等,又由三角形三内角和定理可知,等边三角形的三个角相等,并且都等于60°. [生乙]等腰三角形已有两边分别相等,所以我认为只要腰和底边相等,等腰三角形就是等边三角形了.[生丙]等边三角形的三个内角都相等,且分别都等于60°,我认为等腰三角形的三个内角都等于60°,也就是说这个等腰三角形就是等边三角形了.(此时,部分同学同意此生看法,部分同学不同意此生看法,引起激烈的争论,•教师可让同学代表发表自己的看法)[生丁]我不同意这个同学的看法,•因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等,但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,•我觉得他给的条件太多,浪费![师]给三个角都是60°,这个条件确实有点浪费,那么给什么条件不浪费呢?•下面同学们可以在小组内交流自己的看法.Ⅱ.导入新课探索等腰三角形成等边三角形的条件.[生]如果等腰三角形的顶角是60°,那么这个三角形是等边三角形. [师]你能给大家陈述一下理由吗?[生]根据三角形的内角和定理,顶角是60•°,•等腰三角形的两个底角的和就是180°-60°=120°,再根据等腰三角形两个底角是相等的,•所以每个底角分别是120°÷2=60°,则三个内角分别相等,根据等角对等边,•则此时等腰三角形的三条边是相等的,即顶角为60°的等腰三角形为等边三角形.[生]等腰三角形的底角是60°,那么这个三角形也是等边三角形,同样根据三角形内角和定理和等角对等边、等边对等角的性质.[师]从同学们自主探索和讨论的结果可以发现:•在等腰三角形中,•不论底角是60°,还是顶角是60°,那么这个等腰三角形都是等边三角形.•你能用更简洁的语言描述这个结论吗?[生]有一个角是60°的等腰三角形是等边三角形.(这个结论的证明对学生来说可能有一定的难点,难点是意识到分别讨论60°的角是底角和顶角两种情况.这是一种分类讨论的思想,教师要关注学生得出证明思路的过程,引导学生全面、周到地思考问题,并有意识地向学生渗透分类的思想方法)[师]你在与同伴的交流过程中,发现了什么或受到了何种启示?[生]我发现我的证明过程没有意识到“有一个角是60°”,在等腰三角形中有两种情况:(1)这个角是底角;(2)这个角是顶角.也就是说我们思考问题要全面、周到.[师]我们来看有多少同学意识到分别讨论60°的角是底角和顶角的情况,•我们鼓掌表示对他们的鼓励.今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这A个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?[生]三个角都相等的三角形是等边三角形.B[师]下面就请同学们来证明这个结论.(投影仪演示学生证明过程)已知:如图,在△ABC中,∠A=∠B=∠C.求证:△ABC是等边三角形.证明:∵∠A=∠B,∴BC=AC(等角对等边).又∵∠A=∠C,∴BC=AC(等角对等边).∴AB=BC=AC,即△ABC是等边三角形.[师]这样,我们由等腰三角形的性质和判定方法就可以得到.(演示课件)等边三角形的三个内角都相等,并且每一个角都等于60°;三个角都相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.[师]有了上述结论,我们来学习下面的例题,体会上述定理.(演示课件)[例4]如图,课外兴趣小组在一次测量活动中,测得∠APB=60°,AP=BP=200m,•他们便得出一个结论:A、B之间距离不少于200m,他们的结论对吗?分析:我们从该问题中抽象出△APB,由已知条件∠APB=60°且AP=BP,•由本节课探究结论知△APB为等边三角形.解:在△APB中,AP=BP,∠APB=60°,所以∠PAB=∠PBA=12(180°-∠APB)=12(180°-60°)=60°.于是∠PAB=∠PBA=∠APB.从而△APB为等边三角形,AB的长是200m,•由此可以得出兴趣小组的结论是正确的.Ⅲ.随堂练习(一)课本P54练习 1、2.1.等边三角形是轴对称图形吗?它有几条对称轴?它们分别是什么线段?答案:等边三角形是轴对称图形,它有三条对称轴,它们分别是三个角的平分线(或是三条边上的中线或三条边上的高线).2.如图,等边三角形ABC 中,AD 是BC 上的高,∠BDE=∠CDF=60°,•图中有哪些与BD 相等的线段?ED C AB F答案:BD=DC=BE=EA=CF=FA=DE=DF .(二)补充练习如图,△ABC 是等边三角形,∠B 和∠C 的平分线相交于D ,BD 、CD•的垂直平分线分别交BC 于E 、F ,求证:BE=CF .21E DC AB F证明:连结DE 、DF ,则BE=DE ,DF=CF .由△ABC 是等边三角形,BD 平分∠ABC ,得∠1=30°,故∠2=30°,从而∠DEF=60°.同理∠DFE=60°,故△DEF 是等边三角形.DE=DF ,因而BE=CF .Ⅳ.课时小结这节课,我们自主探索、思考了等腰三角形成为等边三角形的条件,•并对这个结论的证明有意识地渗透分类讨论的思想方法.这节课我们学的定理非常重要,在我们今后的学习中起着非常重要的作用. Ⅴ.课后作业(一)课本P56─5、6、7、10题.(二)预习P55~P56.Ⅵ.活动与探究探究:如图,在等边三角形ABC 的边AB 、AC 上分别截取AD=AE .△ADE 是等边三角形吗?试说明理由.过程:通过分析、讨论,让学生进一步了解等边三角形的性质及判定.结果:已知:三角形ABC 为等边三角形.D 、E 为边AB 、AC 上两点,且AD=AE .判断△A DE•是否是等边三角形,并说明理由.解:△ADE 是等边三角形,∵△ABC 是等边三角形,∴∠A=60°.又∵AD=AE ,∴△ADE 是等腰三角形.∴△ADE 是等边三角形(有一个角是60°的等腰三角形是等边三角形).板书设计 E D C AB§12.3.2 等边三角形(一)一、探索等边三角形的性质及判定问题:一个等腰三角形满足什么条件时便成为等边三角形二、等边三角形的性质及判定三、应用例题讲解四、随堂练习五、课时小结六、课后作业备课资料等腰三角形(含等边三角形)的性质与判定.等腰三角参考例题1.已知,如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC.屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.解:在△ABC中,∵AB=AC(已知),∴∠B=∠C(等边对等角).∴∠B=∠C=12(180°-∠BAC)=40°(三角形内角和定理).又∵AD⊥BC(已知),D CAB∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合).∴∠BAD=∠CAD=50°.2.已知:如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.证明:∵△ABC是等边三角形,且BD是中线,∴BD⊥AC,∠ACB=60°,∠DBC=30°.又∵CD=CE,∴∠CDE=∠E=12∠ACB=30°.∴∠DBC=∠E.∴DB=DE.3.已知:如图,△ABC是等边三角形,DE∥BC,交AB、AC于D、E.求证:△ADE是等边三角形.证明:∵△ABC是等边三角形(已知),∴∠A=∠B=∠C(等边三角形各角相等).∵DE∥BC,∴∠ADE=∠B,∠AED=∠C(两直线平行,同位角相等).∴∠A=∠ADE=∠AED.∴△ADE是等边三角形(三个角都相等的三角形是等边三角形).EDABD AEB§12.3.2 等边三角形(二)教学目标(一)教学知识点1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.2.有一个角为30°的直角三角形的性质的简单应用.(二)能力训练要求1.经历“探索──发现──猜想──证明”的过程,•引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生用规范的数学语言进行表达的习惯和能力.(三)情感与价值观要求1.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.2.体验数学活动中的探索与创新、感受数学的严谨性.教学重点含30°角的直角三角形的性质定理的发现与证明.教学难点1.