31第三节碳水化合物的代谢

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳水化合物的消化

(一)口腔内消化

碳水化合物的消化自口腔开始。口腔分泌的唾液中含有α-淀粉酶(α-amylase),又称

唾液淀粉酶(ptyalin),唾液中还含此酶的激动剂氯离子,而且还具有此酶最合适pH6~7

的环境。α-淀粉酶能催化直链淀粉、支链淀粉及糖原分子中α-1,4-糖苷键的水解,但不能水解这些分子中分支点上的α-1,6-糖苷键及紧邻的两个α-1,4-糖苷键。水解后的产物可有葡萄糖、麦芽糖、异麦芽糖、麦芽寡糖以及糊精等的混合物。

(二)胃内消化

由于食物在口腔停留时间短暂,以致唾液淀粉酶的消化作用不大。当口腔内的碳水化合物食物被唾液所含的粘蛋白粘合成团,并被吞咽而进人胃后,其中所包藏的唾液淀粉酶仍可使淀粉短时继续水解,但当胃酸及胃蛋白酶渗入食团或食团散开后,pH 下降至1~2 时,不

再适合唾液淀粉酶的作用,同时该淀粉酶本身亦被胃蛋白酶水解破坏而完全失去活性。胃液不含任何能水解碳水化合物的酶,其所含的胃酸虽然很强,但对碳水化合物也只可能有微少或极局限的水解,故碳水化合物在胃中几乎完全没有什么消化。

(三)肠内消化

碳水化合物的消化主要是在小肠中进行。小肠内消化分肠腔消化和小肠粘膜上皮细胞表面上的消化。极少部分非淀粉多糖可在结肠内通过发酵消化。

1.肠腔内消化肠腔中的主要水解酶是来自胰液的α-淀粉酶,称胰淀粉酶(amylopsin),其作用和性质与唾液淀粉酶一样,最适pH 为6.3~7.2,也需要氯离子作激动剂。胰淀粉酶对末端α-1,4-糖苷键和邻近α-1,6-糖苷键的α-1,4-糖苷键不起作用,但可随意水解淀粉分子内部的其他α-1,4-糖苷键。消化结果可使淀粉变成麦芽糖、麦芽三糖(约占65%)、异麦芽糖、α-临界糊精及少量葡萄糖等。α-临界糊精是由4~9 个葡萄糖基构成。

2.小肠粘膜上皮细胞表面上的消化淀粉在口腔及肠腔中消化后的上述各种中间产物,可以在小肠粘膜上皮细胞表面进一步彻底消化。小肠粘膜上皮细胞刷状缘上含有丰富的α- 糊精酶(α-dextrinase)、糖淀粉酶(glycoamylase)、麦芽糖酶(mahase)、异麦芽糖酶(isomahase)、蔗糖酶(sucrase)及乳糖酶(|actase),它们彼此分工协作,最后把食物中可

消化的多糖及寡糖完全消化成大量的葡萄糖及少量的果糖及半乳糖。生成的这些单糖分子均可被小肠粘膜上皮细胞吸收。

3.结肠内消化小肠内不被消化的碳水化合物到达结肠后,被结肠菌群分解,产生氢气、甲烷气、二氧化碳和短链脂肪酸等,这一系列过程称为发酵。发酵也是消化的一种方式。所产生的气体经体循环转运经呼气和直肠排出体外,其他产物如短链脂肪酸被肠壁吸收并被机体代谢。碳水化合物在结肠发酵时,促进了肠道一些特定菌群的生长繁殖,如双歧杆菌、乳酸杆菌等。

二、碳水化合物的吸收

碳水化合物经过消化变成单糖后才能被细胞吸收。糖吸收的主要部位是在小肠的空肠。单糖首先进入肠粘膜上皮细胞,再进入小肠壁的毛细血管,并汇合于门静脉而进入肝脏,最后进入大循环,运送到全身各个器官。在吸收过程中也可能有少量单糖经淋巴系统而进人大循环。

单糖的吸收过程不单是被动扩散吸收,而是一种耗能的主动吸收。目前普遍认为,在肠粘膜上皮细胞刷状缘上有一特异的运糖载体蛋白,不同的载体蛋白对各种单糖的结合能力不同,有的单糖甚至完全不能与之结合,故各种单糖的相对吸收速率也就各异。

