离散数学题库

合集下载

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∃x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

离散数学题目大汇总

离散数学题目大汇总

离散数学试题一(A 卷答案)一、(10分)证明⌝(A ∨B )→⌝(P ∨Q ),P ,(B →A )∨⌝P A 。

二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。

关于谁参加竞赛,下列4种判断都是正确的:(1)甲和乙只有一人参加;(2)丙参加,丁必参加;(3)乙或丁至多参加一人;(4)丁不参加,甲也不会参加。

请推出哪两个人参加了围棋比赛。

三、(10分)指出下列推理中,在哪些步骤上有错误?为什么?给出正确的推理形式。

(1)∀x (P (x )→Q (x )) P(2)P (y )→Q (y ) T (1),US(3)∃xP (x ) P(4)P (y ) T (3),ES(5)Q (y ) T (2)(4),I(6)∃xQ (x ) T (5),EG四、(10分)设A ={a ,b ,c},试给出A 上的一个二元关系R ,使其同时不满足自反性、反自反性、五、(15分)设函数g :A →B ,f :B →C ,(1)若f g 是满射,则f 是满射。

(2)若f g 是单射,则g 是单射。

六、(15分)设R 是集合A 上的一个具有传递和自反性质的关系,T 是A 上的关系,使得<a ,b >∈T ⇔<a ,b >∈R 且<b ,a >∈R ,证明T 是一个等价关系。

七、(15分)若<G ,*>是群,H 是G 的非空子集,则<H ,*>是<G ,*>的子群⇔对任意的a 、b ∈H 有a *b -1∈H 。

八、(15分)(1)若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的。

(2)若有向图G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达吗?离散数学试题一(B 卷答案)一、(15分)设计一盏电灯的开关电路,要求受3个开关A 、B 、C 的控制:当且仅当A 和C 同时关闭或B 和C 同时关闭时灯亮。

设F 表示灯亮。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

离散数学题库及答案

离散数学题库及答案

数理逻辑部分选择、填空及判断✓ 下列语句不是命题的( A )。

(A) 你打算考硕士研究生吗? (B) 太阳系以外的星球上有生物。

(C) 离散数学是计算机系的一门必修课。

(D) 雪是黑色的。

✓ 命题公式P →(P ∨⌝P )的类型是( A )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 析取范式✓ A 是重言式,那么A 的否定式是( A )A. 矛盾式B. 重言式C. 可满足式D.不能确定✓ 以下命题公式中,为永假式的是( C )A. p →(p ∨q ∨r)B. (p →┐p)→┐pC. ┐(q →q)∧pD. ┐(q ∨┐p)→(p ∧┐p)✓ 命题公式P →Q 的成假赋值是( D )A. 00,11B. 00,01,11C.10,11D. 10✓ 谓词公式),()(y x R x xP ∧∀中,变元x 是 ( B )A. 自由变元B. 既是自由变元也是约束变元C. 约束变元D. 既不是自由变元也不是约束变元✓ 命题公式P →(Q ∨⌝Q)的类型是( A )。

(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 析取范式✓ 设B 不含变元x ,))((B x A x →∃等值于( A )A. B x xA →∀)(B. ))((B x A x ∨∃C. B x xA →∃)(D. B x A x ∧∃)(( ✓ 下列语句中是真命题的是( D )。

A .你是杰克吗?B .凡石头都可练成金。

C .如果2+2=4,那么雪是黑的。

D .如果1+2=4,那么雪是黑的。

✓ 从集合分类的角度看,命题公式可分为( B )A. 永真式、矛盾式B. 永真式、可满足式、矛盾式C. 可满足式、矛盾式D. 永真式、可满足式✓ 命题公式﹁p ∨﹁q 等价于( D )。

