任务3晶闸管及其应用

合集下载

晶闸管的原理与应用pdf

晶闸管的原理与应用pdf

晶闸管的原理与应用一、晶闸管的基本原理晶闸管是一种电子器件,具有可控硅的特点。

其基本原理如下:1.PN结–晶闸管由P型半导体、N型半导体和P型半导体三层特殊结构构成。

–P型半导体具有正电荷载流子,N型半导体具有负电荷载流子,形成PN结。

2.开关特性–当PN结两端没有电压时,晶闸管处于关断状态。

–当PN结两端有正向电压时,晶闸管依然处于关断状态。

–当PN结两端有反向电压时,当反向电压超过某一临界值时,晶闸管会被击穿,进入导通状态。

3.可控性–通过控制晶闸管的控制电极,可以改变晶闸管的导通时间和导通电流。

–当控制电极施加正脉冲信号时,晶闸管进入导通状态,电流流过。

–当控制电极施加负脉冲信号时,晶闸管恢复关断状态,电流停止流动。

二、晶闸管的应用晶闸管由于其独特的特性,在电力控制、电动机控制和功率供应等领域有着广泛的应用。

1.电力控制–晶闸管可以控制电流的大小和方向,广泛应用于电力变频调速系统中。

–通过调节晶闸管的导通时间和导通电流,可以实现对电力系统的精确控制。

2.电动机控制–晶闸管可以控制电动机的启动、停止和转速等参数。

–通过控制晶闸管的导通时间和导通电流,可以实现对电动机的精确控制。

3.功率供应–晶闸管具有高功率控制能力,适用于高功率负载。

–晶闸管广泛应用于电力系统的功率供应、工业控制和电压变换等领域。

4.电流调制–晶闸管可通过不同的控制方式,实现电流的调制。

–通过改变晶闸管的导通时间和导通电流,可以实现正弦波、脉冲及方波等各种电流波形的调制。

三、晶闸管的优势与发展晶闸管作为一种可控硅器件,具有以下优势:•高可靠性:晶闸管的寿命长,无机械动部件,可靠性高。

•调制能力强:晶闸管能够实现多种电流波形的调制。

•功率控制精度高:晶闸管能够实现对功率的精确控制。

•体积小:晶闸管体积小,便于集成和安装。

晶闸管在过去几十年里得到了快速发展,随着科技的进步,有望在以下领域实现更多突破:1.新能源–晶闸管在风能、太阳能等新能源的开发和利用中有着广阔的应用前景。

晶闸管的原理及应用

晶闸管的原理及应用

晶闸管的原理及应用1. 晶闸管的原理晶闸管是一种半导体器件,其工作原理基于PN结的导通与截止特性。

晶闸管由四层PNPN结构组成,其中的P1-N1和N2-P2结称为控制结,而P2-N2结称为工作结。

晶闸管的工作原理可以分为两个状态:触发和导通。

1.1 触发状态在触发状态下,当控制结接受到一个正向脉冲电压时,会导致控制结内的正电荷的积累,从而降低控制结内的屏蔽电压。

一旦屏蔽电压降低到一定程度,晶闸管会进入导通状态。

1.2 导通状态在导通状态下,晶闸管的P2-N2结中的准电子可以移动到N2区域,将晶闸管的内部转变为一个低阻抗通路。

此时,只要存在足够的电流注入,晶闸管就能保持导通状态。

2. 晶闸管的应用晶闸管作为一种重要的半导体器件,广泛应用于各种电子电路中。

以下是晶闸管应用的一些常见场景:•电能调节:晶闸管可用于控制大功率电流,实现电力传输的调节,例如在工厂中用于控制电机的启停和速度调节。

•直流电动机驱动:晶闸管可以作为直流电动机的电流控制装置,通过控制晶闸管的导通时间和关断时间,可以调节直流电动机的转速。

•交流电源控制:晶闸管可用于交流电源的控制,例如用于电子变压器的调节。

•逆变器:晶闸管逆变器是将直流电压转换为交流电压的关键组成部分,广泛应用于太阳能和风能发电等领域。

•发光器件驱动:晶闸管可以用于驱动各种发光器件,如LED等。

•温度控制:通过控制晶闸管的导通时间和关断时间,可以实现温度控制,例如烤箱和电熨斗等家电产品中的温度控制。

