五年级高斯奥数之分数与循环小数含答案

合集下载

高斯小学奥数五年级上册含答案_数字谜综合一

高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。

五年级奥数题:分数问题含答案

五年级奥数题:分数问题含答案

分数问题 年级 班 姓名 得分一、填空题1.在4136、8372、2924、1312四个分数中,第二大的是 . 2.有一个分数,分子加1可以约简为31,分子减1可约简为51,这个分数是 .3.已知51154%75%90321÷=⨯=÷=⨯=⨯E D C B A .把A 、B 、C 、D 、E 这五个数从小到大排列,第二个数是 .4.所有分母小于30并且分母是质数的真分数相加,和是 .5.三个质数的倒数和为231a ,则a = . 6.计算,把结果写成若干个分母是质数的既约分数之和:199519511919591-+-+= . 7.将8473、5746、10089、3625和6251分别填入下面各( )中,使不等式成立. ( )<( )<( )<( )<( ). 8.纯循环小数0.abc 写成最简分数时,分子与分母之和是58,请你写出这个循环小数 . 9.()()()2413111=++ .(要求三个加数的分母是连续的偶数). 10.下式中的五个分数都是最简真分数,要使不等式成立,这些分母的和最小是 .()()()()()54321>>>>. 11.我们把分子为1,分母为大于1的自然数的分数称为单位分数.试把61表示成分母不同的两个单位分数的和.(列出所有可能的表示情况).. .12.试比较2⨯2⨯…⨯2与5⨯5⨯…⨯5的大小.301个2 129个513.已知两个不同的单位分数之和是121,求这两个单位分数之差的最小值.14.(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?———————————————答 案—————————————————————— 1.4136 提示,将分子“通分”为72,再比较分母的大小. 2. 154 事实上,所求分数为31和51的平均数,即(31+51)÷2=154. 3. C因为655434109321⨯=⨯=⨯=⨯=⨯E D C B A ,又321341096554<<<<,所以D >E >B >C >A ,故从小到大第二个数是C . 4. 2159 分母是n 的所有真分数共有n -1个,这n -1个分数的分子依次为1~n -1, 和为2)1(-n n ,所以分母n 的所有真分数之和等于21-n .本题的解为 212-+212921232119211721132111217215213-+-+-+-+-+-+-+-+- =21+1+2+3+5+6+8+9+11+14=2159. 5. 131因为231=3⨯7⨯11,易知这3个质数分别为3,7和11,又31+11171+=231131,故a =131. 6. 19174+. 原式=13383399249399173219958532199512110596==-=-=+--,令19713383b a +=,则19⨯a +7⨯b =83,易见a =4,b =1,符合要求. 7. 100898473625157463625<<<<. 提示:各分数的倒数依次为73111,46111,89111,25111,89111. 8. 0.567 0.abc 化为分数时是999abc ,当化为最简分数时,因为分母大于分子,所以分母大于58÷2=29,即分母是大于29的两位数,由999=3⨯3⨯3⨯37,推知999大于29的两位数约数只有37,所以分母是37,分子是58-37=21.因为999567273727213721=⨯⨯=,所以这个循环小数是0.567. 9. 4,6,8.. . . . . .令241341211=++++a a a (a 为偶数).由aa a a 3412112413<++++=,得1375<a ,故a =2或4,a =2时,2413614121>++,不合题意,因此,4=a . 10. 40提示:145114835221>>>>. 11.12. 令6111=+b a ,则a a a b 661611-=-=.所以636666-+=-=a a a b .由a 、b 为整数,知636-a 为整数,即a -6为36的约数,所以16=-a ,2,3,4,6,9,12,18,36.所以a =7,8,9,10,12,15,18,24,42,相应地b =42,24,18,15,12,10,9,8,7.注意到b a ≠,所有可能情况为10115171421812419118161+=+=+=+=. 13. 14. 因为301=43⨯7,129=43⨯3,11251285252434337129301>⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=,所以3012>1295.15.16. 令b a 11121+=,且a <b ,由121=241+241知a <24<b .依题意, a 尽可能大. 注意到121=281211301201+=+=22,23不合要求,所以差的最小值为841281211=-. 14. (1)把9块中的三块各分为两部分:43411+=,42421+=,43411+=. 每个孩子得412块: 甲:1+1+41;乙:1+4243+;丙: 1+42+43;丁:1+1+41.(2)好分,每人分721块: 甲:1+72;乙:7475+;丙:7673+;丁:71171++;戊:7376+;己:7574+;庚:172+.。