A. ﹁p ∨qB. ﹁(p ∨q)C. ﹁p ∧qD. p →﹁q✓ 一个公式在等价意义下,下面写法唯一的是( D )。

离散数学-习题集

离散数学-习题集

离散数学-习题集《离散数学》习题集第⼀部分判断题⼀、第⼀章—集合1、()已知集合A的元素个数为10,则集合A的幂集的基=102。

2、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。

2、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。

3、( ) 已知两个集合A={Ф,{Ф}},B={Ф},则A∩B={Ф}。

4、()已知两个集合A={Ф,{Ф}},B={Ф},则A∩B=Ф。

5、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。

6、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。

7、()已知集合A的元素个数为n,则A×A的幂集的元素个数为n2。

8、()已知两个集合A、B,则A-B是由属于B但不属于A的元素构成的集合。

⼆、第⼆章—⼆元关系1、()若R是A上的⼆元关系,I A是A上的恒等关系,则当且仅当I A∈R时,R是A上的⾃反关系。

2、(√)若R是集合A上的⼆元关系,且当(a,b)∈R且(a,c)∈R时,就有(b,c)∈R,则R是A 上的可传递关系。

3、()设A是集合,A1、A2、...A n都是A的⾮空⼦集,令S={A1,A2,...,A n},则如果S是集合A的⼀个划分,那么S⼀定是集合A的⼀个完全覆盖;反之亦然。

5、()R是⾮空集合A上的等价⼆元关系,则A关于R的商集A/R是集合A的⼀个划分,但不是A的⼀个完全覆盖。

6、()已知集合A有4元素,易知集合A共有24个互不相同的⼦集合,所以在集合A上⼀共可定义24个互不相同的⼆元关系。

7、()若R1和R2都是集合A上的可传递⼆元关系,则R1∪R2也是A上的传递关系。

8、()设R是有限的⾮空集合A上的偏序关系,则A必有极⼤(⼩)元和最⼤(⼩)元。

9、()若R1和R2都是集合A上的相容关系,则R1∩R2也是A上的相容关系。

10、()若R1和R2都是集合A的可传递⼆元关系,则R1∩R2也是A上的传递关系。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。

B. 有向图中的边无方向性,无向图中的边有方向性。

C. 无向图和有向图都是由顶点和边组成的。

D. 无向图和有向图都只由边组成。

答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。

B. 若集合A和B相交为空集,则A和B相等。

C. 若集合A和B相等,则A和B互相包含。

D. 若集合A和B相等,则A和B相交为空集。

答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。

答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。

答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。

答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。

答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。

答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。

证明过程:假设A和B互相包含,即A包含于B且B包含于A。

设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。

同理,对于集合B中的任意元素y,y也属于集合A。

离散数学习题集(十五套) - 答案

离散数学习题集(十五套) - 答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有()个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

《离散数学》题库及答案

《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。

答:某,y,某,z5、判断下列语句是不是命题。

若是,给出命题的真值。

((1)北京是中华人民共和国的首都。

(2)陕西师大是一座工厂。

),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。

(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。

(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。

(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

《离散数学》试题含答案

《离散数学》试题含答案

《离散数学》试题含答案⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全⼆叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1?R2 =________________________,R2?R1 =____________________________, R12=________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B =__________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

大学离散数学试题集(非常完整试题)

大学离散数学试题集(非常完整试题)