含30°角的直角三角形性质定理的探索与证明.2.引导学生全面、周到地思考问题.教学方法探索发现法.教具准备两个全等的含30°角的三角尺;多媒体课件;投影仪.教学过程Ⅰ.提出问题,创设情境[师]我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形,•它有什么不同于一般的直角三角形的性质呢?问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?•能拼出一个等边三角形吗?说说你的理由.由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?Ⅱ.导入新课(让学生经历拼摆三角尺的活动,发现结论,同时引导学生意识到,通过实际操作探索出来的结论,还需要给予证明)[生]用含30°角的直角三角尺摆出了如下两个三角形.(1)DC AB (2)DC AB其中,图(1)是等边三角形,因为△ABD ≌△ACD ,所以AB=AC ,又因为Rt △ABD 中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.[生]图(1)中,∠B=∠C=60°,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC 是等边三角形.[师]同学们从不同的角度说明了自己拼成的图(1)是等边三角形.由此你能得出在直角三角形中,30°角所对的直角边与斜边的关系吗?[生]在直角三角形中,30°角所对直角边是斜边的一半.[师]我们仅凭实际操作得出的结论还需证明,你能证明它吗?[生]可以,在图(1)中,我们已经知道它是等边三角形,所以AB=BC=AC.•而∠ADB=90°,即AD⊥BC.根据等腰三角形“三线合一”的性质,可得BD=DC=12BC.所以BD=12AB,•即在Rt△ABD中,∠BAD=30°,它所对的边BD是斜边AB的一半.[师生共析]这位同学能结合前后知识,把问题思路解释得如此清晰,很了不起.•下面我们一同来完成这个定理的证明过程.定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半.已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.求证:BC=12AB.CAB DCAB分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.证明:在△ABC中,∠ACB=90°,∠BAC=30°,则∠B=60°.延长BC至D,使CD=BC,连接AD(如下图)∵∠ACB=60°,∴∠ACD=90°.∵AC=AC,∴△ABC≌△ADC(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形).∴BC=12BD=12AB.[师]这个定理在我们实际生活中有广泛的应用,因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,下面我们就来看一个例题.(演示课件)[例5]右图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BD 、DE 要多长?分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=12AD ,BC=12AB ,又由D 是AB 的中点,所以DE=14AB .解:因为DE ⊥AC ,BC ⊥AC ,∠A=30°,由定理知BC=12AB ,DE=12AD ,所以BD=12×7.4=3.7(m ).又AD=12AB ,所以DE=12AD=12×3.7=1.85(m ).答:立柱BC 的长是3.7m ,DE 的长是1.85m . [师]再看下面的例题.[例]等腰三角形的底角为15°,腰长为2a ,求腰上的高. 已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高. 求:CD 的长.分析:观察图形可以发现,在Rt △ADC 中,AC=2a ,而∠DAC 是△ABC 的一个外角,•则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,•可求出CD . 解:∵∠ABC=∠ACB=15°, ∴∠DAC=∠ABC+∠BAC=30°.D C AEBDC A∴CD=12AC=a (在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半). [师]下面我们来做练习. Ⅲ.随堂练习 (一)课本P56练习Rt △ABC 中,∠C=90°,∠B=2∠A ,∠B 和∠A 各是多少度?边AB 与BC•之间有什么关系?答案:∠B=60°,∠A=30°,AB=2BC . (二)补充练习1.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°. 求证:BD=14AB . 证明:在Rt △ABC 中,∠A=30°,∴BC=12AB .在Rt △BCD 中,∠B=60°, ∴∠B CD=30°.∴BD=12BC .∴BD=14AB .2.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.求证:CD=2AD .证明:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,D CAB∴∠ABC=60°,∠C=30°.又∵BD是∠ABC的平分线,∴∠ABD=∠DBC=30°.∴AD=12BD,BD=CD.∴CD=2AD.Ⅳ.课时小结这节课,我们在上节课的基础上推理证明了含30°的直角三角形的边的关系.这个定理是个非常重要的定理,在今后的学习中起着非常重要的作用.Ⅴ.课后作业(一)课本P58─11、12、13、14题.(二)预习P60~P61,并准备活动课.1.找出若干个成轴对称的汉字、英文字母、阿拉伯数字.2.思考镜子对实物的改变.Ⅵ.活动与探究在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.过程:可以从证明“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”.从辅助线的作法中得到启示.结果:已知:如图(1),在Rt△ABC中,∠C=90°,BC=12 AB.求证:∠B AC=30°.证明:延长BC到D,使CD=BC,连结AD.∵∠ACB=90°,∴∠ACD=90°.又∵AC=AC,DCAB(1)CA∴△ACB ≌△ACD (SAS ). ∴AB=AD . ∵CD=BC ,∴BC=12BD .又∵BC=12AB ,∴AB=BD . ∴AB=AD=BD ,即△ABD 为等边三角形. ∴∠B=60°.在Rt △ABC 中,∠BAC=30°. 板书设计§12.3.2 等边三角形(二) 一、定理的探究定理:在直角三角形中,有一个锐角是30°,那么它所对的直角边等于斜边的一半. 二、范例分析 三、随堂练习 四、课时小结 五、课后作业 备课资料 参考例题1.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .证明:△ACM 与△CBN 是等边三角形.(2)DC ABCBMN∴∠ACM=∠BCN .∴∠ACM+∠MCN=∠BCN+∠NCM , 即∠ACN=∠MCB . 在△ACN 和△MCB 中,,,,AC MC ACN MCB CN CB =⎧⎪∠=∠⎨⎪=⎩∴△ACN ≌△MCB (SAS ). ∴AN=BM .2.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm ,•CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少? 解:在Rt △ABC 中,∠CAB=30°,AB=10cm .∴BC=12AB=5cm .∵CB 1⊥AB , ∴∠B+∠BCB 1=90°. 又∵∠A+∠B=90°, ∴∠BCB 1=∠A=30°. 在Rt △ACB 1中,BB 1=12BC=2.5cm . ∴AB 1=AB-BB 1=10-2.5=7.5(cm ). ∴在Rt △AB 1C 1中,∠A=30°.∴B 1C 1=12AB 1=12×7.5=3.75(cm ).C 1B 1CBA。

