误差理论和测量平差试卷及答案

合集下载

最新《测量平差》重要试卷及答案

最新《测量平差》重要试卷及答案

《误差理论与测量平差》试卷(D )卷考试时间:100分钟考试方式:闭卷题号-一- -二二二四五六总分得分阅卷人、填空题(共20分,每空2 分)1、观测误差产生的原因为:仪器、外界环境、观测者2、已知一水准网如下图,其中A、B为已知点,观测了8段高差,若设E点高程的平差值与BE之间高差的平差值为未知参数)?1>刃2,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为_4 _________ ,多余观测个数为_4 ________ ,一般条件方程个数为5 ______ ,限制条件方程个数为_ 1 __________3、取一长度为d的直线之丈量结果的权为1,则长度为D的直线之丈量结果的权为d/D _______ ,若长度为D的直线丈量了n次,则其算术平均值的权为_______ nd/D ______ 。

24、已知某点(X、Y)的协方差阵如下,其相关系数p XY=0.6________ ,其点位方差为CT 1.25 mm9.25 0.30D XX =030 1.00?二、设对某量分别进行等精度了 n 、m 次独立观测,分别得到观测值L i , (\ = 1,2- n),L i , (i =1,2,…m),权为 P i = p ,试求:1)n 次观测的加权平均值 Xn = 的权p n[p]解:因为p i=px -用]X n1 Pl_1 pl_2pL n[p]np=-L 1L nn—1 1 …1 r (L 1 L 2 …Ln Tn根据协因数传播定律,则 X n 的权p n :■v1 1 J——=—(1 1 …1 )* % +*1 1 a 1 P m mm ■'mp兀」订丿贝U : p n 二 np2)m 次观测的加权平均值 x m = 的权p m[p]X m =[PL]—PL I PL2 pL m[p] mp1L i L2 L mm」1 1 1 * L i L2 L m Tm根据协因数传播定律,则X m的权p m:1 1 ,111——=—(1 1…1)*+* __ I-P m m m■mp< ZP」11丿则:P m 二mp3)加权平均值x二叭P m X m的权p xP n + P mP n P m n p*X n mp*X mnp mp根据协因数传播定律,则X的权Y XnI(2 分)(2 分)贝U: p X = (n • m) p (1 分)三、已知某平面控制网中待定点坐标平差参数?的协因数为Q X? *1.5 1in +m2其单位为(dm/s),并求得<?o =二2 ",试用两种方法求E、F o(15分)若选择/ ABC平差值为未知参数X ,用附有参数的条件平差法列岀其平差值条件方程式。

误差理论与测量平差基础试题

误差理论与测量平差基础试题

误差理论与测量平差基础试题平差练习题及题解第一章1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;系统误差。

当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。

(2)尺不水平;系统误差,符号为“-”。

(3)估读小数不准确;偶然误差,符号为“+”或“-”。

(4)尺垂曲;系统误差,符号为“-”。

(5)尺端偏离直线方向。

系统误差,符号为“-”。

第二章2.6.17 设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差?1、?2^^^^^和中^?1、?2,并比较两组观测值的精度。

^^解:?1=2.4,?2=2.4,?1=2.7,?2=3.6。

两组观测值的平均误差相同,而中误差不同。

由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。

本题中?1<?2,因此,第一组观测值的精度高。

^^第三章3.2.14 已知观测值向量L1、L2和L3及其协方差阵为n1n2n3D11 D12 D13 D21 D22 D23 D31D32 D ,现组成函数:X=AL1+A0,Y=BL2+B0,Z=CL3+C0,式中A、B、C为系数阵,A0、B0、C0为常数阵。

令W=[X Y Z],试求协方差阵DWW 解答:XX DXY DXZ 11A AD12B AD13CDWW = DYX DYY DYZ = BD21A BD22B BD23CZX DZY D 31A CD32B CD33C3.2.19 由已知点A(无误差)引出支点P,如图3-3所示。

