考研数学极限与导数复习方法
考研数学的知识点整理:1.极限
![考研数学的知识点整理:1.极限](https://img.taocdn.com/s3/m/6cf4b6e99a89680203d8ce2f0066f5335a81672d.png)
考研数学的知识点整理:1.极限差不多学习了⼀年,离考试也不远了,考前抽⼀天时间整理⼀下所有的知识点和题型,也就相当于复习了。
第⼀章:极限 极限,简单地来说就是⽆限地趋近⼀个值(但并不是真的等于这个值),⽽永远处在接近这个值的趋势上,永远靠近,永不停⽌。
从书上的定义看,如果对任何ε>0,总存在⾃然数N,使得当n>N时,不等式|xn-x|<ε恒成⽴。
这个定义在实际中也会出题考察。
lim(x->1) x2-1/x-1 =2。
这个函数在x=1处不存在,但x->1时极限存在,并且为2。
直接算当然算不了,但是可以转化为x+1,也就是2. 判定极限存在的充要条件:左右极限各⾃存在且相等。
在很多时候,两侧极限的计算⽅法是不⼀样的,因此左右相等是有意义的。
极限不存在:左右极限不存在/不相等,或者极限⽆穷⼤。
极限的⼀些性质: 1.唯⼀性。
如果⼀个数列的极限存在,那么它的极限值唯⼀,⽽且他的⼦串也都是这个极限值。
2.保号性。
在这⾥先引⼊⼀个去⼼邻域的概念:去⼼领域,就是去掉了中⼼点,但包含其左右的⼀个范围。
保号性的含义,就是指⾃变量在趋近⼀个值时,肯定能找到⼀个去⼼邻域,在这个范围内的值同号。
这⾥放⼀个例题:f'(0)=1, lim(x->1) f'(x)/(x-1)3=2,求x=1? 解: 在这道题中, f'(x)/(x-1)3=2)>0. 所以,存在某个值ξ>0,使得 0<|x-1|<ξ,即在这个去⼼领域内时,f'(x)/(x-1)3也是⼤于0的。
当x在(1-ξ,1)时即左半邻域时,x-1<0,分母⼩于0,那么分⼦f'(x)<0。
同样,x在右半邻域时,f'(x)>0。
因此,f(x)在x=1处取到了最⼩值。
保号性的更深层的理解:不管是数列极限还是函数极限。
假设lim(x->x0)=A. 要注意函数和极限⼆者的对应关系。
考研数二具体复习计划
![考研数二具体复习计划](https://img.taocdn.com/s3/m/1f53957082c4bb4cf7ec4afe04a1b0717ed5b310.png)
考研数二具体复习计划具体复习计划:一、数学分析基础复习1. 温习高等数学中的基本概念,包括函数、极限、导数、积分等。
2. 复习数列与级数的性质和常见收敛判定法。
3. 复习多元函数的极限与连续性,以及偏导数和全微分等概念。
4. 复习重积分和曲线曲面积分的计算方法,掌握换元法和分部积分法。
5. 复习常微分方程的基本概念和解法,包括分离变量法、常系数线性齐次方程的解法等。
二、线性代数基础复习1. 复习矩阵的基本运算,包括矩阵的加法、乘法和转置等。
2. 复习线性方程组的解法,包括高斯消元法和矩阵求逆等方法。
3. 复习向量空间与子空间的概念和性质,理解向量的线性相关性和线性无关性。
4. 复习特征值和特征向量的计算方法,掌握对角化和相似矩阵的相关概念。
5. 复习线性变换和矩阵的表示,理解线性变换的核和像的性质。
三、概率论与数理统计基础复习1. 复习基本概率论知识,包括事件的概念、概率的计算方法和条件概率等。
2. 复习随机变量的定义和性质,理解离散随机变量和连续随机变量的概率密度函数。
3. 复习常见分布的概率密度函数,如正态分布、均匀分布和指数分布等。
4. 复习统计量的概念和性质,掌握样本均值和样本方差的计算方法。
5. 复习参数估计和假设检验的基本原理,包括最大似然估计和置信区间的计算方法。
四、高等数学专题复习1. 复习微分方程的专题知识,包括二阶线性非齐次方程和常系数线性方程等。
2. 复习多元函数的泰勒展开和极值判定等专题知识。
3. 复习重积分的坐标变换和变量替换等专题知识。
4. 复习数列与级数的几个重要的收敛判定法和常见级数的性质。
五、线性代数专题复习1. 复习矩阵特征值和特征向量的几何意义和性质。
2. 复习线性相关性和线性无关性的判定、秩与线性方程组等专题知识。
3. 复习线性空间、子空间和基变换等专题知识。
六、概率论与数理统计专题复习1. 复习随机变量的特征函数和矩母函数等专题知识。
2. 复习极大似然估计和贝叶斯估计等专题知识。
考研怎么复习
![考研怎么复习](https://img.taocdn.com/s3/m/f376ae67178884868762caaedd3383c4bb4cb4df.png)
考研怎么复习每当提到考研数学复习,总是最先想起一堆公式和符号,而且数学复习本身就是一个长期的过程,最好的复习方法就是将繁冗的数学知识化整为零,各个击破。
小编为大家精心准备了考研数学备考复习的指南,欢迎大家前来阅读。
考研数学备考复习的攻略考研数学在公共课数学复习毫无疑问是一个长期且艰巨的工程,有一种数学思维,即化整为零,然后化零为整。
学习高数的人都知道,定积分概念的四个关键:分割——近似——求和——取极限。