人教版数学八年级上册13.3.2等边三角形(第2课时)教学设计

人教版数学八年级上册13.3.2等边三角形(第2课时)教学设计
3.等边三角形的判定方法:介绍等边三角形的判定方法,如:SSS判定法(三边相等)、SAS判定法(两边相等且夹角相等)、ASA判定法(两角相等且夹边相等)等。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,让每个小组针对等边三角形的性质、判定方法进行讨论,共同总结规律。
2.互动交流:各小组展示讨论成果,其他小组进行补充、质疑,形成全面、深入的理解。
3.提出问题:引导学生思考,如果一个三角形的三条边都相等,那么这个三角形会有哪些性质?如何判定一个三角形是等边三角形?
(二)讲授新知
1.等边三角形的定义:在学生观察、思考的基础上,给出等边三角形的定义:三条边都相等的三角形称为等边三角形。
2.等边三角形的性质:引导学生通过实际操作、观察、讨论等途径,发现并总结等边三角形的性质,如:三个角相等,均为60度;三条中线、高、角平分线重合等。
2.作业量要适中,避免学生负担过重。
3.鼓励学生主动思考,培养解决问题的能力。
4.家长要关注学生的学习进度,协助教师督促学生完成作业。
5.教师要及时批改作业,了解方法:通过例题讲解,让学生掌握等边三角形的判定方法,并能熟练运用。
(5)巩固练习:设计不同难度的题目,让学生独立完成,巩固所学知识。
(6)课堂小结:总结本节课所学内容,强调等边三角形的性质和判定方法。
(7)作业布置:布置适量的作业,巩固所学知识,提高学生的运用能力。
3.教学策略:
(1)关注学生的个体差异,因材施教,提高教学的有效性。
1.激发学生对数学学习的兴趣,培养良好的学习习惯和积极的学习态度。
2.培养学生的空间观念,提高对几何图形的审美意识和鉴赏能力。
3.增强学生解决问题的自信心,培养勇于探索、敢于创新的精神。

等边三角形 初中八年级上册数学教案教学设计课后反思 人教版

等边三角形 初中八年级上册数学教案教学设计课后反思 人教版

13.3.2 等边三角形(1)阿瓦提县第五中学王保田〖教学目标〗◆1、理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法定.◆2、体会等边三角形与现实生活的联系.◆3、能够用等边三角形的知识解决相应的数学问题〖教学重点与难点〗◆教学重点:等边三角形的性质与判定.◆教学难点:等边三角形性质和判定的应用◆学习方法:探索、归纳、交流、练习〖教学过程〗一、知识回顾:1、回顾等腰三角形定义、性质、判断。

2、你见过三边相等的三角形吗?它是什么三角形?二、新课教学:1、等边三角形定义:三边相等的三角形叫做等边三角形,也称正三角形2、等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形3、合作学习讨论:等边三角形的性质?(学生分组讨论,教师提示从角、边、重要线段、对称性去考虑)师生一起总结:(1).等边三角形的三条边相等。

(2).等边三角形的内角相等,且为60度。

(3).等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)(4). 等边三角形是轴对称图形,有三条对称轴。

4合作学习讨论:(1)一个三角形满足什么条件就是等边三角形?(2)一个等腰三角形满足什么条件就是等边三角形?师生一起总结:等边三角形的判定:(1)三边相等的三角形是等边三角形(2)三角相等的三角形是等边三角形(3)有一个角是60度的等腰三角形是等边三角形三.例题分析如图,△ABC是等边三角形,DE∥BC,交AB,AC于D,E。

求证△ADE是等边三角形。

四.试一试:例4 等边三角形ABC的周长等于21㎝,求:(1)各边的长;(2)各角的度数。

解:(1)∵AB=BC=CA,又∵AB+BC+CA=21㎝(已知) ∴AB=BC=CA=21/3=7(㎝)2)∵AB=BC=CA,(已知) ∴∠A =∠B=∠C=60° (等边三角形的每个内角都等于60°)五.练一练:1、下列四个说法中,不正确的有() (A)0个(B)1个(C)2个(D)3个三个角都相等的三角形是等边三角形。

人教版数学八年级上册13.3.2等边三角形教学设计

人教版数学八年级上册13.3.2等边三角形教学设计
作业要求:
1.请同学们认真完成作业,字迹工整,图形清晰。
2.对于提高题和实践题,同学们可以相互讨论,发挥团队合作精神,共同解决问题。
3.作业完成后,请同学们认真检查,确保答案正确,并于下节课前上交。
1.引导学生通过观察等边三角形的图形,发现等边三角形的性质,培养学生的观察能力。
2.引导学生运用已知的三角形知识,通过猜想、验证等方法,发现并掌握等边三角形的性质,提高学生的探究能力。
3.设计不同难度的练习题,让学生独立思考、合作交流,培养他们解决问题的能力。
(三)情感态度与价值观
1.让学生感受等边三角形的对称美,激发他们对数学图形的热爱,提高审美情趣。
-鼓励学生参与课堂讨论和展示,评价他们的合作能力和表达能力。
四、教学内容与过程
(一)导入新课
1.复习导入:首先,带领学生复习已学的三角形知识,如三角形的分类、三角形的内角和等。通过提问方式引导学生回顾等腰三角形的性质,为学习等边三角形做好铺垫。
-提问:“同学们,我们已经学过哪些三角形?等腰三角形有什么性质?”
-学生回答后,总结等腰三角形的特点,引出等边三角形的定义。
2.实物导入:展示一些生活中常见的等边三角形物品,如三角形风筝、装饰品等,让学生观察并说出它们的共同特点,从而引出等边三角形的定义。
(二)讲授新知
1.等边三角形的定义:通过复习等腰三角形,引导学生观察等边三角形的图形,共同总结等边三角形的定义:三条边相等的三角形。
人教版数学八年级上册13.3.2等边三角形教学设计
一、教学目标
(一)知识与技能
1.理解等边三角形的定义,知道等边三角形的三条边相等,三个角相等,每个角为60度。
2.掌握等边三角形的判定方法,能够判断一个三角形是否为等边三角形。