小学奥数:“循环小数与分数互化”知识总结与例题(含答案)

小学奥数:“循环小数与分数互化”知识总结与例题(含答案)

小学奥数:“循环小数与分数互化”知识总结与例题(含答案)一、小数的基本知识小数可以分为有限小数和无限小数两部分;无限小数又分为无限不循环小数和循环小数两部分,而循环小数又可以分为纯循环小数和混循环小数。

1.有限小数的判定:分母的质因式中只有2和5的数。

2.循环节:一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。

3.循环小数的定义:一个小数,从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现。

4.纯循环小数:循环节从小数部分第一位开始的。

纯循环小数的判定:分母的质因式中不含2和5的,化成小数后为纯循环小数。

5.混循环小数:循环节不是从小数部分第一位开始的。

混循环小数的判定: 分母的质因式不全含2和5的,化为小数后为混循环小数。

二、循环小数与分数的转化1.错位相减法与循环小数转化为分数 ⑴以0.1为例,令a =0.1,①,而=1.110a ②,由②-①可以得到,a =91,则=19a 。

==1240.129933;==123410.123999333;=12340.12349999⑵以0.1234为例,推导==1234-126110.123499004950。

设A =0.1234,将等式两边都乘以100,得:A =10012.34;再将原等式两边都乘以10000,得:A =100001234.34;两式相减得:-=-10000100123412A A ,所以A ==1234-1261199004950。

2.方法归纳⑴纯循环小数化成分数,分子是一个循环节的数字组成的数,分母是由数字9组成的,9的个数和一个循环节的数字的个数相同。

⑵混循环小数化成分数,分子是小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去小数部分不循环数字组成的数所得的差;分母的头几位数字是9,末几位数字是0,9的个数同循环节的位数相同,0的个数同不循环部分的位数相同。

3.常用的分数与循环小数转化=10.1428577,=20.2857147,=30.4285717, =40.5714287,=50.7142857,=60.8571427;三、小试牛刀【例1】(2008年希望杯第六届五年级一试第3题,6分)在小数1.80524102007上加两个循环点,能得到的最小的循环小数是 (注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。