其中误差为?0,?0为起算方位角,观测角β和边长S的中误差分别为??和?S,试求P点坐标X、Y的协方差阵。

TTTTTTTTTT图3-1解答:令P点坐标X、Y的协方差阵为2 ?xyx2xy ?2???XAP2222?02 式中:?x=()?S+?YAP-2+?YAP2 ?S?22???YAP2222?02)?S+?XAP-2+?XAP2 ?y=(?S?2???XAP?YAP?022)?S-?XAP?YAP2-?XAPYAP2 ?xy=(2?S?2?xy=?yx3.5.62 设有函数F=f1x+f2y,其中x??1L1??2L2????nLn,y??1L1??2L2????nLn,?i,?i(i?1,2,?n)为无误差的常数,而L1,L2?Ln的权分别为P1,P2?Pn,试求函数F的权倒数1。

误差理论与测量平差基础试卷一及答案

误差理论与测量平差基础试卷一及答案

误差理论与测量平差基础 试卷一及答案一、填空题(30分)1、测量误差定义为 ,按其性质可分为 、 和 。

经典测量平差主要研究的是 误差。

2、偶然误差服从 分布,它的概率特性为 、 和 。

仅含偶然误差的观测值线性函数服从 分布。

3、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C4、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。

5、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2σ= mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XX D6、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数进行平差,应该利用的平差模型是 ,则方程个数为 , 二、判断题(10分)1、通过平差可以消除误差,从而消除观测值之间的矛盾。

( × )2、观测值iL 与其偶然真误差i∆必定等精度。

(√)3、测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。

( × )4、或然误差为最或然值与观测值之差。

( × )5、若X 、Y 向量的维数相同,则YX XY Q Q =。

( × ) 三 选择题(10分)1、已知)180(3ˆ -++=-=C B A W W A A ,m m m m C B A ===,m m W3=,则A m ˆ=A。

A 、m 32B 、m 32C 、m 32 D 、m 23 2、已知观测值L 的中误差为L m ,L x 2=,2L y =,则xy m = A 。

A 、24L LmB 、L Lm 4C 、22L Lm D 、L Lm 23、条件平差中,已知⎥⎦⎤⎢⎣⎡=8224W Q ,2±=μ,则±=1k m A 。

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。

即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。

这种误差称为偶然误差。

2、函数模型线性化——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。

在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。

这一转换过程,称之为函数模型的线性化。

3、点位误差椭圆——以点位差的极大值方向为横轴轴方向,以位差的极值分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。

4、协方差传播律——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。

如,若观测向量的协方差阵为,则按协方差传播律,应有。

5、权——表示各观测值方差之间比例关系的数字特征,。

二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1. 6个2. 13个3.1/n4. 0.45. ,其中五、问答题(每题4分,共12分)1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么?答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分)⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。

实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,X F E 、0K KL Z +=LL D T LL ZZ K KD D =220ii P σσ=0)()()()(4320020=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρABAC AC X X Y Y W αββ-++--=''4300arctan其类型是由必要元素所决定的,其数量,必须等于必要元素的个数。

(完整word版)误差理论和测量平差试题问题详解

(完整word版)误差理论和测量平差试题问题详解

《误差理论与测量平差》(1)1.正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

16.用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

17.选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

(完整word版)误差理论和测量平差试卷及答案6套 试题+答案(word文档良心出品)

(完整word版)误差理论和测量平差试卷及答案6套  试题+答案(word文档良心出品)

《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

三、选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

误差理论和测量平差试卷及答案6套 试题+答案

误差理论和测量平差试卷及答案6套  试题+答案

《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

三、选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

误差理论和测量平差习题集(含答案)

误差理论和测量平差习题集(含答案)

误差理论和测量平差习题集(含答案)1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪⼏类?它们各⾃是怎样定义的?对观测结果有什么影响?试举例说明。

1.3⽤钢尺丈量距离,有下列⼏种情况使得结果产⽣误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不⽔平;(3)估读⼩数不准确;(4)尺垂曲;(5)尺端偏离直线⽅向。