平时的复习一直向脑中输送零碎的知识,这是把原本整体的学科一小块一小块给拆开了吸取,到每一个小螺钉都很熟悉的时候就能够造一艘航母远行了。
这样的思维方式在考研复习中会一再涉及到,不仅在考研数学复习,在考研英语、政治中都会用到。
以前老师们常说的:先把薄书读厚,再把厚书读薄!而数学尤其需要如此才能学透得高分。
按照这样的思路,考研复习到考前十几天的时候一定要把所有的科目都读成了薄薄的一本。
就数学而言,再薄的书也应该有题目,几十天时间仍然不能丢做题时的手感!但数学复习到这个份上就千万不要再钻牛角尖了,不论以前是专攻难题还是注重概念,现在都应该回归基础了。
读一些基本的例子,做一些基本的题目,看一些基本的概念,背一些基本的公式。
考研数学的基本题型考生同学们一定烂熟于心了,在研究生考试进行了二十年之后的今天,各科试题的命题工作都基本趋于科学且完善,选择题答案的分布不会太偏离平均位置,即基本不会出现答案全是A或B或C或D的情况,也不会出现某个答案出现四次而另一个答案不出现的情况,如果给以上事件出现的情况带个高帽的话,那就是这样情况下的试题是不“科学”的。
当然科学的试题答案分布是基本均衡的,即ABCD中的任何一个最多出现三次,最少会出现一次。
以上的分析对应考可能会有一点帮助。
好的方法对数学成绩的影响也许是几分,十几分,甚至更多。
文都考研小编认为正确运用考研数学临场解题策略及黄金战术原则,不仅可以预防各种由于解题习惯造成的不合理丢分和计算失误,而且还能合理安排解题次序和答题时间,挖掘思维和知识的潜能,考出最佳成绩。
考研数学复习计划优秀10篇
![考研数学复习计划优秀10篇](https://img.taocdn.com/s3/m/33a25432a200a6c30c22590102020740be1ecda9.png)
考研数学复习计划优秀10篇考研数学复习计划篇一太奇考研数学复习计划一、阶段划分(1)起跑准备阶段,搜集资料,制定计划;(2)系统的考研复习阶段,可以主要以原来大一年时用过的教材为复习依据,应该在8月底能够结束,自己要排好进度表,限时完成。
太奇老师提醒大家:参加辅导班的同学一定要向辅导老师索要进度安排表,再配合老师的进度具体制订自己的复习计划和进度。
很多学生都有这样的感觉“看看书好像都懂,做做题觉得很难”。
其原因有两点:一个原因是实际上没真正把书读懂,有一些同学看数学书像看小说一样,一知半解地一页一页往后翻,没能做到融会贯通,怎么样才算真正看懂,最简单的方法,就是边看书,边动笔,边思考分析。
另一原因是做题的数量还不够,也就是说考研复习的第一阶段和下面的第二阶段在时间上不能截然分开;虽应有序进行,但也是相辅相成,互相促进的。
第一阶段以看书为主,辅以做题;第二阶段以做题为主,辅以看书。
(3)强化训练阶段,强化训练阶段则应该主要以历届考研真题作为复习依据,大运动量的题海战术是绝对必要的;(4)模拟冲刺阶段,必须是真刀真枪的实战演练,模拟冲刺阶段一定要参加一个复习辅导班,一定要做事前从来也没看到过的试卷,否则不就是在作弊吗。
二、各阶段时间安排起跑准备阶段,搜集准备资料,必须不断进行、逐步完善,系统复习阶段,花5个月时间,应该在7月底结束;强化训练阶段,花4个月时间,应当在11月底结束;最后进行模拟冲刺。
三、各阶段复习目标(1)系统复习阶段的目标是:对于以前学过的知识有一个回顾总结;对于考研大纲能做到清楚明确。
(2)强化训练阶段的目标是要提高拿分数的能力:深刻理解各种基本概念、熟练掌握各种基本运算,确保考试时基本题的分数一分不漏地拿足;掌握一定的技巧、训练一定的综合能力,争取把综合题的分数一分一分地拿够。
(3)模拟冲刺的目标:全面检查复习情况;补足复习时遗漏环节;适应考试时间限制及熟悉并学会临场恰当如何安排解题进程与分配时间。
考研数学备考各个阶段的复习建议及资料
![考研数学备考各个阶段的复习建议及资料](https://img.taocdn.com/s3/m/8c807f5649d7c1c708a1284ac850ad02df800744.png)
考研数学备考各个阶段的复习建议及资料考研数学备考各个阶段的复习建议及资料推荐数学是一个比较抽象的学科,复习起来并不容易,所以基础差的同学一定要早早地开始复习。
店铺为大家精心准备了考研数学备考阶段复习意见和资料指导,欢迎大家前来阅读。
考研数学备考阶段复习意见和资料基础阶段(现在——20xx.6)基础阶段的主要任务是复习基础知识,掌握基本解题能力。
主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻。
复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点。
【切忌】1.先做题再看书。
2.做难题。
这一阶段不易做难题。
难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果。
【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目。
做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题。