高斯小学奥数五年级上册含答案_第11讲_分数与循环小数

高斯小学奥数五年级上册含答案_第11讲_分数与循环小数

第^一讲分数与循环小数同学们在计算分数的时候一定碰到过除不尽的情况•比如计算 1 3,我们会发现商在0和小数点之后一直出现 3,怎么也计算不完;再比如在计算 3 7的时候,我们会发现商在 0 和小数点之后不停的出现 428571 .像这样,从某一位起,一个数字或几个数字依次不断重复出现的小数, 叫做循环小数•例如0.333…、0.428571428571…和1.2357357357…都是循环小数.通常我们把0.333…简写成0.&,把0.428571428571…简写成0.42857&,把 1.2357357357…简写成1.2&5&. —个循环小数的小数部分里,依次不断重复出现的一段数 字,叫做这个循环小数的 循环节.上面三个循环小数的循环节分别为3、428571和357.循环节从小数点后第一位开始的循环小数,叫做纯循环小数,例如0.&和 0.42857&•不是从第一位开始的循环小数,叫做混循环小数,例如1.2&5&.F 面我们来学习一下分数与小数之间的互化.把分数化为小数非常简单,直接用分子除「分析」要把分数化小数,可以列除法竖式计算.对于除不尽的情况,注意寻找循环节.以分母即可•例如 -50.4,_8158 15 0.5&. 将下列分数化为小数:44 1013将下列分数化为小数:171422 5 7,20253711对于任意一个分数, 我们一定可以把它化成有限小数或循环小数.反过来,我们怎么把一个小数化成分数呢?有限小数化分数很简单, 例如0.12丄23, 3.749 3 749 ,每个100 25 1000有限小数都可以化成分母是 10、100、1000、……的分数•那么循环小数呢?循环小数化分数有以下的规律.(1) 纯循环小数化分数:我们从分子和分母两方面来考虑.分子是由循环节所组成的多位数;而分母则由若干个 9组成,且9的个数恰好等于循环节的位数.比如 0於 5 , 1.7& 170 , 5.&194& 51949 •9 99 99999(2) 混循环小数化成分数:我们同样从分子与分母两方面来考虑.分子是两数相减所得的差,其中被减数是从小数点后第一位到第一个循环节末位所组成 的多位数,而减数则是小数点后不循环的数字组成的多位数;分母由若干个 9和若干个0组成,9的个数等于循环节的位数,0的个数等于小数点后不循环部分的位数.比如&& 618 6612 34& 1358 1351223&& 2094 20 1037 0.6&&, 0.0135&, 0.20&& -990 990 55 9000090000 9900 4950请同学们务必牢记以上方法,熟练使用.把下列循环小数转化为分数:0.&, 0.2:&, 0.&8&, 0.5&, 6.36&3&.「分析」把循环小数化成分数,我们可以直接使用上面所学的方法, 最后一定要注意将结果约分成最简分数.把下列循环小数转化为分数: 0.& 0.&&, 0.&2&, 0.12&.在把分数化成循环小数时,除了直接除,还可以通过扩分把分母变成 9、99、999等特殊形式来转化.把下列分数化成循环小数:2 , 14 ,丝,11 ,色.1137 101 45 35「分析」除了直接除,还可以先把分母变成特殊数后再转化.可以扩成多少呢? 45和35呢?71 90 3 11 33 ' 27 ' 1001 ' 14 ' 3611可以扩成 99, 那 37、101把下列分数化成循环小数:可以发现,分数转化成的小数的类型和分母中含有质因数分数的分母的质因数只有 2和5,会化成有限小数;如果最简分数的分母的质因数中没有 2或5,会化成纯循环小数;如果最简分数的分母的质因数中既有 2或5,也有其他质数,会化成混循环小数.对于循环小数的加减法,我们既可以先化成分数再计算,也可以直接列竖式计算. 但在列竖式时,同学们一定要把数位对齐.要计算出正确结果,我们应该多写出几位再 加减,然后看最后的和或差的数字规律,尤其在加数循环节位数不一样时,更要多加小心, 再多写几位.0.1& 0.&3& 0.365547在计算时同学们要多注意进位问题,我们必须牢牢记住省略号表示后面还有无穷多位数 字,它们在计算时仍然可能出现进位的情况.计算:(1) 0•磁 0.&&; (2) 0.6& 0.5!&; ( 3) 0.&& 0.43& (4) 0.&& 0.&3&; (5) 0.7& 0.&; (6) 0.34& 0.1&&.「分析」对于一般小数的加法,我们都可以列竖式计算•那么循环小数的加法, 是不是也一样呢?在竖式中的循环节又应该怎么处理呢?另外,我们已经学过了循环小数如何化为分数,那么我们能不能利用分数来计算呢?计算:(1) 0.&& 0.&7&; (2) 0.1&& 0.&5& (3) 0.&& 0.&5&.2和5的个数有关.如果最简1 10. 11 1 3 11 11311113 11 1 1 11 1 +0 . 2 3 42 3 4 1 21 1113 65547 1 13循环节有2位 循环节有3位循环节有6位由于循环节的存在,循环小数小数点后数字排列具有周期性.比如 位,小数部分以4、8为一个周期.利用周期性,我们就可以知道小数点后若干位的数字是 多少.把真分数a 化成小数后,小数点后第 2013位上的数字是1. a 是多少?7「分析」a 是一个真分数,所以 a 必须小于7,只能是1、2、3、4、5、6中的一个.请同7学们,自己试着计算一下分母是7的各个分数,发现什么规律了吗?将最简真分数a 化成小数后,从小数点后第一位开始的连续n 位数之和为9006, a 与n 分7别为多少?「分析」a 是1、2、3、4、5、6中的一个.试着计算一下 -、-、77数点后连续1000位之和.发现什么规律了吗?0.4&的循环节有两 -化成小数后,小7神奇的0.&“ 0.&和1谁更大?”数学课上,老师请同学们做这样的比较.“肯定是1大”,同学们异口同声地回答.“等会儿大家自己算吧”老师神秘地笑了笑.为了验证这个答案,老师讲循环小数化分数的时候,同学们听得特别认真.老师一讲完,他们就迫不及待的开始验证了:由循环小数化分数的公式:0.&的循环节有一位,所以它化为分数之后,分母为9,分子也是9.因此,0.& 9 1 .9“咦,0.&和1怎么是一样的?”“ 0.&竟然是个假冒的循环小数!”这下,同学们你看看我,我看看你,都傻眼了.“对啊,0.&就等于1.大家现在不但能把循环小数化为分数,还查出了冒牌货!”老师笑着鼓励大家.0 9999999删狮腮作业1.将下列分数化为小数:33, 2 5—? —5,—.4 3 76作业2.把下列循环小数转化为分数:0.&&,0.&4 @作业3.把下列循环小数转化为分数:0.1&,0.2&&作业4.计算:(1) 0.0& 0.2& 0.6&,(2) 0.&& 0.7&.作业5. (1 )把6化成小数后,小数点后第2013位上的数字是多少?7(2)把真分数a化成小数后,小数点后第2013位上的数字是1. a是多少?7第^一讲分数与循环小数例题1.答案:0.375, 0.8& 4念,0.285714&, 0.769230&. 例题2.答案:4 85 17 n 811693327302220例题3.答案: 0.&&, 0.37& 0.217& 0.2尿,0.0857142& .例题4. (1) 0.4&; (2) 1.26&; (3) 0.55&; (4) 0.555646&; (5) 0.31&; (6)0.2332241&.例题5.答案:4详解:分母为7的真分数化为小数后,循环节都是六位的,且六 个数字都是1、4、2、8、5、7 (顺序不同).2013除以6余3, 说明循环节第三位是1,所以是571428循环,这个真分数是上.7详解:分母为7的真分数化为小数后,每个循环节的六个数字之 和都是1 4 2 8 5 7 27 . 9006 27333L L 15,说明在小数点后的n个数字中,有333个循环节,之后剩余的数字之和是15,可能是1 42 8,对应的分数是1 , a 1 , n 6 3334 2002 .也有可能是7 2 2 8 5,对应的分数是 7 , a 2 , n 6 333 3 2001 .例题6.答案:2002或者a2 2001练习 1.答案:0.85, 0.56,7.&,0.714285&,0.63^.练习2.答案:9,火,蟲,誥练习3.答案:0.2&,0.037&,0.089910&,0.21&12857&,0.30$.练习 4.答案:(1 ) 1.44253多;(2) 0.5796887&; ( 3) 0.373919&.作业1.答案:(1) 8.25; (2) 0.&; ( 3) 0.&1428& ; ( 4) 0.8&.作业2.答案:2 ;上11 27简答:提示,37是999的约数.作业3.答案:-;业6 165简答:提示,牢记循环小数化分数的方法,并注意约分.作业4. 答案:0.8& ( 89); 1.& ( 11)99 9简答:列竖式或将循环小数化为分数均可.作业5.答案:(1) 7; (2) 4简答:(1) 6 0.85714&,利用周期问题的解决方法:2013 6 335L L 3,所求位上的数字是7. (2)因为不管是7分之几,一定是6位循环节的纯循环小数,由于2013 6 335L L 3,根据题意,说明循环节的第3位上是1,可知是4.7。

