2017年中考数学复习专题突破《最值问题》测试题(含答案)
2017中考数学圆的最值问题(含答案)名师制作优质教学资料
D .r=3
5.( 2010?苏州)如图,已知 A 、B 两点的坐标分别为( 2,0)、( 0,2),⊙ C 的圆心坐标 为(﹣ 1,0),半径为 1.若 D 是⊙ C 上的一个动点,线段 DA 与 y 轴交于点 E,则 △ ABE
面积的最小值是(
7.( 2013?枣庄)如图,已知线段 OA 交⊙ O 于点 B,且 OB=AB ,点 P 是⊙ O 上的一个动
点,那么∠ OAP 的最大值是(
)
A . 90° B. 60° C. 45° D. 30°
二.填空题(共 12 小题) 8.( 2013?武汉)如图, E, F 是正方形 ABCD 的边 AD 上两个动点,满足 BE 交 AG 于点 H .若正方形的边长为 2,则线段 DH 长度的最小值是
直径画⊙ O 分别交 AB , AC 于 E, F,连接 EF,则线段 EF 长度的最小值为
.
11.(2015 ?峨眉山市一模)如图,已知直线 l 与⊙ O 相离, OA ⊥ l 于点 A , OA=10 , OA 与⊙ O 相交于点 P, AB 与 ⊙ O 相切于点 B,BP 的延长线交直线 l 于点 C.若⊙ O 上存在点 Q,使 △ QAC 是以 AC 为底边的等腰三角形,则半
)
A和D
A . 2 B. 1 C.
D.
6.( 2013?市中区模拟)如图,已知 A 、B 两点的坐标分别为( 8, 0)、(0,﹣ 6),⊙ C 的 圆心坐标为( 0,7),半径为 5.若 P 是⊙ C 上的一个动点,线段 PB 与 x 轴交于点 D ,则
△ ABD 面积的最大值是(
)
A . 63 B. 31 C. 32 D. 30
.
15.( 2013?内江)在平面直角坐标系 xOy 中,以原点 O 为圆心的圆过点 A( 13,0),直线 y=kx ﹣ 3k+4 与⊙ O 交于
2017中考数学题及答案
2017中考数学题及答案2017年中考是许多中学生的重要转折点,其中数学科目是考试中最重要的一门科目。
今天我们将为您整理2017年中考数学题及答案,希望对您的复习有所帮助。
第一部分:选择题1.如果一个数的7倍加4得到33,那这个数是多少?A. 3B. 4C. 5D. 6答案:D. 6。
解析:设这个数为 x,则有 7x + 4 = 33,解方程可得 x = 6。
2.一个长方形的长是宽的1.5倍,若宽为6米,则长为多少米?A. 6B. 8C. 9D. 12答案:C. 9。
解析:设长为 x,则宽为 6 米,由题意可得x = 1.5 × 6 = 9。
3.一公斤苹果售价8元,现有100元,可以买多少公斤苹果?A. 10B. 11C. 12D. 13答案:C. 12。
解析:设可买的苹果数量为 x,则有 8x = 100,解方程可得 x = 12。
第二部分:填空题4.某班级有 50 名学生,其中男生占总数的 40%,那么女生的人数为 ______ 人。
答案:30。
解析:女生人数占 60%,即0.6×50=30 人。
5.一块土地面积为 60 平方米,如果将其等分为正方形,每个正方形的面积为 ______ 平方米。
答案:4。
解析:设每个正方形的边长为 x,则面积为 x^2。
根据题意可得x^2 = 60 ÷ 15 = 4,解方程可得 x = 2。
6.已知两个数的和为 72,差为 8,那么这两个数分别是 ______ 和______。
答案:40 和 32。
解析:设两个数为 x 和 y,则有 x + y = 72,x - y = 8。
解这个方程组可得 x = 40,y = 32。
第三部分:解答题7.现有 2 个水桶,第1个水桶的容量是第2个水桶容量的3倍,若第2个水桶的水满了,倒入第1个水桶后,第1个水桶正好装满。
求两个水桶的容量分别是多少?答案:第2个水桶容量为 x,第1个水桶容量为 3x。
2017年中考初三年级数学经典试题和答案
2017年中考数学经典试题集一、填空题:1、已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223x y +=,1xy =,则x y -= .答案:(1)-3;(2)-1.2、用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =_____________.答案:y =53x -51.3、已知m 2-5m -1=0,则2m 2-5m +1m 2= .答案:28.4、____________________范围内的有理数经过四舍五入得到的近似数3.142.答案:大于或等于3.1415且小于3.1425.5、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、 交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 .答案:2.6、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。
现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 . 答案:53. 7、某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。
由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。
若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %. 答案:30.8、小明背对小亮按小列四个步骤操作:(1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; (2)从左边一堆拿出两张,放入中间一堆;(3)从右边一堆拿出两张,放入中间一堆;(4)左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆,当小亮知道小明操作的步骤后,便准确地说出中间一堆牌现有的张数,你认为中间一堆牌现有的张数是 . 答案:6.9、某同学在使用计算器求20个数的平均数时,错将88误输入为8,那么由此求出的平均数与实际平均数的差为 .… ……图1 图2第19题图P N M DCB A答案:-4.10、在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆, (1)当r 时,圆O 与坐标轴有1个交点; (2)当r 时,圆O 与坐标轴有2个交点; (3)当r 时,圆O 与坐标轴有3个交点; (4)当r 时,圆O 与坐标轴有4个交点; 答案:(1)r=3; (2)3<r <4; (3)r=4或5; (4)r >4且r ≠5.二、选择题:1、图(二)中有四条互相不平行的直线L 1、L2、L3、L 4所截出的七个角。
2017数学中考试题及答案
2017数学中考试题及答案2017年是数学中考的关键一年,各地的中考试卷都备受关注。
在这篇文章中,将为大家详细介绍2017年数学中考试题及答案。
通过对这些试题的解析和讲解,希望能帮助大家更好地理解数学知识和考试技巧。
1. 选择题部分题目一:在直角坐标系中,点A(1, 2)和B(4, 5)所在的直线段AB的长度是多少?A. 3B. 4C. 5D. 6答案:B. 4解析:使用勾股定理计算直线段AB的长度。
设AB的长度为d,则d^2 = (4-1)^2 + (5-2)^2 = 9 + 9 = 18,所以d = √18 ≈ 4。
题目二:已知等差数列的前n项和Sn = 3n^2 + 2n,则这个等差数列的公差是多少?A. 1B. 2C. 3D. 4答案:C. 3解析:等差数列的前n项和公式为Sn = (a1 + an) * n / 2,其中a1为首项,an为末项。
根据已知条件,我们可以列出等式3n^2 + 2n = (a1 + an) * n / 2。
由于这是一个等差数列,公差为d,所以an = a1 + (n-1)d。
代入等式得到3n^2 + 2n = (a1 + a1 + (n-1)d) * n / 2。
化简得3n^2 + 2n = (2a1 + (n-1)d) * n / 2。
比较等式两边的系数得到2a1 + (n-1)d = 3。
因为这是一个等差数列,所以d = 3。
2. 解答题部分题目三:已知等差数列的前n项和Sn = 2n^2 + n,求这个等差数列的首项。
解答:设等差数列的首项为a1,公差为d。
根据等差数列的前n项和公式Sn = (a1 + an) * n / 2,我们有2n^2 + n = (a1 + a1 + (n-1)d) * n / 2。
化简得2n^2 + n = (2a1 + (n-1)d) * n / 2。
比较等式两边的系数可得2a1 + (n-1)d = 2。
由此可得a1 + (n-1)d = 1。
中考初中数学最值问题典型例题(含答案分析)+初中数学压轴题及答案
中考数学最值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
(2、代数计算最值问题 3、二次函数中最值问题) 问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型:条件:如下左图,A 、B 是直线l 同旁的两个定点.问题:在直线l 上确定一点P ,使PA PB +的值最小.方法:作点A 关于直线l 的对称点A ',连结A B '交l 于 点P ,则PA PB A B '+=的值最小例1、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM+CM 的值最小;AB′Pl②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长。
例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。
中考数学复习《最值问题》经典题型含答案
中考数学 最值问题一、选择题1.如图,⊙O 的半径为1,点O 到直线m 的距离为2,点P 是直线m 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是( B ) A .1 B.3 C .2 D. 5 ,第1题图) ,第2题图)2.如图,在△ABC 中,AB =AC ,AD ,CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( B )A .BCB .CEC .AD D .AC【解析】在△ABC 中,AB =AC ,AD 是△ABC 的中线,可得点B 和点C 关于直线AD 对称,连结CE ,交AD 于点P ,此时BP +EP 最小,为CE 的长,故选B.二、填空题3.如图,将直线y =-x 沿y 轴向下平移后的直线恰好经过点A (2,-4),且与y 轴交于点B ,在x 轴上存在一点P 使得P A +PB 的值最小,则点P 的坐标为__(23,0)__.【解析】如图,作点B 关于x 轴对称的点B ′,连结AB ′,交x 轴于P ,则点P 即为所求,设直线y =-x 沿y 轴向下平移后的直线解析式为y =-x +a ,把A (2,-4)代入可得,a =-2,∴平移后的直线为y =-x -2,令x =0,则y =-2,即B (0,-2)∴B ′(0,2),设直线AB ′的解析式为y =kx +b ,把A (2,-4),B ′(0,2)代入可得,⎩⎪⎨⎪⎧-4=2k +b ,2=b ,解得⎩⎪⎨⎪⎧k =-3,b =2,∴直线AB ′的解析式为y =-3x +2,令y =0,则x =23,∴P (23,0). ,第3题图) ,第4题图)4.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线y =-34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__22__.【解析】连结AP ,PQ ,当AP 最小时,PQ 最小,∴当AP ⊥直线y =-34x +3时,PQ 最小,∴PQ =32-12=2 2.三、解答题5.如图,在平面直角坐标系中,已知抛物线y =x 2+bx +c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上.(1)b =__-2__,c =__-3__;(2)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连结EF ,当线段EF 的长度最短时,求出点P 的坐标.解:(2)连结OD ,由题意可知,四边形OFDE 是矩形,则OD =EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △A OC 中,∵O C =OA =3,OD⊥AC ,∴ D 是AC 的中点.又∵DF ∥OC ,∴DF =12OC =32.∴点P 的纵坐标是-32.则x 2-2x -3=-32, 解得x =2±102.∴当EF 最短时,点P 的坐标是:(2+102,-32)或(2-102,-32) 6.如图1,在矩形纸片ABCD 中,AB =3 cm ,AD =5 cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ .过点E 作EF ∥AB 交PQ 于F ,连结BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P ,Q 也随着移动.①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P ,Q 分别在BA ,BC 上移动,求出点E 在边AD 上移动的最大距离.解:(1)∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ对称,∴PB =PE ,BF =EF ,∠BPF =∠EPF ,又∵EF ∥AB ,∴∠BPF =∠EFP ,∴EP =EF ,∴BP =BF =FE =EP ,∴四边形BFEP 为菱形(2)①如图2,∵四边形ABCD 是矩形,∴BC =AD =5 cm ,CD =AB =3 cm ,∠A =∠D =90°.∵点B 与点E 关于PQ 对称,∴CE =BC =5 cm ,在Rt △CDE 中,DE 2=CE 2-CD 2,∴DE =4 cm ,∴AE =AD -DE =5 cm -4 cm =1 cm ,在Rt △APE 中,AE =1,AP =3-PB=3-PE ,∴EP 2=12+(3-EP )2,解得:EP =53 cm.∴菱形BFEP 的边长为53cm ; ②当点Q 与点C 重合时,如图2,点E 离A 点最近,由①知,此时AE =1 cm ;当点P与点A 重合时,如图3,点E 离A 点最远,此时,四边形ABQE 是正方形,AE =AB =3 cm ,∴点E 在边AD 上移动的最大距离为2 cm。
2017年挑战中考数学压轴题(全套含答案)