大学离散数学试题集(非常完整试题)第1章一.填空题1.2. 公式P→(Q→R)在联结词全功能集{﹁,∨}中等值形式为___________________。

3.4.5.6.7. 全体小项的析取式必为____________________式。

8. P,Q为两个命题,则德摩根律可表示为7. 全体小项的析取式必为_________式。

9. P,Q为两个命题,则吸收律可表示为____________________ 。

10. 设P:我有钱,Q:我去看电影。

命题“虽然我有钱,但是我不去看电影”符号化为____________________。

11. 设P:我生病,Q:我去学校。

命题“如果我生病,那么我不去学校”符号化为_________ ___________。

12.13.14.15. 设P、Q为两个命题,交换律可表示为____________________。

16.17. 命题“如果你不看电影,那么我也不看电影”(P:你看电影,Q:我看电影)的符号化为____________________ 。

18.19.20.21. P:你努力,Q:你失败。

命题“除非你努力,否则你将失败”的翻译为____________________。

22.23.24. 一个重言式和一个矛盾式的合取是____________________。

25. 全体小项的析取式为____________________ 。

26. 命题“如果你不看电影,那么我也不看电影”(P:你看电影,Q:我看电影)的符号化为____________________。

27.28. 设P:它占据空间,Q:它有质量,R:它不断运动,S:它叫做物质。

命题“占据空间的,有质量的而且不断运动的叫做物质”的符号化为____________________。

29.30.二.选择题1.2.3. 在除﹁之外的四大联结词中,满足结合律的有几个( )。

A. 2B.3C. 4D. 14. 判断下列语句哪个是命题( )。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题(每题2分,共20分)1. 集合A={x|x<5},集合B={x|x>2},则A∩B为:A. {x|x>2}B. {x|x<2}C. {x|2<x<5}D. {x|x≥5}2. 命题p:"x>0"是命题q:"x^2>0"的:A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件3. 函数f(x)=x^2+3x-2的值域是:A. (-∞, -1]B. [1, +∞)C. (-∞, 4]D. (-∞, 2]4. 逻辑表达式((P∨Q)∧(¬P))的真值表中,当P为真时,表达式的值为:A. 真B. 假C. 不确定D. 无法判断5. 已知二元关系R定义在集合A上,若对于任意a,b,c∈A,若aRb且bRc,则aRc,那么R是:A. 自反的B. 对称的C. 传递的D. 完全的6. 有限状态自动机(DFA)与确定有限状态自动机(DFA)的区别在于:A. DFA可以识别非正则语言B. DFA可以有多个起始状态C. DFA可以有多个接受状态D. DFA可以有多个状态7. 命题逻辑中,若命题P的否定为P',则P和P'的关系是:A. 互为对立B. 互为矛盾C. 互为等价D. 互为同一律8. 集合{1,2,3}的子集个数是:A. 3B. 4C. 7D. 89. 一个命题逻辑公式的真值表中,若存在一行结果为假,则该公式:A. 总是假B. 有时真,有时假C. 总是真D. 无法判断10. 布尔代数中,逻辑与(AND)操作的特点是:A. 有0则0B. 有1则1C. 非0即1D. 非1即0二、简答题(每题5分,共10分)1. 简述集合论中的幂集概念。