1.4 在⽔准了中,有下列⼏种情况使⽔准尺读书有误差,试判断误差的性质及符号:(1)视准轴与⽔准轴不平⾏;(2)仪器下沉;(3)读数不准确;(4)⽔准尺下沉。

1.5 何谓多余观测?测量中为什么要进⾏多余观测?答案:1.3 (1)系统误差。

当尺长⼤于标准尺长时,观测值⼩,符号为“+”;当尺长⼩于标准尺长时,观测值⼤,符号为“-”。

(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i⾓为正时,符号为“-”;当i⾓为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的⽔平⾓'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。

2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进⾏了两组观测,他们的真误差分别为:第⼀组:3,-3,2,4,-2,-1,0,-4,3,-2 第⼆组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1?θ、2θ和中误差1?σ、2?σ,并⽐较两组观测值的精度。

误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。

2. 测量误差的定义为,按其性质可分为、和。

3. 衡量估计量优劣的标准有、、。

9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。

5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。

(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。

Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。

,,zzz122T8. = 。

tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。

f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。

11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。

ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。

E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。

误差理论与测量平差基础试卷

误差理论与测量平差基础试卷

考试试卷…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………课程名称(含档次) 误差理论与测量平差基础 课程代号 0809021专 业 测绘工程 层次(本、专) 本 考试方式(开、闭卷) 闭 一、 正误判断(正确“T ”,错误“F ”每题1分,共10 分)。

1.已知两段距离的长度及中误差分别为128.286m ±4.5cm 与218.268m ±4.5cm ,则其真误差与精度均相同( )。

2.如果X 与Y 的协方差0xy σ=,则其不相关( )。

3.水准测量中,按公式i icp s =(i s 为水准路线长)来定权,要求每公里高差精度相同( )。

4.可用误差椭圆来确定待定点与待定点之间的某些精度指标( )。

5.在某一平差问题中,观测数为n ,必要观测数为t ,参数个数u <t 且不独立,则该平差问题可采用附有参数的条件平差的函数模型。

( )。

6.由于同一平差问题采用不同的平差方法得到的结果不同,因此为了得到最佳平差结果,必须谨慎选择平差方法( )。

7.根据公式()222220cos sin 0360E F θσθθθ=+≤≤得到的曲线就是误差椭圆( )。

8.对于特定的平面控制网,如果按间接平差法解算,则误差方程的个数是一定的( )。

9.对于同一个观测值来说,若选定一定权常数0σ,则权愈小,其方差愈小,其精度愈高( )。

10.设观测值向量,1n L 彼此不独立,其权为()1,2,,i P i n =,12(,,,)n Z f L L L =,则有22211221111Z n nf f f P L P L P L P ⎛⎫⎛⎫⎛⎫∂∂∂=+++ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭( )。

二、填空题(每空2分,共24分)。

1、设对某三角网进行同精度观测,得三角形角度闭合差分别为:3秒,-3秒,2秒,4秒,-2秒,-1秒,0秒,-4秒,3秒,-2秒,则测角中误差为 秒。

误差理论和测量平差试题 答案概要

误差理论和测量平差试题 答案概要

《误差理论与测量平差》(1)1.正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

16.用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

17.选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

误差理论和测量平差试卷及答案6套

误差理论和测量平差试卷及答案6套

《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

三、选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

2a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

误差理论与测量平差期末试卷及答案(1)

误差理论与测量平差期末试卷及答案(1)

《误差理论与测量平差》期末试卷(1)班级____________学号____________________姓名____________题号一二三四五六总分成绩一、填空题(每题3分,共计30分)1.观测误差的来源主要有测量仪器、观测者、外界环境三个方面。