2.在18考研大纲出来之前,不要轻易放弃任何一个知识点。
在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补。
3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点。
弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错。
4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题。
所以不能仅仅停留在“看懂了”的层次上。
对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写。
这些基本功都很重要,到临场考试时就可以发挥作用了。
PS:复习不下去的时候建议看看数学视频。
【基础阶段复习教材】数学考试大纲:可先对照17考研大纲复习,一般变动不大。
高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/8c6e375efd4ffe4733687e21af45b307e871f916.png)
考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。
下面是对高等数学知识点的总结,希望对考研学生有所帮助。
一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。
考研数学常用公式整理与记忆方法
![考研数学常用公式整理与记忆方法](https://img.taocdn.com/s3/m/382424fd5ebfc77da26925c52cc58bd630869354.png)
考研数学常用公式整理与记忆方法考研数学是许多考生备战考研的一大难点,其中最重要的就是掌握数学公式。
本文将对考研数学常用公式进行整理,并分享记忆方法,帮助考生们更好地掌握这些公式。
一、线性代数1. 行列式公式:- 二阶行列式:$\begin{vmatrix}a&b\\c&d\end{vmatrix} = ad - bc$- 三阶行列式:$\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$2. 矩阵公式:- 矩阵乘法:$AB = [a_{ij}]_{m×n} \cdot [b_{ij}]_{n×p} = [c_{ij}]_{m×p}$,其中$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$3. 特征值与特征向量:- 矩阵特征方程:$|A - λI| = 0$,其中$A$为矩阵,$λ$为特征值,$I$为单位矩阵4. 向量与空间:- 内积:$\vec{a} · \vec{b} = |\vec{a}| |\vec{b}| \cosθ$,其中$\vec{a}$和$\vec{b}$为向量,$θ$为夹角- 外积:$\vec{a} ×\vec{b} = |\vec{a}| |\vec{b}| \sinθ \vec{n}$,其中$\vec{n}$为法向量二、高等数学1. 极限公式:- 常用极限:$\lim_{x→∞} (1 + \frac{1}{x})^x = e$,$\lim_{x→0} \frac{\sin x}{x} = 1$2. 导数与微分:- 导数定义:$f'(x) = \lim_{\Delta x→0} \frac{f(x+\Delta x) -f(x)}{\Delta x}$- 常见导数:$(x^n)' = nx^{n-1}$,$(e^x)' = e^x$,$(\ln x)' = \frac{1}{x}$3. 积分公式:- 不定积分:$\int f(x) dx = F(x) + C$,其中$F'(x) = f(x)$- 定积分:$\int_a^b f(x) dx = F(b) - F(a)$,其中$F'(x) = f(x)$4. 泰勒展开:- 函数$f(x)$在$x=a$处的$n$次泰勒展开式:$f(x) = f(a) +f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$三、概率统计1. 概率公式:- 事件发生的概率:$P(A) = \frac{n(A)}{n(S)}$,其中$A$为事件,$n(A)$为事件$A$发生的次数,$n(S)$为样本空间的大小 - 条件概率:$P(A|B) = \frac{P(A∩B)}{P(B)}$,其中$A$与$B$为两个事件,$P(A∩B)$为事件$A$与事件$B$同时发生的概率2. 随机变量:- 离散型随机变量期望:$E(X) = \sum_{i} x_i P(X=x_i)$,其中$X$为随机变量,$x_i$为取值,$P(X=x_i)$为对应取值的概率 - 连续型随机变量期望:$E(X) = \int_{-\infty}^{\infty} xf(x) dx$,其中$X$为随机变量,$f(x)$为概率密度函数3. 