第一部分函数图象中点的存在性问题§1.1 因动点产生的相似三角形问题例1 2014年衡阳市中考第28题例2 2014年益阳市中考第21题例3 2015年湘西州中考第26题例4 2015年张家界市中考第25题例5 2016年常德市中考第26题例6 2016年岳阳市中考第24题例7 2016年上海市崇明县中考模拟第25题例8 2016年上海市黄浦区中考模拟第26题§1.2 因动点产生的等腰三角形问题例9 2014年长沙市中考第26题例10 2014年张家界市第25题例11 2014年邵阳市中考第26题例12 2014年娄底市中考第27题例13 2015年怀化市中考第22题例14 2015年长沙市中考第26题例15 2016年娄底市中考第26题例16 2016年上海市长宁区金山区中考模拟第25题例17 2016年河南省中考第23题例18 2016年重庆市中考第25题§1.3 因动点产生的直角三角形问题例19 2015年益阳市中考第21题例20 2015年湘潭市中考第26题例21 2016年郴州市中考第26题例22 2016年上海市松江区中考模拟第25题例23 2016年义乌市绍兴市中考第24题§1.4 因动点产生的平行四边形问题例24 2014年岳阳市中考第24题例25 2014年益阳市中考第20题例26 2014年邵阳市中考第25题例27 2015年郴州市中考第25题例28 2015年黄冈市中考第24题例29 2016年衡阳市中考第26题例30 2016年上海市嘉定区宝山区中考模拟中考第24题例31 2016年上海市徐汇区中考模拟第24题§1.5 因动点产生的面积问题例32 2014年常德市中考第25题例33 2014年永州市中考第25题例34 2014年怀化市中考第24题例35 2015年邵阳市中考第26题例36 2015年株洲市中考第23题例37 2015年衡阳市中考第28题例38 2016年益阳市中考第22题例39 2016年永州市中考第26题例40 2016年邵阳市中考第26题例41 2016年陕西省中考第25题§1.6 因动点产生的相切问题例42 2014年衡阳市中考第27题例43 2014年株洲市中考第23题例44 2015年湘潭市中考第25题例45 2015年湘西州中考第25题例46 2016年娄底市中考第25题例47 2016年湘潭市中考第26题例48 2016年上海市闵行区中考模拟第24题例49 2016年上海市普陀区中考模拟中考第25题§1.7 因动点产生的线段和差问题例50 2014年郴州市中考第26题例51 2014年湘西州中考第25题例52 2015年岳阳市中考第24题例53 2015年济南市中考第28题例54 2015年沈阳市中考第25题例55 2016年福州市中考第26题例56 2016年张家界市中考第24题例57 2016年益阳市中考第21题第二部分图形运动中的函数关系问题§2.1 由比例线段产生的函数关系问题例1 2014年常德市中考第26题例2 2014年湘潭市中考第25题例3 2014年郴州市中考第25题例4 2015年常德市中考第25题例5 2015年郴州市中考第26题例6 2015年邵阳市中考第25题例7 2015年娄底市中考第26题例8 2016年郴州市中考第25题例9 2016年湘西州中考第26题例10 2016年上海市静安区青浦区中考模拟第25题例11 2016年哈尔滨市中考第27题第三部分图形运动中的计算说理问题§3.1 代数计算及通过代数计算进行说理问题例1 2014年长沙市中考第25题例2 2014年怀化市中考第23题例3 2014年湘潭市中考第26题例4 2014年株洲市中考第24题例5 2015年衡阳市中考第27题例6 2015年娄底市中考第25题例7 2015年永州市中考第26题例8 2015年长沙市中考第25题例9 2015年株洲市中考第24题例10 2016年怀化市中考第22题例11 2016年邵阳市中考第25题例12 2016年株洲市中考第26题例13 2016年长沙市中考第25题例14 2016年长沙市中考第26题§3.2 几何证明及通过几何计算进行说理问题例15 2014年衡阳市中考第26题例16 2014年娄底市中考第26题例17 2014年岳阳市中考第23题例18 2015年常德市中考第26题例19 2015年益阳市中考第20题例20 2015年永州市中考第27题例21 2015年岳阳市中考第23题例22 2016年常德市中考第25题例23 2016年衡阳市中考第25题例24 2016年永州市中考第27题例25 2016年岳阳市中考第23题例26 2016年株洲市中考第25题例27 2016年湘潭市中考第25题第四部分图形的平移、翻折与旋转§4.1 图形的平移例1 2015年泰安市中考第15题例2 2015年咸宁市中考第14题例3 2015年株洲市中考第14题例4 2016年上海市虹口区中考模拟第18题§4.2 图形的翻折例5 2016年上海市奉贤区中考模拟第18题例6 2016年上海市静安区青浦区中考模拟第18题例7 2016年上海市闵行区中考模拟第18题例8 2016年上海市浦东新区中考模拟第18题例8 2016年上海市普陀区中考模拟第18题例10 2016年常德市中考第15题例11 2016年张家界市中考第14题例12 2016年淮安市中考第18题例13 2016年金华市中考第15题例14 2016年雅安市中考第12题§4.3 图形的旋转例15 2016年上海昂立教育中学生三模联考第18题例16 2016年上海市崇明县中考模拟第18题例17 2016年上海市黄浦区中考模拟第18题例18 2016年上海市嘉定区宝山区中考模拟第18题例19 2016年上海市闸北区中考模拟第18题例20 2016年邵阳市中考第13题例21 2016年株洲市中考第4题§4.4 三角形例22 2016年安徽省中考第10题例23 2016年武汉市中考第10题例24 2016年河北省中考第16题例25 2016年娄底市中考第10题例26 2016年苏州市中考第9题例27 2016年台州市中考第10题例28 2016年陕西省中考第14题例29 2016年内江市中考第11题例30 2016年上海市中考第18题§4.5 四边形例31 2016年湘西州中考第11题例32 2016年益阳市中考第4题例33 2016年益阳市中考第6题例34 2016年常德市中考第16题例35 2016年成都市中考第14题例36 2016年广州市中考第13题例37 2016年福州市中考第18题例38 2016年无锡市中考第17题例39 2016年台州市中考第15题§4.6 圆例40 2016年滨州市中考第16题例41 2016年宁波市中考第17题例42 2016年连云港市中考第16题例43 2016年烟台市中考第17题例44 2016年烟台市中考第18题例45 2016年无锡市中考第18题例46 2016年武汉市中考第9题例47 2016年宿迁市中考第16题例48 2016年衡阳市中考第17题例49 2016年邵阳市中考第18题例50 2016年湘西州中考第18题例51 2016年永州市中考第20题§4.7 函数的图象及性质例52 2015年荆州市中考第9题例53 2015年德州市中考第12题例54 2015年烟台市中考第12题例55 2015年中山市中考第10题例56 2015年武威市中考第10题例57 2015年呼和浩特市中考第10题例58 2016年湘潭市中考第18题例59 2016年衡阳市中考第19题例60 2016年岳阳市中考第15题例61 2016年株洲市中考第9题例62 2016年永州市中考第19题例63 2016年岳阳市中考第8题例64 2016年岳阳市中考第16题例65 2016年益阳市中考第14题例66 2016年株洲市中考第10题例67 2016年株洲市中考第17题例68 2016年东营市中考第15题例69 2016年成都市中考第13题例70 2016年泰州市中考第16题例71 2016年宿迁市中考第15题例72 2016年临沂市中考第14题例73 2016年义乌市绍兴市中考第9题例74 2016年淄博市中考第12题例75 2016年嘉兴市中考第16题§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分和两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2014年湖南省衡阳市中考第28题二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m >0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P运动,可以体验到,当点P运动到AC的中点的正下方时,△APC的面积最大.拖动y轴上表示实数m的点运动,抛物线的形状会改变,可以体验到,∠ACD和∠ADC都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC.3.讨论△ACD与△OBC相似,先确定△ACD是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD存在两种情况.图文解析(1)因为抛物线与x轴交于A(-3, 0)、B(1, 0)两点,设y=a(x+3)(x-1).代入点C(0,-3m),得-3m=-3a.解得a=m.所以该二次函数的解析式为y=m(x+3)(x-1)=mx2+2mx-3m.(2)如图3,连结OP.当m=2时,C(0,-6),y=2x2+4x-6,那么P(x, 2x2+4x-6).由于S△AOP==(2x2+4x-6)=-3x2-6x+9,S△COP==-3x,S△AOC=9,所以S=S△APC=S△AOP+S△COP-S△AOC=-3x2-9x=.所以当时,S取得最大值,最大值为.图3 图4 图5(3)如图4,过点D作y轴的垂线,垂足为E.过点A作x轴的垂线交DE于F.由y=m(x+3)(x-1)=m(x+1)2-4m,得D(-1,-4m).在Rt△OBC中,OB∶OC=1∶3m.如果△ADC与△OBC相似,那么△ADC是直角三角形,而且两条直角边的比为1∶3m.①如图4,当∠ACD=90°时,.所以.解得m=1.此时,.所以.所以△CDA∽△OBC.②如图5,当∠ADC=90°时,.所以.解得.此时,而.因此△DCA与△OBC不相似.综上所述,当m=1时,△CDA∽△OBC.考点伸展第(2)题还可以这样割补:如图6,过点P作x轴的垂线与AC交于点H.由直线AC:y=-2x-6,可得H(x,-2x-6).又因为P(x, 2x2+4x-6),所以HP=-2x2-6x.因为△P AH与△PCH有公共底边HP,高的和为A、C两点间的水平距离3,所以S=S△APC=S△APH+S△CPH=(-2x2-6x)=.图6例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A 向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.动感体验图1请打开几何画板文件名“14益阳21”,拖动点P在AB上运动,可以体验到,圆心O的运动轨迹是线段BC的垂直平分线上的一条线段.观察S随点P运动的图象,可以看到,S有最小值,此时点P看上去象是AB的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB的外接圆的圆心O很关键,圆心O在确定的BC的垂直平分线上,同时又在不确定的BP的垂直平分线上.而BP与AP是相关的,这样就可以以AP为自变量,求S的函数关系式.图文解析(1)如图2,作CH⊥AB于H,那么AD=CH.在Rt△BCH中,∠B=60°,BC=4,所以BH=2,CH=.所以AD=.(2)因为△APD是直角三角形,如果△APD与△PCB相似,那么△PCB一定是直角三角形.①如图3,当∠CPB=90°时,AP=10-2=8.所以==,而=.此时△APD与△PCB不相似.图2 图3 图4②如图4,当∠BCP=90°时,BP=2BC=8.所以AP=2.所以==.所以∠APD=60°.此时△APD∽△CBP.综上所述,当x=2时,△APD∽△CBP.(3)如图5,设△ADP的外接圆的圆心为G,那么点G是斜边DP的中点.设△PCB的外接圆的圆心为O,那么点O在BC边的垂直平分线上,设这条直线与BC交于点E,与AB 交于点F.设AP=2m.作OM⊥BP于M,那么BM=PM=5-m.在Rt△BEF中,BE=2,∠B=60°,所以BF=4.在Rt△OFM中,FM=BF-BM=4-(5-m)=m-1,∠OFM=30°,所以OM=.所以OB2=BM2+OM2=.在Rt△ADP中,DP2=AD2+AP2=12+4m2.所以GP2=3+m2.于是S=S1+S2=π(GP2+OB2)==.所以当时,S取得最小值,最小值为.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP=2m呢?这是因为线段AB=AP+PM+BM=AP+2BM=10.这样BM=5-m,后续可以减少一些分数运算.这不影响求S的最小值.问题2,如果圆心O在线段EF的延长线上,S关于m的解析式是什么?如图6,圆心O在线段EF的延长线上时,不同的是FM=BM-BF=(5-m)-4=1-m.此时OB2=BM2+OM2=.这并不影响S关于m的解析式.例3 2015年湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,△MBQ与△BOP有一次机会相似.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得解得所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠P AQ=45°,AP=3-t,AQ=t.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP=AQ.解方程3-t=2t,得t=1(如图2).②当∠QP A=90°时,AQ=AP.解方程t=(3-t),得t=1.5(如图3).图2 图3(3)如图4,因为PE//QF,当EF//PQ时,四边形EPQF是平行四边形.所以EP=FQ.所以y E-y P=y F-y Q.因为x P=t,x Q=3-t,所以y E=3-t,y Q=t,y F=-(3-t)2+2(3-t)+3=-t2+4t.因为y E-y P=y F-y Q,解方程3-t=(-t2+4t)-t,得t=1,或t=3(舍去).所以点F的坐标为(2, 3).图4 图5(4)由y=-x2+2x+3=-(x-1)2+4,得M(1, 4).由A(3, 0)、B(0, 3),可知A、B两点间的水平距离、竖直距离相等,AB=3.由B(0, 3)、M(1, 4),可知B、M两点间的水平距离、竖直距离相等,BM=.所以∠MBQ=∠BOP=90°.因此△MBQ与△BOP相似存在两种可能:①当时,.解得(如图5).②当时,.整理,得t2-3t+3=0.此方程无实根.考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E方向,将点Q向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t=3.§1.2 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3例 9 2014年长沙市中考第26题如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0, 2).(1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在五种情况,点P 的纵坐标有三个值,根据对称性,MA =MN 和NA =NM 时,点P 的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y =ax 2.所以b =0,c =0. 将代入y =ax 2,得.解得(舍去了负值).(2)抛物线的解析式为,设点P 的坐标为. 已知A (0, 2),所以>.而圆心P 到x 轴的距离为,所以半径P A >圆心P 到x 轴的距离.所以在点P 运动的过程中,⊙P 始终与x 轴相交.(3)如图2,设MN 的中点为H ,那么PH 垂直平分MN ..4=2MH ,所以,中,PMH △Rt 在 所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3.2=OM ,所以4=AM ,2=OA 中,AOM △Rt 时,在MN =MA ,当4②如图 .的纵坐标为P .所以点2=OH =x 此时 .的纵坐标为也为P 时,根据对称性,点NM =NA ,当5如图图4 图5③如图6,当NA=NM=4时,在Rt△AON中,OA=2,AN=4,所以ON=2.此时x=OH=2.所以点P的纵坐标为.如图7,当MN=MA=4时,根据对称性,点P的纵坐标也为.图6 图7考点伸展如果点P在抛物线上运动,以点P为圆心的⊙P总经过定点B(0, 1),那么在点P运动的过程中,⊙P始终与直线y=-1相切.这是因为:设点P的坐标为.已知B(0, 1),所以.而圆心P到直线y=-1的距离也为,所以半径PB=圆心P到直线y=-1的距离.所以在点P 运动的过程中,⊙P始终与直线y=-1相切.例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C 坐标分别为(10, 0)和,以OB为直径的⊙A经过C点,直线l垂直x轴于B点.(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)点M是⊙A上一动点(不同于O、B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;(4)若点P从O出发,以每秒1个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.图图1动感体验请打开几何画板文件名“14张家界25”,拖动点M在圆上运动,可以体验到,△EAF保持直角三角形的形状,AM是斜边上的高.拖动点Q在BC上运动,可以体验到,△BPQ有三个时刻可以成为等腰三角形.思路点拨1.从直线BC的解析式可以得到∠OBC的三角比,为讨论等腰三角形BPQ作铺垫.2.设交点式求抛物线的解析式比较简便.3.