药物的跨膜转运

合集下载

药动学

药动学

药动学考纲三、药动学1.药物的体内过程·药物跨膜转运的方式,·药物的吸收、分布、代谢、排泄及其影响因素、·血浆蛋白结合率和肝肠循环的概念、·常见P450酶系及其抑制剂和诱导剂掌握2.药物代谢动力学药动学基本概念及其重要参数之间的相互关系:药-时曲线下面积、生物利用度、达峰时间、药物峰浓度、消除半衰期、表观分布容积、清除率等熟练掌握一、药物的体内过程药物从进入机体至离开机体,可分为四个过程:简称ADME系统→与膜的转运有关。

(一)药物的跨膜转运:※药物在体内的主要转运方式是:简单扩散!Ⅰ、被动转运——简单扩散1.概念:指药物由浓度高的一侧向浓度低的一侧扩散,以浓度梯度为动力。

2.特点:(1)不消耗能量。

(2)不需要载体。

(3)转运时无饱和现象。

(4)不同药物同时转运时无竞争性抑制现象。

(5)当膜两侧浓度达到平衡时转运即停止。

3.影响简单扩散的药物理化性质(影响跨膜转运的因素)(1)分子量分子量小的药物易扩散。

(2)溶解性脂溶性大,极性小的物质易扩散。

(3)解离性非离子型药物可以自由穿透。

离子障是指离子型药物被限制在膜的一侧的现象。

※药物的解离程度受体液pH 值的影响离子型非离子型4.体液pH值对弱酸或弱碱药物的解离的影响:※pK a(解离常数)的含义:>>是指解离和不解离的药物相等时,即药物解离一半时,溶液的pH值。

>>每一种药物都有自己的pK a。

若为弱酸性药物,则:若为弱碱性药物,则:从公式可见,体液pH算数级的变化,会导致解离与不解离药物浓度差的指数级的变化,所以,pH值微小的变动将显著影响药物的解离和转运。

一个pK a=8.4的弱酸性药物在血浆中的解离度为A.10%B.40%C.50%D.60%E.90%『正确答案』A『正确解析』pH对弱酸性药物解离影响的公式为:即:解离度为107.4-8.4=10-1=0.1。

※四两拨千斤:体液pH值对药物解离度的影响规律:◇酸性药物——在酸性环境中解离少,容易跨膜转运。

药品生产技术《药物的跨膜转运》

药品生产技术《药物的跨膜转运》

细胞膜的跨膜物质转运功能既然膜主要是由脂质双分子层构成的,那么理论上只有脂溶性的物质才有可能通过它。

但事实上,一个进行着新陈代谢的细胞,不断有各种各样的物质〔从离子和小分子物质到蛋白质等大分子,以及团块性固形物或液滴〕进出细胞,包括各种供能物质、合成细胞新物质的原料、中间代谢产物和终产物、维生素、氧和二氧化碳,以及Na、K、Ca2离子等。

它们理化性质各异,且多数不溶于脂质或其水溶性大于其脂溶性。

这些物质中除极少数能够直接通过脂质层进出细胞外,大多数物质分子或离子的跨膜转运,都与镶嵌在膜上的各种特殊的蛋白质分子有关;至于一些团块性固态或液态物质的进出细胞〔如细胞对异物的吞噬或分泌物的排出〕,那么与膜的更复杂的生物学过程有关。

现将几种常见的跨膜物质转运形式分述如下:〔一〕单纯扩散溶液中的一切分子都处于不断的热运动中。

这种分子运动的平均动能,与溶液的绝对温度成正比。

在温度恒定的情况下,分子因运动而离开某一小区的量,与此物质在该区域中的浓度〔以mol/L计算〕成正比。

因此,如设想两种不同浓度的同种物质的溶液相邻地放在一起,那么高浓度区域中的溶质分子将有向低浓度区域的净移动,这种现象称为扩散。

物质分子移动量的大小,可用通量表示,它指某种物质在每秒内通过每平方厘米的假想平面的摩尔或毫尔数。

在一般条件下,扩散通量与所观察平面两侧的浓度差成正比;如果所涉及的溶液是含有多种溶质的混合溶液,那么每一种物质的移动方向和通量,都只决定于各该物质的浓度差,而与别的物质的浓度或移动方向无关。

但要注意的是,在电解质溶液的情况下,离子的移动不仅取决于该离子的浓度也取决于离子所受的电场力。

在生物体系中,细胞外液和细胞内液都是水溶液,溶于其中的各种溶质分子,只要是脂溶性的,就可能按扩散原理作跨膜运动或转运,称为单纯扩散。

这是一种单纯的物理过程,区别于体内其他复杂的物质转运机制。

但单纯扩散不同于上述物理系统的情况是:在细胞外液和细胞内液之间存在一个主要由脂质分子构成的屏障,因此某一物质跨膜通量的大小,除了取决于它们在膜两侧的浓度外,还要看这些物质脂溶性的大小以及其他因素造成的该物质通过膜的难易程度,这统称为膜对该物质的通透性。