3. 总结晶闸管是一种重要的半导体器件,其工作原理基于PN结的导通与截止特性。

它在电力调节、直流电机驱动、交流电源控制、逆变器、发光器件驱动和温度控制等领域都有重要的应用。

通过掌握晶闸管的原理及应用,可以更好地理解和应用该器件,实现各种电子电路的设计与控制。

以上就是晶闸管的原理及应用的介绍。

希望对你有所帮助!。

《晶闸管及其应用》课件

《晶闸管及其应用》课件
感谢观看
《晶闸管及其应用》PPT课件
目 录
• 晶闸管简介 • 晶闸管类型与参数 • 晶闸管应用 • 晶闸管电路设计 • 晶闸管使用注意事项
01
晶闸管简介
晶闸管定义
总结词
晶闸管是一种大功率半导体器件,具有单向导电性。
详细描述
晶闸管是一种由半导体材料制成的电子器件,其工作原理基于半导体的PN结。 它具有单向导电性,即只允许电流在一个方向上流动,而在另一个方向上则截 止。
详细描述
晶闸管作为电力电子器件,在电力系统、工业自动化、新能源等领域发挥着重要作用。通过整流技术,可以将交 流电转换为直流电,满足各种电子设备和电器的需求。逆变技术则将直流电转换为交流电,用于驱动电机、照明 等设备。此外,晶闸管还可以用于开关电路,实现电源的通断控制。
电机控制应用
总结词
晶闸管在电机控制领域应用广泛,可以实现电机的调速和正反转控制。
斩波电路设计
总结词
斩波电路是利用晶闸管快速导通和关断特性 ,将直流电转换为脉冲信号的电路。
详细描述
斩波电路设计主要考虑晶闸管的触发角、关 断角和脉冲宽度等因素,以实现斩波效果。 斩波电路常用于调节电源的输出电压或电流 ,以达到节能或调节系统性能的目的。
05
晶闸管使用注意事项
安全操作注意事项
01 操作前应穿戴好防护用具,确保工作区域 安全。
晶闸管工作原理
总结词
晶闸管由P1、N1、P2、N2四个层构成,利用内部电荷的移 动实现电流的控制。
详细描述
晶闸管由P型半导体和N型半导体交错排列形成P1、N1、P2 、N2四个层。当晶闸管两端加上正向电压时,空穴和电子分 别在P1层和N1层中形成,并形成电流。当晶闸管两端加上反 向电压时,空穴和电子在P2层和N2层中形成,但由于内部电 荷的移动被阻止,电流无法通过。

晶闸管的作用及其工作原理分析

晶闸管的作用及其工作原理分析

变频调速
晶闸管可用于变频调速电路中,控制交流电动机 的转速。
保护电路
晶闸管可用于保护电路,如过流保护、过压保护。
晶闸管的工作原理
PN结
晶闸管由PN结组成,其中正向扫 描时,PN结将直接导通,产生一 个电流。
控制极
通过控制极控制PN结的电流,控 制晶闸管的导通和截止。
触发器
通过触发器向控制电极施加信号, 控制晶闸管的导通时间。
交通运输
发光二极管广泛应用于车灯、 交通信号灯等方面。
晶闸管的优缺点
优点
可控性强,导通电流大,占用空间小,有良好的 温度特性。
缺点
电磁干扰强,安全性能较差,半导体芯片易受静 电损伤。
发展趋势和展望
智能家居
晶闸管将在智能家居领域中继续 得到广泛应用。
可再生能源
随着可再生能源的广泛应用,晶 闸管在变频调速电路中将越来越 重要。
电动汽车
晶闸管在电动汽车控制电路中的 应用也将得到进一步扩展。
晶闸管的作用及其工作原 理分析
晶闸管是一种电子元器件,广泛应用于各种电子电路中。它具有特殊的开关 功能,可以控制电流的方向和大小。本次演讲将深入探讨晶闸管的工作原理 和应用场景。
晶闸管的作用
电流控制
晶闸管可以控制电流的方向和大小,常用于交流 电路的控制。
电压控制
晶闸管可用于电源电路控制,防止电压过高或过 低。
晶闸管符号
晶闸管的符号是两个箭头,表示 PN结是可控的,可通过控制电极 控制导通。