人教版八年级数学上册13.3.2《等边三角形》第1课时 教案

人教版八年级数学上册13.3.2《等边三角形》第1课时 教案

第十三章轴对称13.3等腰三角形13.3.2等边三角形第1课时一、教学目标1.通过探究活动等掌握等边三角形的性质和判定方法.进一步发展学生的探究意识,养成研究性学习的良好习惯.2.综合运用所学知识解决有关等边三角形的问题.二、教学重点及难点重点:等边三角形的性质和判定的探索与应用.难点:等边三角形性质和判定方法的应用.三、教学用具电脑、多媒体、课件、直尺、刻度尺四、相关资源五、教学过程(一)问题导入1.满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形.2.请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么联系?等边三角形是特殊的等腰三角形;设计意图;通过回忆让学生充分准备好本节课学习所需要的基础知识,利用问题探索让学生发现,并初步感悟等腰三角形与等边三角形的联系.(二)探究新知1.等腰三角形有哪些特殊的性质呢?从边的角度:两腰相等;从角的角度:两个底角相等(等边对等角);从对称性的角度:是轴对称图形、三线合一.2.将等腰三角形的性质用于等边三角形,你能得到什么结论?结合等腰三角形的性质,你能填出等边三角形对应的结论吗?你能说出等腰三角形和等边三角形的区别吗?3.对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.已知:△ABC是等边三角形.求证:∠A=∠B=∠C=60°.证明:∵△ABC是等边三角形,∴BC=AC,BC=AB.∴∠A=∠B,∠A=∠C.∴∠A=∠B=∠C.∵∠A+∠B+∠C=180°,∴∠A=60°.∴∠A=∠B=∠C=60°.得到等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.几何语言表示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.4.等边三角形有“三线合一”的性质吗?等边三角形每条边上的中线、高和所对应顶角的平分线都三线合一.5.根据轴对称图形的判定,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.等边三角形是轴对称图形,对称轴有三条,中线(或角平分线、高)所在的直线就是它的对称轴(如图).6.等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?讨论:(1)一个三角形的三个内角满足什么条件是等边三角形?(2)一个等腰三角形满足什么条件是等边三角形?猜想:(1)三个角都相等的三角形是等边三角形.(2)一个角为60°的等腰三角形是等边三角形.请你将这两个命题进行证明:(1)已知:在△ABC中,∠A=∠B=∠C.求证:△ABC是等边三角形.证明:∵∠A=∠B,∠B=∠C,∴BC=AC,AC=AB.∴AB=BC=AC.∴△ABC是等边三角形.于是得到等边三角形的判定1:三个角都相等的三角形是等边三角形.符号语言:在△ABC中,∵∠A=∠B=∠C,∴△ABC是等边三角形.(2)证明:①当顶角为60°时,两个底角各为60°,由“三个角都相等的三角形是等边三角形”可得证.②当底角为60°时,顶角为60°,由“三个角都相等的三角形是等边三角形”可也得证.所以得到等边三角形的判定2:有一个角为60°的等腰三角形是等边三角形.符号语言:在△ABC中,∵BC=AC,∠A=60°,∴△ABC是等边三角形.7.总结等边三角形的判定方法:(1)三条边相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.设计意图:教师先提出问题,学生独立猜想,然后以小组为单位对本组成员的所有猜想通过画图进行验证,从而得出等边三角形的性质和判定.(三)例题解析【例】如图,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.求证:△ADE 是等边三角形.证明:△ABC是等边三角形,∴∠A=∠B=∠C.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.教师让学生尝试用“有一个角为60°的等腰三角形是等边三角形”进行证明.设计意图:培养学生应用所学知识解决问题的能力与意识,鼓励创新与多角度多方法思考问题,活跃学生的思维,发展创造性.(四)课堂练习1.下列四个说法中,不正确的有().①三个角都相等的三角形是等边三角形②有两个角等于60°的三角形是等边三角形③有一个角是60°的等腰三角形是等边三角形④有两个角相等的等腰三角形是等边三角形A.0个B.1个C.2个D.3个2.等边三角形的对称轴有().A.1条B.2条C.3条D.4条3.等边三角形中,高、中线、角平分线的线段共有().A.3条B.6条C.9条D.7条学生独立完成.答案:1.B;2.C;3.A.设计意图:及时巩固所学知识,了解学生的学习效果,增强学生灵活运用知识的能力.六、课堂小结1.等边三角形的性质:三条边都相等;三个角都相等,且都为60°;三线合一;是轴对称图形,有三条对称轴.2.等边三角形的判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.在判定三角形是等边三角形时,(1)若三角形是一般三角形,只要找三个角相等或三条边相等;(2)若三角形是等腰三角形,一般是找一个角等于60°设计意图:通过小结,使学生梳理本节所学内容,理解等边三角形的性质和判定,综合运用等边三角形的性质和判定解决问题.七、板书设计13.3.2 等边三角形等边三角形的性质:等边三角形的三个内角都相等,并且每一个都等于60°等边三角形的判定:1.三个角都相等的三角形是等边三角形2.有一个角是60°的等腰三角形是等边三角形。