第(3)题连结AE、AF容易看到AM是直角三角形EAF斜边上的高.4.第(4)题的△PBQ中,∠B是确定的,夹∠B的两条边可以用含t的式子表示.分三种情况讨论等腰三角形.图文解析(1)直线BC的解析式为.(2)因为抛物线与x轴交于O、B(10, 0)两点,设y=ax(x-10).代入点C,得.解得.所以.抛物线的顶点为.(3)如图2,因为EF切⊙A于M,所以AM⊥EF.由AE=AE,AO=AM,可得Rt△AOE≌Rt△AME.所以∠1=∠2.同理∠3=∠4.于是可得∠EAF=90°.所以∠5=∠1.由tan∠5=tan∠1,得.所以ME·MF=MA2,即mn=25.图2(4)在△BPQ中,cos∠B=,BP=10-t,BQ=t.分三种情况讨论等腰三角形BPQ:①如图3,当BP=BQ时,10-t=t.解得t=5.②如图4,当PB=PQ时,.解方程,得.③如图5,当QB=QP时,.解方程,得.图3 图4 图5考点伸展在第(3)题条件下,以EF为直径的⊙G与x轴相切于点A.如图6,这是因为AG既是直角三角形EAF斜边上的中线,也是直角梯形EOBF的中位线,因此圆心G 到x轴的距离等于圆的半径,所以⊙G与x轴相切于点A.图6例 11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.动感体验请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC 的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况.思路点拨1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标.2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.图文解析(1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知A(m, 0),B(n, 0).若m=2,n=1,那么A(2, 0),B(1, 0)..(2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn=-1,OC=1.若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1.所以OC2=OA·OB.所以.所以tan∠1=tan∠2.所以∠1=∠2.又因为∠1与∠3互余,所以∠2与∠3互余.所以∠ACB=90°.图1 图2 图3(3)在△ABC中,已知A(2, 0),B(n, 0),C(0, 2n).讨论等腰三角形ABC,用代数法解比较方便:由两点间的距离公式,得AB2=(n-2)2,BC2=5n2,AC2=4+4n2.①当AB=AC时,解方程(n-2)2=4+4n2,得(如图2).。
中考 最值问题复习题(带答案)
【最值问题复习】一、 将军饮马1. 如图,在矩形ABCD 中,AD=3,点E 为边AB 上一点,AE=1,平面内动点P 满足1=3PAB ABCD S S △矩形,则DP EP -的最大值为_____________.2. 如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为 .类型二:点到直线距离垂线段最短3.在平面直角坐标系中,原点O 到直线24y kx k =-+的最大距离为____________.4. 如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A .2B .2.2C .2.4D .2.55. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 的距离的最小值是( )A .B .1C .D .6. 如图,直线y=x+4与x轴、y轴分别交于点A和点B,点D为线段OB的中点,点C、P分别为线段AB、OA上的动点,当PC+PD值最小时点P的坐标为.7. 如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个8. 如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,将直角三角板的直角顶点与AC边的中点P重合,直角三角板绕着点P旋转,两条直角边分别交AB边于M,N,则MN 的最小值是.9.如图,P是线段AB上异于端点的动点,且AB=6,分别以AP、BP为边,在AB的同侧作等边△APM和等边△BPN,则△MNP外接圆半径的最小值为.类型三、平行线间的距离为最值10.如图,菱形ABCD中,AB=4,∠A=120°,点M、N、P分别为线段AB、AD、BD上的任意一点,则PM+PN的最小值为.11. 如图,在等边△ABC中,AB=4,P、M、N分别是BC、CA、AB边上动点,则PM+MN的最小值是.类型四、利用三角形三边关系、三点共线取最值12. 如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.点P在运动时,线段AB的长度也在发生变化,则线段AB长度的最小值为___________.13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.14.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.类型五、构造圆球最值(圆外一点与圆上点的连线的距离最值问题)15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为.16.在平面直角坐标系xOy中,A(3,0)、B(a,2)、C(0,m)、D(n,0),且m2+n2=4,若E为CD中点.则AB+BE的最小值为.17.如图,半径为2的⊙O分别与x轴,y轴交于A,D两点,⊙O上两个动点B,C,使∠BAC=60°恒成立,设△ABC的重心为G,则DG的最小值是.18.如图,在△ABC中,∠A=60°(∠B<∠C),E、F分别是AB、AC上的动点,以EF为边向下作等边三角形DEF,△DEF的中心为点O,连接CO.已知AC=4,则CO的最小值为___________.类型六、面积、周长最值问题19. 如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( )A .2B .4C .4D .820. 如图,在菱形ABCD 中,∠BAD =135°,AB =4,点P 是菱形ABCD 内或边上的一点,且∠DAP +∠CBP =90°,连接DP ,CP ,则△DCP 面积的最小值为 .21. 如图,sin ∠C =,长度为2的线段ED 在射线CF 上滑动,点B 在射线CA 上,且BC =5,则△BDE 周长的最小值为 .类型七、函数最值问题22.已知22(3)9(1)4y x x =-+--+,则y 的最大值为_____________.23.已知6213309,3b ___________.a b c b c a c =+=-+,且≥,≤则的最大值为24.如图,AB 为半圆的直径,点O 为圆心,AB=8,若P 为AB 反向延长线上的一个动点(不与点A 重合),过点P 作半圆的切线,切点为C ,过点B 作BD ⊥PC 交PC 的延长线于点D ,则AC+BD 的最大值为_______________.25. 如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接P A.设P A=x,PB=y,则(x﹣y)的最大值是.26.如图,在正方形ABCD中,AB=4,以B为圆心,BA长为半径画弧,点M为弧上一点,MN ⊥CD于N,连接CM,则CM-MN的最大值为.27. 如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).类型八、胡不归与阿氏圆问题28. 如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x 正半轴上.以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,则OP的最小值_________.29.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则AD+BD的最小值是.30.如图,点C的坐标为(2,5),点A的坐标为(7,0),圆C的半径为10,点B在圆C上运动,则55OB AB+的最小值为_______________.31.如图,在平面直角坐标系中,点A(-1,0),B(0,22),点C是线段OB上的动点,则3AC BC+的最小值为_________,此时点C的坐标为_______________.【参考答案】1.【解答】 DP EP -≤1DE =22. 【解答】解:设△ABP 中AB 边上的高是h .∵S △P AB =S 矩形ABCD ,∴AB •h =AB •AD ,∴h =AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离. 在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE ===, 即P A +PB 的最小值为. 故答案为:.3.【解答】直线24y kx k =-+=24y k x =-+()过定点(2,4),OH ≤OA ,当OA 垂直于该直线时,距离最大,为254.【解答】解:连接AP,∵∠A=90°,PE⊥AB,PF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:C.5.【解答】解:如图所示:当PE∥AB.由翻折的性质可知:PF=FC=2,∠FPE=∠C=90°.∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.又∵FP为定值,∴PD有最小值.又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.∴,即=,解得:DF=3.2.∴PD=DF﹣FP=3.2﹣2=1.2.故选:D.6.【解答】解:作点D关于x轴对称点D′,过点D′作DC⊥AB于点C,与OA交于点P,则此时PC+PD值最小.当x=0时,y=x+4=4,∴OB=4;当y=0时,x+4=0,解得:x=﹣4,∴OA=4.∵OA=OB,∠AOB=90°,∴△AOB为等腰直角三角形,∴∠OBA=45°.∵D′C⊥AB,∴△BCD′为等腰直角三角形,∴∠BD′C=45°.在△OPD′中,∠POD′=90°,∠OD′P=45°,∴∠OPD′=45°,∴OP=OD′=OD.又∵点D为线段OB的中点,∴OD=2,∴OP=2,∴点P的坐标为(﹣2,0).故答案为:(﹣2,0).7.【解答】解:如图,连结CE,∵在菱形ABCD中,AB=BC,∠ABE=∠CBE=30°,BE=BE,∴△ABE≌△CBE,∴AE=CE,设∠OCE=a,∠OAE=a,∠AEO=90°﹣a,∴∠DEF=120°﹣(90°﹣a)=30°+a,∴∠EFC=∠CDE+∠DEF=30°+30°+a=60°+a,∵∠ECF=∠DCO+∠OCE=60°+a,∴∠ECF=∠EFC,∴CE=EF,∴AE=EF,∵AB=4,∠ABE=30°,∴在Rt△ABO中,AO=2,∵OA≤AE≤AB,∴2≤AE≤4,∴AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选:C.8.【解答】解:取MN的中点D连接PD,∵∠MPN=90°,∴MN=2PD,∴当PD⊥MN时,PD值最小,此时MN的值最小,如图所示,∵∠A=∠A,∠ADP=∠ACB=90°,∴△APD∽△ABC,∴,即,∴PD=,∴MN=2PD=2.故答案为:2.9.【解答】解:分别作∠A与∠B角平分线,交点为O,连接OP,∵△AMP和△NPB都是等边三角形,∴AO与BO为PM、PN垂直平分线.∵圆心O在PM、PN垂直平分线上,即圆心O是一个定点,若半径OP最短,则OP⊥AB.又∵∠OAP=∠OBP=30°,AB=6,∴OA=OB,∴AP=BP=3,∴在直角△AOP中,OP=AP•tan∠OAP=3×tan30°=,故答案为:.10.【解答】解:连接AC,过点A作AE⊥BC于点E,∵四边形ABCD是菱形,∴AB=AD,当PM⊥AB,PN⊥AD时,PM+PN的值最小,最小值=AD边上的高,设这个高为AE,•AB•PM+•AD•PN=AD•AE,PM+PN=AE,∵菱形ABCD中,AB=4,∠A=120°,∴∠ABC=60°,AB=BC=4,∴△ABC是等边三角形,∴BE=EC=2,∴AE==2.故答案为:2.11.【解答】解:作点B关于直线AC的对称点K,连接AK、CK,作点N关于直线AC 的对称点N′,作N′P′⊥BC于P′,交AC于M′,则线段N′P′的长即为PM+MN 的最小值(垂线段最短).∵△ABC是等边三角形,易知,四边形ABCK是菱形,N′P′是菱形的高=×4=2,∴PM+MN的最小值为2,故答案为2.12.【解答】线段AB长度的最小值为4,理由如下:连接OP,∵AB切⊙O于P,∴OP⊥AB,取AB的中点C,则AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4;13.【解答】解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∵5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故答案为:7.14.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为2,∴当点O、E、C共线时,CE最小,如图2,在Rt△AOC中,∵OA=2,AC=4,∴OC==2,∴CE=OC﹣OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为2﹣2.15.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.16.【解答】解:由题意CD==2,∵E为CD中点,∴OE=CD=1,∴点E在O为圆心,1为半径的圆上,作点A关于直线y=2的对称点A′,连接OA′交直线y=2于B,交⊙O于E.此时BA+BE=BA′+BE的值最小.在Rt△OAA′中,OA′==5,∴EA′=5﹣1=4,∴BA+BE的最小值为4,故答案为:4.17.【解答】解:连接AG并延长,交BC于点F,∵△ABC的重心为G,∴F为BC的中点,∴OF⊥BC,∵∠BAC=60°,∴∠BOF=60°,∴∠OBF=30°,∴OF=OB=1,∵△ABC的重心为G,∴AG=AF,在AO上取点E,使AE=AO,连接GE,∵==,∠F AO=∠GAE,∴△AGE∽△AFO,∴=,∴GE=.∴G在以E为圆心,为半径的圆上运动,∴E(,0),∴DE==,∴DG的最小值是﹣,故答案为:﹣.18.【解答】连接OE、OD、OA,∠DAE+∠DOE=180°,所以A、E、O、D四点共圆,所以∠EAO=∠ODE=30°,所以点O在一条直线上运动,过点C向这条直线作垂线CH,所以CO的最小值为CH,最小值为2.19.【解答】【解答】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB 的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故选:C.20.【解答】解:在菱形ABCD中,∵AD∥BC,∴∠DAB+∠ABC=180°,∵∠DAP+∠CBP=90°,∴∠P AB+∠PBA=90°,∴AP⊥PB,∴当△DCP面积的最小时,P到CD的距离最小,即P到AB的距离最大,∴当Rt△ABP是等腰直角三角形时,即P到AB的距离最大,∵∠CBA=45°,∴点P在BC边上,且AP⊥BC,过C作CF⊥AB于F,PE⊥AB于E,∴CF=BC=4,PE=AB=2,∴P到CD的距离=4﹣2,∴△DCP面积的最小值为:4×(4﹣2)=8﹣8,故答案为:8﹣8.21.【解答】解:如图作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G,连接BG交CF于D′,此时△BD′E′的周长最小.在Rt△BGK中,易知BK=2,GK=6,∴BG==2,∴△BDE周长的最小值为BE′+D′E′+BD′=KD′+D′E′+BD′=D′E′+BD′+GD′=D′E′+BG=2+2.故答案为:2+2.22.