晶闸管的组成部分
1 PN结
由P型半导体和N型半导体组成,用于产生电 流。
2 控制电极
用于控制PN结的电流,控制晶闸管的导通和 截止。
3 触发器

晶闸管的工作原理与应用

晶闸管的工作原理与应用

晶闸管的工作原理与应用晶闸管,又称为可控硅器件,是一种半导体器件,通过控制电流的输入使其在导通和关断之间切换,从而实现电能的控制和调节。

下面将详细介绍晶闸管的工作原理和应用。

晶闸管是由PNP型晶体管和PNP型二极管组成的四层结构。

它具有三个电极,分别是阳极(A端)、阴极(K端)和控制极(G端)。

晶闸管的工作原理可概括为以下五个阶段:1.断电状态:当外电源施加在晶闸管的阳极和阴极之间时,控制极无电压,晶闸管处于关断状态。

2.触发状态:当控制极施加一个正向电压时,晶闸管开始被触发,进入导通状态。

在此状态下,晶闸管的阳极和阴极之间的电流(也称为主电流)开始流动。

3.工作状态:一旦晶闸管被触发,晶闸管将持续一直到主电流下降到零。

即使控制极上施加的电压被移除或降低,晶闸管仍然保持导通。

4.关断状态:当主电流下降到零时,晶闸管将自动关断。

在此状态下,晶闸管的阻断电压(也称为封闭电压)为控制极和阳极之间的电压。

5.关断恢复状态:一旦晶闸管被关断,即使在问题电压下晶闸管的条件保持一段时间,它仍然不会被重新触发。

要重新触发晶闸管,需要重新施加电压来打开控制极。

晶闸管的应用:晶闸管具有较高的电流和电压承受能力,以及快速的开关速度,因此在各种电子和电力电路中得到广泛应用。

以下是晶闸管的主要应用领域:1.调光控制:晶闸管可以通过调整导通角来实现灯的亮度调节,用于家庭照明、道路照明等领域。

2.功率控制:晶闸管可以用于电力系统中的负载控制,如电动机调速、电阻炉加热控制等。

3.电源开关:晶闸管可以用于交流电源的整流和开关过程,实现直流电源的输出。

4.频率变换:晶闸管可以用于交流调制,实现交流电的频率变换。

5.电压调节:晶闸管可以作为稳压器,控制输出电压来保护负载设备。

6.电力因数校正:晶闸管可以用于改善电力系统的功率因数,提高系统效率。

7.电流开关:晶闸管可以用于过电流保护,当电流超过预设值时,晶闸管将自动关断以保护电路和设备。

晶闸管的用途

晶闸管的用途

晶闸管的用途晶闸管是一种半导体器件,由于其独特的电流控制特性,被广泛应用于电力电子领域。

晶闸管的用途多种多样,包括电力控制、电压调节、频率变换等。

下面将详细介绍晶闸管在不同领域的应用。

一、电力控制领域晶闸管在电力控制领域起到了重要的作用。

在交流电路中,晶闸管可以实现对电流的控制,从而实现对电器设备的开关控制。

例如,在家庭中,我们可以利用晶闸管控制灯光的亮灭,实现对照明的控制。

此外,晶闸管还可以用于电动机的启动和停止,实现对电动机的控制。

晶闸管具有快速开关速度和较大的电流承载能力,因此非常适合用于电力控制。

二、电压调节领域晶闸管还可以用于电压调节。

在电力系统中,晶闸管可以通过控制通断时间比例来调节电压的大小。

例如,晶闸管可以用于调节电动车的电池电压,从而控制电动车的速度。

此外,晶闸管还可以用于调整电力系统中的电压波形,实现对电力系统的稳定控制。

三、频率变换领域晶闸管还可以用于频率变换。

在交流电路中,晶闸管可以通过控制通断时间比例来改变电流的频率。

例如,晶闸管可以用于变频器中,实现对电机的转速调节。

此外,晶闸管还可以用于交流输电线路中的换流器,将交流电转换为直流电,以实现电力的长距离传输。

四、其他领域除了上述应用领域,晶闸管还有其他一些应用。

例如,在电焊领域,晶闸管可以用于电焊机的控制,实现对电流的调节。

在电动汽车领域,晶闸管可以用于电动汽车的充电系统,实现对电池充电的控制。

此外,晶闸管还可以用于电力系统中的保护装置,如过电流保护、过压保护等。

总结起来,晶闸管的用途十分广泛,涵盖了电力控制、电压调节、频率变换等多个领域。

晶闸管具有快速开关速度和较大的电流承载能力,因此在电力电子领域具有重要的地位。

随着科技的不断发展,晶闸管的应用还将不断扩展,为电力电子领域的发展带来更多可能性。

晶闸管工作的原理及应用

晶闸管工作的原理及应用

晶闸管工作的原理及应用1. 晶闸管的基本原理晶闸管是一种半导体器件,通过控制晶闸管的阀值电压和触发电流,可以实现对电流的控制。

它具有双向导电性和开关特性,广泛应用于电力控制、调速、变频等领域。

1.1 结构晶闸管由四个半导体材料P-N-P-N组成,形成三个P-N结。

其中,P-N结1和P-N结3称为大型P-N结,P-N结2称为小型P-N结。

晶闸管的主要结构包括P 型层、N型层、门极、触发极和阳极。

1.2 工作原理晶闸管的工作原理可以概括为以下几个过程:1.断态:当晶闸管的阳极电压低于阀值电压时,晶闸管处于断态,没有电流通过。

此时,晶闸管相当于两个二极管反向串联。

2.导通态:当晶闸管的阳极电压高于阀值电压,并且在控制极上施加了足够的正向触发电流时,晶闸管会进入导通态。

此时,晶闸管相当于一个低阻抗导通通道,允许电流从阳极流向阴极。

3.关断态:当晶闸管进入导通态,在没有外部触发信号的情况下,晶闸管会一直保持导通。

要将晶闸管从导通态转变为断态,需要在控制极上施加一个负向脉冲,称为关断触发。

1.3 特性晶闸管具有以下特点:•双向导电性:晶闸管可以实现正向和反向的导通,电流可以在两个方向上流动。

•可控性:通过调整控制极上的触发电流和门极电压,可以实现对晶闸管的导通和关断进行精确控制。

•耐压能力:晶闸管可以承受较高电压,适用于高压、大功率的电力控制系统。

2. 晶闸管的应用领域晶闸管由于其独特的工作原理和特性,在许多领域具有广泛的应用。

2.1 电力控制晶闸管被广泛应用于电力传输和分配系统中。

通过控制晶闸管的导通和关断,可以实现对电力的调控和分配,提高电网的稳定性和效率。

在电力系统中,晶闸管常用于交流调光、电炉控制、电力变换和电压调节等方面。

2.2 调速和变频晶闸管可以用于电机的调速和变频控制。

通过控制晶闸管的导通时间和关断时间,可以实现对电机转速的调节。

这种调速方式简单可靠,可以满足不同负载下的转速要求。

2.3 电子制冷晶闸管在电子制冷领域也得到了广泛应用。

晶闸管的用途

晶闸管的用途

晶闸管的用途1. 什么是晶闸管晶闸管(Thyristor)是一种具有控制特性的半导体器件,由四个层叠的PNPN结构组成。

它能够实现电流的整流、开关和控制,广泛应用于各种电力电子设备中。

2. 晶闸管的工作原理晶闸管的工作原理基于PN结的导电特性和PNPN结的开关特性。

当正向电压施加在晶闸管的控制端(称为门极)时,PNPN结会导通,形成一个低电阻通路,电流可以通过。

当反向电压施加在门极时,PNPN结会截止,晶闸管处于高阻态。

3. 晶闸管的用途晶闸管由于其独特的控制特性,被广泛应用于各个领域,以下是晶闸管的几个主要用途:3.1 电力控制晶闸管可以实现电流的整流和控制,因此在电力系统中有着重要的应用。