初中数学八年级上册《等边三角形》教案、教学设计

初中数学八年级上册《等边三角形》教案、教学设计

初中数学《等边三角形》教案、教学设计一、教学目标1.掌握等边三角形的定义、性质和判定,明确其与等腰三角形的区别和联系.(重点)2.能应用等边三角形的知识进行简单的计算和证明.(难点)二、教学过程1、情境导入观察下面图形:师:等腰三角形中有一种特殊的三角形,你知道是什么三角形吗?生:等边三角形.师:对,等边三角形具有和谐的对称美.今天我们来学习等边三角形,引出课题.2、合作探究探究点一:等边三角形的性质【类型一】利用等边三角形的性质求角度如图,△ABC 是等边三角形,E 是AC 上一点,D 是BC 延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED 的度数.解析:因为△ABC 三个内角为60°,∠ABE=40°,求出∠EBC 的度数,因为BE=DE,所以得到∠EBC=∠D,求出∠D 的度数,利用外角性质即可求出∠CED 的度数.解:∵△ABC 是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC =∠ABC -∠ABE =60°-40°=20°.∵BE=DE,∴∠D=∠EBC =20°,∴∠CED =∠ACB -∠D =40°.方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.【类型二】利用等边三角形的性质证明线段相等如图:已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:BM=EM.解析:要证BM=EM,根据等腰三角形的性质可知,证明△BDE 为等腰三角形即可.证明:连接BD,∵在等边△ABC 中,D 是AC 的中点,∴∠DBC=12∠ABC=12×60°=30°,∠ACB=60°.∵CE =CD,∴∠CDE=∠E.∵∠ACB=∠CDE +∠E,∴∠E=30°,∴∠DBC=∠E =30°,∴BD=ED,△BDE 为等腰三角形.又∵DM⊥BC,∴BM=EM.方法总结:本题综合考查了等腰和等边三角形的性质,其中“三线合一”的性质是证明线段相等、角相等和线段垂直关系的重要方法.【类型三】等边三角形的性质与全等三角形的综合运用△ABC 为正三角形,点M 是BC 边上任意一点,点N 是CA 边上任意一点,且BM=CN,BN 与AM 相交于Q 点,∠BQM 等于多少度?解析:先根据已知条件利用SAS 判定△ABM≌△BCN,再根据全等三角形的性质求得∠BQM=∠ABC=60°.解:∵△ABC 为正三角形,∴∠ABC =∠C=∠BAC=60°,AB=BC.在△AMB 和△BNC 中,∴△AMB≌△BNC(SAS),∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.探究点二:等边三角形的判定【类型一】等边三角形的判定等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ,BP =CQ,问△APQ 是什么形状的三角形?试说明你的结论.解析:先证△ABP≌△ACQ 得AP=AQ,再证∠PAQ=60°,从而得出△APQ 是等边三角形.解:△APQ 为等边三角形.证明:∵△ABC 为等边三角形,∴AB=AC.在△ABP 与△ACQ 中,∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC =60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ 是等边三角形.方法总结:判定一个三角形是等边三角形有两种方法:一是证明三角形三个内角相等;二是先证明三角形是等腰三角形,再证明有一个内角等于60°.【类型二】等边三角形的性质和判定的综合运用图①、图②中,点C 为线段AB 上一点,△ACM 与△CBN 都是等边三角形.(1)如图①,线段AN 与线段BM 是否相等?请说明理由;(2)如图②,AN 与MC 交于点E,BM 与CN 交于点F,探究△CEF 的形状,并证明你的结论.解析:(1)由等边三角形的性质可以得出△ACN,△MCB 两边及其夹角分别对应相等,两个三角形全等,得出线段AN 与线段BM 相等.(2)先求∠MCN =60°,通过证明△ACE≌△MCF 得出CE=CF,根据等边三角形的判定得出△CEF 的形状.解:(1)AN=BM.理由:∵△ACM 与△CBN 都是等边三角形,∴AC=MC,CN =CB,∠ACM=∠BCN=60°.∴∠MCN =60°,∠ACN=∠MCB.在△ACN 和△MCB 中,∴△ACN≌△MCB(SAS).∴AN=BM.(2)△CEF 是等边三角形.证明:∵△ACN≌△MCB,∴∠CAE=∠CMB.在△ACE 和△MCF 中,∴△ACE≌△MCF(ASA),∴CE=CF.∴△CEF 是等边三角形.方法总结:等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件.3、板书设计等边三角形的性质和判定1.等边三角形的定义;2.等边三角形的性质;3.等边三角形的判定方法.三、教学反思本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形.学习等边三角形的定义、性质和判定.让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.在这节课中,要学生充分的自主探究,尝试提出问题和解决问题,发展学生的自主探究能力。

人教版八年级数学上册13.3.2《等边三角形(1)》教案

人教版八年级数学上册13.3.2《等边三角形(1)》教案

人教版八年级数学上册13.3.2《等边三角形(1)》教案一. 教材分析等边三角形是八年级数学上册13.3节的一个重要内容,它是一种特殊的三角形,具有三条边相等和三个角相等的性质。

本节课主要让学生掌握等边三角形的性质,并能够运用这些性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的性质和判定,具备了一定的几何知识基础。

但等边三角形作为一种特殊的三角形,其性质和判定与普通三角形有所不同,需要学生进行一定的思考和理解。

三. 教学目标1.让学生了解等边三角形的性质,能够运用这些性质解决实际问题。

2.培养学生的空间想象能力和逻辑思维能力。

3.提高学生的几何学习兴趣,培养学生的自主学习能力。

四. 教学重难点1.等边三角形的性质及其应用。

2.等边三角形的判定方法。

五. 教学方法1.采用问题驱动法,引导学生通过观察和思考,发现等边三角形的性质。

2.运用案例分析法,让学生通过解决实际问题,巩固等边三角形的性质和判定。

3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。

六. 教学准备1.PPT课件:包含等边三角形的性质和判定内容,以及相关的例题和练习题。

2.练习题:包括基础题和提高题,用于巩固和拓展学生的知识。

3.教学工具:直尺、三角板、彩色粉笔等。

七. 教学过程1.导入(5分钟)利用PPT展示等边三角形的图片,引导学生观察和思考:等边三角形有什么特点?你能否找出一些实际问题,用等边三角形的性质来解决?2.呈现(10分钟)通过PPT呈现等边三角形的性质和判定方法,引导学生理解和掌握。