促进药物跨细胞膜途径吸收机制

促进药物跨细胞膜途径吸收机制

促进药物跨细胞膜途径吸收机制引言药物的有效吸收是药物治疗的关键步骤之一。

大多数药物需要通过细胞膜进入细胞内部才能发挥作用,因此了解和促进药物跨越细胞膜的途径对于提高药物吸收效率具有重要意义。

本文将探讨促进药物跨细胞膜途径吸收的机制,并介绍一些相关的研究方法和技术。

细胞膜透过机制细胞膜是由脂质双层组成的,具有高度选择性的通透性。

药物跨越细胞膜主要通过被动扩散、主动转运和细胞内泡转运等机制实现。

被动扩散被动扩散是指药物通过浓度梯度驱动自由地从高浓度区域向低浓度区域移动。

这种过程不需要能量消耗,取决于药物分子的疏水性和分子量等因素。

疏水性较好的小分子药物更容易通过细胞膜。

主动转运主动转运是指药物通过跨越细胞膜的蛋白质通道或载体蛋白,依赖能量消耗,从低浓度区域向高浓度区域移动。

这种过程可以逆转浓度梯度,使药物在体内积累。

主动转运通常与特定的转运蛋白相互作用,如ABC转运体和离子通道等。

细胞内泡转运细胞内泡转运是指药物通过细胞内泡的形成和释放实现跨越细胞膜。

这种机制常见于通过内吞作用将药物囊泡进入细胞内部或通过囊泡的外分泌将药物释放到细胞外环境。

促进药物跨细胞膜途径吸收的策略为了提高药物的吸收效率,研究人员开发了一系列策略来促进药物跨越细胞膜途径的吸收。

脂质纳米粒子(Lipid Nanoparticles)脂质纳米粒子是由生物相容性的脂质组成的纳米级粒子,可以用于包裹和传递药物。

通过调整脂质纳米粒子的性质,可以改变药物的溶解度、稳定性和细胞膜渗透性,从而促进药物跨越细胞膜。

细胞膜穿透肽(Cell Penetrating Peptides)细胞膜穿透肽是一类富含阳离子氨基酸的多肽,具有对细胞膜具有高度亲和力的特点。

这些肽序列可以与细胞膜结合并渗透到细胞内部,从而将药物引入细胞内。

载体介导转运(Carrier-Mediated Transport)载体介导转运利用具有高选择性的转运载体将药物跨越细胞膜。

这些转运载体通常与特定的药物结合,并通过与细胞膜上的受体结合来实现跨越。

药理学—— 药动学知识点归纳

药理学—— 药动学知识点归纳

药理学——药动学知识点归纳一、药物的体内过程药物从进入机体至离开机体,可分为四个过程:简称ADME系统→与膜的转运有关。

(一)药物的跨膜转运:※药物在体内的主要转运方式是:被动转运中的简单扩散!Ⅰ、被动转运——简单扩散1.概念:指药物由浓度高的一侧向浓度低的一侧扩散,以浓度梯度为动力。

2.特点:(1)不消耗能量。

(2)不需要载体。

(3)转运时无饱和现象。

(4)不同药物同时转运时无竞争性抑制现象。

(5)当膜两侧浓度达到平衡时转运即停止。

3.影响简单扩散的药物理化性质(影响跨膜转运的因素)(1)分子量分子量小的药物易扩散。

(2)溶解性脂溶性大,极性小的物质易扩散。

(3)解离性非离子型药物可以自由穿透。

离子障是指离子型药物被限制在膜的一侧的现象。

4.体液pH值对弱酸或弱碱药物的解离的影响:从公式可见,体液pH算数级的变化,会导致解离与不解离药物浓度差的指数级的变化,所以,pH值微小的变动将显著影响药物的解离和转运。

例题:一个pK a=8.4的弱酸性药物在血浆中的解离度为A.10%B.40%C.50%D.60%E.90%『正确答案』A『答案解析』pH对弱酸性药物解离影响的公式为:10 pH-pKa=[解离型]/[非解离型],即解离度为10 7.4-8.4=10-1=0.1。

※总结:体液pH值对药物解离度的影响规律:◇酸性药物在酸性环境中解离少,容易跨膜转运。

达到扩散平衡时,主要分布在碱侧。

◇碱性药物在碱性环境中解离少,容易跨膜转运。

达到扩散平衡时,主要分布在酸侧。

同性相斥、异性相吸或“酸酸碱碱促吸收;酸碱碱酸促排泄”例题:某弱酸性药物pK a=3.4,若已知胃液、血液和碱性尿液的pH 值分别是1.4、7.4和8.4。

问该药物在理论上达到平衡时,哪里的浓度高?A.碱性尿液>血液>胃液B.胃液>血液>碱性尿液C.血液>胃液>碱性尿液D.碱性尿液>胃液>血液E.血液>碱性尿液>胃液『正确答案』A『答案解析』同性相斥、异性相吸。

03章:药物代谢动力学

03章:药物代谢动力学

---是指体内药物或其代谢物排出体外 的过程,它与生物转化统称为药物消 除(elimination)。

(一)肾脏排泄 :
泄 途 径
1.排泄方式
(1)肾小球滤过。
(2)肾小管被动重吸收,在远曲小管
(3)肾小管主动分泌,近曲小管(同时主动重吸 收营养物质). 2.肾排泄药物的特点 (1)尿药浓度高,有利也有弊
无吸收 过程
肌内注射(intramuscular injection,im) 。 2. 从鼻黏膜、支气管或肺泡吸收
气体、挥发性液体药物(如吸入麻醉药)或分散在空 气中的固体药物(如气雾剂) 4.从直肠吸收
给药方式与血药浓度的关系
二 .分

• 分布(distribution)是指吸收入血的药 物随血流转运至组织器官的过程 • 药物的分布速率主要取决于药物的理化性 质、各器官组织的血流量与对药物的通透 性以及药物在组织与血浆的分配比。
药物在血液中的分布
1. 与血细胞结合 2. 与血浆蛋白结合 成为结合型药物
(bound drug),血浆白蛋白是最重要的
结合蛋白。药物与血浆蛋白结合是可逆的,
游离型药物与结合型药物经常处在平衡状
态之中 。
药物与血浆蛋白结合的特点
• 暂时失活性:结合后药理活性暂时消失,暂 时“储存”于血液中 • 可逆性
体内药量变化的时间过程
时量关系(time-concentration relationship)是指血浆药物浓度 (C)随时间(t)的改变而发生变化 的规律。
曲线下面积(AUC)
坐标轴与时量曲线围成的面积 反应进入体循环药物的相对量

生物利用度 (bioavailability,F)

跨膜转运

跨膜转运

第三章 药物代谢动力学药物代谢动力学,简称为药动学,研究药物体内过程及体内药物浓度随时间变化的规律。

药物由给药部位进人机体产生药理效应,然后由机体排出,其间经历吸收、分布、代谢和排泄四个基本过程,这个过程称为药物的体内过程。

其吸收、分布和排泄称药物转运,代谢和排泄合称消除(elimination)。

药物在体内虽然不一定集中分布于靶器官,但在分布达到平衡后药理效应强弱与药物血浆浓度成比例。

医生可以利用药动学规律科学地计算药物剂量以达到所需的血药浓度并掌握药效的强弱久暂。

这样可以比单凭经验处方取得较好的临床疗效。

第一节 药物的跨膜转运药物跨膜转运是指药物在吸收、分布、生物转化和排泄时多次穿越生物膜的过程。

生物膜的结构是以液态的脂质双分子层为基架,其中镶嵌着不同生理功能的蛋白质。

脂质分子以磷脂较多,并赋予细胞膜一定的流动性和通透性,极有利于脂溶性药物通过;蛋白质分子组装成物质载体和离子通道,载体参与某些药物跨膜转运,离子通道则是某些药物作用的靶位。