它可以用于交流电源的整流,将交流电转换为直流电,以供各类电子设备使用。

此外,晶闸管还可以用于电力系统的调整和控制,例如用于电力调频、电力调压等。

3.2 电动机控制晶闸管可以用于电动机的启动、制动和调速控制。

通过控制晶闸管的导通和截止,可以实现对电动机的精确控制。

晶闸管的调速控制可以使电动机在不同的负载情况下稳定运行,并且具有较高的效率和精度。

3.3 光控制和光通信晶闸管具有较高的开关速度和可控性能,因此在光控制和光通信领域有着广泛的应用。

晶闸管可以用于光控开关、光调制器等光学设备中,实现对光信号的精确控制和调节。

3.4 高压直流输电晶闸管可以用于高压直流输电系统中。

高压直流输电系统能够实现远距离的电力传输,并且具有较低的能量损耗。

晶闸管作为高压直流输电系统的关键元件之一,可以实现对输电系统的稳定控制和调节。

3.5 频率变换器晶闸管可以用于频率变换器中,将电源的频率转换为需要的频率。

频率变换器广泛应用于电力系统、电机驱动和工业自动化等领域,实现对电力和设备的精确控制。

4. 晶闸管的优势和发展趋势晶闸管作为一种重要的电力电子器件,具有以下优势:•高可靠性:晶闸管具有较高的工作可靠性和长寿命,能够在恶劣的工作环境下稳定工作。

晶闸管及应用

晶闸管及应用
新艺的发展01纳米工艺
通过纳米工艺减小晶闸管的尺寸,提高其开关速 度和集成度,同时降低能耗。
02
薄膜工艺
采用薄膜工艺制备晶闸管,可以实现更高的频率 和更低的导通电阻。
应用领域的拓展
01 新能源汽车
随着新能源汽车的快速发展,晶闸管在电机控制 器、充电桩等领域的应用将进一步扩大。
02 智能电网
智能电网的建设需要大量的电力电子设备,晶闸 管作为其中重要组成部分,将在无功补偿、有功 滤波等领域发挥重要作用。
03 工业自动化
工业自动化领域对电力电子设备的需求持续增长, 晶闸管将在电机驱动、变频器等领域得到更广泛 的应用。
THANKS
感谢观看
正确连接
在连接晶闸管时,应确保 其正确接入电路,避免出 现极性接反、电压错接等 情况。
散热措施
对于大功率晶闸管,应采 取有效的散热措施,以防 止过热引起设备性能下降 或损坏。
维护与保养
检查外观
定期检查晶闸管的外观,确保其无破损、 裂纹等现象。
更换损坏的元件
如发现晶闸管损坏,应及时更换以保证电 路的正常运行。
详细描述
晶闸管的开关速度较快,可以在数微 秒甚至纳秒级别内完成通断转换。这 使得晶闸管在电动机控制、自动控制 系统等领域中具有广泛的应用。
04
晶闸管的选择与使用
选择标准
电压等级
根据实际电路的电压需求, 选择能够承受相应电压的 晶闸管。
电流容量
根据电路的电流需求,选 择具有足够电流容量的晶 闸管。
晶闸管及应用
目录
• 晶闸管简介 • 晶闸管的应用 • 晶闸管的特性 • 晶闸管的选择与使用 • 晶闸管的未来发展
01
晶闸管简介
晶闸管定义

晶闸管的作用

晶闸管的作用

晶闸管的作用
晶闸管(thyristor)是一种半导体器件,具有正向导通和反向截止功能。

它广泛应用于电力控制和电子电路中,其作用主要有以下几个方面:
1. 电能控制:晶闸管可以控制电能的通断。

在电力系统中,晶闸管可作为电源的开关,通过控制其导通和截止,实现电能的控制和调节,如电压调节、功率控制等。

另外,晶闸管还可用于实现直流电的交流变换,将直流电能转化为交流电能。

2. 电压逆变:晶闸管能够将直流电源的电压变换为交流电源的电压。

其原理是通过交流电源对晶闸管进行周期性的触发,使其在正半周期内导通,而在负半周期内截止,从而实现电压的逆变。

这种特性使晶闸管在逆变器(inverter)中得到广泛应用,如逆变焊机、太阳能逆变器等,能够将直流能源转换为交流能源。

3. 直流电源的变压:晶闸管可用于控制直流电源的变压。

通过控制晶闸管的开通角度和关断角度,可以控制直流电源提供给负载的电压大小和稳定性,实现直流电源的稳压变压功能。

这种应用常见于直流调速、直流电源调整等领域。

4. 电流控制:晶闸管可实现对电流的控制。

通过触发晶闸管的管脚,控制其开通,从而实现对电流的控制。

在电力系统中,晶闸管可以用于调整、控制电源对负载的电流,以实现对负载的保护和控制。

总之,晶闸管作为一种重要的半导体器件,在电力控制和电子电路中具有重要的作用。

它可以用于电能的控制和调节,实现电压逆变和变压、电流控制等功能,广泛应用于电力系统中的电力控制、电力调节、变频调速等领域,同时也应用于电子电路中的开关、电流控制等方面。