2.根据观测误差对观测结果的影响性质,可将观测误差分为系统误差、偶然误差和粗差。

3.在测量平差中,常用的衡量精度的指标主要有中误差、相对误差和限差。

4.在1:1000的地形图上,量得a、b 两点间的距离d=40.6mm,量测中误差为d σ=0.2mm,则该两点间的实际距离中误差为200mm 。

5.在测量中权为1的观测值称为单位权观测值,与之对应的中误差称为单位权中误差。

6.间接平差中,未知参数X 的选取要求满足相互独立和参数个数等于必要观测个数。

7.在条件平差中,已知观测总量n=7,其中t=3,r=4,则条件方程的个数为4。

8.已知观测值L 的方差D LL =4,单位权中误差为2,则该观测值的权为P L =1。

9.不论在条件平差还是间接平差中,单位权中误差的计算公式都为0ˆσ=t n PV V T -=0σ。

10.若某待定点P 两个相互垂直方向上的坐标方差为2x σ、2y σ,则该点的点位中误差P σ=22y x P σσσ+=。

二、简答题:(每题5分,共25分)1、什么叫测量误差?产生测量误差的原因有哪些?答:(1)对某量进行多次观测,所得的各次观测结果都存在差异,通常将每次测量所得的观测值与该量的真值之间的差值称为测量误差,即测量误差=真值-观测值。

(2)产生测量误差的原因主要有:观测仪器,观测者和外界环境。

2、系统误差、偶然误差各自的特性?并举例说明。

答:系统误差指在相同的观测条件下作一系列的观测时,大小和符号表现出系统性,或按一定规律变化,或者为某一常数的误差,其具有累积性,如水准尺的刻画不准确、水准仪的视准轴误差、温度对钢尺量距的误差、尺长误差等;偶然误差指在相同的观测条件下作一系列的观测时,从单个误差看,该列误差的大小和符号表现出偶然性,无规律,但就大量误差的总体而言,具有一定的统计规律,主要表现为有界性、对称性,单峰性和抵偿性,如对中整平误差、照准目标误差、读数时估读误差等。

误差理论和测量平差习题集(含答案)

误差理论和测量平差习题集(含答案)

1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。

1.3用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。

1.4 在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沉。

1.5 何谓多余观测?测量中为什么要进行多余观测?答案:1.3 (1)系统误差。

当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。

(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i角为正时,符号为“-”;当i角为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的水平角'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003'"450004'"450000 '"455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。