分布定律:- 二项分布:$P(X=k) = C_n^k p^k (1-p)^{n-k}$,其中$X$为二项分布随机变量,$n$为试验次数,$p$为每次试验成功的概率 - 正态分布:$P(a ≤ X ≤ b) = \int_{a}^{b}\frac{1}{\sqrt{2π}\sigma} e^{-\frac{(x-μ)^2}{2σ^2}} dx$,其中$X$为正态分布随机变量,$μ$为均值,$σ$为标准差四、数学分析1. 一元函数极值:- 极值判定条件:若$f'(x_0) = 0$,且$f''(x_0)≠0$,则$f(x)$在$x=x_0$处取极值- 极值判定定理:若$f'(x_0) = 0$,且$f''(x)$在$x=x_0$的某一领域内恒为正(负),则$f(x)$在$x=x_0$处取极小(大)值2. 多元函数极值:- 极值判定条件:若所有一阶偏导数为0,且海森矩阵$H(x_0)$正定(负定),则$f(x)$在$x=x_0$处取极小(大)值以上仅为一部分考研数学常用公式,考生还需对更多公式进行系统学习与记忆。
考研数学复习中的重点知识汇总
![考研数学复习中的重点知识汇总](https://img.taocdn.com/s3/m/ae2439ccdc3383c4bb4cf7ec4afe04a1b071b0f8.png)
考研数学复习中的重点知识汇总考研数学是众多考生在研究生入学考试中面临的一座大山,需要系统而深入的复习。
在复习过程中,掌握重点知识是取得高分的关键。
以下为大家详细汇总考研数学复习中的重点知识。
一、高等数学1、函数、极限与连续函数的概念与性质,包括单调性、奇偶性、周期性等。
极限的计算方法,如四则运算法则、两个重要极限等。
连续的定义、间断点的类型及判断。
2、一元函数微分学导数的定义、几何意义及物理意义。
求导法则,包括四则运算、复合函数求导、反函数求导等。
函数的单调性、极值与最值。
凹凸性与拐点。
3、一元函数积分学不定积分的计算方法,如换元法、分部积分法等。
定积分的定义、性质及计算。
定积分的应用,如求平面图形的面积、旋转体的体积等。
4、多元函数微分学多元函数的概念、极限与连续。
偏导数与全微分的定义及计算。
多元函数的极值与最值。
5、多元函数积分学二重积分的计算方法,包括直角坐标法、极坐标法等。
三重积分的概念及计算。
曲线积分与曲面积分的概念及计算。
6、无穷级数数项级数的敛散性判断,如正项级数的比较判别法、比值判别法等。
幂级数的收敛半径、收敛区间及和函数的计算。
7、常微分方程一阶常微分方程的求解方法,如可分离变量方程、齐次方程、一阶线性方程等。
二阶常微分方程的求解方法,如常系数齐次方程、常系数非齐次方程等。
二、线性代数1、行列式行列式的定义、性质及计算方法。
2、矩阵矩阵的概念、运算,包括加法、乘法、转置等。
逆矩阵的定义、性质及求法。
矩阵的秩的概念及计算。
3、向量向量的线性表示、线性相关与线性无关。
向量组的秩的概念及计算。
4、线性方程组线性方程组的解的判定、求解方法。
齐次线性方程组的基础解系的求法。
5、矩阵的特征值与特征向量特征值与特征向量的定义、性质及计算方法。
相似矩阵的概念及性质。
6、二次型二次型的标准形与规范形的求法。
正定二次型的判定方法。
三、概率论与数理统计1、随机事件与概率随机事件的概念、关系与运算。
概率的定义、性质及计算方法。
轻松备考 掌握考研数学复习技巧(通用6篇)
![轻松备考 掌握考研数学复习技巧(通用6篇)](https://img.taocdn.com/s3/m/144c763011a6f524ccbff121dd36a32d7375c79f.png)
轻松备考掌握考研数学复习技巧〔通用6篇〕篇1:轻松备考掌握考研数学复习技巧轻松备考掌握考研数学复习技巧成功复习必备“两本”。
建议同学们从复习初期就开场为自己准备两个笔记本,一本用于专门整理自己在复习当中遇到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,定会留下非常深化的印象,防止遗忘出错;另一本用来整理错题,同学们在复习全程中会遇到许多许多不同类型的题目,对自己曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步进步解题才能的关键环节。
擅长总结,多多考虑。
总结是一个良好的复习方法,是使知识的掌握程度上升一个层次的.方法。
在单独复习好每一个知识点的同时一定要联络总结,建立一个完好的考研数学的知识体系构造。
比方,在复习好积分这个知识点的时候,要能建立一元积分、二重积分、多重积分之间的关联,由此及彼,深化理解掌握每一个知识点。
另外,要把根底阶段中遇到的问题,做错的题目,重新再整理一遍,总结自己的薄弱点,正确通过强化训练把遗留问题一一解决。
考研数学也就20多道题目,而且每种题目也就那几种类型,并且每年变化也不大,只要我们勤于总结,不久你会发现,考研数学不过如此。
数学考研题的重要特征之一就是综合性强、知识覆盖面广,一些稍有难度的试题一般比拟灵敏,对知识点串联的要求比拟高,只有通过逐步的训练,不断积累解题经历,在考试时才更有时机较快找到打破口。