其独特的特性和广泛的应用领域,使得晶闸管在现代电力和电子领域中得到了广泛的应用和推广。

晶闸管的用途

晶闸管的用途

晶闸管的用途
晶闸管是一种电子元件,也被称为可控硅。

它是一种半导体器件,可以控制电流的流动。

晶闸管的主要用途是在电力电子设备中,如变频器、电动机控制器、电焊机、电源等方面。

此外,晶闸管还可以用于照明、电磁炉、电热水器、电动汽车等领域。

晶闸管的主要特点是可以控制电流的流动,因此可以用于控制电器的开关。

晶闸管的控制方式有两种:一种是触发控制,另一种是门控控制。

触发控制是通过外部电压或电流来触发晶闸管的导通,而门控控制是通过控制晶闸管的门极电压来控制晶闸管的导通。

晶闸管的优点是具有高效率、可靠性和长寿命。

它可以承受高电压和高电流,因此可以用于高功率电子设备。

此外,晶闸管的响应速度很快,可以在微秒级别内完成开关操作。

这使得晶闸管在高速开关电路中非常有用。

晶闸管的应用范围非常广泛。

在电力电子设备中,晶闸管可以用于变频器、电动机控制器、电焊机、电源等方面。

在照明领域,晶闸管可以用于调光器和灯光控制器。

在电磁炉和电热水器中,晶闸管可以用于控制加热元件的电流。

在电动汽车中,晶闸管可以用于电动机控制器。

总之,晶闸管是一种非常有用的电子元件,具有高效率、可靠性和长
寿命等优点。

它可以用于控制电器的开关,广泛应用于电力电子设备、照明、电磁炉、电热水器、电动汽车等领域。

随着科技的不断进步,
晶闸管的应用范围将会越来越广泛,为人们的生活带来更多的便利和
舒适。

晶闸管及应用PPT课件

晶闸管及应用PPT课件
当控制极加正向电压,IG产生,特性曲线左移,正向转折 电压降低, 元件容易导通。 IG越大,UBO越低。
可控整流电路
半波可控整流电路
半控桥式整流电路
可控
半波可控整流电路
特点 1)以晶闸管代替半波整流电路中的二极管 2)晶闸管与RL串联,电路电流为io,控制极施加 周期性正向脉冲电压uG
当t=0时, 电压为0,uG为0,晶闸管电流io=0
第二基极与发射极之间的电阻为RB2,数值恒定。
发射结具有单向导电性,以二极管D表示 等效电路
在两个基极之间加正向电压UBB
伏安特性曲线
当发射极电压为0:UA=RB1×UBB/(RB1+RB2)= UBB
称分压系数(分压比),一般为0.3~0.9,是单结晶体管 的重要参数
提高发射极电压UE:当UE<UA,PN结反偏,IE几乎为0 RB1呈高阻,单结晶体管截止。
尖脉冲出现的时间可通过改变 R 的值来调节
R大,电容充电慢, 到达uP的时间长,脉冲出现时间晚 R小,电容充电快, 到达uP的时间短,脉冲出现时间早
移相
单结晶体管振荡电路可用于半控整流电路中,构成触发电路。
主电路:单相桥式半控整流电路 触发电路:由单结晶体管振荡器组成
同步
变压器Tr:
为将触发电路产生的尖 脉冲按一定周期准时送 至主电路,使晶闸管按 周期导通,必须使晶闸 管阳极电压起始时刻与 电容器充电起始时刻保 持一致。

温度补偿电阻R2
200~600
R2的作用是补偿温度变化对单结晶体管峰值电压UP的影响 UP=UBB+UD 当温度升高,结电压UD略有减小,而RBB 随温度升高而略有增大,串联R2以后,若RBB增大,按 照分压原理,UBB升高,补偿UD的 减小,使UP稳定。