同时,给出相关的例题,让学生通过观察和思考,发现等边三角形的性质。

3.操练(10分钟)让学生分组合作,运用等边三角形的性质和判定方法,解决实际问题。

教师巡回指导,给予学生必要的帮助和指导。

4.巩固(10分钟)让学生独立完成PPT上的练习题,巩固等边三角形的性质和判定。

教师选取部分学生的作业进行讲评,指出其中的错误和不足。

人教版八年级上册13.3.2《等边三角形》教案

人教版八年级上册13.3.2《等边三角形》教案
最后,在总结回顾环节,学生对本节课的知识点有了较为全面的掌握。但我也意识到,课后还需要关注学生的消化吸收情况,及时解答他们的疑问,巩固所学知识。
1.加强课堂互动,提高学生的参与度;
2.注重个体差异,因材施教,帮助每个学生掌握知识点;
3.加强课堂讨论的引导,确保讨论主题的针对性;
4.课后关注学生的反馈,及时解答疑问,巩固所学知识。
在实践活动环节,学生们分组讨论和实验操作,整体效果较好。但我也注意到,部分学生在讨论过程中存在依赖思想,不够积极主动。为了提高学生的参与度,我将在以后的课堂中加强引导,鼓励学生独立思考,勇于表达自己的观点。
此外,学生小组讨论环节,大家对于等边三角形在实际生活中的应用提出了很多有趣的见解。这说明学生们已经能够将所学知识运用到实际问题中,这让我感到很欣慰。但同时,我也发现部分学生在讨论时容易偏离主题,导致讨论效果受到影响。针对这个问题,我将在今后的教学中加强对学生的引导,确保讨论围绕主题展开。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等边三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作一个等边三角形,并观察其性质。
3.成果展示论(用时10分钟)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等边三角形的基本概念。等边三角形是三边长度相等的三角形。它具有独特的性质和判定方法,在几何图形中具有重要地位。
2.案例分析:接下来,我们来看一个具体的案例。通过分析等边三角形在建筑、艺术等领域的应用,了解它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等边三角形的性质和判定方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。

人教版数学八年级上册教学设计13.3.2《等边三角形》

人教版数学八年级上册教学设计13.3.2《等边三角形》

人教版数学八年级上册教学设计13.3.2《等边三角形》一. 教材分析等边三角形是八年级数学上册的教学内容,这部分内容是在学生已经掌握了三角形的性质和分类的基础上进行学习的。

等边三角形是一种特殊的三角形,它有三条相等的边和三个相等的角。

通过学习等边三角形,可以使学生更深入地理解三角形的性质,并能够运用等边三角形的性质解决一些实际问题。

二. 学情分析学生在学习等边三角形之前,已经学习了三角形的分类和性质,对三角形有了初步的认识。

但是,对于等边三角形的性质和判定,学生可能还不是很清楚。

因此,在教学过程中,需要引导学生通过观察、操作、思考、讨论等方式,自主地探索等边三角形的性质,从而加深对等边三角形的理解和掌握。

三. 教学目标1.知识与技能:使学生了解等边三角形的定义和性质,能够运用等边三角形的性质解决一些实际问题。

2.过程与方法:通过观察、操作、思考、讨论等方式,培养学生的观察能力、操作能力、思考能力和合作能力。

3.情感态度与价值观:使学生感受到数学的趣味性和实用性,增强学生对数学的学习兴趣。

四. 教学重难点1.重点:等边三角形的性质和判定。

2.难点:等边三角形的性质的证明和应用。

五. 教学方法采用观察、操作、思考、讨论等教学方法,引导学生自主地探索等边三角形的性质,从而加深对等边三角形的理解和掌握。

六. 教学准备1.教师准备:准备好等边三角形的模型或者图片,准备一些关于等边三角形的实际问题。

2.学生准备:学生需要准备好三角形的性质和分类的知识。

七. 教学过程1.导入(5分钟)通过向学生展示一些等边三角形的模型或者图片,引导学生观察等边三角形的特点,从而引出等边三角形的概念。

2.呈现(10分钟)向学生介绍等边三角形的性质,如三条边相等,三个角相等等,并通过一些实际问题,让学生运用等边三角形的性质进行解决。

3.操练(10分钟)让学生通过观察、操作、思考、讨论等方式,自主地探索等边三角形的性质,并能够运用等边三角形的性质解决一些实际问题。

人教版八年级上册13.3.2等边三角形第一课时优秀教学案例

人教版八年级上册13.3.2等边三角形第一课时优秀教学案例
在知识与技能目标方面,本节课注重培养学生的几何基础知识。首先,学生需要理解等边三角形的定义,即三边相等的三角形。在此基础上,引导学生掌握等边三角形的基本性质,如每个角都是60度,三条边相等等。通过观察、实验、证明等方法,让学生深入理解等边三角形的性质。
其次,学生需要学会运用等边三角形的性质进行判定和证明。在此过程中,教师应引导学生运用已学的几何知识,如角度和边长的关系,来判定一个三角形是否为等边三角形。同时,通过证明等边三角形的性质,培养学生的逻辑思维能力。
最后,鼓励学生运用已学的几何知识,如三角形的性质,来解决问题。教师可以设计一些具有挑战性的问题,让学生运用所学的知识进行解答。通过问题的解决,培养学生的问题解决能力和逻辑思维能力。
(三享彼此的想法和观点;
2.鼓励学生进行合作探究,共同解决问题;
3.培养学生的团队协作能力和沟通表达能力。
3.鼓励学生运用已学的几何知识,如三角形的性质,来解决问题。
在问题导向方面,本节课注重培养学生的自主学习和问题解决能力。首先,教师应引导学生提出问题,如“等边三角形的性质有哪些?”让学生思考并尝试解答。通过问题的提出,激发学生的思考,培养他们的问题意识。
其次,引导学生通过观察、实验、证明等方法,自主探究等边三角形的性质。教师可以提供必要的实验材料和工具,如几何画板软件,让学生亲自动手进行观察和实验。通过自主探究,让学生深入理解等边三角形的性质。
其次,教师需要培养学生勇于探究、勇于创新的精神。在这个过程中,教师应鼓励学生提出新的问题,尝试新的解题方法,培养学生的创新意识。同时,教师还应注意培养学生的个性品质,如勇敢、坚韧、细心等。
最后,教师需要培养学生关爱自然、关爱社会、关爱他人的情感。教师可以结合实际生活中的例子,让学生认识到数学与生活的密切关系,从而培养学生的关爱之情。通过这样的教学,提高学生的综合素质,使他们成为有责任感、有爱心的人。