【解答】设点C(x,0),A(3,3),B(1,2)222222(3)9(1)4(3)(03)(1)(02)y x x x x=-+--+=-+---+-表示AC-BC的值,且AC-BC≤AB,当A,BC三点共线时,AC-BC取最大值AB,即5.23.【解答】13 6213309,c29,302a b c b c a b a=+===-,且≥,≤得≤≥,解得13962a ≤≤,所以393b 62a c a -+=-+的 取值范围是15133b 22a c -+-≤≤. 24. 【解答】连接BC ,易证△ABC ∽△CBD ,可得2BC AB BD =⋅,设AC=x ,在△ABC 中,22=64BC x -,所以2648x BD -=,所以288x AC BD x +=-++,所以当4x =时,取最大值4.25【解答】解:如图,作直径AC ,连接CP ,∴∠CP A =90°,∵AB 是切线,∴CA ⊥AB ,∵PB ⊥l ,∴AC ∥PB ,∴∠CAP =∠APB ,∴△APC ∽△PBA ,∴,∵P A =x ,PB =y ,半径为4,∴=,∴y =x 2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.26.【解答】过点H作BH⊥MC,易证△BHC∽△CNM,设CM=x,MN=y,由△BHC∽△CNM可得BC CHMC MN,代入可得y=x2,所以CM-MN= x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.27.【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设P A=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.28. 【解答】如图3,以OA为对称轴作等边△ADE,连接EP,并延长EP交x轴于点F.可证得,△AEP≌△ADB,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线EF 上运动,当OP ⊥EF 时,OP 最小,∴OP =OF =则OP 的最小值为.29. 【解答】考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显. 当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =. M A BCD D C B A M问题转化为DM+DB 的最小值,直接连接BM ,则AD +BD=DM+BD ≥BM=1030. 【解答】连接AC ,在AC 取一点M 使得2(2÷CM r BC =),易证得 △CBM ∽CAB 5=AB BM ,所以5=OB AB BM OB OM +≥,当O 、B 、M 三点共线时取最小值,由于点M 坐标为(3,4),OM=5,所以最小值为5.31. 【解答】13=3)3AC BC AC BC ++(,构造1sin =3α,故1tan =22α,取点D (1,0),连接BD ,作CH ⊥BD ,故1=3BC CH ,所以13=3)AC CH 3AC BC AC BC ++=+(≥AH ,当AH 垂直于BD 时,取最小值,由等积法可求得垂直时,AH 的最小值为423,所以3AC BC +的最小值为42,由相似可得此时点C 的坐标为2(0,)4.。
2017年挑战中考数学压轴题(全套含答案)
第一部分函数图象中点的存在性问题§1.1 因动点产生的相似三角形问题例1 2014年衡阳市中考第28题例2 2014年益阳市中考第21题例3 2015年湘西州中考第26题例4 2015年张家界市中考第25题例5 2016年常德市中考第26题例6 2016年岳阳市中考第24题例7 2016年上海市崇明县中考模拟第25题例8 2016年上海市黄浦区中考模拟第26题§1.2 因动点产生的等腰三角形问题例9 2014年长沙市中考第26题例10 2014年张家界市第25题例11 2014年邵阳市中考第26题例12 2014年娄底市中考第27题例13 2015年怀化市中考第22题例14 2015年长沙市中考第26题例15 2016年娄底市中考第26题例16 2016年上海市长宁区金山区中考模拟第25题例17 2016年河南省中考第23题§1.3 因动点产生的直角三角形问题例19 2015年益阳市中考第21题例20 2015年湘潭市中考第26题例21 2016年郴州市中考第26题例22 2016年上海市松江区中考模拟第25题例23 2016年义乌市绍兴市中考第24题§1.4 因动点产生的平行四边形问题例24 2014年岳阳市中考第24题例25 2014年益阳市中考第20题例26 2014年邵阳市中考第25题例27 2015年郴州市中考第25题例28 2015年黄冈市中考第24题例29 2016年衡阳市中考第26题例30 2016年上海市嘉定区宝山区中考模拟中考第24题例31 2016年上海市徐汇区中考模拟第24题§1.5 因动点产生的面积问题例32 2014年常德市中考第25题例33 2014年永州市中考第25题例35 2015年邵阳市中考第26题例36 2015年株洲市中考第23题例37 2015年衡阳市中考第28题例38 2016年益阳市中考第22题例39 2016年永州市中考第26题例40 2016年邵阳市中考第26题例41 2016年陕西省中考第25题§1.6 因动点产生的相切问题例42 2014年衡阳市中考第27题例43 2014年株洲市中考第23题例44 2015年湘潭市中考第25题例45 2015年湘西州中考第25题例46 2016年娄底市中考第25题例47 2016年湘潭市中考第26题例48 2016年上海市闵行区中考模拟第24题例49 2016年上海市普陀区中考模拟中考第25题§1.7 因动点产生的线段和差问题例50 2014年郴州市中考第26题例51 2014年湘西州中考第25题例53 2015年济南市中考第28题例54 2015年沈阳市中考第25题例55 2016年福州市中考第26题例56 2016年张家界市中考第24题例57 2016年益阳市中考第21题第二部分图形运动中的函数关系问题§2.1 由比例线段产生的函数关系问题例1 2014年常德市中考第26题例2 2014年湘潭市中考第25题例3 2014年郴州市中考第25题例4 2015年常德市中考第25题例5 2015年郴州市中考第26题例6 2015年邵阳市中考第25题例7 2015年娄底市中考第26题例8 2016年郴州市中考第25题例9 2016年湘西州中考第26题例10 2016年上海市静安区青浦区中考模拟第25题例11 2016年哈尔滨市中考第27题第三部分图形运动中的计算说理问题§3.1 代数计算及通过代数计算进行说理问题例1 2014年长沙市中考第25题例2 2014年怀化市中考第23题例3 2014年湘潭市中考第26题例4 2014年株洲市中考第24题例5 2015年衡阳市中考第27题例6 2015年娄底市中考第25题例7 2015年永州市中考第26题例8 2015年长沙市中考第25题例9 2015年株洲市中考第24题例10 2016年怀化市中考第22题例11 2016年邵阳市中考第25题例12 2016年株洲市中考第26题例13 2016年长沙市中考第25题例14 2016年长沙市中考第26题§3.2 几何证明及通过几何计算进行说理问题例15 2014年衡阳市中考第26题例16 2014年娄底市中考第26题例17 2014年岳阳市中考第23题例18 2015年常德市中考第26题例19 2015年益阳市中考第20题例20 2015年永州市中考第27题例21 2015年岳阳市中考第23题例22 2016年常德市中考第25题例23 2016年衡阳市中考第25题例24 2016年永州市中考第27题例25 2016年岳阳市中考第23题例26 2016年株洲市中考第25题例27 2016年湘潭市中考第25题第四部分图形的平移、翻折与旋转§4.1 图形的平移例1 2015年泰安市中考第15题例2 2015年咸宁市中考第14题例3 2015年株洲市中考第14题例4 2016年上海市虹口区中考模拟第18题§4.2 图形的翻折例5 2016年上海市奉贤区中考模拟第18题例6 2016年上海市静安区青浦区中考模拟第18题例7 2016年上海市闵行区中考模拟第18题例8 2016年上海市浦东新区中考模拟第18题例8 2016年上海市普陀区中考模拟第18题例10 2016年常德市中考第15题例11 2016年张家界市中考第14题例12 2016年淮安市中考第18题例13 2016年金华市中考第15题例14 2016年雅安市中考第12题§4.3 图形的旋转例15 2016年上海昂立教育中学生三模联考第18题例16 2016年上海市崇明县中考模拟第18题例17 2016年上海市黄浦区中考模拟第18题例18 2016年上海市嘉定区宝山区中考模拟第18题例19 2016年上海市闸北区中考模拟第18题例20 2016年邵阳市中考第13题例21 2016年株洲市中考第4题§4.4 三角形例22 2016年安徽省中考第10题例23 2016年武汉市中考第10题例24 2016年河北省中考第16题例25 2016年娄底市中考第10题例27 2016年台州市中考第10题例28 2016年陕西省中考第14题例29 2016年内江市中考第11题例30 2016年上海市中考第18题§4.5 四边形例31 2016年湘西州中考第11题例32 2016年益阳市中考第4题例33 2016年益阳市中考第6题例34 2016年常德市中考第16题例35 2016年成都市中考第14题例36 2016年广州市中考第13题例37 2016年福州市中考第18题例38 2016年无锡市中考第17题例39 2016年台州市中考第15题§4.6 圆例40 2016年滨州市中考第16题例41 2016年宁波市中考第17题例42 2016年连云港市中考第16题例43 2016年烟台市中考第17题例45 2016年无锡市中考第18题例46 2016年武汉市中考第9题例47 2016年宿迁市中考第16题例48 2016年衡阳市中考第17题例49 2016年邵阳市中考第18题例50 2016年湘西州中考第18题例51 2016年永州市中考第20题§4.7 函数的图象及性质例52 2015年荆州市中考第9题例53 2015年德州市中考第12题例54 2015年烟台市中考第12题例55 2015年中山市中考第10题例56 2015年武威市中考第10题例57 2015年呼和浩特市中考第10题例58 2016年湘潭市中考第18题例59 2016年衡阳市中考第19题例60 2016年岳阳市中考第15题例61 2016年株洲市中考第9题例63 2016年岳阳市中考第8题例64 2016年岳阳市中考第16题例65 2016年益阳市中考第14题例66 2016年株洲市中考第10题例67 2016年株洲市中考第17题例68 2016年东营市中考第15题例69 2016年成都市中考第13题例70 2016年泰州市中考第16题例71 2016年宿迁市中考第15题例72 2016年临沂市中考第14题例73 2016年义乌市绍兴市中考第9题例74 2016年淄博市中考第12题例75 2016年嘉兴市中考第16题§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2014年湖南省衡阳市中考第28题二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P 运动,可以体验到,当点P 运动到AC 的中点的正下方时,△APC 的面积最大.拖动y 轴上表示实数m 的点运动,抛物线的形状会改变,可以体验到,∠ACD 和∠ADC 都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP ,△APC 可以割补为:△AOP 与△COP 的和,再减去△AOC .3.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.图文解析(1)因为抛物线与x 轴交于A (-3, 0)、B (1, 0)两点,设y =a (x +3)(x -1).代入点C (0,-3m ),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m (x +3)(x -1)=mx 2+2mx -3m .(2)如图3,连结OP .当m =2时,C (0,-6),y =2x 2+4x -6,那么P (x , 2x 2+4x -6).由于S △AOP =1()2P OA y ⨯-=32-(2x 2+4x -6)=-3x 2-6x +9, S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9, 所以S =S △APC =S △AOP +S △COP -S △AOC =-3x 2-9x =23273()24x -++. 所以当32x =-时,S 取得最大值,最大值为274.图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F . 由y =m (x +3)(x -1)=m (x +1)2-4m ,得D (-1,-4m ).在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,OA OC EC ED =.所以331m m =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB =.所以△CDA ∽△OBC .②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得m =.此时2DA FD DC EC m===32OC m OB ==DCA 与△OBC 不相似. 综上所述,当m =1时,△CDA ∽△OBC .考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC 交于点H .由直线AC :y =-2x -6,可得H (x ,-2x -6).又因为P (x , 2x 2+4x -6),所以HP =-2x 2-6x .因为△P AH 与△PCH 有公共底边HP ,高的和为A 、C两点间的水平距离3,所以S =S △APC =S △APH +S △CPH =32(-2x 2-6x ) =23273()24x -++. 图6例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD 中,AB //CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x .2·1·c·n·j·y(1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设△ADP 与△PCB 的外接圆的面积分别为S 1、S 2,若S =S 1+S 2,求S 的最小值. 动感体验 图1请打开几何画板文件名“14益阳21”,拖动点P 在AB 上运动,可以体验到,圆心O 的运动轨迹是线段BC 的垂直平分线上的一条线段.观察S 随点P 运动的图象,可以看到,S 有最小值,此时点P 看上去象是AB 的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB 是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB 的外接圆的圆心O 很关键,圆心O 在确定的BC 的垂直平分线上,同时又在不确定的BP 的垂直平分线上.而BP 与AP 是相关的,这样就可以以AP 为自变量,求S 的函数关系式.图文解析(1)如图2,作CH ⊥AB 于H ,那么AD =CH .在Rt △BCH 中,∠B =60°,BC =4,所以BH =2,CH =AD =(2)因为△APD 是直角三角形,如果△APD 与△PCB 相似,那么△PCB 一定是直角三角形.①如图3,当∠CPB =90°时,AP =10-2=8.所以APAD ,而PC PB APD 与△PCB 不相似.图2 图3 图4②如图4,当∠BCP =90°时,BP =2BC =8.所以AP =2.所以APAD 3.所以∠APD =60°.此时△APD ∽△CBP .综上所述,当x =2时,△APD ∽△CBP .(3)如图5,设△ADP 的外接圆的圆心为G ,那么点G 是斜边DP 的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m .在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM =BF -BM =4-(5-m )=m -1,∠OFM =30°,所以OM 1)m -. 