建议的考生们平时要有针对性的训练,这样也有利于进一步理解并彻底弄清楚知识点的纵向与横向联络,转化为自己真正掌握了的东西,可以在理解的根底上灵敏运用、触类旁通。
考研数学的复习虽然困难,但是只要按部就班做好上述四件事情,你会发现复习越来越轻松,对自己也越来越有自信,最终的成功也一定非你莫属!考研教育网祝同学们复习顺利!。
考研数学极限知识点总结
![考研数学极限知识点总结](https://img.taocdn.com/s3/m/0993d2cdd5d8d15abe23482fb4daa58da0111c8f.png)
考研数学极限知识点总结一、数列极限1. 数列的概念数列是由一列数按照一定的规律排列组成的数集,用{an}或an来表示。
其中,an为数列的第n个元素。
2. 数列极限的定义对于一个数列{an},如果存在一个常数a,当n趋于无穷大时,数列的元素an无限地接近于a,那么称a为数列{an}的极限,记作lim(n→∞)an=a。
即对于任意正数ε,总存在正整数N,使得当n>N时,有|an−a|<ε。
3. 数列极限存在的判别法(1)夹逼定理:如果数列{an}、{bn}、{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=a,那么必有lim(n→∞)bn=a。
(2)单调有界准则:如果数列{an}单调增加且有上界(或单调减少且有下界),那么该数列收敛。
4. 收敛数列的性质(1)收敛数列的极限唯一。
(2)收敛数列的有界性:收敛数列必有界,即存在正数M,使得|an|≤M。
(3)子数列的极限:如果数列{an}的极限为a,那么{an}的任意子数列也收敛且极限为a。
5. 重要极限(1)正整数幂极限:l im(n→∞)(1+1/n)n=e。
(2)调和数列极限:lim(n→∞)1/nlnn=0。
(3)几何数列极限:当−1<l<1时,lim(n→∞)ln=0。
二、函数极限1. 函数极限的概念设函数f(x)在点x0的某个去心邻域内有定义,如果存在常数A,对于任意的ε>0,总存在δ>0,使得当0<|x-x0|<δ时,有|f(x)-A|<ε,则称当x趋于x0时,函数f(x)的极限为A,记作lim(x→x0)f(x)=A。
2. 函数极限性质(1)函数极限的唯一性:如果lim(x→x0)f(x)存在,则其极限唯一。
(2)两函数之和的极限:lim(x→x0)(f(x)+g(x))=lim(x→x0)f(x)+lim(x→x0)g(x)。
(3)函数与常数的乘积的极限:lim(x→x0)c⋅f(x)=c⋅lim(x→x0)f(x)。
2023考研数学复习方法:考研数学一、二、三分值分布及考察重点 (2)
![2023考研数学复习方法:考研数学一、二、三分值分布及考察重点 (2)](https://img.taocdn.com/s3/m/e0d5e634f02d2af90242a8956bec0975f465a437.png)
2023考研数学复习方法:考研数学一、二、三分值分布及考察重点1500字2023考研数学复习方法:考研数学一、二、三分值分布及考察重点考研数学一、二、三是考研数学科目中的三个重要模块,对于考生来说,掌握这三个模块的分值分布和考察重点是非常重要的。
下面将分别介绍2023考研数学一、二、三的分值分布和考察重点。
一、考研数学一(基础数学)分值分布及考察重点考研数学一主要包括数学分析和线性代数两个部分,分值在100分左右,大致占考研数学总分的20%左右。
1. 数学分析数学分析是数学的基础课程,也是考察考生数学基本功和分析思维能力的重要手段。
具体分值分布如下:(1)极限、连续、一元函数导数和微分:约占总分的30%~40%。
(2)一元函数的高阶可导性和泰勒展开、积分学:约占总分的30%~40%。
2. 线性代数线性代数是现代数学的重要分支,也是大学数学课程中的重点内容。
具体分值分布如下:(1)线性方程组的基本概念和解法:约占总分的15%~20%。
(2)矩阵的基本概念和运算、矩阵的特征值和特征向量:约占总分的20%~25%。
二、考研数学二(高等数学)分值分布及考察重点考研数学二主要包括高等数学中的部分内容,分值在100分左右,大致占考研数学总分的20%左右。
1. 二元函数和多元函数二元函数和多元函数是高等数学的重要内容,考察考生对函数的理解和运用能力。
具体分值分布如下:(1)二元函数和多元函数的极限和连续性:约占总分的20%~30%。
(2)二元函数和多元函数的偏导数和全微分、梯度和方向导数、多元函数的极值和条件极值:约占总分的25%~35%。
2. 重积分和曲线积分重积分和曲线积分是高等数学中的重要概念和工具,考察考生解决实际问题的能力。
具体分值分布如下:(1)重积分的定义和性质、重积分的计算:约占总分的20%~30%。
(2)曲线积分的定义和性质、曲线积分的计算:约占总分的20%~30%。
三、考研数学三(概率统计与随机过程)分值分布及考察重点考研数学三主要包括概率统计和随机过程两个部分,分值在100分左右,大致占考研数学总分的20%左右。