人教版初二数学等边三角形教案

人教版初二数学等边三角形教案

等边三角形(一)活动1:回顾:什么是等边三角形?它与以前学过的等腰三角形有何关系?三条边都相等的三角形叫做等边三角形,它是一种特殊的等腰三角形。

活动2:复习等腰三角形的性质,探究等边三角形的性质完成表格,得出性质:活动3:1、复习等腰三角形常用的判定方法(1)两条边相等的三角形是等腰三角形。

(2)等角对等边。

2一般三角形等边三角形等腰三角形小结等边三角形常用的判定方法:边:三边相等的三角形是等边三角形 角:三角相等的三角形是等边三角形边角:有一个角等于60°的等腰三角形是等边三角形 活动4:例题:如图,△ABC 是等边三角形,若点D 、E 分别在AB 、AC 上,当点D 、E 满足什么条件时,△ADE 是等边三角形?请说明理由。

延伸:(1)当DE ∥BC 时,若点D 、E 分别在AB 、AC 的延长线上,结论依然成立吗? (2)当DE ∥BC 时,若点D 、E 分别在AB 、AC 的反向延长线上,结论依然成立吗? 活动5:问题:等边三角形的三条中线一定交于一点吗? 探究:等边三角形三条中线相交于一点,画出图形,找出图中所有的全等三角形,并证明它们全等。

等边三角形(二)一、猜测:问题:在直角三角形中,如果一个锐角等于30°那么它所对的直角边与斜边数量上有怎样的关系? 二、探究:如图,将两个含有30°角的三角板放在一起,你能借助这个图形,找到Rt △ABD 的直角边BD 与斜边AB 之间的数量关系吗?(1)D CABA理由如下:∵△ABD 与△ADC 关于AD 轴对称 ∴AB =AC△ABC 是等边三角形又∵AD ⊥BC ∴BD =DC =1/2AB总结:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半.几何语言:在Rt △ABC 中( ∠C =90°)∵∠A =30°∴AC =2BC (BC=1/2AC)三,练一练(1)在Rt △ABC 中, 如果 ∠B CA= 90° , ∠A = 30 ° AB=4,求BC 之长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等边三角形(一)活动1:回顾:什么是等边三角形?它与以前学过的等腰三角形有何关系?三条边都相等的三角形叫做等边三角形,它是一种特殊的等腰三角形。

活动2:复习等腰三角形的性质,探究等边三角形的性质完成表格,得出性质:活动3:1、复习等腰三角形常用的判定方法(1)两条边相等的三角形是等腰三角形。

(2)等角对等边。

2一般三角形等边三角形等腰三角形小结等边三角形常用的判定方法:边:三边相等的三角形是等边三角形角:三角相等的三角形是等边三角形边角:有一个角等于60°的等腰三角形是等边三角形活动4:例题:如图,△ABC是等边三角形,若点D、E分别在AB、AC上,当点D、E满足什么条件时,△ADE是等边三角形?请说明理由。

延伸:(1)当DE∥BC时,若点D、E分别在AB、AC的延长线上,结论依然成立吗?(2)当DE∥BC时,若点D、E分别在AB、AC的反向延长线上,结论依然成立吗?活动5:问题:等边三角形的三条中线一定交于一点吗?探究:等边三角形三条中线相交于一点,画出图形,找出图中所有的全等三角形,并证明它们全等。

A等边三角形(二)一、猜测:问题:在直角三角形中,如果一个锐角等于30°那么它所对的直角边与斜边数量上有怎样的关系?二、探究:如图,将两个含有30°角的三角板放在一起,你能借助这个图形,找到Rt△ABD的直角边BD与斜边AB之间的数量关系吗?理由如下:∵△ABD 与△ADC 关于AD 轴对称 ∴AB =AC△ABC 是等边三角形又∵AD ⊥BC ∴BD =DC =1/2AB总结:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半.几何语言:在Rt △ABC 中( ∠C =90°)∵∠A =30°∴AC =2BC (BC=1/2AC)三,练一练(1)在Rt △ABC 中, 如果 ∠B CA= 90° , ∠A = 30 ° AB=4,求BC 之长。

(2)在Rt △ABC 中, 如果 ∠B CA= 90° , ∠B = 60 ° AB=4,求BC 之长。

(3)在Rt △ABC 中, 如果 ∠B CA= 90° , ∠B = 60 ° BC=4,求AB 之长。

(4).在Rt △ABC 中, ∠B CA = 90°,∠B = 2 ∠A,问∠B 、∠A 各是多少度? AB=4,求BC 的长。

四.例题下图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BD 、DE 要多长?分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=12AD ,BC=12AB ,又由D 是AB 的中点,所以DE=14AB . 解:因为DE ⊥AC ,BC ⊥AC ,∠A=30°,由定理知BC=12AB ,DE=12AD , 所以BD=12×7.4=3.7(m ).又AD=12AB ,所以DE=12AD=12×3.7=1.85(m ).答:立柱BC 的长是3.7m ,DE 的长是1.85m .五.练习:1、三角形三内角度数比为1:2:3,它的最大边长是4cm ,则最小边长为2、等腰三角形的顶角为60°,底边长为8cm ,则腰长为3、等腰三角形顶角为30°,腰长是4cm ,则三角形面积是4、等腰三角形的底角为15°,腰长为2cm ,则腰上的高为 。

(1)D CABC ABD CAEB5、△ABC 中, ∠ACB=90°, ∠B=60°,BC=3cm,则 AB= . 课堂检测:已知△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=2cm ,求BC 的长。

等边三角形(三)1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等 2.等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。

推论3反映的是直角三角形中边与角之间的关系.补充:已知如图所示, 在△ABC 中, BD 是AC 边上的中线, DB ⊥BC 于B, ∠ABC=120o , 求证: AB=2BC证明: 过A 作AE ∥BC 交BD 的延长线于E ∵DB ⊥BC(已知)∴∠AED=90o (两直线平行内错角相等) 在△ADE 和△CDB 中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知对顶角相等已证CD AD BDC ADE CBD E ∴△ADE ≌△CDB(AAS)∴AE=CB(全等三角形的对应边相等) ∵∠ABC=120o ,DB ⊥BC(已知) ∴∠ABD=30o在Rt △ABE 中,∠ABD=30o ∴AE=21AB(在直角三角形中,如果一个锐角等于30o , 那么它所对的直角边等于斜边的一半) ∴BC=21AB 即AB=2BC 点评 本题还可过C 作CE ∥ABBA等腰三角形与等边三角形复习一、知识回顾1、等腰三角形:有两条边相等的三角形是等腰三角形。