所以OB 2=BM 2+OM 2=221(5)(1)3m m -+-. 在Rt △ADP 中,DP 2=AD 2+AP 2=12+4m 2.所以GP 2=3+m 2.于是S =S 1+S 2=π(GP 2+OB 2) =22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+. 所以当167m =时,S 取得最小值,最小值为1137π.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10. 这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值.问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m )-4=1-m .此时OB 2=BM 2+OM 2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式.例3 2015年湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,△MBQ与△BOP有一次机会相似.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得930,3.b cc-++=⎧⎨=⎩解得2,3.bc=⎧⎨=⎩所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠P AQ=45°,AP=3-t,AQ.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP.解方程3-t=2t,得t=1(如图2).②当∠QP A=90°时,AQ AP t-t),得t=1.5(如图3).图2 图3(3)如图4,因为PE //QF ,当EF //PQ 时,四边形EPQF 是平行四边形.所以EP =FQ .所以y E -y P =y F -y Q .因为x P =t ,x Q =3-t ,所以y E =3-t ,y Q =t ,y F =-(3-t )2+2(3-t )+3=-t 2+4t . 因为y E -y P =y F -y Q ,解方程3-t =(-t 2+4t )-t ,得t =1,或t =3(舍去).所以点F 的坐标为(2, 3).图4 图5(4)由y =-x 2+2x +3=-(x -1)2+4,得M (1, 4).由A (3, 0)、B (0, 3),可知A 、B 两点间的水平距离、竖直距离相等,AB =.由B (0, 3)、M (1, 4),可知B 、M 两点间的水平距离、竖直距离相等,BM 所以∠MBQ =∠BOP =90°.因此△MBQ 与△BOP 相似存在两种可能:①当BM OB BQ OP =3t=.解得94t =(如图5).②当BM OPBQ OB =3t =.整理,得t 2-3t +3=0.此方程无实根. 考点伸展第(3)题也可以用坐标平移的方法:由P (t , 0),E (t , 3-t ),Q(3-t , t ),按照P →E 方向,将点Q 向上平移,得F (3-t , 3).再将F (3-t , 3)代入y =-x 2+2x +3,得t =1,或t =3.§1.2 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么1cos2AC AB A=∠;③如图3,如果CA=CB,那么1cos2AB AC A=∠.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3例 9 2014年长沙市中考第26题如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和1)16两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0, 2). (1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在五种情况,点P 的纵坐标有三个值,根据对称性,MA =MN 和NA =NM 时,点P 的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y =ax 2.所以b =0,c =0.将1)16代入y =ax 2,得2116a =.解得14a =(舍去了负值). (2)抛物线的解析式为214y x =,设点P 的坐标为21(,)4x x .已知A (0, 2),所以PA =214x . 而圆心P 到x 轴的距离为214x ,所以半径P A >圆心P 到x 轴的距离. 所以在点P 运动的过程中,⊙P 始终与x 轴相交.(3)如图2,设MN 的中点为H ,那么PH 垂直平分MN .在Rt △PMH 中,2241416PM PA x ==+,22411()416PH x x ==,所以MH 2=4. 所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3②如图4,当MA =MN 时,在Rt △AOM 中,OA =2,AM =4,所以OM =此时x =OH =2.所以点P 的纵坐标为222112)1)444x ===+如图5,当NA =NM 时,根据对称性,点P 的纵坐标为也为4+图4 图5③如图6,当NA =NM =4时,在Rt △AON 中,OA =2,AN =4,所以ON =此时x =OH =2.所以点P 的纵坐标为222112)1)444x ===-如图7,当MN =MA =4时,根据对称性,点P 的纵坐标也为4-图6 图7考点伸展如果点P 在抛物线214y x =上运动,以点P 为圆心的⊙P 总经过定点B (0, 1),那么在点P 运动的过程中,⊙P 始终与直线y =-1相切.这是因为:设点P 的坐标为21(,)4x x .已知B (0, 1),所以2114PB x =+.而圆心P 到直线y =-1的距离也为2114x +,所以半径PB =圆心P 到直线y =-1的距离.所以在点P 运动的过程中,⊙P 始终与直线y =-1相切.例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O 为坐标原点,抛物线y =ax 2+bx +c (a ≠0)过O 、B 、C 三点,B 、C 坐标分别为(10, 0)和1824(,)55-,以OB 为直径的⊙A 经过C 点,直线l 垂直x 轴于B 点.(1)求直线BC 的解析式; (2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O 、B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想mn 的值,并证明你的结论;(4)若点P 从O 出发,以每秒1个单位的速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t (0<t ≤8)秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值. 图图1动感体验请打开几何画板文件名“14张家界25”,拖动点M 在圆上运动,可以体验到,△EAF 保持直角三角形的形状,AM 是斜边上的高.拖动点Q 在BC 上运动,可以体验到,△BPQ 有三个时刻可以成为等腰三角形.思路点拨1.从直线BC 的解析式可以得到∠OBC 的三角比,为讨论等腰三角形BPQ 作铺垫. 2.设交点式求抛物线的解析式比较简便.3.第(3)题连结AE 、AF 容易看到AM 是直角三角形EAF 斜边上的高.4.第(4)题的△PBQ 中,∠B 是确定的,夹∠B 的两条边可以用含t 的式子表示.分三种情况讨论等腰三角形.图文解析(1)直线BC 的解析式为31542y x =-. (2)因为抛物线与x 轴交于O 、B (10, 0)两点,设y =ax (x -10).代入点C 1824(,)55-,得241832()555a -=⨯⨯-.解得524a =. 所以2255255125(10)(5)2424122424y x x x x x =-=-=--. 抛物线的顶点为125(5,)24-.(3)如图2,因为EF 切⊙A 于M ,所以AM ⊥EF .由AE =AE ,AO =AM ,可得Rt △AOE ≌Rt △AME . 所以∠1=∠2. 同理∠3=∠4. 于是可得∠EAF =90°.所以∠5=∠1.由tan ∠5=tan ∠1,得MA MEMF MA=. 所以ME ·MF =MA 2,即mn =25.图2(4)在△BPQ 中,cos ∠B =45,BP =10-t ,BQ =t . 分三种情况讨论等腰三角形BPQ :①如图3,当BP =BQ 时,10-t =t .解得t =5.②如图4,当PB =PQ 时,1cos 2BQ BP B =∠.解方程14(10)25t t =-,得8013t =. ③如图5,当QB =QP 时,1cos 2BP BQ B =∠.解方程14(10)25t t -=,得5013t =.图3 图4 图5考点伸展在第(3)题条件下,以EF 为直径的⊙G 与x 轴相切于点A .如图6,这是因为AG 既是直角三角形EAF 斜边上的中线,也是直角梯形EOBF 的中位线,因此圆心G 到x 轴的距离等于圆的半径,所以⊙G 与x 轴相切于点A .图6例 11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.动感体验请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况.思路点拨1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标.2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.图文解析(1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知A(m, 0),B(n, 0).若m=2,n=1,那么A(2, 0),B(1, 0)..(2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn=-1,OC=1.若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1.所以OC2=OA·OB.所以OC OB OA OC.所以tan∠1=tan∠2.所以∠1=∠2.又因为∠1与∠3互余,所以∠2与∠3互余.所以∠ACB=90°.图1 图2 图3(3)在△ABC 中,已知A (2, 0),B (n , 0),C (0, 2n ). 讨论等腰三角形ABC ,用代数法解比较方便:由两点间的距离公式,得AB 2=(n -2)2,BC 2=5n 2,AC 2=4+4n 2.①当AB =AC 时,解方程(n -2)2=4+4n 2,得43n =-(如图2). ②当CA =CB 时,解方程4+4n 2=5n 2,得n =-2(如图3),或n =2(A 、B 重合,舍去).③当BA =BC 时,解方程(n -2)2=5n 2,得n =4),或n =(如图5).图4 图5考点伸展第(2)题常用的方法还有勾股定理的逆定理. 由于C (0, mn ),当点C 的坐标是(0,-1),mn =-1.由A (m , 0),B (n , 0),C (0,-1),得AB 2=(m -n )2=m 2-2mn +n 2=m 2+n 2+2, BC 2=n 2+1,AC 2=m 2+1.所以AB 2=BC 2+AC 2.于是得到Rt △ABC ,∠ACB =90°.第(3)题在讨论等腰三角形ABC 时,对于CA =CB 的情况,此时A 、B 两点关于y 轴对称,可以直接写出B (-2, 0),n =-2.例 12 2014年湖南省娄底市中考第27题如图1,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA 方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连结PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图2,连结PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C 为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形?图1 图2动感体验请打开几何画板文件名“14娄底27”,拖动点Q在AC上运动,可以体验到,当点P运动到AB的中点时,△APQ的面积最大,等腰三角形APQ存在三种情况.还可以体验到,当QC=2HC时,四边形PQP′C是菱形.思路点拨1.在△APQ中,∠A是确定的,夹∠A的两条边可以用含t的式子表示.2.四边形PQP′C的对角线保持垂直,当对角线互相平分时,它是菱形,.图文解析(1)在Rt△ABC中,AC=4,BC=3,所以AB=5,sin A=35,cos A=45.作QD⊥AB于D,那么QD=AQ sin A=35 t.所以S=S△APQ=12AP QD⋅=13(5)25t t-⨯=23(5)10t t--=23515()+1028t--.当52t=时,S取得最大值,最大值为158.(2)设PP′与AC交于点H,那么PP′⊥QC,AH=AP cos A=4(5)5t-.如果四边形PQP′C为菱形,那么PQ=PC.所以QC=2HC.解方程4424(5)5t t⎡⎤-=⨯--⎢⎥⎣⎦,得2013t=.图3 图4(3)等腰三角形APQ存在三种情况:①如图5,当AP=AQ时,5-t=t.解得52t=.②如图6,当P A=PQ时,1cos2AQ AP A=.解方程14(5)25t t=-,得4013t=.③如图7,当QA=QP时,1cos2AP AQ A=.解方程14(5)25t t-=,得2513t=.图5 图6 图7 考点伸展在本题情境下,如果点Q是△PP′C的重心,求t的值.如图8,如果点Q是△PP′C的重心,那么QC=23 HC.解方程2444(5)35t t⎡⎤-=⨯--⎢⎥⎣⎦,得6023t=.图8例 13 2015年湖南省怀化市中考第22题如图1,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(1)在运动过程中,求P 、Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式; (3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(24.25≈,结果保留一位小数)图1动感体验请打开几何画板文件名“15怀化22”,拖动点P 在AC 上运动,可以体验到,PQ 与BD 保持平行,等腰三角形PQC 存在三种情况.思路点拨1.过点B 作QP 的平行线交AC 于D ,那么BD 的长就是PQ 的最大值. 2.线段PQ 扫过的面积S 要分两种情况讨论,点Q 分别在AB 、BC 上. 3.等腰三角形PQC 分三种情况讨论,先罗列三边长.图文解析(1)在Rt △ABC 中,AC =8,BC =6,所以AB =10. 如图2,当点Q 在AB 上时,作BD //PQ 交AC 于点D ,那么22AB AQ tAD AP t===. 所以AD =5.所以CD =3.如图3,当点Q 在BC 上时,16228CQ tCP t-==-. 又因为623CB CD ==,所以CQ CBCP CD=.因此PQ //BD .所以PQ 的最大值就是BD . 在Rt △BCD 中,BC =6,CD =3,所以BD=.所以PQ的最大值是图2 图3 图4 (2)①如图2,当点Q 在AB 上时,0<t ≤5,S △ABD =15. 由△AQP ∽△ABD ,得2()AQP ABDS AP S AD=△△.所以S =S △AQP =215()5t ⨯=235t .②如图3,当点Q 在BC 上时,5<t ≤8,S △ABC =24.因为S △CQP =12CQ CP ⋅=1(162)(8)2t t --=2(8)t -, 所以S =S △ABC -S △CQP =24-(t -8)2=-t 2+16t -40.(3)如图3,当点Q 在BC 上时,CQ =2CP ,∠C =90°,所以△PQC 不可能成为等腰三角形.当点Q 在AB 上时,我们先用t 表示△PQC 的三边长:易知CP =8-t .如图2,由QP //BD ,得QP APBD AD =5t=.所以QP =. 如图4,作QH ⊥AC 于H .在Rt △AQH 中,QH =AQ sin ∠A =65t ,AH =85t .在Rt △CQH 中,由勾股定理,得CQ 分三种情况讨论等腰三角形PQC :(1)①当PC =PQ 时,解方程85t -=,得10t =≈3.4(如图5所示).②当QC =QP =.整理,得2111283200t t -+=. 所以(11t -40)(t -8)=0.解得4011t =≈3.6(如图6所示),或t =8(舍去).③当CP =CQ 时,8t -=25160t t -=. 解得165t ==3.2(如图7所示),或t =0(舍去). 综上所述,当t 的值约为3.4,3.6,或等于3.2时,△PQC 是等腰三角形.图5 图6 图7考点伸展第(1)题求P 、Q 两点间距离的最大值,可以用代数计算说理的方法:①如图8,当点Q 在AB 上时,PQ 5.当Q与B重合时,PQ最大,此时t=5,PQ的最大值为②如图9,当点Q在BC上时,PQ)t-.当Q与B重合时,PQ最大,此时t=5,PQ的最大值为综上所述,PQ的最大值为图8 图9§1.3 因动点产生的直角三角形问题课前导学我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3 如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.。