2. 描述图的邻接矩阵表示方法。

三、计算题(每题10分,共30分)1. 证明函数f(x)=x^3-3x^2+2x-1在R上是单调递增的。

(完整版)离散数学题库与答案

(完整版)离散数学题库与答案

试卷二十二试题与答案一、单项选择题:(每小题1分,本大题共15分)1.设A={1,2,3,4,5},下面( )集合等于A 。

A 、{1,2,3,4,5,6};B 、}25{2≤x x x 是整数且; C 、}5{≤x x x 是正整数且; D 、}5{≤x x x 是正有理数且。

2.设A={{1,2,3},{4,5},{6,7,8}},下列各式中( )是错的。

A 、A ⊆Φ;B 、{6,7,8}∈A ;C 、{{4,5}}⊂A ;D 、{1,2,3}⊂A 。

3.六阶群的子群的阶数可以是( )。

A 、1,2,5;B 、2,4;C 、3,6,7;D 、2,3 。

4.设B A S ⨯⊆,下列各式中( )是正确的。

A 、 domS ⊆B ; B 、domS ⊆A ;C 、ranS ⊆A ;D 、domS ⋃ ranS = S 。

5.设集合Φ≠X ,则空关系X Φ不具备的性质是( )。

A 、自反性;B 、反自反性;C 、对称性;D 、传递性。

6.下列函数中,( )是入射函数。

A 、世界上每个人与其年龄的序偶集;B 、、世界上每个人与其性别的序偶集;B 、 一个作者的专著与其作者的序偶集; D 、每个国家与其国旗的序偶集。

7.><,*G 是群,则对*( )。

A 、满足结合律、交换律;B 、有单位元,可结合;C 、有单位元、可交换;D 、每元有逆元,有零元。

8.下面( )哈斯图所描述的偏序关系构成分配格。

9.下列( )中的运算符都是可交换的。

A 、→∨∧,,;B 、↔→,;C 、⨯⋂⋃,,;D 、∧∨,。

10.设G 是n 个结点、m 条边和r 个面的连通平面图,则m 等于( )。

A 、n+r-2 ;B 、n-r+2 ;C 、n-r-2 ;D 、n+r+2 。

11.n 个结点的无向完全图n K 的边数为( )。

A 、)1(+n n ;B 、2)1(+n n ;C 、)1(-n n ;D 、2)1(-n n 。

离散数学试题带答案大全

离散数学试题带答案大全

离散数学试题带答案一、选择题1、G 是一棵根树,则( )。

A 、G 一定是连通的B 、G 一定是强连通的C 、G 只有一个顶点的出度为0D 、G 只有一个顶点的入度为12、下面哪个语句不是命题( )。

A 、中国将成功举办2008年奥运会B 、一亿年前地球发生了大灾难C 、我说的不是真话D 、哈密顿图是连通的3、设R 是实数集合,在上定义二元运算*:a ,b ∈R ,a*b=a+b-ab ,则下面的论断中正确的是( )。

A 、0是*的零元B 、1是*的幺元C 、0是*的幺元D 、*没有等幂元4、下面说法中正确的是( )。

A 、所有可数集合都是等势的B 、任何集合都有与其等势的真子集C 、有些无限集合没有可数子集D 、有理数集合是不可数集合5、无向完全图K 3的不同构的生成子图有( )个。

A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A 、无回路的连通图B 、有n 个顶点n-1条边的连通图C 、每对顶点间都有通路的图D 、连通但删去一条边则不连通的图7、设集合A ={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。

A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。

A 、必惟一B 、不惟一C 、不一定惟一D 、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A 是不封闭的?( )A 、 x*y=max{x,y}B 、 x*y=min{x,y}C 、 x*y=GCD(x,y),即x,y 的最大公约数D 、 x*y=LCM(x,y),即x,y 的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。

A 、R 是对称的B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学题库、

离散数学题库、

B.x(P(x)Q(x))xP(x)xQ(x)
C.x(P(x)Q(x))xP(x)xQ(x)
D.xP(x)Q)xP(x)Q
28、 下面谓词公式哪个是前束范式?()
A.xyz(B(x,y)A(z))
B.ቤተ መጻሕፍቲ ባይዱyB(x,y)
C.xyx(A(x,y)B(x,y))
D.x(A(x,y)yB(y))
29、 在谓词演算中:P(a)是xP(x)的有效结论,其理论根据是()
A.a*b=a+b+3 B.a*b=min{a,b} C.a*b=a+2b D.a*b=ab(mod
3)
59、 下列运算中,哪种运算关于整数集不能构成半群?()
A.aοb=max{a,b}
B.aοb=b
C.aοb=2ab
D.aοb=|a-b|
60、*运算如下表所示,哪个能使({a,b},*)成为独异点?()
A.循环群
B.置换群
A.P→(P∨Q∨R)
B.(P→P)→P
C.(Q→P )∧P
D. ( P∨P)→(P∧P)
16、设命题公式,则G是( )。 A. 恒假的 B. 恒真的 C. 可满足的 D. 析取范式
17、谓词公式x(P(x)yR(y))Q(x)中量词x的作用域是()
A. x(P(x)yR(y))
B.P(x)
C. (P(x)yR(y))
C.P(a)S(b)
D.P(a)P(b)S(a)S(b)
26、 在谓词演算中,下列各式哪个是正确的?()
A.xyA(x,y)yxA(x,y)
B.xyA(x,y)yxA(x,y)
C.xyA(x,y)xyA(x,y)
D.xyA(x,y)yxA(x,y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学1.在自然推理系统P中构造下面推理的证明:前提:,,p q r q rs ⌝∨∨⌝→ 结论:p s →.3设一阶逻辑公式((,)(()()))G x yP x y zQ z R x =∃⌝∃→∃→试将G 化成与其等价的前束范式。

4.判断下面推理是否正确,并证明你的结论。

如果小王今天家里有事,则他不会来开会。

如果小张今天看到小王,则小王今天来开会了。

小张今天看到小王。

所以小王今天家里没事。

5、构造下面推理的证明前提: ))()(()),()()((x R x F x x H x G x F x ∧∃∧→∀结论: ))()()((x G x R x F x ∧∧∃6用等值演算法和真值表法判断公式)())()((Q P P Q Q P A ↔↔→∧→=的类型。