2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进行了两组观测,他们的真误差分别为: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ,并比较两组观测值的精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.系统误差可用平差的方法进行消除或减弱(
5.在按比例画出的误差曲线上可直接量的相应边的边长中误差(
6 .对同一量的多次不等精度观测值的加权平均值与用条件平差所得结果完全一致 ( ) 。 7.观测值与平差值之差为真误差( 8.三角形闭合差是真误差( 9.权一定无单位( ) 。 ) 。 ) 。
10.对于特定的测量控制网,如果用条件平差法平差,则条件方程式个数和条件方程的 形式都是一定的( ) 。 ) 。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高(
) 。
二、用“相等”或“相同”或“不等”填空(8 分) 。 已知两段距离的长度及其中误差为 300.158m±3.5cm;600.686m±3.5cm。则: 1.这两段距离的中误差( ) 。 ) 。
2.这两段距离的误差的最大限差( 3.它们的精度( 4.它们的相对精度( ) 。 ) 。
11.因为测量误差服从正态分布,所以可以用最小二乘法消除或减弱( 12.无论是三角高程网还是水准网最大的秩亏数都是 1( ) 。 ) 。
13.两个水平角的测角精度相同,则角度大的那一个精度高(
14.对于同一个平差问题,间接平差和条件平差的结果有可能出现显著差异( 15.在测角中,正倒镜观测是为了消除偶燃误差( ) 。
《误差理论与测量平差》课程自测题(1) 一、正误判断。正确“T” ,错误“F” 。 (30 分) 1. 在测角中正倒镜观测是为了消除偶然误差( ) 。 ) 。 ) 。
2. 在水准测量中估读尾数不准确产生的误差是系统误差(
3. 如果随机变量 X 和 Y 服从联合正态分布, 且 X 与 Y 的协方差为 0, 则 X 与 Y 相互独立 ( 4. 观测值与最佳估值之差为真误差( ) 。 ) 。
测回数 N=( a) c) 25 45
) 。 b) 20 d) 5
3.某平面控制网中一点 P,其协因数阵为:
Qxx Q XX Q yx
单位权方差
Qxy 0.5 0.25 Q yy 0.25 0.5
) 。
2 0 =±2.0。则 P 点误差椭圆的方位角 T=(
1 式中: i , i 为无误差的常数, L1 , L2 ,..., Ln 的权分别为 p1 , p2 ,..., pn ,求 F 的权倒数 p F 。
2.已知独立观测值 L1 和 L2 的中误差为 1 和 2 ,设有函数 X L1 / 2 L1 L2 ,计算 X
2
的中误差 X 。
1. 条件式个数。 2. 写出一个非线性化的极条件。 3. 写出一个线性化的正弦条件。
C D
E
F
ˆ 具有无偏性(10 分) 六、证明在间接平差中估计量 X 。
证明如下:
ˆ 两两相关或不相关(9 分) 七、证明在条件平差中 V 、 L 、 L 。
一、FFTFF TTTTF TTFTF 二、相等 相等 相同 三、aabcd
一、TTTFT 二、1、1/16
TFTFF 2、25
TFFFF 3、1.69 4、n
《误差理论与测量平差》课程自测题(3) 一、选择题(15 分) (本题共有 10 个小题,每小题有四个可供选择的答案,其中两个是最 接近要求的答案,每选对一个得 1.5 分,每小题 3 分,本题共 15 分;将答案全部选上者该 题不得分。 ) 1. 下列观测中,哪些是具有“多余观测”的观测活动 A 对平面三角形的三个内角各观测一测回,以确定三角形形状 B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状 C 对两边长各测量一次 D 三角高程测量中对水平边和垂直角都进行一次观测 2. 下列哪些是偶然误差的特性 A 绝对值小的误差比绝对值大的误差出现的概率小 B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零 C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度 D 误差的符号只与观测条件有关 3.某测角网的网形为中点多边形,网中有 3 个三角形,共测水平角 9 个 A 共有 5 个条件方程可列出 C 水平条件方程有 2 个 B 极条件方程有 2 个 D 极条件方程有 1 个
二、正误判断题(15 分) (本题共 5 个小题,每小题 3 分,本题共 15 分; ) 1.一点的纵横坐标(X,Y)均是角度观测值与边长观测值的函数,若角度观测值与边长观测 值是独立观测值,则 X,Y 之间是相关的。 2.误差椭圆的三个参数的含义分别为: E --位差极大值方向的坐标方位角;E—位差极大 值方向;F—位差极小值方向。 3.各观测值权之间的比例关系与观测值中误差的大小无关。 4.平差值是观测值的最佳估值。 5.平差前观测值的方差阵一般是已知的。