晶闸管的原理与应用

晶闸管的原理与应用

晶闸管的原理与应用1. 晶闸管的原理晶闸管(Thyristor)是一种具有双向导通特性的电子器件,也是一种控制型元件,它可用作直流电流开关或交流电源的控制元件。

晶闸管的基本结构是由四个PN结构的半导体晶体组成,主要由P型层、N型层和P型基区组成。

1.1 四层结构晶闸管的结构由三个P-NPN晶体管组成,在垂直方向上连接起来。

这三个晶体管分别处于自关断状态、导通状态和关断状态,组成了一个四层结构,也称为PNPN结构。

1.2 半控型元件晶闸管具有半控型的特点,即只有当注入少量电流到控制端时,才能够使晶闸管最终导通。

当控制端的电流达到一定的阈值电流后,晶闸管将一直保持导通状态,直到主电路的电流降到零。

1.3 控制特性晶闸管的导通和关断可以通过控制电流来实现。

当控制端电流大于阈值电流时,晶闸管处于导通状态;当控制端电流小于阈值电流时,晶闸管处于关断状态。

2. 晶闸管的应用2.1 恒流源晶闸管可以作为恒流源使用,通过控制晶闸管的导通时间来控制输出电流的大小。

这种应用广泛用于LED照明、医疗设备等需要稳定电流供应的场合。

2.2 交流电压控制晶闸管可以控制交流电压的大小和相位。

通过控制导通角度,可以实现调节交流电压的有效值,从而达到调节功率的目的。

这种应用广泛用于电动机的起动和控制、电炉的温度控制等方面。

2.3 逆变器和变频器晶闸管可以用于逆变器和变频器中,将直流电转换为交流电,并可以控制交流电的频率和相位,实现对电力的有效控制和调节。

逆变器和变频器广泛应用于新能源发电、UPS电源、电动车充电器等领域。

2.4 多级输电系统晶闸管可以用于多级输电系统中,控制交流电的传输和分配。

通过控制晶闸管的导通和关断,可以实现电力系统的高效稳定运行,提高电能传输的效果。

这种应用广泛用于电力系统和电网的调节和控制。

3. 总结晶闸管作为一种重要的电子器件,具有双向导通特性和控制特性,在多个领域都有广泛的应用。

通过控制晶闸管的导通和关断,可以实现对电流和电压的控制,从而实现对电力的高效利用。

晶闸管的用途

晶闸管的用途

晶闸管的用途晶闸管是一种常用的半导体器件,具有广泛的应用领域。

它能够控制大电流和高电压,被广泛应用于电子设备、电力系统、工业自动化等领域。

本文将从多个角度介绍晶闸管的用途。

一、电力系统中的应用晶闸管在电力系统中具有重要的作用。

它可以用作开关,用于控制电流的通断。

在直流输电系统中,晶闸管可以用于调节电流,保护电力设备。

在交流输电系统中,晶闸管则可以用于实现功率控制,提高电能的利用效率。

此外,晶闸管还可以用于电力系统的电压调节、无功补偿等方面,提高电力系统的稳定性和可靠性。

二、工业自动化中的应用在工业自动化领域,晶闸管被广泛应用于电机的控制。

它可以实现电机的启动、停止、调速等功能。

晶闸管的开关速度快,响应时间短,能够精确地控制电机的运行状态。

此外,晶闸管还可以用于工业设备的电能调节,提高生产效率和质量。

晶闸管具有体积小、功率密度高、可靠性好等特点,适用于各种工业环境。

三、电子设备中的应用晶闸管在电子设备中也有重要的应用。

它可以用于电源的开关、稳压器的控制、电路的保护等方面。

晶闸管可以实现电流的快速开关,保护电子设备免受过电流的损害。

此外,晶闸管还可以用于电子设备的电压调节和功率控制,提高设备的性能和稳定性。

四、家电产品中的应用晶闸管在家电产品中也有广泛的应用。

例如,晶闸管可以用于灯光调光器的控制,实现灯光的亮度调节。

晶闸管还可以用于电炉、电磁炉等家电产品的温度控制,提高产品的使用舒适度和安全性。

此外,晶闸管还可以用于电动工具、电动车辆等产品的电路控制,提高产品的性能和可靠性。

晶闸管在电力系统、工业自动化、电子设备和家电产品等领域具有广泛的应用。

它能够实现电流和电压的精确控制,提高系统的稳定性和可靠性。

随着科技的不断进步,晶闸管的应用领域还将不断扩大,为人类的生活和工作带来更多的便利和效益。

晶闸管的应用场景

晶闸管的应用场景

晶闸管的应用场景晶闸管(Thyristor)是一种半导体器件,具有开关特性和放大特性,广泛应用于各个领域。

本文将介绍晶闸管在不同场景下的应用。

1. 电力控制领域晶闸管在电力控制领域的应用是最为广泛和重要的。

它可以用于电压和电流的控制,实现对电力系统的稳定运行。

在交流电路中,晶闸管可以用作开关,实现对电流的调节。

例如,在交流电机的启动过程中,通过控制晶闸管的触发时机和导通时间,可以实现电机的平稳起动。

此外,晶闸管还可以用于电压调节器、电力调光器等设备中,实现对电力的精确控制。

2. 变频调速晶闸管在变频调速领域也有广泛的应用。

变频调速是指通过改变电机的供电频率,来实现电机转速的调节。

晶闸管作为电力控制元件,可以实现对电机供电频率的调整。

在工业生产中,通过变频调速可以实现对电机转速的精确控制,提高生产效率和产品质量。

同时,变频调速还可以节约能源,降低生产成本。

3. 电子设备领域晶闸管在电子设备领域也有重要的应用。

例如,在电源电路中,晶闸管可以用来实现过载保护和短路保护。

当电路中出现过载或短路时,晶闸管可以迅速断开电路,保护其他电子元件的安全运行。

此外,晶闸管还可以用于电源的开关控制,实现对电路的开启和关闭。

4. 光控领域晶闸管在光控领域的应用也非常广泛。

晶闸管可以用于光控开关、光控调光等设备中。

例如,在照明系统中,通过晶闸管的控制,可以实现对灯光的亮度调节和开关控制。

此外,晶闸管还可以用于红外传感器、光电耦合器等光控设备中,实现对光信号的检测和控制。

5. 高压直流输电晶闸管在高压直流输电领域也有重要的应用。

高压直流输电是指将交流电转换为直流电,通过输电线路进行长距离传输。

在高压直流输电系统中,晶闸管可以用来实现电流的可控整流和逆变。

通过晶闸管的控制,可以实现高压直流输电系统的稳定运行。

晶闸管在电力控制、变频调速、电子设备、光控和高压直流输电等领域都有广泛的应用。

随着科技的不断发展,晶闸管的应用将会越来越广泛,为各个领域的发展和进步提供强大的支持和推动力量。

晶闸管及其应用

晶闸管及其应用

晶闸管及其应用 无线电小组的同学们完成了晶闸管交流电压调压器的制作与调试。

接着,老师对大家提出的有关晶?? 闸管的特性及应用方面的问题进行了答疑,并与同学们一起展开了讨论。