药物的跨膜转运方式主要有被动转运和主动转运两种:(一)被动转运被动转运是指药物由高浓度一侧向低浓度一侧的跨膜转运。

包括简单扩散、滤过和易化扩散。

1.简单扩散 又称脂溶扩散。

指脂溶性药物可溶于细胞膜的脂质而透过细胞膜,大多数药物的转运方式属简单扩散。

扩散速度除取决于膜的性质、面积及膜两侧的浓度梯度外,还与药物的性质有关。

分子量小的(小于200D)、脂溶性大的、极性小的(不易离子化)药物较易通过。

药物多是弱酸性或弱碱性化学物质,它们在体液环境中可溶解生成离子型分子,这种离子型药物不易跨膜转运,并被限制在膜的一侧,形成离子障现象,而非离子型药物可自由通过。

药物的离子化程度与其pKa(弱酸性或弱碱性药物解离常数的负对数值)及其所在溶液的pH有关。

改变体液环境pH可以明显影响药物的离子化程度,进而影响其跨膜转运。

一般来说,弱酸性药物在酸性环境下不易解离,非离子型多,脂溶性大,容易跨膜转运;而在碱性环境下易解离,离子型多,脂溶性小,不易跨膜转运。

细胞的跨膜物质运输的方式及特点

细胞的跨膜物质运输的方式及特点

细胞的跨膜物质运输的方式及特点
细胞膜是细胞的外层边界,它在维持细胞内环境的稳定性和细胞的完整性方面起着关键作用。

细胞膜对某些物质是选择性渗透的,这意味着一些物质可以自由穿过细胞膜,而另一些则需要特殊的运输机制。

细胞通过以下几种方式实现跨膜物质运输:
1. 简单扩散
小分子如氧气、二氧化碳和水等可以自由地穿过细胞膜,这种无需能量消耗的过程称为简单扩散。

简单扩散的速率取决于浓度梯度,物质会从高浓度区域向低浓度区域扩散。

2. 易化扩散
对于一些疏水性分子,如脂肪酸和一些药物,它们难以直接穿过亲水性的细胞膜。

这种情况下,它们可以通过与膜脂质结合的方式进行跨膜运输,这种过程称为易化扩散。

3. 主动运输
对于一些无法通过简单扩散或易化扩散进入细胞的大分子和离子,细胞需要利用能量驱动的主动运输机制。

主动运输需要特殊的蛋白质载体,如离子泵和转运蛋白,利用ATP水解产生的能量将物质从低浓度区域转移到高浓度区域。

4. 胞吞作用和胞吐作用
胞吞作用是细胞通过将膜内陷并包裹周围介质中的物质形成小泡的
方式将大分子或颗粒物质吸收进细胞内的过程。

相反,胞吐作用则是细胞将不需要的物质包裹在小泡中排出细胞外的过程。

5. 通过蛋白质通道
一些离子和小分子可以通过细胞膜上的特殊蛋白质通道进行跨膜运输,如离子通道和水通道。

这些通道具有高度的选择性,只允许特定的物质通过。

细胞膜的选择性渗透性和各种跨膜运输机制对于维持细胞内环境的稳定、物质和信号的传递以及细胞的正常代谢活动都至关重要。

不同的细胞类型和生理状态下,跨膜运输的方式和特点也会有所不同,以满足细胞的特定需求。

一,药物的转运方式

一,药物的转运方式

一,药物的转运方式被动转运:药物借助细胞膜两侧存在的药物浓度梯度,从高浓度侧向低浓度侧扩散。

(1)简单扩散:脂溶扩散,药物通过溶于脂质膜而被扩散;水溶扩散:分子量小、分子直径小于膜孔的物质借助膜两侧的流体静压和渗透压差被水带到低压一侧的过程。

影响因素:膜两侧浓度差,药物的脂溶性,药物的解离度,药物所在环境的PH。

(2)易化扩散:顺浓度差、不消耗能量、需要载体或通道介导,存在饱和和竞争性抑制现象。

主动转运:药物从低浓度一侧跨膜向高浓度一侧的转运,消耗能量,需要载体,转运有饱和、竞争性抑制现象。

(1)原发性主动转运:直接利用ATP分解成ADP释放出的游离自由能来转运物质。

(2)继发性主动转运:不直接利用分解ATP产生的能量,而是与原发性主动转运中的转运离子相耦合,间接利用细胞内代谢产生的能量来进行转运。

包括协同转运和交换转运。

膜动转运:胞饮:通过生物膜的内陷形成小胞吞噬而进入细胞内。

胞吐:某些液态大分子通过胞裂外排或出胞,从胞内转运到胞外。

药物转运体摄取性转运体:促进药物向细胞内转运,促进吸收外排性转运体:将药物从细胞内排出,限制药物的吸收。

二,药物的吸收及给药途径药物的吸收是指药物由给药部位进入血液循环的过程。

影响吸收的因素主要有:1、药物性质:(1)脂溶性:脂溶性药物可溶于生物膜的类脂质中而扩散,故较易被吸收;(2)分子量:分子量大(大于100-200Da)的水溶性药物不易被吸收,分子量小的水溶性药物易被吸收。

(3)解离度:非解离型易被吸收,解离型药物不易被吸收。

2、给药途径:吸收速度:气雾吸入>舌下给药>肌内注射>口服>直肠给药>皮肤给药。

1)口服给药:是最安全、最常用的给药途径。

影响因素:A.药物的理化性质(脂溶性、解离度、分子量等)、剂型(药物粒径大小,赋型剂种类等)、等。

B.机体:(1)胃肠内PH,胃内容物的PH值为0.9—1.5,肠内容物的PH值为4.8-8.2,胃肠PH决定胃肠道中非解离型的药量。

第三章 药物代谢动力学.2

第三章 药物代谢动力学.2
最低有效浓度
浓度(mg/L)
25 20 15 10 5 0 0 6 12 时间(h)
维持时间 残留期
18
24
潜伏期
4/20/2014
(一)吸收与浓度-时间曲线
1.同一药物不同给药途径,C-T曲线不同
血管内:呈坡形曲线 血管外:呈峰形曲线
4/20/2014
2.血管外给药的C-T曲线上升段的斜率反应吸 收速度 斜率大,吸收快 斜率小,吸收慢
4/20/2014
一、血药浓度-时间曲线(C-T曲线)
概念:在给药后不同时间采血,测定血药浓 度,以时间为横坐标,以血药浓度为纵坐标, 绘出的图。 C-T曲线可分为3期: 1.潜伏期:指用药到出现疗效的一段时间(静 注给药一般无)。 2.持续期 3.残留期
4/20/2014
浓度-时间曲线
40 35 30
4/20/2014
血眼屏障
• 包括血液与防水,血液与视网膜,血液与 玻璃体屏障结构。 • 脂溶解性小的或者小分子药物比水溶性大 的分子容易通过。如:毒扁豆碱可以通过 而新斯的明不可以通过。
4/20/2014

三.药物代谢
• 部位: 主要发生在肝脏,部分药可以再肝外组织进行代谢。 • 代谢反应: I相代谢:氧化 还原 水解反应 II相代谢:结合反应 主要是葡萄糖醛酸和甘氨酸结合。 • 代谢酶: 专一性酶 非专一性酶:又称为药酶 其中以细胞色素P450酶(CYP450)最重 要
4/20/2014
(二 ) 、随胆汁排泄
• 肝肠循环:指自胆汁排进十二指肠的结合 型药物在肠中经水解后被再吸收的过程。 • 氨苄西林、头孢哌酮、利福平、红霉素等 主要经过胆汁排泄、故可用于敏感菌的肝 胆道感染 • 吗啡中毒采用洗胃