中考数学《最值问题》及参考答案
中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。
2017中考数学试题(有答案)
2017中考数学试题(有答案)学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,小编为大家整理了2017中考数学试题,供大家参考。
A级基础题1.合作交流是学习教学的重要方式之一,某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7,这组数据的众数是()A.7B.7.5C.8D.92.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:捐款的数额/元5102050100人数/人24531关于这15名学生所捐款的数额,下列说法正确的是()A.众数是100B.平均数是30C.极差是20D.中位数是205.为了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A.某市八年级学生的肺活量B.从中抽取的500名学生的肺活量C.从中抽取的500名学生D.5006.(2013年浙江绍兴)某校体育组为了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如图718所示的两幅统计图.根据统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?B级中等题7.(2012年广东肇庆)某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,图719所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人D.甲地区的人数比丙地区的人数少180人8.(2013年湖北黄石)青少年“心理健康”问题越来越引起社会的关注,某中学为了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图(如图7110).请回答下列问题:分组频数频率50.5~60.540.0860.5~70.5140.2870.5~80.51680.5~90.590.5~100.5100.20合计1.00(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导.请根据上述数据分析该校学生是否需要加强心理辅导,并说明理由.9.(2013年山东威海)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下表:序号项目123456笔试成绩/分859284908480面试成绩/分908886908085根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是________分,众数是________分;(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前2名人选.C级拔尖题10.(2013年重庆)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”“2小时~3小时”“3小时~4小时”“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图7111所示的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.参考答案:1.A2.B3.C4.D5.B6.解:(1)200补全条形统计图如图66.图66(2)1200×40+12200×100%=312(人).答:全校有1200名同学,估计全校最喜欢篮球和排球的共有312名同学.7.D8.解:(1)频率分布表如下:分组频数频率50.5~60.540.0860.5~70.5140.2870.5~80.5160.3280.5~90.560.1290.5~100.5100.20合计501.00补全条形统计图如图67.(3)该校学生需要加强心理辅导,理由:根据题意,得70分以上的人数为16+6+10=32(人),∵心理健康状况良好的人数占总人数的百分比为3250×100%=64% ∴该校学生需要加强心理辅导.9.解:(1)84.584(2)设笔试成绩和面试成绩各占的百分比分别是x,y,根据题意,得x+y=1,85x+90y=88.解得x=0.4,y=0.6.笔试成绩和面试成绩各占的百分比是40%,60%.(3)2号选手的综合成绩是:92×0.4+88×0.6=89.6(分);3号选手的综合成绩是:84×0.4+86×0.6=85.2(分);4号选手的综合成绩是:90×0.4+90×0.6=90(分);5号选手的综合成绩是:84×0.4+80×0.6=81.6(分);6号选手的综合成绩是:80×0.4+85×0.6=83(分).则综合成绩排序前2名人选是4号和2号.10.解:(1)x%=1-45%-10%-15%=30%,故x=30.总人数是:180÷45%=400(人),B等级的人数是:400×30%=120(人),C等级的人数是:400×10%=40(人).补全条形统计图如图(2)设两组分别为A,B,其中4个人分别为:A1,A2,B1,B2,根据题意画树状图,如图则选出的2人来自不同小组的情况有8种,故选出的2人来自不同小组的概率为:812=23.为大家推荐的2017中考数学试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!精心整理,仅供学习参考。
中考数学《几何中的最值问题》专项练习(附答案解析)
中考数学《几何中的最值问题》专项练习(附答案解析)一、单选题1.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12 B.24 C.36 D.482.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.4cm2B.8cm2C.12cm2D.16cm23.如图,已知直线5-512y x与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的⊙D上的一个动点,连接AC、AB,则△ABC面积的最小值是()A.30 B.29 C.28 D.274.如图,∠AOB=45°,点M、N分别在射线OA、OB上,MN=6,△OMN的面积为12,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为()A.6 B.8 C.12 D.185.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G 绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11二、填空题6.如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=6,则△BDE面积的最大值为_________.7.如图,⊙O的直径为5,在⊙O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A,B重合),过C作CP的垂线CD交PB的延长线于D点.则△PCD的面积最大为______________.8.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是_____.9.如图,在矩形ABCD中,∠ACB=30°,,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.10.如图,直线AB交坐标轴于A(-2,0),B(0,-4),点P在抛物线1(2)(4)2y x x=--上,则△ABP面积的最小值为__________.三、解答题11.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.12.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,AD 上,AH =2,连接CF .(1)当四边形EFGH 为正方形时,求DG 的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.13.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.14.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点.(1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标:(3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.15.如图,已知二次函数213222y x x =-++的图象交x 轴于A (-1,0),B (4,0),交y 轴于点C ,点P 是直线BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PE ⊥BC ,PF ∥y 轴交BC 与F ,则△PEF 面积的最大值是___________.16.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.17.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.18.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.19.问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,AB=12,BC=16,则AC=;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.20.如图,已知边长为6的菱形ABCD 中,∠ABC =60°,点E ,F 分别为AB ,AD 边上的动点,满足BE AF =,连接EF 交AC 于点G ,CE 、CF 分别交BD 于点M ,N ,给出下列结论:①△CEF 是等边三角形;②∠DFC =∠EGC ; ③若BE =3,则BM =MN =DN ;④222EF BE DF =+; ⑤△ECF .其中所有正确结论的序号是______21.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式;(2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx+b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A 、D 、P 、Q 为顶点的四边形为矩形时,请直接写出点P 的坐标.23.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC 的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点A 的坐标;若不存在,请说明理由.24.如图,已知边长为10的正方形ABCD E ,是BC 边上一动点(与B C 、不重合),连结AE G ,是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∽△△; (2)若2EC =,求CEF △的面积;(3)请直接写出EC 为何值时,CEF △的面积最大.参考答案与解析一、单选题1.【答案】D【解答】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=×8×12=48,故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.2.【答案】B【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC =12×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.3.【答案】B【分析】过D作DM⊥BC于M,连接BD,则由三角形面积公式得,12BC×DM=12OB×CD,可得DM,可知圆D上点到直线5-512y x的最小距离,由此即可解决问题.【解答】过D作DM⊥BC于M,连接BD,如图,令0y =,则12x =,令0x =,则5y =-,∴B (12,0),C (0,-5),∴OB=12,OC=5,=, 则由三角形面积公式得,12BC ×DM=12OB ×CD , ∴DM=8413, ∴圆D 上点到直线5-512y x =的最小距离是845821313-=, ∴△ABC 面积的最小值是1581329213⨯⨯=. 故选:B .【点评】本题考查了一次函数的应用、勾股定理的应用、圆的有关性质,解此题的关键是求出圆上的点到直线BC 的最大距离以及最小距离.4.【答案】B【分析】连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .首先利用三角形的面积公式求出OH ,再证明△OP 1P 2是等腰直角三角形,OP 最小时,△OP 1P 2的面积最小.【解答】解:连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .∵S △OMN =12•MN •OH =12,MN =6,∴OH =4,∵点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,∴∠AOP =∠AOP 1,∠POB =∠P 2OB ,OP =OP 1=OP 2∵∠AOB =45°,∴∠P 1OP 2=2(∠POA+∠POB )=90°,∴△OP 1P 2是等腰直角三角形,∴OP =OP 1最小时,△OP 1P 2的面积最小,根据垂线段最短可知,OP 的最小值为4,∴△OP 1P 2的面积的最小值=12×4×4=8, 故选:B .【点评】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明△OP 1P 2是等腰直角三角形,属于中考常考题型.5.【答案】B【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE == G 为BE 的中点,1,2FE GE BE ∴==∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点评】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.二、填空题6.【答案】818【分析】作CM ⊥AB 于M ,EN ⊥AB 于N ,根据AAS证得EDN ≌DCM ,得出EN =DM ,然后解直角三角形求得AM =3,得到BM =9,设BD =x ,则EN =DM =9﹣x ,根据三角形面积公式得到S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818,根据二次函数的性质即可求得. 