学生:老师,我们是第一次使用晶闸管,对它还不太熟悉,您能不能给我们简单说说晶闸管的结构特点呢? 老师:晶闸管又叫可控硅。

自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。

今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导 体引出的电极叫阴极K。

从晶闸管的电路符号可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。

同学:晶闸管的主要工作特性是什么呢? 老师:为了能够直观地认识晶闸管的工作特性,大家先看这块示教板。

晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。

注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。

晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。

现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。

这个演示实验给了我们什么启发呢? 同学:这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。

晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。

老师:晶闸管的特点是“一触即发”。

但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。

晶闸管及其应用

晶闸管及其应用

晶闸管及其应用01晶闸管的定义晶闸管(Thyristor)是一种开关元件,能在高电压、大电流条件下工作,并且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中,是典型的小电流控制大电流的设备。

1957年,美国通用电器公司开发出世界上第一个晶闸管产品,并于1958年使其商业化。

晶闸管(Thyristor)是晶体闸流管的简称,又被称做可控硅整流器,以前被简称为可控硅;1957年美国通用电气公司开发出世界上第一款晶闸管产品,并于1958年将其商业化;晶闸管是PNPN四层半导体结构,它有三个极:阳极,阴极和门极;晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

晶闸管导通条件为:加正向电压且门极有触发电流;其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。

它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。

它是由一个P-N-P-N四层 (4 layers) 半导体构成的,中间形成了三个PN结。

02晶闸管的工作原理晶闸管在工作过程中,它的阳极(A)和阴极(K)与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。

晶闸管为半控型电力电子器件,它的工作条件如下:1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。

2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。

这时晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性。

3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。

门极只起触发作用。

4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管包括普通晶闸管、双向晶闸管、 速晶闸 管、可关断晶闸管、光控晶闸管和逆导晶闸管等。由 于普通晶闸管应用广泛,故本章着重介绍普通晶闸管。
应用领域:
整流(交流→直流) 逆变(直流 →交流) 变频(交流 →交流) 斩波(直流 →直流)
1.1 晶闸管结构
晶闸管是具有三个 PN 结的四层结构 , 其外形、 结构及符号如图。
(4) 变频器。 把某一频率的交流电变换成另一 频率的交流电的设备称为变频器。例如 , 晶闸管中 频电源、 停电电源( UPS )、异步电动机变频调 速中均含有变频器。
(5) 无触点功率开关。 用晶闸管可组成无触点功 率开关取代接触器、继电器,适用于操作频繁的场合。 例如,可用于控制电动机的正反转和防爆、 防火的 场合。
晶闸管(可控硅SCR)
晶闸管又称可控硅,是硅晶体闸流管的简称。 是一种大功率半导体器件,出现于 70年代。它的出 现使半导体器件由弱电领域扩展到强电领域。利用 其整流可控特性可方便地对大功率电源进行控制和 变换。它具有体积小、重量轻、耐压高、容量大、 无噪声、寿命长、容量大(正向平均电流达千安、 正向耐压达数千伏)。
4.交流调压电路
在电源电压正半 周,ωt=α 时,加控 制电压,晶闸管导 通;电源电压为零 时截止;在电源电 压负半周, ωt=π +α时,加控制电 压,晶闸管导 通……
A2 ~
uo
O
?
α
α
A1

G
uo

2?
?t
α
2.3可关断晶闸管及其直流调压
1.特点:
可关断晶闸管的触发导通与普通晶闸管相同。
不同之处在于:普通晶闸管在导通后,控制极不再
cosα 2
0.9U 2
IO
?
UO RL
2.2双向晶闸管及其交流调压
双向晶闸管和普通晶闸管一样,也有塑料封装
型、螺栓型和平板压接型等几种不同的结构。塑料
封装型元件的电流容量只有几安培,目前,台灯调
光、家用风扇调速多用此种形式,螺栓式电流容量
为几十安培,大功率双向晶闸管元件都是平板压接
型结构。
1.特点: 相当于两个晶闸管反向并
晶闸管也像半导体二极管那样具有单向导电性, 但它的导通时间是可控的(可控硅),主要用于 整 流、逆变、调压及开关 等方面。它有普通型、双向 型和可关断型等。 使用维护简单、控制灵敏等优点, 所以在生产上得到了广泛的应用。
晶闸管的主要用途有: (1) 可控整流。 把交流电变换为大小可调的直流
电称为可控整流。例如,直流电动机调压调速,电 解、电镀电源均可采用可控整流供电。