考研数学线代知识点的复习指导
![考研数学线代知识点的复习指导](https://img.taocdn.com/s3/m/1d74fa6cda38376baf1faeb1.png)
考研数学线代知识点的复习指导考研数学复习阶段的时候,我们需要掌握好线代知识点的复习要点。
小编为大家精心准备了考研数学线代知识点的复习攻略,欢迎大家前来阅读。
考研数学线代知识点的复习指南线性代数总共分为六章。
第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理其他问题需要计算行列式,题目难度不是很大。
主要方法是利用行列式的性质或者展开定理即可。
而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进行变形、利用相似关系。
06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,。
今年数一、数二、数三这块都没有涉及。
第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。
本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。
其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的则是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。
14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。
16年只有数二了矩阵等价的判断确定参数。
第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。
重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。
复习的时候要注意结构和从不同角度理解。
考研数学-专题1-2-求极限的方法和技巧
![考研数学-专题1-2-求极限的方法和技巧](https://img.taocdn.com/s3/m/e387f85a0912a21615792942.png)
n
=
________ .
[1] 1 − 2a
1
1
1
【例 4】 lim( a x + b x + c x )x ,其中 a > 0, b > 0, c > 0.
x→∞
3
⎡
1
1
1
⎤x
【解】原式 =
lim
→∞
⎢⎢1
+
ax
+
bx + 3
cx
方法 3 利用等价无穷小代换求极限
1.等价无穷小代换的原则 1)乘、除关系可以换;
若α
~ α1,β
~
β1
,
则
lim
α β
= lim α1 . β1
2)加、减关系在一定条件下可以换;
(1)
若α
~ α1, β
~
β
1
,
且
lim
α1 β1
=
A ≠ 1. 则α
−β
~ α1 − β1.
(2)
若α
~ α1,β
~
β1,
(B)仅有一个跳跃间断点;
(C)有两个可去间断点;
(D)有两个跳跃间断点;
答案
1.1;
β 2 −α 2
n ( n +1)
2.(D); 3. − 2; 4. e 2 ;5. e 2 6.(B); 7.(D).
方法 2 利用有理运算法则求极限
若 lim f (x) = A, lim g(x) = B ,则
4.
lxi→m0⎜⎜⎝⎛
1 1
+ +
sin sin
年考研数学函数与极限解题技巧与方法分享
![年考研数学函数与极限解题技巧与方法分享](https://img.taocdn.com/s3/m/e0a6384b02d8ce2f0066f5335a8102d276a26129.png)
考研数学函数与极限解题方法总结
解题方法的归纳与总结
极限的定义和性质:理解极限的概念,掌握极限的性质和运算法则
极限的计算方法:掌握极限的计算方法,如洛必达法则、泰勒公式等
函数的连续性:理解函数的连续性,掌握连续函数的性质和运算法则
导数的定义和性质:理解导数的概念,掌握导数的性质和运算法则
添加标题
导数与积分的关系:导数是积分的基础,积分是导数的推广
添加标题
导数在函数与极限中的应用:通过求导,可以找到函数的极值点,从而求解极限问题
添加标题
积分在函数与极限中的应用:通过积分,可以求解一些复杂的极限问题,如无穷小量、无穷大量等
添加标题
函数与极限的应用题解题技巧
掌握解题式法:将函数展开为泰勒级数,然后求极限
直接代入法:将函数值代入极限表达式,直接求解
极限的存在性定理
极限的存在性定理与连续性的关系:如果函数在某一点处的极限值存在,那么该点处的函数值也存在,即函数在该点处连续
极限的存在性定理的应用:判断函数在某一点处的极限值是否存在,以及求解极限值
极限的存在性定理:如果函数在某一点处的极限值存在,那么该点处的函数值也存在
/单击此处添加副标题内容/
考研数学函数与极限解题技巧与方法分享
汇报人:XX
目录
Part One.