小学奥数五年级测试及答案(分数)

小学奥数五年级测试及答案(分数)

一、分数加减如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。

第1题第2题第3题第4题第5题第6题第7题第8题试题答案第1题:正确答案:B 答案解析第2题:正确答案:D 答案解析第3题:正确答案:C 答案解析第4题:正确答案:D 答案解析第5题:正确答案:A 答案解析第6题:正确答案:B 答案解析第7题:正确答案:A 答案解析第8题:正确答案:C 答案解析二、分数乘除第1题第2题第3题第4题第5题第7题试题答案第1题:正确答案:A 答案解析第2题:正确答案:C第3题:正确答案:B 答案解析第4题:正确答案:B 答案解析第5题:正确答案:D 答案解析第6题:正确答案:A 答案解析第7题:正确答案:D 答案解析三、分数应用题第1题第2题第3题第4题第5题第6题第7题试题答案第1题:正确答案:B 答案解析第2题:正确答案:D 答案解析第3题:正确答案:C 答案解析第4题:正确答案:D 答案解析第5题:正确答案:B 答案解析第6题:正确答案:C答案解析第7题:正确答案:B答案解析四、列分数系数方程解应用题第1题第2题第3题第4题第5题第6题试题答案第1题:正确答案:A 答案解析第2题:正确答案:A 答案解析第3题:正确答案:B 答案解析第4题:正确答案:C 答案解析第5题:正确答案:D 答案解析第6题:正确答案:D 答案解析。