碳水化合物在体内分解过程中,首先经糖酵解途径降解为丙酮酸,在无氧情况下,丙酮酸在胞浆内还原为乳酸,这一过程称为碳水化合物的无氧氧化。由于缺氧时葡萄糖降解为乳酸的情况与酵母菌内葡萄糖“发酵”生成乙酸的过程相似,因而碳水化合物的无氧分解也称为“糖酵解”。在有氧的情况下,丙酮酸进入线粒体,氧化脱羧后进入三羧酸循环,最终被彻底氧化成二氧化碳及水,这个过程称为碳水化合物的有氧氧化。

(一)无氧分解

1.糖酵解过程由于葡萄糖降解到丙酮酸阶段的反应过程对于有氧氧化和糖酵解是共

同的,因此把葡萄糖降解成丙酮酸阶段的具体反应过程单独地称为糖酵解途径。整个过程可分为两个阶段。第一阶段由 1 分子葡萄糖转变为2 分子磷酸丙糖,第二阶段由磷酸丙糖生成丙酮酸。第一阶段反应是一个耗能过程,消耗 2 分子ATP;第二阶段反应是产能过程,一分子葡萄糖可生成4 分子的ATP,整个过程净生成 2 分子ATP。

2.糖酵解作用的生理意义糖酵解产生的可利用能量虽然有限,但在某些特殊情况下具有重要的生理意义。例如重体力劳动或剧烈运动时,肌肉可因氧供应不足处于严重相对缺氧状态,这时需要通过糖酵解作用补充急需的能量。

(二)有氧氧化

葡萄糖的有氧氧化反应过程可归纳为三个阶段:第一阶段是葡萄糖降解为丙酮酸,此阶段的化学反应与糖酵解途径完全相同。第二阶段是丙酮酸转变成乙酰辅酶A。第三阶段是乙酰辅酶A 进入三羧酸循环被彻底氧化成CO2和H20,并释放出能量。

三羧酸循环由一连串的反应组成。这些反应从有4 个碳原子的草酰乙酸与2 个碳原子的乙酰CoA 的乙酰基缩合成 6 个碳原子的柠檬酸开始,反复地脱氢氧化。通过三羧酸循环,葡萄糖被完全彻底分解。

糖有氧氧化的生理意义:有氧氧化是机体获取能量的主要方式。1分子葡萄糖彻底氧化可净生成36~38个A TP,是无氧酵解生成量的18~19 倍。有氧氧化不但释放能量的效率高,而且逐步释放的能量储存于A TP 分子中,因此能量的利用率也很高。

糖的氧化过程中生成的CO2 并非都是代谢废物,有相当部分被固定于体内某些物质上,进行许多重要物质的合成代谢。例如在丙酮酸羧化酶及其辅酶生物素的催化下,丙酮酸分子可以固定CO2生成草酰乙酸。其他一些重要物质,如嘌呤、嘧啶、脂肪酸、尿素等化合物的合成,均需以CO2 作为必不可少的原料之一。

有氧氧化过程中的多种中间产物可以使糖、脂类、蛋白质及其他许多物质发生广泛的代谢联系和互变。例如有氧氧化第一阶段生成的磷酸丙糖可转变成仅一磷酸甘油;第二阶段生成的乙酰CoA 可以合成脂肪酸,二者可进一步合成脂肪。有氧氧化反应过程中生成的丙酮酸、脂酰CoA、仅一酮戊二酸、草酰乙酸,通过氨基酸的转氨基作用或联合脱氨基的逆行,可分别生成丙氨酸、谷氨酸及天冬氨酸,这些氨基酸又可转变成为其他多种非必需氨基酸,合成各种蛋白质。

四、糖原的合成与分解

消化吸收的葡萄糖或体内其他物质转变而来的葡萄糖进入肝脏和肌肉后,可分别合成肝糖原和肌糖原,此种过程称为糖原的合成作用。肝糖原可在肝脏分解为葡萄糖,此种过程称为糖原的分解作用。

糖原的合成和分解作用在维持血糖相对恒定方面具有重要作用。例如当机体处于暂时饥饿时,血糖趋于低下,这时肝糖原分解加速,及时使血糖升高恢复正常;反之,当机体饱餐后,消化吸收的葡萄糖大量进入血循环,血糖趋于升高,这时可通过糖原合成酶的活化及磷酸化酶的活性降低,使血糖水平下降而恢复正常。

五、糖异生

相关文档
最新文档