不等
《误差理论与测量平差》课程自测题(2) 一、正误判断:正确( T ) ,错误或不完全正确( F ) 。 (30 分) 1.偶然误差符合统计规律( 2.权与中误差的平方成反比( ) 。 ) 。
3.如果随机变量 X 和 Y 服从联合正态分布,且 X 与 Y 的协方差为零,则 X 与 Y 相互 独立( ) 。 ) 。 ) 。
且知[pll]=66.0。求: 1. 未知数的解 2. 单位权中误差 m0
1 ˆ1 3x ˆ 2 ;求 p F 3. 设 F 4 x
五、如图平面控制网,A、B 为已知点,C、D、E、F 为待定点,全网中观测了 14 个角度和 3 个边长,现按条件平差法解算,计算如下内容(9 分) 。
A B
三、选择填空。只选择一个正确答案(25 分) 。 1.取一长为 d 的直线之丈量结果的权为 1,则长为 D 的直线之丈量结果的权 PD=( a) c) d/D d /D
2 2
) 。
b) D/d d) D /d
2 2
2.有一角度测 20 测回,得中误差±0.42 秒,如果要使其中误差为±0.28 秒,则还需增加的
若观测值权阵为 I ,试组成法方程,并解算法方程未知数。 ( 10 分)
五、
分析推证题( 10 分) :举例说明最小二乘原理
一、选择题答案 1、A,B 2、B,C 3、A,D 4、B,D 5、C,D
二、正误判断题 1-5 T、T、F、T、F
三、填空题 1–5 ±63mm 10 2n ±0.8″ ±36.3mm
3. 对上题(一题 3 小题)进行参数平差 A 法方程的个数为 5 个 C 待求量的个数为 5 个 B 误差方程的个数为 9 显著水平为 0.05,由此确定的拒绝域界限值为 1.96,某被检验量 M 的 t 检验值为 1.99 A 原假设成立 C 原假设不成立 B 备选假设不成立 D 备选假设成立
2、水准测量中每站高差的中误差为±1cm,现要求从已知点推至待定点的高程中误差不大于 ±5cm,问应测多少站。(5 分) 3、用经纬仪对同一角度α进行了三次同精度观测,得观测 L1、L2、L3,试列出条件平差该 问题时的条件方程式( 10 分) 4、已知某平差问题的误差方程式如下:
v1 x1 x 2 1 v 2 x 2 x3 6 v3 x1 x3 1 v4 x2 2 v5 x3 4
四、计算题(40 分)(本题共有 5 个小题,本题共 40 分) 1、误差方程式如下(15 分)
v1 x1 v2
x 2 v3 x1 x 2 8 v4 x 2 x 3 7 v5 x1 x 2 x3 6
1 P ? 观测值的权均为 1,试求 1/PX1=?,权函数 x2 x3 ,
五、如图单一水准路线,A、B 为已知点,A 到 B 的长度为 S,P 为待定点。
证明平差后高程最弱点在水准线路的中央。(8 分)
六、在条件平差中,证明观测值的平差值和改正数相关或不相关。(6 分)
七、在如图所示的直角三角形中(C 为直角) ,测的三个边长 L1、L2 和 L3。试列出平差值条 件方程式。(6 分)
又设 F y 2 x1 ,则 mF (
2
) 。 b) 16 d) 36
a) 9 c) 144
四、某平差问题是用间接平差法进行的,共有 10 个独立观测值,两个未知数,列出 10 个误 差方程后得法方程式如下(9 分) :
ˆ1 6 10 2 x 2 8 x ˆ 2 14
3.设某水准网,各观测高差、线路长度和起算点高程如下图所示。 计算 P 点的平差值 hp(精确到 0.001 米) 。
四、如图控制网,A 和 B 为已知点,C、D、E、F 为待定点,观测了全网中的 14 个内角、 两个边长 S1 和 S2,回答或计算下列问题(12 分) 。 1. 条件式个数_____________。 2. 必要观测个数_____________。 3. 写出一个极条件(不必线性化) 。 4. 写出一个正弦条件(线性形式) 。
a) 90 c) 120
b) 135 d) 45
4.设 L 的权为 1,则乘积 4L 的权 P=( a) c) 1/4 1/16 b) d)
) 。 4 16
5.设
y1 2 1 x1 3 1 D xx y 2 1 3 x 2 1 4 ;
三、填空题(20 分) (本题共 5 小题,每小题 4 分,本题共 20 分) 1. 已知水准测量中,某两点间的水准路线长为 D=10km ,若每 km 高差测量中误差为
20mm ,该段水准高差测量中误差为[1](计算取位至 mm) 。
2.某段水准路线共测 20 站,若取 C=200 个测站的观测高差为单位权观测值,则该段水准路 线观测的权为[2]。
[ PL ] 3.观测值 L1、L2┅Ln 其权为 P1=P2=┅Pn=2,若 Z= [ P ] ,试求 Z 的权 PZ=[3]。
4.某三角网共有 100 个三角形构成,其闭合差的[WW]=200″,测角中误差的估值为[4] (计 算取位至于 0.1″)。 5.某长度由 6 段构成,每段测量偶然误差中误差为 2mm ,系统误差为 6mm,该长度 测量的综合中误差为[5](计算取位至 0.1mm) 。
相关文档
最新文档