高斯小学奥数五年级上册含答案_数字谜综合一

高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一锻学王国的燥场上*有一些JS 字湘号在排队,平过有个小當伙站惜了位・,像知畫它应该站在■ 里吗?在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法•它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练. 但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.例题1.已知“ BAD BAD GOOD ”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字. 已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口•本题的突破口在哪里?练习1.在算式“路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字•已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.□□ □□□□ □□ 952「分析」从算式来看,是要找出两个两位数的乘积为952 .但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的. 我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2•从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?例题4.数数科学学数学.在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字. 请问:"数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数” X“学”的个位数字是“学”, 题中的“数数”有什么特点吗?但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现练习4数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字. 那么"好棒所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?年年岁岁花相似岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识.例题6.已知a是一个自然数,A、B是1至9中的数字,最简分数—0.3A3E&•请问:a是多少?222「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔詹姆斯基曾以开发心灵美为题, 一些令人叹服的巧妙算法,其中之一如下:例:8888 3333 296237048 38383832424242424242424242424242424242429623704这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了. 非是重点,趣味性才是它的精髓所在.列举了但结果并作业1.在算式12 2^ 口32 21的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2.用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质•已知组成的四位数是1860,那么其他的三个数是多少?作业3.将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1 ,5,6已经填好).口□□□ □口156作业4.在算式“钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5.已知a是一个自然数,b是一个1至9中的数字,如果―」0.&D&,那么a是多少?555第二十讲数字谜综合一例题1. 答案:3810详解:列竖式,易知D是0, G是1,且O是偶数.那么GOOD可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是610 610 1220 和830 830 1660,只有第二个满足.那么ABGD是3810.例题 2.答案:56 17 28 34 952详解:952 23 7 17 .考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成56 17、28 34和14 68 .考虑到8个数字不重复,只能是5617 28 34 952.例题 3. 答案:1、67、583 或1、67、853详解:2940 22 3 5 72,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8; 5、6、8; 5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8; 3、5、&经检验,有583、853符合要求.综上所述,一共有:1、67、583; 1、67、853两组答案.例题4.答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979 .依次验证几种情况,发现:当学数学为616,那么“学”为6, “数”为1, “ 数数科学学数学”变为“11科6 616 ”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“年岁121花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2,年4 .第二个算式为22 44人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是例题6.答案:83详解:按照混循环小数化分数的方法,0 3A3哗3A3B 3 ,因此等式变为9990—3A3B 3,即兰邑3,可知45 a 3A3B 3 .那么3A3B 3 一定是45的222 9990 9990 9990倍数,即为5和9的倍数,因此3A3B 3计算结果的个位一定是0后者5,那么3A3B的个位一定是3或者8,即B3或B3A338 .当B3时, 3A3B 333A30 一定是9的倍数,可知A3,原数为0.3333L不符合题意.当B8时, 3A3B 33A3833A35是9的倍数,可知 A 7 , 原数为0.373禺,符合题意,可知45 a 3735 , a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是72 72 144,要求的四位数是2417.练习2. 答案:1026简答:1026 2 33 19 .考虑最大的质因数19 .等号两边都有19的倍数,可以是19、38、57. 1026可以拆成19 54、38 27或57 18 .考虑到8个数字互不相同,只能是19 54 3827 1026 .练习3.答案:5和263简答:还有2、3、5和6可以用.714 2 3 7 17,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是27 37=999 .作业1.答案:12 231 132 21简答:21中有质因数乙所以23匚|应该是7的倍数,只能填1或8,经检验,应填1.作业2.答案:7, 43, 529简答:1860 22 3 5 31,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,968510.49是7的倍数,所以两位数只能是43, 259是7的倍数,所以三位数只能是529 . 作业3.答案:4 39 2 78 156简答:156 22 3 13,所以是4 39 2 78 156.作业4.答案:137简答:两个重复的三位数组成的六位数一定是1001的倍数,而1001 7 11 13,所以“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235简答:由分数化循环小数的方法可得, a 5 9 4b3 .所以9|4b3 , b=2, a=235.。