02-1第二章 第一节第二节 药物的膜转运与胃肠道吸收

02-1第二章 第一节第二节 药物的膜转运与胃肠道吸收

1、促进扩散 ➢ 此转运是在膜结构中一些特殊蛋白的帮助下完成的。转运机
制是细胞膜上的载体蛋白在膜外侧与药物结合后,通过蛋白 质的自动旋转或变构将药物转入细胞膜内。 ➢ 据报道,细胞膜上的特殊载体蛋白与药物的结合能提高其脂 溶性,使药物易于通过生物膜,其转运机制尚不十分明确。 ➢ 特点:顺浓度梯度扩散,需要载体,有结构特异和饱和现象, 不耗能。(如:氨甲喋呤进入白细胞)
6)受代谢抑制剂影响
7)有结构特异性和部位特异性(部位特异性指某些药物只在某一部位吸收)
如:维生素B2和胆酸的主动转运吸收——小肠上端进行 维生素B12——回肠末端吸收
被动转运 载体媒介转运
被动转运与载体媒介转运速率示意图
2、主动转运 ➢ 载体: 离子泵:Na+-K+-ATP泵
Ca2+泵 I-泵 “药物溢出泵”,P-糖蛋白(可能量依赖性将细胞内药物 泵出到细胞外,这是一个逆吸收方向的主动过程,其结果 会导致药物透膜吸收减少,血药浓度降低。)
生理因素包括:消化系统因素、循环系统因素、疾病因素
一、消化系统因素
(一)胃肠液的成分与性质 (二)胃排空和胃空速率 (三)肠内运行 (四)食物的影响 (五)胃肠道代谢作用的影响
(二)小肠 由胃肠道上皮细胞层的构造图可知: ➢ 上皮细胞面向消化道一侧(黏膜侧)具有多达
1000根以上的微绒毛,这些微绒毛形如刷子,故 也称刷状缘膜,微绒毛直径约0.1µm,长约1µm。
小肠绒毛示意图
小肠微绒毛示意图
(二)小肠
➢ 上皮细胞在形态上具有明显的不对称性,这使上 皮细胞具有单向转运的功能。
膜孔内含有带正电荷的蛋白质或吸附有阳离子(如钙离 子),其正电荷形成的球形静电空间电场能排斥阳离子, 有利于阴离子通过。

从而影响药物的跨膜转运

从而影响药物的跨膜转运

氧化、还原、水解 第一步: 药物
代谢产物
结合
第二步:药代物谢或物
结合产物 (葡萄糖醛酸)(活性消失或降低、
水溶性增加易于排出)
• 部位:肝脏 微粒体
• 主 P4要50酶en系zy:m细ati胞c s色ys素temP4)50酶系统(cytochrome
• 临床意义:
肝药酶诱导剂 肝药酶抑制剂
药物相互作用
药物在体内的跨膜转运方式: 简单扩散
被动转运 易化扩散 滤过扩散
主动转运
膜动转运
一、被动转运(下山转运)
特点:(1)药物顺浓度差转运

(2)不耗能

(3)不需要载体
易化扩 散除外

(4)无饱和性、竞争性。
当药物pKa不变时,改变溶液的pH,可明显影 响药物的解离度,从而影响药物的跨膜转运。
归纳:弱酸性药物在酸性环境中,解离
I131在甲状腺中浓度高,治疗诊断
甲亢 氯喹在肝脏中浓度高,治疗阿米巴
肝病
体液的pH值
pH7.4
pH7.0
血脑屏障
体内屏障 胎盘屏障
血眼屏障
孕妇服药应非常慎重
三、生物转化(biotransformation; 药物代谢 drug metabolism)
• 定义: 体内 , 化学结构和药理活性 • 后果:代谢失活,代谢活化,毒性增加 • 步骤:
一、吸收(absorption)
给药部位 进入 血液循环
(一)胃肠道给药
方式
口服(per os)
舌下(sublingual)
直肠(per rectum) 吸收部位 口服 小肠粘膜
舌下 颊粘膜
直肠 直肠粘膜
首关消除(first pass elimination) 肝脏灭活 体循环的药量减少 药效减弱

药物代谢动力学—药物跨膜转运方式的特点和原理

药物代谢动力学—药物跨膜转运方式的特点和原理

滤过
水溶性扩散,水性通道(水性孔道);
上皮细胞膜的水性通道小: 4~8Å (Å=10-10m), MW< 100~150
毛细血管上皮间的空隙较大: >40Å (60~120Å), MW=20000~30000
药物分子结合大分子血浆蛋白 (eg, 白蛋白) 不能通 过这些水性孔道。
简单扩散, 被动扩散
,并说出两者的关系。
药物代谢动力学 剂量-浓度
用药
吸收
药物在组织 中分布
药物在体循环 中的浓度
药物代谢、 排泄
分布
消除
药物在靶点的浓度
药理作用
药物效应动力学 浓度-效应
临床反应
毒副作用
药效
为什么要知道药代动力学?
合理用药以达最佳疗效!
1. 药物的选择 2. 用量 3. 给药间隔 4. 疗程
药动学内容
— 定量
Section 1
药物的跨膜转运 (Drug Transport)
转运模式
1. 滤过(Filtration) 2. 简单扩散(Simple diffusion)
被动转运 (Passive transport )
3. 载体转运(Carrier-mediated transport)
① 易化扩散(Facilitated diffusion)
② 主动转运(Active transport)
4. 内吞(Endocytosis) & 胞吐(Exocytosis)
5. 胞饮(Pinocytosis)
Mechanisms of drug permeation. Drugs may diffuse passively through aqueous channels in the intercellular junctions (eg, tight junctions, A), or through lipid cell membranes (B). Drugs with the appropriate characteristics may be transported by carriers into or out of cells (C). Very impermeant drugs may also bind to cell surface receptors (dark binding sites), be engulfed by the cell membrane (endocytosis), and then released inside the cell or expelled via the membrane-limited vesicles out of the cell into the extracellular space (exocytosis, D).

《药理学》课件——药物的跨膜转运

《药理学》课件——药物的跨膜转运
意义:
. 分布速度越快,药物作用也越快;分布浓度越高,药 物在此部位的作用也越强。
药物的分布
影响药物分布的因素 1.药物与血浆蛋白结合 结合型药物的特点有:
. ①转运慢; . ②暂时失去药理活性; . ③与血浆蛋白结合是可逆的,当血药浓度降低时,结
合型药物可被释放出来呈游离型,发挥药理作用; . ④多种药物同时使用时药物之间存在竞争性抑制现象。
程度的重吸收,重吸收越多,排泄速度越慢。重吸收 的程度与药物的脂溶性、解离度,尿液量和尿液的pH 有关。脂溶性高、非解离型药物重吸收量多,排泄慢; 水溶性药物则排泄快。
药物的排泄
尿液的pH可影响弱酸、弱碱性药物的解离度,从 而也影响药物在肾小管的重吸收。 弱酸性药物在碱性尿液中、弱碱性药物在酸性尿 液中解离度增大,重吸收量减少,排泄快;弱酸 性药物在酸性尿液中、弱碱性药物在碱性尿液中 解离度减小,重吸收量增多,排泄慢。 临床可利用改变尿液pH的方法加速药物的排泄, 以治疗药物中毒。如苯巴比妥中毒时,可用碳酸 氢钠碱化尿液加速药物的排泄。
• 小肠是药物吸收的主要部位:吸收面积大、血流丰富、 蠕动缓慢、pH接近中性。
药物的吸收
口服药物经消化道吸收后经门静脉到达肝脏,再 进入血液循环。某些药物在首次经过肠壁和肝脏 时被代谢灭活,进入体循环的药量减少,药效降 低,这种现象称为首关消除,又称首关效应。 首关消除率高的药物,不宜口服给药,如硝酸甘 油等。 舌下含服和直肠给药也属于消化道吸收,其特点 是可避免首关消除,吸收较迅速,但给药量有限, 且有时药物吸收不完全。
意义:
. 药物吸收快慢、多少可影响药物作用的快慢、强弱和 维持时间长短。
药物的吸收
影响药物吸收的因素: 1.给药途径和吸收部位