2、等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、等边三角形三条边都相等的三角形叫做等边三角形,也叫做正三角形。

4、等边三角形的性质等边三角形的三个内角都相等,•并且每一个内角都等于60°二、典型例题例1:(2010•江津区)如图,△ABC中,已知AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>6分析:根据三角形的三边关系定理来确定腰长x的取值范围.解答:若△ABC是等腰三角形,需满足的条件是:6-x<x<6+x,解得x>3;故选B.例2:有两边相等的三角形的两边长为3cm,7cm,则它的周长为()A.15cm B.17cm C.13cm D.17cm或13cm分析:分情况考虑:相等的两边是3cm时或相等的两边是7cm时.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断能否组成三角形后,再进一步计算其周长.解答:当相等的两边是3cm时,此时3+3<7,不能组成三角形,应舍去;当相等的两边是7cm时,此时能够组成三角形,则其周长是7+7+3=17(cm).故选B.例3:(2010•宁波)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A.5个B.6个 C.7个D.8个分析:由已知条件,根据等腰三角形的性质和判定,角的平分线的性质,三角形内角和等于180°得到各个角的度数,应用度数进行判断,答案可得.解答:设CE与BD的交点为点O,∵AB=AC,∠A=36°,∴∠ABC=∠ACB,再根据三角形内角和定理知,∠ABC=∠ACB=(180°-36°)/2 =72°,∵BD是∠ABC的角的平分线,∴∠ABD=∠DBC=1/2 ∠ABC=36°=∠A,∴AD=BD,同理,∠A=∠ACE=∠BCE=36°,AE=CE,∵∠DBC=36°,∠ACD=72°,根据三角形内角和定理知,∠BDC=180°-72°-36°=72°∴BD=BC,同理CE=BC,∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°,∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC都是等腰三角形,共8个.故选D.例4:已知:如图,△ABD和△ACE均为等边三角形,且∠DAB=∠CAE=60°,那么△ADC≌△AEB的根据是()A.边边边 B.边角边 C.角边角 D.角角边分析:根据判定方法寻找条件判断.解答:∵△ABD和△ACE均为等边三角形,∴DA=BA,AC=AE,∠DAB+∠BAC=∠CAE+∠BAC.∴△ADC≌△AEB.(SAS)故选B.例5:如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45° C.120°D.15°分析:根据直角三角形的判定得△ABE是直角三角形,再根据等腰三角形的性质、三角形的内角和定理求解.解答:设∠B=x∵BD=AD则∠B=∠BAD=x,∠ADE=2x,∵AD=AE∴∠AED=∠ADE=2x,∵AE=EC,∠AED=∠EAC+∠C∴∠EAC=∠C=x又BD=DE=AD,由直角三角形斜边的中线等于斜边的一半,知∠BAE=90°,则∠B+∠AED=x+2x=90°得x=30°∴∠BAC=180°-2x=120°故选C.例6:已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC=()A.3cm B.4cm C.5cm D.6cm分析:由△ABC≌△DEF,∠F=90°,DE=6cm,根据全等三角形的性质,即可求得∠C=90°,AB=6cm,又由∠A=60°,根据三角形内角和定理,即可求得∠B=30°,然后根据在直角三角形中,30°角所对的直角边等于斜边的一半,即可求得AC的长.解答:∵△ABC≌△DEF,∠F=90°,DE=6cm,∴∠C=∠F=90°,AB=DE=6cm,∵∠A=60°,∴∠B=30°,∴AC=1/2 AB=3cm.故选A.例7:如图,已知EA⊥AB,BC∥EA,EA=AB=2BC,D为AB的中点,那么下列式子不能成立的是()A.DE=AC B.DE⊥AC C.∠CAB=30°D.∠EAF=∠ADF分析:已知EA=AB=2BC,且D是AB中点,那么AD=BC,进而可证得△AED、△BAC全等,可根据这个条件进行判断.解答:∵EA=AB=2BC,AB=2AD,∴AD=BC;又∵EA⊥AB,BC∥EA,即∠EAD=∠B=90°,∴Rt△EAD≌Rt△ABC,∴DE=AC;又∠EAF、∠ADF同为∠FAD的余角,∴∠EAF=∠ADE;故A、B、D的结论都正确;Rt△CAB中,AB=2BC,显然sin∠CAB≠1/2 ,所以∠CAB≠30°,因此C的结论是错误的;等腰以及等边三角形练习题一.填空题第1题第3题第4题第7题第8题1. 已知如图,A、D、C在一条直线上AB=BD=CD, ∠C=40°,则∠ABD=__________________ED CABF2. 在等腰△ABC 中, AB =AC, AD ⊥BC 于D, 且AB +AC +BC =50cm, 而AB +BD +AD =40cm, 则AD =___________cm.3. 如图, ∠P =25°, 又PA =AB =BC =CD, 则∠DCM =_______度.4. 如图已知∠ACB =90°, BD =BC, AE =AC, 则∠DCE =__________度. 二.单选题5. 下列命题正确的是[ ]A.等腰三角形只有一条对称轴B.直线不是轴对称图形C.直角三角形都不是轴对称图形D.任何一角都是轴对称图形6. 等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的21C.顶角的2倍 D 底角的217. 如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是[ ]A.∠A =∠BB.∠A =∠ACDC.∠A =∠DCBD.∠A =2∠BCD 8. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[ ] A.∠1=2∠2 B.2∠1+∠2=180° C.∠1+3∠2=180° D.3∠1-∠2=180° 三.证明题9. 已知:如图,BE 和CF 是△ABC 的高线,BE=CF,H 是CF 、BE 的交点.求证:HB=HC10. 如图,△ABC 中,D 在BC 延长线上,且AC=CD,CE 是△ACD 的中线,CF 平分∠ACB,交AB 于F,求证:(1)CE ⊥CF;(2)CF ∥AD.11.如图:Rt △ABC 中,∠C=90°,∠A=22.5°,DC=BC, DE ⊥AB .求证:AE=BE .12.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形; ③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A .①②③ B .①②④ C .①③ D .①②③④13.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形21EDCA BD CAE DCAHFC .直角三角形D .不等边三角形14.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm15.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 三、解答题16.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD 的夹角是多少度?17.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,求证:BC=3AD.18.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H , ①求证:△BCE ≌△ACD ; ②求证:CF=CH ;③判断△CFH 的形状并说明理由.。

相关文档
最新文档