高思竞赛数学导引 五年级第 五讲 分数与循环小数学生版

高思竞赛数学导引 五年级第    五讲 分数与循环小数学生版

第5讲分数与循环小数内容概述掌握分数与小数互相转化的方法,并在分数与循环小数混合运算中进行合理应用;学会通过分数的形式判断相应的小数类型;注意利用周期性分析循环小数的小数部分.典型问题兴趣篇1.把下列分数化为小数:2.把下列循环小数转化为分数:3.把下列循环小数转化为分数:4.计算:5.6.计算下列各式,并用小数表示计算结果:7.将算式的计算结果用循环小数表示是多少?8.将算式的计算结果用循环小数表示是多少?9.冬冬将乘以一个数口时,把误看成1. 23,使乘积比正确结果减少0. 3.则正确结果应该是多少?10.真分数化成小数后,如果从小数点后第一位起连续若干个数字之和是2000.a应该是多少?拓展篇1.将下列分数化为小数:2.把下列循环小数转化为分数:3.(1)把下面这些分数化为小数后,哪些是有限小数,哪些是纯循环小数,哪些是混循环小数:(2)把下列分数化成循环小数:4.计算:5.计算:6.计算:7.计算:(将结果表示为分数和小数两种形式)8.计算:(结果用循环小数表示)9.将最简真分数化成小数后,从小数点后第一位开始的连续n位数之和为9006,a与n分别为多少?10.冬冬写了一个错误的不等式:请给式子中每个小数都添加循环点,使不等号成立.请问:添加循环点后这四个数中最大数与最小数的和等于多少?11.(1)化成小数后,两个循环小数的小数点后第2008位数字的和是多少?(2)把化成小数后,两个循环小数的小数点后第2008位数字的和是多少?12.冬冬将乘以一个数a时,看丢了一个循环点,使得乘积比正确结果减少了正确结果应该是多少?超越篇1.将循环小数与相乘,取近似值,要求保留一百位小数.该近似值的最后一位小数是多少?2.有一个算式,算式左边的方格中都是整数,右边的结果为四舍五入到百分位后的近似值,那么方格中填人的三个数分别是多少?3.划去0.5738367981的小数点后的六个数字,再添上表示循环节的两个圆点,可以得到一个循环小数.这样的小数中最大的数为多少?最小的数为多少?4.给小数0.2138045976添加表示循环节的两个圆点,得到一个循环小数,要使得这个循环小数的小数点后第100位数字是7,应该怎么添加?5.有两个循环小数a和b,a的循环节有3位,b的循环节有6位.这两个数之和的循环节最多有多少位?最少有多少位?6.只用数字1、2、3各一次可以组成很多不含重复数字的循环小数(循环点和小数点可以任意添加,例如,,).这些小数的总和是多少?7.写出一个最简真分数,它的分子是2,并且化成小数后是一个混循环小数,不循环部分为2位,循环带为3位,那么这个分数最大是多少?8.我们把由数字0和7组成的小数叫做“特殊数”,例如、77.007都是“特殊数”,如果我们将l写成若干个“特殊数”的和,最少要写成多少个?。

五年级奥数题及答案-循环

五年级奥数题及答案-循环

五年级奥数题及答案-循环
导语:成绩的提高是靠我们平时的一点一滴积累出来的,不管是上学还是放假我们都要把学习坚持下去,哪怕一天只做一道题也是收获,那就从现在开始吧。

(周期问题)把化成小数,小数点后第2009位数字是。

解:分母是7的分数化成小数的特点是,都是由123857这六个数字组成的无限循环小数,并且根据分子的不同,其排列顺序是首尾相接循环,只是位置不同。

比如:
3÷7 = 0.428571 428571 428571…
3÷70=0.0428571 428571 428571…
其小数表示的一个循环节中数字和是相同的,即每一循环节都是六位数字,根据题意,去除一个0占的一位,还有2008位,2008中有334个6余4,即2008位是5。

高思奥数导引小学五年级含详解答案第13讲.数字谜综合一

高思奥数导引小学五年级含详解答案第13讲.数字谜综合一

第13讲数字谜综合一内容概述涉及小数、分数、循环小数的数字谜问题;需要利用数论知识解决的数学问题。

典型问题兴趣篇1.有一个四位数,在它的某位数字后加上一个小数点,得到一个小数。

再把这个小数和原来的四位数相加,得数是4003.64。

求这个四位数。

2.试将1、2、3、4、5、6、7分别填入下面的方框中,每个数字只用一次:□□□(这是一个三位数),□□□(这是一个三位数),□(这是一个一位数),使得这三个数中任意两个都互质。

已知其中一个三位数已填好,它是714,求另外两个数。

3.用1至9这9个数字各一次组成若干个数,这些数中最多有多少个合数?4.如图13-1,4个小三角形的顶点处有6个圆圈。

在这些圆圈中分别填上6个质数(可以重复),使得它们的和是20,而且每个小三角形3个顶点上上的数之和相等。

请问:这6个质数的乘积是多少?5.在一个带有余数的除法算式中,商比除数大2,在被除数、除数、商和余数中,最大数与最小数之差是1023。

请问:此算式中的4个数之和最大可能是多少?迎杯春杯=好好好”中,不同的汉字表示不同的数字,相同的汉字表示相6.在乘法算式“同的数字。

请问“迎+春+杯+好”等于多少?7. 将1至9这9个数填入下面算式中的9个方框内(每个数字只能用一次),使等式成立。

5568⨯=⨯=8. 循环小数0.AB 化成最简分数后,分子与分母之和为40,那么A 和B 分别是多少?9. 在算式“7+数学竞赛=华罗庚金杯”中,华、罗、庚、金、杯、数、学、竞、赛九个字,分别代表数字1、2、3、4、5、6、7、8、9。