添加目录标题
Part Two.
考研数学函数与极限概述
Part Three.
考研数学函数解题技巧
Part Four.
考研数学极限解题技巧
Part Five.
考研数学函数与极限综合解题技巧
Part Six.
极限的应用,如求极值、最值、凹凸性等
Part Three
考研数学中求极限方法的总结
![考研数学中求极限方法的总结](https://img.taocdn.com/s3/m/9f16f4c80066f5335b8121b0.png)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学极限与导数复习方法我们在进行考研数学的备考复习时,需要掌握好极限与导数的复习方法。
小编为大家精心准备了考研数学极限与导数复习秘诀,欢迎大家前来阅读。
考研数学极限与导数复习技巧极限极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。
极限的计算是核心考点,考题所占比重最大。
熟练掌握求解极限的方法是得高分的关键。
极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。
四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。
与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左、右极限,分段函数的连续性问题关键是分界点处的连续性,或按定义考察,或分别考察左、右连续性;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数的定义直接计算或检验,存在的定义是极限存在,求极限时往往会用到推广之后的导数定义式;3、渐近线(水平、垂直、斜渐近线);4、多元函数微分学,二重极限的讨论计算难度较大,多考察证明极限不存在。
导数求导与求微分每年直接考查的知识所占分值平均在10分到13分左右。
常考题型:(1)利用定义计算导数或讨论函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。
对于导数与微分,首先对于它们的定义要给予足够的重视,按定义求导在分段函数求导中是特别重要的。
应该熟练掌握可导、可微与连续性的关系。
求导计算中常用的方法是四则运算法则和复合函数求导法则,一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式不变性,利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数。
幂指函数求导法、隐函数求导法、参数式求导法、反函数求导法及变限积分求导法等都是复合函数求导法的应用。
导数计算中需要掌握的常见类型有以下几种:1、基本函数类型的求导;2、复合函数求导;3、隐函数求导,对于隐函数求导,不要刻意记忆公式,记住计算方法即可,计算的时候要注意结合各种求导法则;4、由参数方程所确定的函数求导,不必记忆公式,要掌握其计算方法,依据复合函数求导法则计算即可;5、反函数的导数;6、求分段函数的导数,关键是求分界点处的导数;7、变上限积分求导,关键是从积分号下把提出;8、偏导数的计算,求偏导数的基本法则是固定其余变量,只对一个变量求导,在此法则下,基本计算公式与一元函数类似。
导数的计算需要考生不断练习,直到对所有题目一见到就能够熟练、正确地解答出来。
无论是强化阶段还是冲刺阶段希望考生们都能够重视对于一些基本概念、理论的学习和巩固。
希望同学们坚持到底,收获属于自己的美丽!考研数学重要的常考点复习时间系统安排在暑假期间,大家首先要这段时间将教材过一遍,将大纲规定的知识点弄清楚。
这个阶段的工作很细碎,但很重要,一定要细致地做好。
可以报一个考研辅导班,并利用假期时间消化。
通过老师辅导可以将前一阶段的知识串起来,提高自己解综合题的能力;到了下个学期就要进入做模拟题、提高能力和查缺补漏了。
到了考试前20天左右,就要将自己以前的复习整理一下,看一下笔记,将以前消化的巩固下来,不清楚的弄清楚。
会做的就不能丢分考研数学试题从来未出现过超纲现象,只要考生把全部基本的概念、原理搞懂了,就相当于全部押中考题。
从之前考研的情况来看,考生失分的主要原因是基本功不过关,大多数考生往往因为一个考点没掌握而影响了整道题的运算,最终导致失分。
在复习过程当中,大家一定要重视数学概念、原理的掌握和计算过程的训练,争取在考试过程中,只要是会的就不丢分。
无法预测,只能注意细节从最近这几年数学一来讲,有一个比较值得注意的问题,出现了图形命题这种形式。
数学一在最近连续两年出现导数应用用图形来描述的问题,在数学二,数学三,数学四,估计以后可能也会朝这个方向去做。
所以这个倒是值得应该注意的这么一个问题。
至于说其它的哪些考试,或者哪些考这种东西,确实比较难以去预测这个问题。
可是有这样一种特点,假如我们看一看考试大纲的话往往可以看到这样,在考试大纲里头所列出哪些知识点,经过了多年考试以后,基本上全都考到了,也就是说在考试大纲里头所列出的那些考点的话经过几年以后,基本上都能够轮得到。