7分别用真值表法和公式法求(P →(Q ∨R ))∧(⌝P ∨(Q ↔R ))的主析取范式,并写出其相应的成真赋值和成假赋值。

8用逻辑推理证明:所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。

因此有些学生很有风度。

9、设A ={∅,1,{1}},B ={0,{0}},求P (A )、P (B )-{0}、P (B )⊕B 。

10、设X ={1,2,3,4},R 是X 上的二元关系,R ={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>}(1)画出R 的关系图。

(2)写出R 的关系矩阵。

(3)说明R 是否是自反、反自反、对称、传递的。

11、集合X={<1,2>, <3,4>, <5,6>,… },R={<<x 1,y 1>,<x 2,y 2>>|x 1+y 2 = x 2+y 1} 。

(1)、证明R 是X 上的等价关系。

(2)、求出X 关于R 的商集。

12.分别画出下列各偏序集<A,R >的哈斯图,并找出A 的极大元`极小元`最大元和最小元.(1)A={a,b,c,d,e} R ={<a,d>,<a,c>,<a, b >,<a,e>,<b,e>,<c,e>,<d,e>}⋃I A . (2)A={a,b,c,d,e}, R ={<a, b >,<c,d>}⋃IA.14A={a,b,c,d},R={<a,b>,<b,c>,<b,d>,<c,b>}为A 上的关系,利用矩阵乘法求R 的传递闭包,并画出t (R )的关系图。

15. 设>< ,G 是群, },|{x y y x G y G x x S =∈∀∈=且对于,证明S 是G 的子群。

17 S=Q×Q,其中Q 为有理数集合,定义S 上的二元运算*,∀<a,b>,<x,y>∈S ,<a,b>*<x,y>=<ax,ay+b>,(1)求<3,4>*<1,2>.(2)已知<-1,3>*<a,b>=<-5,1>,求a,b.(3)*是可交换的吗?是可结合的吗?18. 设R 为实数集,+为普通加法,∙为普通乘法,<R ,*>是一个代数系统,*是R 上的一个二元运算,使得R y x ∈∀,,都有 x*y=x+y+x ∙y证明:<R ,*>是独异点。

19对于下有向图,(1) 写出入度序列和出度序列;(2) 写出邻接矩阵A ,第一行元素之和的含义是什么?(3) 求4A ,据此说明从A 到A 的长度为4的回路用多少?20(1)在一个无向图中有6条边,3度顶点和5度顶点各1个,其余顶点都是2度点,该图有几个顶点?(2)画一棵带权为2,2,2,3,3,4,5,8的最优二叉树T ,并计算它的权W (T )。

21已知某有向图的邻接矩阵如下:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00011011110001004321v v v v A 试求:3v 到1v 的长度为4的有向路径的条数。

22设<G ,∙>是可交换群,H={a ∈G |∃k ∈N(正整数集),使a k =e},证明H 是G 的子群。

23.在自然推理系统P中构造下面推理的证明: 前提:,,p q r q r s ⌝∨∨⌝→结论:p s →. 24.求p r q p →→∨))((的主析取范式;(2)根据主析取范式直接写出主合取范式;(3)根据主析取范式直接写出真值表。

25、构造下面推理的证明前提: ))()(()),()()((x R x F x x H x G x F x ∧∃∧→∀结论: ))()()((x G x R x F x ∧∧∃26 A={a,b,c,d},R={<a,b>,<b,c>,<b,d>,<c,b>}为A 上的关系,利用矩阵乘法求R 的传递闭包,并画出t (R )的关系图。

27、A={(0,0),(0,1),(1,0),(1,3),(2,2),(2,3),(3,1), (3,3),(3,2)},R={<(a,b),(c,d)>| (a,b),(c,d)∈A 且a+b=c+d }.(1)证明:R 是A 上的等价关系.(2)给出R 确定的对A 的划分(分类)28、翻译下列论题,并证明结论。