已知“竞=8,赛=6”,请把这个算式写出来。

10. 已知“BAD BAD GOOD +=”是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字,已知GOOD 不是8的倍数。

请问:ABGD 代表的四位数是什么?拓展篇1.[4.25(12.59.10.7)]0.04100⨯-÷+÷÷=. 改动上面算式中的一个数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?2.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质。

高斯小学奥数五年级上册含答案_分数应用题

高斯小学奥数五年级上册含答案_分数应用题

第十六讲分数应用题在三、四年级的时候,同学们学习了“和差倍”问题.在这一讲,继续来学习“和差倍”问题.但不同的是,今天的学习中,我们将引入“分数倍”的概念.和“整数倍”一样,“分数倍”也是一种倍数关系,唯一的区别是用分数来表示.我们举一个例子:卡莉娅买了20个苹果,10个桔子,容易知道,卡莉娅买的苹果数量是桔子的2倍,那桔子是苹果的几倍呢?同样的,用一个除法算式来计算:110202÷=,即桔子的数量是苹果的12倍,或者桔子的数量是苹果的12.我们把分数倍,比如前面的“12”,称为分率.注意,每一个分率都有一个对应的总量.例如,桔子的数量是苹果的12,在这里,分率“12”所对应的总量是苹果总数,“12”表示的是苹果总数的一半.如果我们将苹果的数量设为“1”份,那桔子的数量就为“12”份.通常,将分率所对应的总量设为“1”份,也就是此分率所对应的单位“1”.在计算分数应用题的时候,一定要首先找到分率所对应的单位“1”.当知道单位“1”的数量时,计算分率的对应数量很容易.例如,卡莉娅有20个苹果,她的桔子数量是苹果数量的12,那卡莉娅就拥有120102⨯=个桔子.那知道了分率的对应量,如何来求单位“1”呢?请熟记公式:例如,小高有30张动物卡,他的动物卡是植物卡数量的25,那么他的植物卡有多少张呢?列算式计算:230755÷=张,即小高有75张植物卡.一般来说,每一个分率都会有一个数量和它对应(包括单位“1”),我们将这种对应关系称为量率对应.找到量率对应,是解决分数应用题的关键.例题1.小高买来一些巧克力,和墨莫、卡莉娅一起吃,不一会便把所有巧克力吃光了.墨莫吃了全部巧克力的25,卡莉娅吃了全部巧克力的310,小高吃了9块.请问小高一共买来多少块巧克力?「分析」小高吃的巧克力占全部的几分之几呢?口袋里装着红、黄、绿三种颜色的球.其中红球占总球数的13,黄球占总球数的14,绿球有50个.口袋里一共有几个球?在例题1中,容易找到分率与数量的对应.但有的题目并不直接给出分率所对应的数量,那就需要同学们仔细寻找和计算,完成量率对应.例题2.有一堆砖,搬走总数的14后又运来306块.这时这堆砖比最开始还多了15.这堆砖原来有多少块?「分析」这道题中只有一个具体的量:306块砖,那么我们就应该去寻找它所对应的分率.小言在练毛笔字.第1个小时结束的时候,还差13才完成练字计划.第2个小时,小言又写了84个毛笔字,结果总的练字数超过了练字计划的14.那么小言计划写多少个字?「分析」题目条件虽然比较多,好在分率只有一个,同学们能不能看出“120”这个分率是相对于哪个单位“1”来说的?它对应的又是哪个量呢?上届校运动会共有250名同学报名参加.本届校运动会的报名统计显示,男生减少了2人,而总人数却增加了4人,原因是女生增加了120.那么本届校运动会有多少女同学报名?在上面的分数应用题中,每题中分率所对应的单位“1”都是统一的,便于我们进行分率的加减.但如果题目中出现的分率所对应的单位“1”并不统一,又该如何处理呢?「分析」第二天走的“23”是全部路程的23吗?如果不是,它应该是全部路程的几分之几?小明看一本书,第一天看了全书的13,第二天看了剩下的25,还剩下144页没有看.问某人从甲城去乙城,第一天走了全程的14,第二天走了剩下的,这时距乙城还有40千米.问甲、乙两城相距多少千米?23五年级原来有学生325人,新学期男生增加25人,女生减少了,结果总人数增加了16人.请问:现有男生多少人?120这本书共有多少页?「分析」已知条件中又有好几个分率,它们对应的单位“1”也不一样,需要将它们统一.「分析」题目中的两个分率,都是以墨莫手里的牌数作为单位“1”,但墨莫手里的牌数前后不一样,需要将两个分率统一.阿呆和阿瓜一起玩游戏牌.开始时阿呆手里的牌数是阿瓜手里牌数的35;玩了若干局后,阿呆赢了阿瓜的20张牌,此时阿呆手里的牌数反而是阿瓜手里牌数的75.请问:阿呆此时一共有多少张牌?现有苹果、桔子、梨三种水果各若干个,苹果的数目是其它两种水果总数的16,桔子的数目是其它两种水果总数的516,梨有26个.这些水果一共有多少个?丢番图的墓志铭古希腊的大数学家丢番图。