EA

S
EG
-+
(3)晶闸管导通时,若 uA>0, uG≤0,晶闸管仍然 导通;
(4)晶闸管导通后,若 uA≤0,或者阳极 iA小于某 一很小的电流 IH(称为维持电流)时,晶闸管由导 通变为截止。
晶闸管导通条件
1. 晶闸管阳极电路 (阳极与阴极之间 )施加正向 电压。
2. 晶闸管控制电路 (控制极与阴极之间 )加正向 电压或正向脉冲 (正向触发电压 )。
a
+ u1
+
u2

T1
T2 RL
++uo

_
D1
D2 –
b
控制极上加上控
制电压时,它才 触发电压uG用尖脉冲电压,由
开始导通。
专门电路提供。可通过改变 α来调
节输出直流电压 UO的大小。
3.工作波形 u2
uO为一个 2?O
π+α
α?
?t
不完整的全 uG
波脉动电压,
?t
它相当于从 O
完整的脉动
u O
(2) 有源逆变。 有源逆变是指把直流电变换成与 电网同频率的交流电,并将电能返送给交流电源。例 如, 目前采用的高压输电工程,将三相交流电先变换 成高压直流电,再进行远距离的输送,到目的地后, 再利用有源逆变技术把直流电变成与当地电网同频率 的交流电供给用户。
(3) 交流调压。 交流调压是指把不变的交流电压 变换成大小可调的交流电压。例如,用于灯光控制、 温度控制及交流电动机的调压调速。
电压上切去
?t
了α前的一块。
αθ
α 越大,uO平均值越小。 α为在正向阳极作用下开始导通的 角度,称为控制角。 α =0即为交流开关。
θ为晶闸管在一个周期内导通的范围,称为 导通角。
4.输出电压及电流的平均值
? U O
? U ο
?
?
1π 1ππα
πα
u2 d? t
2U 2 sin
?
t
d(?
t)
?
1?
起作用,只有在阳极电压为零时,晶闸管才会关断
(截止)。而可关断晶闸管
在uA>0, uG>0时,由截止变为导通
A
,而在uA>0, uG<0时,即加负脉冲
控制电压时,晶闸管由由导通变为截
止。
G
2.符号:
K
3.直流调压(直流斩波):
U为直流电压,晶闸

管的阳极电压始终大于
U
零,当 t=0时,加上正
向控制电压,晶闸管导
A2 第二电极
联,两者共用一个控制极。
控制极
2.符号:
A1 G
通过控制电压的控制可实现双向导通。 第一电极
3.工作原理
UA1>UA2时,控制极相对于 A2加
A2
正脉冲,
晶闸管正向导通,电流从 A1流 向A2。
A1 G
UA2>UA1时,控制极相对于 A2加负脉冲,
晶闸管反向导通,电流从 A2流向A1。
晶闸管导通后,控制极便失去作用。 依靠正反 馈,晶闸管仍可维持导通状态。
晶闸管关断条件
1. 必须使可控硅阳极电流减小 ,直到正反馈效应 不能维持。
2. 将阳极电源断开或者在晶闸管的阳极和阴极 间加反相电压。
晶闸管应用
2.1 可控整流
在实际生产中,很多设备需要大小可调的直流电,
例如, 电解、电镀、电焊等设备。由晶闸管组成的
K
K
G
(d)
A
A
+
A
P1
P
IA
P1 N1
G
N1 P2 G
N P
N P
P2
G
IG
T1 N1 P2 T2
N2
N
N2 IK
_K
K K
晶闸管相当于 PNP和NPN型两个晶体管的组合
1.2 晶闸管工作原理
A
β 1β 2iG
T1
iG iB 2
G
EG
R
β 2iG
T2
EA
+ _
K EA > 0、EG > 0
形成正反馈过程
四 A层


G

(a) 外形
K
(b) 符号
A 阳极

P1

N1
PN

P2
GG
控制极
N2
(c) 结构 K 阴极
晶闸管是用硅材料制成的半导体器件,它有三 种结构形式: 螺栓式、平板式和塑料封装式。平板 式又分为风冷平板式和水冷平板式。
K A
G
(a)
K G
A (b)
图 10-1 G
A (c)
K G
V
A 图 形符号 A

通,uo≈U;当t=tw时,
ui
加上反向控制电压,晶
U
闸管截止, uo ≈0。
O
பைடு நூலகம்
uo
改变tw与T之比(占空比) 即可调节输出直流电压( uo O
平均值)大小。
K A
G+ uo

t
tw T
t
iB2 ? iG
iC 2 ? ? 2iG ? iB1
iC 1 ? β 1iC 2 ? ?1? 2iG ? iB2
在极短时间内使两个 三极管均饱和导通,此 过程称触发导通。
晶闸管导电实验
(1)晶闸管截止时,
若uA>0, uG≤0,晶闸管 仍然 截止;
(2)晶闸管截止时,
若uA>0, uG>0,晶闸管由 截止变为导通;
可控整流电路可以把交流电变成直流电,达到直流
电源输出电压可调的目的。
io
1.电路
a
两桥臂为晶闸管, +
另两个为二极管, 故为单相半控桥式
u1 _
整流电路。
+
u2

T1
T2 RL
++uo

D1
D2 –
b
2.工作原理
io
和二极管单相 桥式整流电路基 本相同,只是每 当T 1或T 2承受正 向阳极电压,而 且在该晶闸管的
相关文档
最新文档