考研数学复习效果1.高等数学极限、导数和不定积分这三个部分是考试中考查的重点,其他部分都是在这三个的基础上进行延伸。
2.线性代数是初等变换,含有参数的线性方程式解的讨论,还有就是方程的特征值、特征向量,有了他们,线性代数的复习就会很流畅。
3.概率论与数理统计第一章的概念,其中的条件概念,乘法公式、等三个方面;第二章是几何分布,这章是该理论的核心,特别是二维联系变量的平均分布密度、条件分布密度,离散型的实际变量的特征和定义;第三章数据变量的数据特征,主要就是四个概念数学期望、方差、线方差、相关系数。
此外,大家在复习的过程中,应重视自己的错题,因为他们在一定程度上反映出你的知识漏洞。
总结了在历年考试中,填空题、选择题、计算题三大题型的常见出错原因,借此帮助大家降低出错率。
在数学试卷中,客观题部分主要分填空和选择。
其中填空6道题,选择8道题,共56分。
占据了数学三分之一多的分数。
在历年的考试中,这部分题丢分现象比较严重,很多一部分同学在前面的56分可能才得了20多分,如果基本题丢掉30多分,这个时候总分要上去是一件非常不容易的事情。
一、【填空题】(1)考查点:填空题比较多的是考查基本运算和基本概念,或者说填空题比较多的是计算。
(2)失分原因:运算的准确率比较差,这种填空题出的计算题题本身不难,方法我们一般同学拿到都知道,但是一算就算错了,结果算错了,填空题只要是答案填错了就只能给0分。
(3)对策:这就要求我们同学平时复习的时候,这种计算题,一些基本的运算题不能光看会,就不去算,很多的同学看会在草稿纸上画两下,没有认真地算。
平时没有算过一定量的题,考试的时候就容易错,这就要求我们平时对一些基本的运算题,不是说每道题都认真地做到底,但每一种类型的计算题里面拿出一定量进行练习,这样才能提高你的准确率。
二、【选择题】(1)考查点:选择题一共有八道题,这个丢分也很严重,这个丢分的原因跟填空题有差异,就是选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,就是容易混淆的概念和理论。
(2)失分原因:首先,有些题目确实具有一定的难度。
其次,有些同学在复习过程中将重点放在了计算题上,而忽视了基础知识,导致基础只是不扎实。
最后,缺乏一定的方法和技巧。
由于对这种方法不了解,用常规的方法做,使简单的题变成了复杂的题。
(3)对策:第一,基本理论和基本概念是我们的薄弱环节,就必须在这下功夫,实际上它的选择题里边要考的东西往往就是我们原来的定义或者性质,或者一个定理这些内容的外延,所以我们复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。
比如说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了,平时在复习的时候要注意基本的概念和理论,本身有些题有难点,但是也不是说选择题有很多有难度的题,一般来说每年的卷子里边八道选择题里面一般有一两道是比较难的,剩下的相对都是比较容易的。
第二客观题有一些方法和技巧,我们通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,我们考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧。
三、【计算题】(1)考查点:计算题在整份试卷中占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题。
(2)失分原因:运算的准确率比较差。
(3)对策:首先,多做练习。
大家基本的运算必须要把它练熟,数学跟复习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习掌握这套方法,并且一定自己要实践,这个准确率提高不是看书就可以看得出来的,肯定是练出来的,所以要解决计算题准确率一定要通过一定量的练习。
其次,还有一类题就是证明题,应该说比较少,如果要出证明题比较多的是整个卷子里面最难的题,那就是难点。
这个证明题都是在整个的内容里面经常有几个难点的地方是经常出题的地方,从复习的时候注意那几个经常出难题的地方的题的规律和方法,应该这个地方也不成大的问题。
建议同学们从复习初期就开始为自己准备两个笔记本,一本用于专门整理自己在复习当中遇到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,定会留下非常深刻的印象,避免遗忘出错;另一本用来整理错题,同学们在复习全程中会遇到许多许多不同类型的题目,对自己曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步提高解题能力的关键环节。
猜你感兴趣:1.考研数学有哪些正确的复习方法和时间安排2.考研数学高数求极限的复习方法及常考题型3.考研的时候如何学好数学导数4.考研数学复习如何做才能拿高分5.考研数学如何提高解题速率和正确率。