药理学药物代谢动力学 (2)

药理学药物代谢动力学 (2)

(1)影响简单扩散的因素 ①药物的脂溶性
越大,越容易扩散,转运速度越快
②膜两侧药物浓度差
越大,转运速度越快。
③药物的解离度
大多数药物—弱酸或弱碱性。 非解离型(分子型)---脂溶性---易通过生物膜
离子障
解离型(离子型)---非脂溶性---难通过生物膜 解离度越小,越容易转运。
(2)体液pH对药物跨膜转运的影响 ①弱酸性药物(HA A-+H+) 在酸性体液中解离度小,非解离型药物浓度 高,易通过生物膜扩散转运;在碱性体液中解 离度大,非解离型药物浓度低,难通过生物膜扩 散转运。 ②弱碱性药物(BH+ B+H+) 在碱性体液中解离度小,非解离型药物浓度 高,易通过生物膜扩散转运;在酸性体液中解 离度大,非解离型药物浓度低,难通过生物膜扩 散转运。
(2)不能分布,不能通过血脑屏障,不易被代谢和
排泄,为药物的暂时储存形式;
(3)药物与血浆蛋白是可逆性结合;
(4)饱和性;
(5)有竞争性置换现象。
2.局部器官的血流量:
3.药物与组织的亲和力: 4. 药物的理化性质与体液pH: 5.体内屏障
血脑屏障:是血液与脑细胞、血液与脑脊液、
脑脊液与脑细胞 间的三种隔膜的总称。
[概念] 可使肝药酶活性增强或合成加速的药物叫诱 导剂;可使肝药酶活性降低或合成减慢的药 物叫抑制剂。
[意义] (1)影响自身代谢; (2)药物联合应用时,影响其他药物代谢; (3)药物或毒物中毒时,可利用肝药酶诱导剂 治疗。
四、排泄(excretion)
1.概念:是指血循环内的药物及其代谢产物被 转运到体外的过程。 代谢与排泄统称为消除(eliminaion) 2.排泄器官:肾、胆道、肠道、肺、汗腺、唾 液、乳腺等。 3.肾脏排泄—主要排泄。 (1)排泄过程:肾小球滤过,肾小管分泌(弱 酸性通道和弱碱性通道)和肾小管重吸收。 (2)排泄形式:原形、代谢产物。 (3)影响因素:尿液的pH和肾功能。

药动学试题

药动学试题

一、A型题(单项选择题)1.大多数药物跨膜转运的方式为A.主动转运 B.被动转运C.易化扩散 D.经离子通道E.滤过答案[B]2.关于药物的转运,正确的选项是A.被动转运速度与膜两侧浓度差无关B.简单扩散有饱和现象C.易化扩散不需要载体D.主动转运需要载体E.滤过有竞争性抑制现象答案[D]3.以下关于药物体内生物转化的表达哪项是错误的 A.药物的消除方式主要靠体内生物转化B.药物体内主要代谢酶是细胞色素P450C.肝药酶的专一性很低D.有些药可抑制肝药酶活性E.巴比妥类能诱导肝药酶活性答案[A]4.以下选项表达正确的选项是A.弱酸性药物主要分布在细胞内B.弱碱性药物主要分布在细胞外c.弱酸性药物主要分布在细胞外D.细胞外液pH值小E.细胞内液pH值大答案[c]5.易出现首关消除的给药途径是A.肌内注射 B.吸入给药C.胃肠道给药 D.经皮给药E.皮下注射答案[C]6.首关消除大、血药浓度低的药物,其A.治疗指数低 B.活性低c.排泄快 D.效价低E.生物利用度小答案[E]7.从胃肠道吸收的脂溶性药物是通过A.易化扩散吸收 B.主动转运吸收C.过滤方式吸收 D.简单扩散吸收E.通过载体吸收答案[D]8.药物与血浆蛋白结合后,将A.转运加快 B.排泄加快C.代谢加快 D.暂时失活E.作用增强答案[D]9.在酸性尿液中,弱碱性药物A.解离少,再吸收多,排泄慢B.解离少,再吸收少,排泄快C.解离多,再吸收多,排泄快D.解离多,再吸收少,排泄快E.解离多,再吸收多,排泄慢答案[D]10.吸收较快的给药途径是A.透皮 B.经肛C.肌内注射 D.皮下注射E.口服答案[C]11.药物的主要排泄器官为A.肝 B.。