【解答】解:作CM ⊥AB 于M ,EN ⊥AB 于N ,∴∠EDN +∠DEN =90°,∵∠EDC =90°,∴∠EDN +∠CDM =90°,∴∠DEN =∠CDM , 在EDN 和DCM 中DEN CDM END DMC 90ED DC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴EDN ≌DCM (AAS ),∴EN =DM ,∵∠BAC =120°,∴∠MAC =60°,∴∠ACM =30°,∴AM =12AC =12⨯6=3, ∴BM =AB +AM =6+3=9,设BD =x ,则EN =DM =9﹣x ,∴S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818, ∴当BD =4.5时,S △BDE 有最大值为818, 故答案为:818. 【点评】此题主要考查旋转综合题、全等三角形的判定及性质、直角三角形的性质和求最值,解题的关键是熟知全等三角形的判定与性质和利用二次函数求最值.7.【答案】503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【解答】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时,12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点评】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.【答案】【分析】五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小.【解答】解:∵五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积,∴只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小,易知AD =,∵四边形ABCD 的面积=12(1+3)×2=4=12×1×1+12•AD •OH+12•1•3,∴OH ,∴PH ﹣11,∴△CAD 的面积最小值为2,∴五边形ABCDP 面积的最大值是4﹣(2)=.故答案为.【点评】本题主要考查了求解多边形的面积知识点,结合圆的切线的性质进行求解是解题的重要步骤.9.【答案】42a - 【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG 的长,作辅助线,构建矩形ABHM 和高线GM ,如图2,通过画图发现:当GE ⊥BC 时,AG 最小,即a 最小,可计算a 的值,从而得结论.【解答】∵四边形ABCD 是矩形,∴∠B=90°,∵∠ACB=30°,,∴AB=2,AC=4,∵AG=a ,∴CG=4a -,如图1,过G 作MH ⊥BC 于H ,交AD 于M ,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11222a AD MG=⋅=⨯=当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a =,∴△ADG 的面积的最小值为4233=,故答案为:42a -. 【点评】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.10.【答案】152【分析】根据直线AB 交坐标轴于A(-2,0),B(0,-4),计算得直线AB 解析式;平移直线AB 到直线CD ,直线CD 当抛物线相交并只有一个交点P 时,△ABP 面积为最小值,通过一元二次方程和抛物线的性质求得点P 坐标;再利用勾股定理逆定理,证明ABP △为直角三角形,从而计算得到△ABP 面积的最小值.【解答】设直线AB 为y kx b =+∵直线AB 交坐标轴于A(-2,0),B(0,-4)∴024k b b=-+⎧⎨-=⎩ ∴24k b =-⎧⎨=-⎩∴直线AB 为24y x =--如图,平移直线AB 到直线CD ,直线CD 为2y x p =-+当2y x p =-+与抛物线1(2)(4)2y x x =--相交并只有一个交点P 时,△ABP 面积为最小值∴()()21242y x p y x x =-+⎧⎪⎨=--⎪⎩∴22820x x p -+-= ∴()44820p ∆=--=∴72p =∴2210x x -+= ∴1x =将1x =代入1(2)(4)2y x x =--,得32y =∴31,2P ⎛⎫⎪⎝⎭∴()2223451224AP ⎛⎫=++= ⎪⎝⎭2231251424BP ⎛⎫=++=⎪⎝⎭2222420AB∴222AB AP BP +=∴ABP △为直角三角形,90BAP ∠=∴1115=2222ABP AB A S P ⨯=⨯=△ 即△ABP 面积的最小值为152故答案为:152. 【点评】本题考查了二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的知识;解题的关键是熟练掌握二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的性质,从而完成求解.三、解答题11.【答案】(1)抛物线y =x 2-4x +3;(2)D(2,1);(3)点P 的坐标为5(2,3)4- 【分析】(1)(1) 将A 、C 坐标代入即可;(2)由于BC 长度不变, 要周长最小, 就是让DB DC 最小, 而A 、B 关于对称轴对称, 所以AC 就是DB DC 的最小值, 此时D 点就是AC 与抛物线对称轴的交点; 【解答】解:(1)抛物线23y ax bx =++经过点(1,0)A ,点(4,3)C ,∴3016433a bab,解得14a b ==-⎧⎨⎩,所以,抛物线的解析式为243y x x =-+;(2)243(1)(3)yx xx x ,(3,0)∴B ,抛物线的对称轴为2x =;BC 长度不变,BDDC 最小时,BCD ∆的周长最小,A 、B 是关于抛物线对称轴对称的,∴当D 点为对称轴与AC 的交点时,BD DC +最小, 即BCD ∆的周长最小, 如图,∴21x yx ,解得:21x y =⎧⎨=⎩,(2,1)D ∴,∴抛物线对称轴上存在点(2,1)D ,使BCD ∆的周长最小;(3)存在,如图,设过点P 与直线AC 平行线的直线为y x m =+,联立243y x m yx x,消掉y 得,2530x x m ,2(5)41(3)0m ,解得:134m =-, 即134m =-时,点P 到AC 的距离最大,ACP ∆的面积最大, 此时52x =,5133244y , ∴点P 的坐标为5(2,3)4-,设过点P 的直线与x 轴交点为F ,则13(4F ,0), 139144AF, 直线AC 的解析式为1y x =-,45CAB ∴∠=︒,∴点F 到AC 的距离为9292sin 45428AF , 又223(41)32AC ,∴∆的最大面积127ACE=⨯=.28【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题,熟悉相关性质是解题的关键.12.【答案】(1)2‘(2)1;(3)(.【分析】(1)当四边形EFGH为正方形时,则易证AHE≌△DGH,则DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;=7-x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2(3)先设DG=x,由第(2)小题得,S△FCG≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x,从而可得当时,△GCF的面积最小.【解答】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE , ∴∠AEH=∠MGF ,在△AHE 和△MFG 中,∠A=∠M=90°,HE=FG , ∴△AHE ≌△MFG (AAS ), ∴FM=HA=2,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此S △FCG =12×FM ×GC=12×2×(7-6)=1; (3)设DG=x ,则由(2)得,S △FCG =7-x , 在△AHE 中,AE ≤AB=7, ∴HE 2≤53, ∴x 2+16≤53,∴x∴S △FCG 的最小值为,此时,∴当时,△FCG 的面积最小为(.【点评】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 13.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解;(3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解答】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =,AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =, ∴CH则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点1322Q ⎛-- ⎝⎭或⎝⎭;综上,点Q -或(或⎝⎭或⎝⎭. 【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.14.【答案】(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1 【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DFDO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得;(3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG •MN 列出关于k 的等式求解可得.【解答】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2; (2)由(1)知点D 坐标为(1,0), 设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0), 则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°, ∵∠BDC =90°, ∴∠BDO+∠CDF =90°, ∴∠BDO =∠DCF , ∴△BDO ∽△DCF , ∴BO DFDO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1, ∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N , 由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0. ∴x 1+x 2=2+k ,x 1•x 2=k . ∴MN =|x 1﹣x 2|=|2﹣k|.则过点D 作x 轴的垂线交直线PQ 于点G ,则点G 的坐标为(1,1), 所以DG =1,∴S △PDQ =12DG •MN =12×1×|x 1﹣x 2|12|2﹣k|, ∴当k =0时,S △PDQ 取得最小值1.【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.15.【答案】45【分析】先证明△PEF ∽△BOC,得出PE EF PF BO OC BC ==,再根据122y x =-+,得出关于x 的二次函数方程,根据顶点坐标公式,求得则△PEF 面积最大值.【解答】解:设213,222P x x x ⎛⎫-++⎪⎝⎭(0<x<4), 抛物线213222y x x =-++与y 轴交于C 点,故C(0,2),∵PF ∥y 轴,PE ⊥BC , ∴∠PFE=∠BCO, 又∵∠PEF=∠BOC=90°, ∴△PEF ∽△BOC, ∴PE EF PF BO OC BC== ,把B(4,0),C(0,2)代入直线BC 的解析式为122y x =-+, 点1,22F x x ⎛⎫-+ ⎪⎝⎭,∴221312(2)22222P F x PF y y x x x x =-=-++--+=-+,∴PE=BO ·PF BC =42212x x -+== , EF=OC ·PFBC=222211122(2)x x x x x x -+-+-== , ∴221(2)1225PEFx x SPE EF -=⋅= =2221(2)(2)42520x x x ⎡⎤-⎢⎥⎡⎤--+⎣⎦⎣⎦=, 当2x =时,PEF S △取值最大,∴PEF S △的最大值为244205=, 故答案为45. 【点评】本题考查了三角形的面积及相似三角形的判定与性质.熟练掌握相似三角形的判定与性质及用含x 的代数式表示出三角形的面积是解题的关键.16.【答案】(1)见解析;(2)见解析;(3)当点P 是MN 的中点时S △MON 最小.理由见解析. 【分析】(1)根据尺规作图,过P 点作PN ⊥OB 于N ,交OA 于点M ; (2)证明三角形全等得P 为MN 的中点,便可得到结论;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,证明△PGM ≌△PFN ,得△PGM 与△PFN 的面积相等,进而得S 四边形MOFG =S △MON . 便可得S △MON <S △EOF ,问题得以解决.【解答】(1)①在OB 下方取一点K ,②以P 为圆心,PK 长为半径画弧,与OB 交于C 、D 两点,③分别以C 、D 为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.【点评】本题主要考查了图形的旋转性质,全等三角形的性质与判定,三角形的中线性质,关键证明三角形全等.17.【答案】(1)12x <<;(2)2. 【分析】(1)由旋转可得到AC=MA=x ,BC=BN=3-x ,利用三角形三边关系可求得x 的取值范围;(2)过点C 作CD ⊥AB 于D ,设CD=h ,利用勾股定理表示出AD 、BD ,再根据BD=AB-AD 列方程求出h 2,然后求出△ABC 的面积的平方,再根据二次函数的最值问题解答.【解答】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得AD =,BD ==, ∵BD AB AD =-,x =-34=-x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当32x =时,ABC 面积最大值的平方为12,∴ABC . 【点评】本题考查了旋转的性质,三角形的三边关系,勾股定理,二次函数的最值问题,(1)难点在于考虑利用三角形的三边关系列出不等式组,(2)难点在于求解利用勾股定理列出的无理方程.18.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【解答】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴=最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.19.【答案】(1)20;(2)5;(3)S △BCD =16;∠BCD =45°【分析】(1)由勾股定理可求解;(2)由等腰三角形的性质可得∠A =∠DBA ,由余角的性质可得∠DBC =∠C ,可得DB =DC =AD =12AC =5; (3)由中点的性质和折叠的性质可得DE =EC =4,则当DE ⊥BC 时,S △BCD 有最大值,由三角形面积公式和等腰直角三角形的性质可求解.【解答】解:(1)∵∠ABC =90°,AB =12,BC =16,∴20AC ==,故答案为:20;(2)∵DA =DB ,∴∠A =∠DBA ,∵∠ABC =90°∴∠A +∠C =90°,∠ABD +∠DBC =90°,∴∠DBC =∠C ,∴DB=DC,∴DB=DC=AD=12AC=5,故答案为:5;(3)∵E为BC中点,BC=8,∴BE=EC=4,∵将∠C折叠,折痕为EF,∴DE=EC=4,当DE⊥BC时,S△BCD有最大值,S△BCD=12×BC×DE=12×8×4=16,此时∵DE⊥BC,DE=EC,∴∠BCD=45°.故答案为:S△BCD=16;∠BCD=45°.【点评】本题主要考查了勾股定理、直角三角形斜边中线问题以及三角形中的折叠问题;题目较为综合,其中熟练掌握定义定理是解题的关键.20.