H1:每个中国公民在享受公民权利的同时必须履行公民义务。

H2:有些中国人没有履行公民义务。

C :有些人不是中国公民。

30、求p r q p →→∨))((的主析取范式;(2)根据主析取范式直接写出主合取范式;(3)根据主析取范式直接写出真值表。

31.试证明若>*<,G 是群,G H ⊆,且任意的H a ∈,对每一个G x ∈,有a x x a *=*,则>*<,H 是>*<,G 的子群。

32设偏序集<A ,R >和<B ,S >,定义A ⨯B 上二元关系T :<x ,y >T <u ,v > ⇔ xRu ∧ ySv 证明T 为偏序关系.33、 集合X={<1,2>, <3,4>, <5,6>,… },R={<<x 1,y 1>,<x 2,y 2>>|x 1+y 2 = x 2+y 1} 。

1、 证明R 是X 上的等价关系。

2、 求出X 关于R 的商集。

34、设集合A={ a ,b , c , d }上关系R={< a, b > , < b , a > , < b , c > , < c , d >}要求 1、写出R 的关系矩阵和关系图。

2、用矩阵运算求出R 的传递闭包。

35设一阶逻辑公式((,)(()()))G x yP x y zQ z R x =∃⌝∃→∃→试将G 化成与其等价的前束范式。

36设命题A 1,A 2的真值为1,A 3,A 4真值为0,求命题)()))(((421321A A A A A A ⌝∨↔⌝∧→∨的真值。

37利用主析取范式,求公式R Q Q P ∧∧→⌝)(的类型。

38设A={1,2,3,4,5},A 上的偏序关系为求A 的子集{3,4,5}和{1,2,3},的上界,下界,上确界和下确界。

39. 设R 是集合A 上的一个关系.对∀a,b,c ∈A ,若<a,b>∈R 并且<a,c>∈R ,则有<b,c>∈R ,则R 称为A 上的循环关系。

试证明R 是A 上的一个等价关系的充要条件是R 是循环关系和自反关系。

40求)()(Q P P Q ∧⌝∧→的主合取范式。

42 设S={1 , 2 , 3 , 4, 6 , 8 , 12 , 24},“≤”为S 上整除关系,问:(1)偏序集≤><,S 的Hass 图如何?(2)偏序集},{≤S 的极小元、最小元、极大元、最大元是什么? 43设一阶逻辑公式((,)(()()))G x yP x y zQ z R x =∃⌝∃→∃→试将G 化成与其等价的前束范式。

44、设R 1和R 2为A 上的二元关系,证明:(R 1∩R 2)-1=R 1-1∩R 2-1 45、证明:在任何图(有向图或无向图)中,度数为奇数的顶点个数是偶数。

48、证明所有阶数为3的群均为阿贝尔群。

49、用下图中的二叉树产生一个二元前缀码。

50、设G 是n 阶m 条边无回路的无向连通图,证明m=n-151、设有向图D=<V,E>,V={v1,v2,v3,v4},E={<v1,v2>,<v2,v1>,<v2,v4>,<v3,v4>,<v3,v4>} 请画出图D ,并给出图D 的关联矩阵,邻接矩阵和可达矩阵。

52、用推理规则证明下列推理的正确性:如果A 努力工作,那么B 或C 感到愉快,如果B 愉快,那么A 不努力工作;如果D 愉快,那么C 不愉快。

所以,如果A 努力工作,则D 不愉快。

54、给定集合A={1,2,3,4},A 上关系R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>},1)画出R 的关系矩阵和关系图 2)说明R 的性质。

3)求出R 的自反闭包。

55、设R 是A 上的等价关系,定义S={<a,b>|∃c ∈A,<a,c>∈R ∧<c,b>∈R}。

证明S 也是A 上等价关系。

57.集合}36,24,12,6,3,2{=A 上的偏序关系 为整除关系。

设}12,6{=B ,}6,3,2{=C ,试求A ,B ,C 的最大元素、极大元素、下界、上确界58. 在一阶逻辑中将下列命题符号化没有不爱吃糖的人任何两个不同的人都不一样高所有的有理数是实数,某些有理数是整数,因此,某些实数是整数。

相关文档
最新文档