肾C.小肠 D.汗液E.唾液答案[B]12.由胆汁排泄后进入十二指肠,再由十二指肠重吸收,此称为 A.首关效应 B.生物转化C.肝肠循环 D.肾排泄E.药物的吸收答案[C]13.某弱酸性药物pKa为4.4,在pHl.4的胃液中解离度约是A.O.01 B.0.001C.0.000 1 D.0.1E.O.5答案[B]14.关于血脑屏障,正确的选项是A.极性高的药物易通过B.脑膜炎时通透性增大C.新生儿血脑屏障通透性小D.分子量越大的药物越易穿透E.脂溶性高的药物不能通过答案[B]15.关于胎盘屏障,正确的选项是A.其通透性比一般生物膜大B.其通透性比一般生物膜小c.其通透性与一般生物膜无明显的差异D.多数药物不能透过E.因有胎盘屏障,妊娠用药不必特殊注意答案[c]16.pKa是指A.药物解离度的负倒数B.弱酸性,弱碱性药物引起50%最大效应的药物浓度负对数C.弱酸性,弱碱性药物在解离50%时溶液的pH值D.冲动剂增加1倍时所需的拮抗剂对数浓度E.冲动剂增加2倍时所需的拮抗剂对数浓度答案[C]17.对药物分布无影响的因素是A.药物理化性质B.组织器官血流量C.血浆蛋白结合率D.组织亲和力E.药物剂型答案[E]18.药物和血浆蛋白结合A.永久性B.对药物的主动转运有影响C.可逆性D.加速肾小球滤过E.体内分布加快答案[C]19.某弱碱性药物的pKa一9.8,如果增高尿液的pH,那么此药在尿中 A.解离度增高,重吸收减少,排泄加快B.解离度增高,重吸收增多,排泄减慢C.解离度降低,重吸收减少,排泄加快D.解离度降低,重吸收增多,排泄减慢E.排泄速度并不改变答案[D]20.药物的灭活和消除速度可决定其A.起效的快慢B.作用持续时间C.最大效应D.后遗效应的大小E.不良反响的大小答案[B]21.口服给药,为了迅速到达坪值并维持其疗效,应采用的给药方案是 A.首剂加倍(2D),使用剂量及给药间隔时间为2D-2tl/2B.首剂加倍(2D),使用剂量及给药间隔时问为D-2t l/2C.首剂加倍(2D),使用剂量及给药间隔时间为2D- t l/2D.首剂加倍(2D),使用剂量及给药间隔时间为D-t l/2E.首剂加倍(2D),使用剂量及给药间隔时间为D-0.5 l/2答案[D]22.时一量曲线下面积代表A.药物的剂量B.药物的排泄c.药物的吸收速度D.药物的生物利用度E.药物的分布速度答案[D]23.体液pH能影响药物的跨膜转运,这是由于pH改变了药物的A.溶解度 B.水溶性C.化学构造 D.pKaE.解离度答案[E]24.某药3h后存留的血药浓度为原来浓度的12.5%,该药t1/2应是 A.4h B.3hC.2h D.1hE.O.5h答案[D]25.影响半衰期长短的主要因素是A.剂量 B.吸收速度C.原血浆浓度 D.消除速度E.给药时间答案[D]26.某弱酸性药物在pH一7.0溶液中解离90%,问其pKa值约为 A.5 B.6C.7 D.8E.9答案[B]27.以下关于药物吸收的表达中错误的选项是A.吸收是指药物从给药部位进入血液循环的过程B.皮下或肌注给药通过毛细血管壁吸收C.口服给药通过首关消除而吸收减少D.舌下或直肠给药可因通过肝破坏而效应下降E.皮肤给药除脂溶性大的以外都不易吸收答案[D]28.大多数药物在胃肠道的吸收属于A.有载体参与的主动转运B.一级动力学被动转运C.零级动力学被动转运D.易化扩散转运E.胞饮的方式转运答案[B]29.药物肝肠循环影响了药物在体内的A.起效快慢B.代谢快慢C.分布D.作用持续时间E.与血浆蛋白的结合答案[D]30.脂溶性药物从胃肠道吸收,主要是通过A.主动转运吸收B.简单扩散吸收C.易化扩散吸收D.通过载体吸收E.过滤方式吸收答案[B]31.以下药物中能诱导肝药酶的是A.氯霉素 B.苯巴比妥C.异烟肼 D.阿司匹林E.保泰松答案[B]32.肝药酶的特点是A.专一性高,活性有限,个体差异大B.专一性高,活性很强,个体差异大C.专一性低,活性有限,个体差异小D.专一性低,活性有限,个体差异大E.专一性高,活性很高,个体差异小答案[D]33.肝功能不全的患者应用主要经肝脏代谢的药物治疗时需着重注意 A.个体差异 B.高敏性C.过敏性 D.选择性E.酌情减少剂量答案[E]34.以下关于药物被动转运的表达哪一条是错误的A.药物从浓度高侧向浓度低侧扩散B.不消耗能量而都需载体C.可不受饱和度限速与竞争性抑制的影响D.受药物分子量大小,脂溶性,极性影响E.当细胞膜两侧药物浓度平衡时转运停顿答案[B]35.药物主动转运的特点是A.由载体进展,消耗能量B.由载体进展,不消耗能量 C.不消耗能量,无竞争性抑制D.消耗能量,无选择性E.无选择性,有竞争性抑制答案[A]36.药物简单扩散的特点是A.需要消耗能量B.有饱和抑制现象C.可逆浓度差运转D.需要载体E.顺浓度差转运答案[E]37.以下关于可以影响药物吸收的因素的表达中错误的选项是A.饭后口服给药B.用药部位血流量减少C.微循环障碍D.口服生物利用度高的药吸收少 E.口服首关效应后破坏少的药物强答案[D]38.易化扩散是A.不耗能,不逆浓度差,特异性高,有竞争性抑制的主动转运B.不耗能,不逆浓度差,特异性不高,有竞争性抑制的主动转运C.耗能,不逆浓度差,特异性高,有竞争性抑制的被动转运D.不耗能,不逆浓度差,特异性高,有竞争性抑制的被动转运E.转运速度无饱和限制答案[D]39.药物与血浆蛋白的结合率高,那么药物的作用A.起效快 B.起效慢C.维持时间长 D.维持时间短E.以上都不是答案[C]40.以下关于pH与pKa和药物解离关系的表达哪点是错误的A.pH—pKa时,[HA]一[A-]B.pKa即是弱酸或弱碱性药液50%解离时的pH值,每个药都有固定的 pKaC.pH的微小变化对药物解离度影响不大D.pKa>7.5的弱酸性药物在胃中根本不解离E.pKa<5的弱碱性药物在肠道根本上都是解离型的答案[c]41.以下影响药物自机体排泄因素的表达中,正确的选项是A.肾小球毛细血管通透性增大B.极性高、水溶性大的药物易从。

第二章 药物体内转运 (2)

第二章  药物体内转运 (2)

第二章 药物体内转运第一节 概述药物要产生药效或毒性,必须先经吸收(absorption)进入血液后,随血流分布(distribution)到组织中,部分药物还在肝脏等组织中发生代谢(metabolism)。

药物及其代谢物经胆汁、肾脏等途径排泄(excretion)出体外。

药物在体内的吸收、分布、代谢与排泄过程,统称药物体内过程,缩写为ADME。

对于静脉注射而言,因直接进入血液,不存在吸收过程。

药物在体内的过程可用图2-1形式描述,药物在体内过程自始至终都处于动态变化之中,药物在体内的命运是这些过程的综合结果。

图2-1. 药物在体内过程第二节 药物跨膜转运及其影响因素药物吸收、分布、代谢和排泄均涉及到跨膜转运问题。

因此了解药物跨膜转运机制及其影响因素是十分重要的。

一、生物膜生物膜主要由脂质、蛋白和多糖组成。

该脂膜呈液态骨架, 脂质形成一系列双分子层,蛋白质镶嵌在其中, 蛋白质多为物质转运的载体(transporter)、受体或酶, 担负着物质转运或信息传递任务。

此外, 在膜中还存在一些孔道, 使一些小分子化合物如水、尿素等通过。

生物膜的脂质特性, 使得一些药物可以溶于脂膜中, 借助于浓度差, 从膜的一侧向另一侧转运。

不同种属动物,甚至同一动物不同组织的生物膜组成往往是不同的,这是构成组织具有各自转运特性的物质基础。

二、药物的跨膜转运方式常见药物跨膜转运有以下几种类型:1. 被动扩散(passive processes, passive diffusion ) 大多数药物是通过这种方式转运的,即药物是借助于在生物膜中的脂溶性(lipid solubility)顺浓度差跨膜转运的。