【答案】①②③⑤【分析】由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积2,则当EC⊥AB时,△ECF【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF =∠BCA =60°,∴△EFC 是等边三角形,故①正确;∵∠ECF =∠ACD =60°,∴∠ECG =∠FCD ,∵∠FEC =∠ADC =60°,∴∠DFC =∠EGC ,故②正确;若BE =3,菱形ABCD 的边长为6,∴点E 为AB 中点,点F 为AD 中点,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∠ABO =12∠ABC =30°,∴AO =12AB =3,BO =∴BD =,∵△ABC 是等边三角形,BE =AE =3,∴CE ⊥AB ,且∠ABO =30°,∴BE EM =3,BM =2EM ,∴BM =同理可得DN =∴MN =BD −BM −DN =∴BM =MN =DN ,故③正确;∵△BEC ≌△AFC ,∴AF =BE ,同理△ACE ≌△DCF ,∴AE =DF ,∵∠BAD ≠90°,∴EF 2=AE 2+AF 2不成立,∴EF 2=BE 2+DF 2不成立,故④错误,∵△ECF 是等边三角形,∴△ECF 2, ∴当EC ⊥AB 时,△ECF 面积有最小值,此时,EC =ECF 面积的最小值为4,故⑤正确; 故答案为:①②③⑤.【点评】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.21.【答案】(1)223;y x x =--(2)当32t =时,S 有最大值278;(3)()()2,5,1,4-- 【分析】(1)根据抛物线上的对称点B 和E ,求出对称轴从而可求出C 点坐标.然后设出抛物线的交点式,再把点A 代入求出a 值即可求出抛物线的解析式;(2)过点P 作y 轴的平行线交AE 于点H ,分别根据抛物线和直线AE 的解析式表示出点P 和点H 的坐标,从而求出线段PH 的长,最后用含t 的式子表示∆APE 的面积,利用二次函数的性质求解;(3)根据两直线垂直时,它们的斜率之积为-1,可求得与直线AE 垂直的直线方程,最后联立方程组可求点P 的坐标.【解答】解:(1)抛物线2y ax bx c =++经过点()()1,03,0,B E -、∴抛物线的对称轴为1,x =点()0,3A -,点()2,3C -抛物线表达式为()()()23123,.y a x x a x x =-+=--33a ∴-=-,解得1,a =∴抛物线的表达式为223;y x x =--()2如图,过点P 作y 轴的平行线交AE 于点H由点,A E 的坐标得直线AE 的表达式为3,y x =-设点()2,23P t t t --,则(),3H t t -()()22213333273233222228PAES PH OE t t t t t t ∆⎛⎫∴=•=--++=-+=--+ ⎪⎝⎭ 当32t =时,S 有最大值278()3直线AE 表达式中的k 值为1,则与之垂直的直线表达式中的k 值为1-① 当90PEA ︒∠=时,直线PE 的表达式为1,y x b =-+将点E 的坐标代人并解得13b =,直线PE 的表达式为3,y x =-+联立得2233y x x y x ⎧=--⎨=-+⎩解得2x =-或3(不合题意,舍去)故点P 的坐标为()2,5-② 当90PAE ︒∠=时,直线PA 的表达式为2,y x b =-+将点A 的坐标代人并解得23b =,直线PE 的表达式为3,y x =--联立得2233y x x y x ⎧=--⎨=--⎩ 解得1x =或0(不合题意,舍去)故点()1,4P -综上,点P 的坐标为()2,5-或(1,-4)【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求二次函数解析式;会解一元二次方程;理解坐标与图形性质,记住两直线垂直时它们的斜率之积为-1;会利用分类讨论的思想解决数学问题.。
2017中考数学试题和答案
年长沙市初中毕业学业水平考试2017 数学试卷一、选择题:)1.下列实数中,为有理数的是(3?321 D.B. C A..)2.下列计算正确的是(23625?2?3mn)(mn?a2a?2a?xy??x(1?y)x..CA..DB3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()676810?.268226?10.6?10880.826?10. D.C.A.B.)4.在下列图形中,既是轴对称图形,又是中心对称图形的是(5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.之直角三角形C.钝角三角形D.等腰直角三角形6.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生?2的中位数是4 ,C.数据3,5,4,1D.“367人中有2人同月同日生”为必然事件7.某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱24??3)y?2(x 8.抛物线)的顶点坐标是()42,((3,4),?4)3(?,(34)C.D.BA..0110?1?cb,a b//a2?相交,,则分别与.如图,已知直线9,直线的度数为()0000110806070 DC ...A B.cmcm,8AC,BD6ABCD的长分别为)10.如图,菱形,则这个菱形的周长为(的对角线cmcm20cm10cm145.C.D A.. B“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才.中国古代数学著作《算法统宗》中有这样一段记载:11里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前378得到其关.”其大意是,有人要去某关口,路程)一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为(里D.36里.B12里C.里A.24DC,CDABCDEAHHAD,12.如图,将正方形于点折叠,使顶点不与端点与重合)边上的一点重合(,折痕交nmn CHGBCBCGABCD?ABF的值为折叠后与边,则交于点,于点,边,设正方形的周长为的周长为交m)(1?251H点位置的变化而变化.随 A .CD.B.222二、填空题2??2?4a2a 13.分解因式:.x?y?1?的解是.14.方程组?3x?y?3?CD?6,EB?1OABOCD?EAB的半径为.的直径,弦,则⊙,已知15.如图,为⊙于点A(2,4),B(6,0),C(0,0)O?ABO为位似中心,把这个三角形缩小为原来的三个顶点的坐标分别为,以原点.如图,161(3,0)O'A'B?A'B'的坐标是.,可以得到,已知点的坐标是,则点2.225.?01?.2,SS,则在.6米,方差分别是17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1乙甲)本次测试中,同学的成绩更稳定(填“甲”或“乙”kx3y??y OM?4kM 的值为.的图象在第一象限内的交点,是函数与,则18.如图,点x三、解答题1?010?)(2017)?2sin30?|?3|(??.计算:1932x??9?x?20.解不等式组,并把它的解集在数轴上表示出来.?5x?1?3(x?1)?21.为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题:a?b?;;(1)表中B组对应的圆心角的度数;(2)请计算扇形统计图中(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船060BPA此时测得小时到达在处,处测得灯塔在北偏东继续航行方向上,1海里的速度向正东方航行,以每小时50030P在北偏东方向上.灯塔APB?的度数;)求1(.P海里内有暗礁,问海监船继续向正东方向航行是否安全?的周围25(2)已知在灯塔EDOB,OA,CECDOOC?AB分别交⊙于点与⊙相切于,,.23.如图,OB?OA 1()求证:;AB?43OA?4,求阴影部分的面积.,)已知2(.24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特ABA型商品的进价比倍,一件型商品的件数的16000元采购2型商品的件数是用7500元采购色商品,经调查,用B型商品的进价多10一件元.A,B型商品的进价分别为多少元?)求一件(1A,B AB型的件数,且不小于80型商品的件数不大于型商品共250(2)若该欧洲客商购进件进行试销,其中件,已m ABA件,求该客商销售这件,且全部售出,设购进型商品型商品的售价为220知元型商品的售价为240元/件,/vmm 的取值范围;批商品的利润之间的函数关系式,并写出与a AA型商品的利润中捐献慈善资金欧洲客商决定在试销活动中每售出一件就从一件型商品,((3)在2)的条件下,元,求该客商售完所有商品并捐献资金后获得的最大收益.x,y,zx,y,z构成25.若三个非零实数“和满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由.k),y(Mt?1y?),tM(,yN(t1,),y,,yy0kk?且这三点的纵坐标)三点均在函数(为常数,的图象上,若)(2321321xt的值;,求实数构成“和谐三数组”2)x,yx,y),C(B(),0A(x)0(a?3?ax?3bx?cyx)(2bx?2cbc?0y?交于与若直线),轴交于点与抛物线(332231两点.xxx,“和谐三数组”,;构成①求证:A,B,C三点的横坐标132cb1?c,xa?2b?3,的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学复习专题突破《最值问题》测试题(含答案)
最值问题八(针对陕西中考最值问题)
一、填空题 1.(导学号30042252)在半⊙O中,点C是半圆弧AB
的中点,点D是弧BC上距离点B较近的一个三等分点,点P是直径AB上的动点,若AB=10,则PC+PD的最小值是__53__. ,第1题图) ,第2题图) 2.(导学号30042253)如图,AB 是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为7,则GE +FH的最大值为__212__. 3.(导学号30042254)如图,在反比例函数y=6x上有两点A(3,2),B(6,1),在直线y=-x上有一动点P,当P点的坐标为__(43,-43)__时,PA+PB有最小值.点拨:设A点关于直线y=-x的对称点为A′,连接A′B,交直线y=-x 为P点,此时PA+PB有最小值,∵A(3,2),∴A′(-2,-3),设直线A′B的直线解析式为y=kx+b,-3=-2k+b,1=6k+b,解得k=12,b=-2,∴直线A′B的直线解析式为y=12x-2,联立y =12x-2,y=-x,解得x=43,y=-43,即P点坐标(43,-43),故答案为(43,-43) 二、解答题 4.(导学号30042255)已知点M(3,2),N(1,-1),点P在y轴上,求使得△PMN的周长最小的点P的坐标.解:作出M关于y轴的对称点M′,连接NM′,与y轴相交于点P,则P点即为所求,设过NM′两点的直线解析式为y=k x+b(k≠0),则2=-3k+b,-1=k+b,解得k=-34,b=-14,故此一次函数的解析式为y=-34x-14,因为b=-14,所以P点坐标为(0,-14) 5. (导学号30042256)(2015•宁德)如图,AB是⊙O 的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P 是直径AB 上的一动点.若MN=1,则△PMN周长的最小值为多少.解:作N关于AB的对称点N′,连接MN′,NN′,ON′,OM,ON,∵N 关于AB的对称点为N′,∴MN′与AB的交点P′即为△PMN 周长最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,
∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,
∴△PMN周长的最小值为4+1=5
6.(导学号30042257)如图,已知抛物线y=ax2+bx+c经过A(-
3,0),B(1,0),C(0 ,3)三点,其顶点为D,对称轴与x轴交于点H. (1)求抛物线的解析式; (2)若点P是该抛物线的对称轴上的一个动点,求△PBC周长的最小值.解:(1)把A(-3,0),B(1,0),C(0,3)三点坐标代入y=ax2+bx+c中,a+b+c=0,9a-3b+c=0,c =3,解得a=-1,b=-2,c=3,即抛物线的解析式是y=-x2-2x+3 (2)如图,△PBC的周长=PB+PC+BC,∵BC是定值,∴当PB+PC最小时,△PBC的周长最小.A,B两点关于对称轴对称,连接AC,交对称轴于点P,点P即为所求,∵AP=BP,△PBC的最小周长=PB+PC+BC=AC+BC,∵A(-3,0),B(1,0),C(0,3),∴AC =32,BC=10,∴△PBC的最小周长=32+10
7.(导学号30042258)小明在学习轴对称的时候,老师留了一道思考题:如图1,若点A,B在直线m的同侧,在直线m上找一点P,使得AP+BP的值最小,小明通过独立思考,很快得出了解决这个问题的正确方法,他的做法是这样的:(a)作点B关于直线m的对称点B′,(b)连接AB′与直线m交于点P,则点P即为所求.请你参考小明的做法解决下列问题: (1)如图2,在等边△ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P(尺规作图,保留作图痕迹,不写作法),使得B P+PE的值最小,并求出最小值; (2)如图3,在矩形ABCD中,AB=4,BC=6,G为边AD上的中点,若E,F为AB 边上的两个动点,点E在点F的左侧,且EF=1,当四边形CGEF的周长最小时,请你在图3中确定点E,F的位置(尺规作图,保留作图痕迹,不写作法),并求出四边形CGEF的周长的最小值.解:(1)
如答图2,作点E 关于 AD的对称点F,交AC于点 F,连接BF,交AD 于点P,连接PE, 点P即为所求. 在等边△ABC中, AB=2,点E 是AB 的中点,AD是高,∴F是AC的中点,∴BF⊥AC于点F, ∴BP +PE的最小值=BF=22-12=3 (2)如答图3,作点G关于AB的对称点M,在CD上截取CH=1,连接MH,交AB于点E,在BE上截取EF=1,连接CF,则E,F为所求,∵AB=4,BC=6, G为边AD上的中点,∴DG=GA=AM=3,∵AE∥DH,∴△MAE∽△MDH,∴AEDH=AMDM,∴AE3=39,∴AE=1,∴在Rt△GAE,Rt△CBF,Rt△CDG中,分别由勾股定理得,GE=AE2+AG2=12+32=10,CF=BF2+BC2=22+62
=210,CG=DG2+DC2=5, ∴四边形GEFC的周长的最小值=GE+EF +FC+CG=10+1+210+5 =6+310 8.(导学号30042259)如图,抛物线y=-x2+4x+5与x轴交于A,B两点,与y轴交于点C.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.△PCM是以CM为底的等腰三角形. (1)求点P的坐标; (2)当a为多少时,四边形PMEF周长最小. 解:(1)∵y=-x2+4x+5
与y轴交于点C,∴点C的坐标为(0,5),又∵M(0,1),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,令y=-x2+4x+5=3,解得x=2±6,∵点P在第一象限,∴P(2+6,3) (2)四边形PMEF的四条边中,PM,EF长度固定,因此只要ME+PF最小,则PMEF 的周长将取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),作点M1关于x轴的对称点M2,则M2(1,-1),连接PM2与x轴交于F点,此时ME+PF=PM2最小,设直线PM2的解析式为y=mx+n,将P( 2+6,3),M2(1,-1)代入得:(2+6)m+n=3,m+n=-1,解得:m=46-45,n=-46-15,∴y=46-45x-46+15,当y=0时,解得x=6+54.∴F(6+54,0),∵F(a +1,0),∴a=6+14,∴a=6+14时,四边形PMEF周长最小。