这种转运方式有以下特点:1)顺浓度梯度转运,即药物从膜高浓度的一侧向低浓度的一侧转运,其转运速度与浓度差成正比,无需能量。

当两侧浓度相等时,达到动态平衡。

可以Fick 定律描述药物的转运速率(d Q /dt )。

X C A P dt dQ ΔΔ⋅⋅−=// (2-1) 式中,A 为扩散膜的面积,ΔX 为膜厚度,ΔC 为膜两侧药物浓度差,P (permeability)为通透性系数。

药物的跨膜转运

药物的跨膜转运

• 特异性:是载体蛋白,每一种ABC转运器
只转运一种或一类底物。
2. 协同转运(cotransport)
• 是一类由Na+-K+泵或H+泵与载体蛋白协同作用,靠 间接消耗ATP完成的主动运输方式。
动物细胞中常常利用膜两侧Na+浓度梯度来驱动。 植物细胞和细菌常利用H+浓度梯度来驱动。
• 根据物质(葡萄糖、氨基酸)运输方向与离子沿 浓度梯度的转移方向,可分为: 同向转运 与 逆向转运。
物质跨细胞膜的转运异同
区别
转运方向 转运动力 结果膜两侧 物质分布 膜蛋白参与 终止条件 能量消耗 无
扩散和渗透
易化扩散
主动转动
逆浓度或电位差 消耗细胞内的能量 差距更大 生物泵/和转运体 受“泵”的控制
顺浓度差或电位差 物质本身浓度差或电位差的势能 平衡 载体或离子通道
达细胞膜两侧浓度相等或电化学势差 =0时停止 不消耗所通过膜 能量,能量来自 高浓度本身势能
1.泵转运
ATP驱动泵:也称ATP酶,催化ATP水解而释放能量; 是整合膜蛋白,载体蛋白。在膜的原生质表 面有ATP结合位点。根据结构和功能特性可 分为4类:
P-型离子泵, 转运Na+,K+,Ca2+等
转运 离子 P-型质子泵, V-型质子泵, F-型质子泵, 转运H+离子,
即质子 转运小分子
和ABC超家族。
Membrane
脂质双分子层
• 构成:由双嗜性脂质分子两两相对排列成 双分子层 • 脂质以磷脂类为主(总量的70%以上)、胆固 醇(一般低于30%)和少量糖脂。 • 2. 特点:液态(同层横向移动的流动性) 稳定性(可自动形成和维持,能承受较 大张力。) • 3. 功能:屏障作用和传递信息
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



质子泵
1、P-type:利用质子泵自磷酸化发生构象的改变向细胞外 转移质子,如植物细胞、真菌和细菌的质膜上的H+泵、 动物胃表皮细胞的H+-K+泵。 2、V-type:由多亚基构成,位于动物细胞溶酶体膜、破骨 细胞和肾小管细胞的质膜以及植物细胞、真菌和细菌 液泡膜上,故又称膜泡质子泵(vacuolar proton pump) 。其水解ATP产生能量,但不发生磷酸化。将H+ 从细胞质基质泵入细胞器,以维持基质的pH中性和细 胞器内的pH酸性。 3、F-type:由多亚基构成,位于细菌质膜,线粒体内膜和 植物细胞的类囊体膜上。顺H+浓度梯度转运质子。利 用释放的能量合成ATP,也叫H+-ATP合成酶。
糖类(2%-10%)
• 形式:糖蛋白或糖脂表示免疫信息或传递 信息
二、药物的跨膜转运方式
药物的跨膜转运
穿膜运输 被动运输 主动运输 膜泡运输 出胞 继发性 (协同 转运) 同 向 运 转 逆 向 运 转 入胞 吞噬、 胞饮、 受体 介导 入胞
单 易化扩散 纯 原发性 通道介 扩 (泵转 载体介导 导 散 运) 机 电 化 械 压 学 门 门 门 离子泵、质子 控 控 控 泵、ABC超家族 通 通 通 道 道 道
Na+浓度高
电位高
细胞外
细胞膜
电位低 Na+浓度低
细胞内
(2)载体介导的 易化扩散
• 定义:物质主要是依赖于载体蛋白分子内部 的变构作用所进行的被动跨膜转运。 • 转运物:葡萄糖(GL)、氨基酸(AA)等非脂溶 性小分子亲水物质。
• 转运速率取决于浓度差、载体数量及位点 等 • 特点:a.高度特异性 b. 饱和现象 c. 竞争性抑制
(2)钙泵(Ca2+ pump )
• 又称Ca2+-ATP酶。 • 构成:1个多肽构成的整合膜蛋白,每个泵单位 含有10个跨膜α螺旋。

分布:细胞质膜和内质网膜上;肌细胞的肌质网膜上。 功能:于细胞膜和内质网膜上,它将Ca2+输出细 胞或泵入内质网腔中储存起来,以维持细胞内 低浓度的游离Ca2+。 在肌细胞的肌质网膜上,在肌质网内储存Ca2+, 对调节肌细胞的收缩运动是至关重要的。钙泵占 膜整合蛋白的80%以上。
• 特点:沿浓度梯度扩散;不需要提供能
量;没有膜蛋白的协助。
• 通透性决定于:分子的大小,脂溶性( 极性)大小。
2.易化扩散
• 概念: 一些非脂溶性或脂溶解度甚小的物 质,需在特殊膜蛋白质的“帮助”下,由膜的 高浓度一侧向低浓度一侧转运的过程。
• 分类: ①由通道介导的易化扩散 ②由载体介导的易化扩散
Membrane
脂质双分子层
• 构成:由双嗜性脂质分子两两相对排列成 双分子层于30%)和少量糖脂。 • 2. 特点:液态(同层横向移动的流动性) 稳定性(可自动形成和维持,能承受较 大张力。) • 3. 功能:屏障作用和传递信息
蛋白质(55%)
(1)通道介导的易化扩散
• 定义:离子物质借助于膜上的蛋白质离子通 道所进行的扩散。
• 通道是一类贯穿脂质双层、中央带有亲水 性孔道的膜蛋白。 • 离子通道特点: a.相对特异性(离子选择性 )b.具有“闸门” 启闭的特性(门控过程)
门控离子通道分为三类:
• 1. 电压门控通道:在膜去极化到一定电位 时开放,如神经元上的Na+ 通道。 • 2. 化学门控通道:受膜环境中某些化学物 质的影响而开放,这类化学物质(配基)主 要来自细胞外液,如激素、递质等。 • 3. 机械门控通道:当膜的局部受牵拉变形 时被激活,如触觉的神经末梢、听觉的毛 细胞等都存在这类通道。
(二)主动运输
概念:主动运输(active transport)是指由载体 蛋白介导的物质逆浓度梯度(或电化学梯度)的 由浓度低的一侧向浓度高的一侧的跨膜运输方式。 特点: ①运输方向; ②膜转运蛋白; ③消耗能 量 进行主动运输的物质: 各种离子(如钠离子、钾离子、氯离子、碳酸根 离子、钙离子等)。 葡萄糖、氨基酸等带电荷极性分子 。
P-型离子泵:
2个α催化亚基,ATP结合位 点,磷酸化和去磷酸化,泵 蛋白构象改变,实现离子的 跨膜转运。
(1)钠钾泵:也叫Na+-K+ATP酶 • 构成与分布:由2个α亚基、2个β亚基组成的4聚体,分布 于动物细胞的质膜上。
功能:逆浓度梯度和电化学梯度泵出Na+,泵 入K+,维持细胞内低Na+高K+的离子环境,对神 经冲动的传播和维持细胞的渗透平衡时非常 重要。 Na+-K+泵的作用: •①维持细胞的渗透压,保持细胞的体积; •②维持低Na+高K+的细胞内环境; •③维持细胞的静息电位。
(一)被动运输
概念:物质经扩散作用,顺电化学梯度不 消耗能量所进行的跨膜转运。 扩散特点:扩散量与浓度差、温度和膜的 通透性呈正相关。
类型:简单扩散 协助扩散
1.单纯扩散
概念:一些高脂溶性物质由膜的高浓度一侧向 低浓度一侧转运的过程。 转运的物质:O2、CO2、NH3 、 N2 、尿素、乙醚、乙醇、类固 醇类激素等少数几种。
• 特异性:是载体蛋白,每一种ABC转运器
只转运一种或一类底物。
2. 协同转运(cotransport)
• 是一类由Na+-K+泵或H+泵与载体蛋白协同作用,靠 间接消耗ATP完成的主动运输方式。
动物细胞中常常利用膜两侧Na+浓度梯度来驱动。 植物细胞和细菌常利用H+浓度梯度来驱动。
• 根据物质(葡萄糖、氨基酸)运输方向与离子沿 浓度梯度的转移方向,可分为: 同向转运 与 逆向转运。
1.泵转运
ATP驱动泵:也称ATP酶,催化ATP水解而释放能量; 是整合膜蛋白,载体蛋白。在膜的原生质表 面有ATP结合位点。根据结构和功能特性可 分为4类:
P-型离子泵, 转运Na+,K+,Ca2+等
转运 离子 P-型质子泵, V-型质子泵, F-型质子泵, 转运H+离子,
即质子 转运小分子
和ABC超家族。
特 征 胞饮作用 吞噬作用
内吞泡的大小 转运方式 小于 150nm 大于 250nm。
内吞泡形成机制 及接合素蛋白连接
连续发生的过程 需要笼形蛋白形成包被 需受体介导的 信号触发过程 需要微丝及其结合蛋白的参 与
• 结构:α螺旋或球形 • 存在形式:表面蛋白、整合蛋白 • 表面蛋白(Peripheral proteins)占20%— 30%,以静电引力或离子键与整合蛋白结合, 附着于膜表面,主要在内表面。 • 整合蛋白(Integral proteins)占70%—80%, 肽链一次或几次穿膜为特征。 • 蛋白质功能:①转运物质②传递信息③能 量转化④免疫标志
• 出胞(胞吐):是细胞分泌、地址释放及 大分子物质和颗粒的外排方式。
• 入胞(吞噬、吞饮):是大分子物质或物 质团块的进入细胞的主要方式。 • 吞噬作用:胞吞物为固体。(单核、巨噬、 中性粒C) • 吞饮作用:胞吞物为液体。(液相和受体 介导入胞)

液相入胞---指细胞外液及其所含的溶质连续 不断地进入胞内,是细胞本身固有的活动,进 入细胞的溶质量和溶质的浓度成正比。 • 受体介导入胞---指通过被转运物与膜受体的 特异结 合,选择性地促进其进入细胞的一种 入胞方式。 • 受体介导入胞是一种非常有效转运方式,许 多大分子物质(运铁蛋白、维生素B12转运蛋 白、多种生长因子、胰岛素和低密度脂蛋白) 都是这种方式。
不消耗所通过膜的 消耗了能量,由膜 能量,属于被动转 或膜所属细胞供给 运
举例
葡萄糖进入红细胞、 02、C02、N2、 肠及肾小管吸收葡 普通细胞,离子K NH3、H2O、乙醇、 + 萄糖,Na+泵、Ca+ + — 、Na 、Cl 、 尿素等 泵、H+-K+泵 2 + Ca
(三)出胞与入胞式转运
• 定义:一些大分子物质或团块通过胞膜结 构和功能变化进出细胞, 亦可属于主动转运 过程。属于主动运输:消耗能量。 • 分类:入胞(胞吞)、出胞(胞吐)
物质跨细胞膜的转运异同
区别
转运方向 转运动力 结果膜两侧 物质分布 膜蛋白参与 终止条件 能量消耗 无
扩散和渗透
易化扩散
主动转动
逆浓度或电位差 消耗细胞内的能量 差距更大 生物泵/和转运体 受“泵”的控制
顺浓度差或电位差 物质本身浓度差或电位差的势能 平衡 载体或离子通道
达细胞膜两侧浓度相等或电化学势差 =0时停止 不消耗所通过膜 能量,能量来自 高浓度本身势能
药物的跨膜转运
分析化学 焦豫滨 201312151714
一、生物膜
• 生物膜主要由脂质、蛋白和多糖组成。该 脂膜呈液态骨架, 脂质形成一系列双分子 层, 蛋白质镶嵌在其中, 蛋白质多为物质转运 的载体(transporter)、受体或酶, 担负着 物质转运或信息传递任务。此外, 在膜中 还存在一些孔道, 使一些小分子化合物如 水、尿素等通过。
钠泵活动的生理意义:
• 1.维持细胞正常的渗透压和形态; • 2.形成和保持细胞内外Na+、 K+不均匀分布, 与生物电的形成密切相关; • 3.建立Na+浓度是能储备。是营养物质跨越 小肠和肾小管上皮细胞等跨膜主动转运的 能量来源。
原发性与继发性的比较
区别
转运方向
膜蛋白质 能量来源
举例
原发性 继发性 低浓度向高浓 低浓度向高浓 度转运 度转运 生物泵 转运体蛋白质 生物泵 钠泵等生物泵 小肠对GS和 钠泵、钙泵活 AA的吸收,碘 动发生的离子 被甲状腺细胞 转运等 摄取等
ABC 超家族
• ABC超家族(ABC superfamily):分布广
泛,庞大的蛋白家族,有两个跨膜结构域和两 个原生质侧的ATP结合区(ATP binding cassette),故名ABC转运器。
相关文档
最新文档