高斯小学奥数五年级上册含答案_分数应用题

高斯小学奥数五年级上册含答案_分数应用题

第十六讲分数应用题在三、四年级的时候,同学们学习了“和差倍”问题.在这一讲,继续来学习“和差倍”问题.但不同的是,今天的学习中,我们将引入“分数倍”的概念.和“整数倍”一样,“分数倍”也是一种倍数关系,唯一的区别是用分数来表示.我们举一个例子:卡莉娅买了20个苹果,10个桔子,容易知道,卡莉娅买的苹果数量是桔子的2倍,那桔子是苹果的几倍呢?同样的,用一个除法算式来计算:110202÷=,即桔子的数量是苹果的12倍,或者桔子的数量是苹果的12.我们把分数倍,比如前面的“12”,称为分率.注意,每一个分率都有一个对应的总量.例如,桔子的数量是苹果的12,在这里,分率“12”所对应的总量是苹果总数,“12”表示的是苹果总数的一半.如果我们将苹果的数量设为“1”份,那桔子的数量就为“12”份.通常,将分率所对应的总量设为“1”份,也就是此分率所对应的单位“1”.在计算分数应用题的时候,一定要首先找到分率所对应的单位“1”.当知道单位“1”的数量时,计算分率的对应数量很容易.例如,卡莉娅有20个苹果,她的桔子数量是苹果数量的12,那卡莉娅就拥有120102⨯=个桔子.那知道了分率的对应量,如何来求单位“1”呢?请熟记公式:例如,小高有30张动物卡,他的动物卡是植物卡数量的25,那么他的植物卡有多少张呢?列算式计算:230755÷=张,即小高有75张植物卡.一般来说,每一个分率都会有一个数量和它对应(包括单位“1”),我们将这种对应关系称为量率对应.找到量率对应,是解决分数应用题的关键.例题1.小高买来一些巧克力,和墨莫、卡莉娅一起吃,不一会便把所有巧克力吃光了.墨莫吃了全部巧克力的25,卡莉娅吃了全部巧克力的310,小高吃了9块.请问小高一共买来多少块巧克力?「分析」小高吃的巧克力占全部的几分之几呢?口袋里装着红、黄、绿三种颜色的球.其中红球占总球数的13,黄球占总球数的14,绿球有50个.口袋里一共有几个球?在例题1中,容易找到分率与数量的对应.但有的题目并不直接给出分率所对应的数量,那就需要同学们仔细寻找和计算,完成量率对应.例题2.有一堆砖,搬走总数的14后又运来306块.这时这堆砖比最开始还多了15.这堆砖原来有多少块?「分析」这道题中只有一个具体的量:306块砖,那么我们就应该去寻找它所对应的分率.小言在练毛笔字.第1个小时结束的时候,还差13才完成练字计划.第2个小时,小言又写了84个毛笔字,结果总的练字数超过了练字计划的14.那么小言计划写多少个字?「分析」题目条件虽然比较多,好在分率只有一个,同学们能不能看出“120”这个分率是相对于哪个单位“1”来说的?它对应的又是哪个量呢?上届校运动会共有250名同学报名参加.本届校运动会的报名统计显示,男生减少了2人,而总人数却增加了4人,原因是女生增加了120.那么本届校运动会有多少女同学报名?在上面的分数应用题中,每题中分率所对应的单位“1”都是统一的,便于我们进行分率的加减.但如果题目中出现的分率所对应的单位“1”并不统一,又该如何处理呢?「分析」第二天走的“23”是全部路程的23吗?如果不是,它应该是全部路程的几分之几?小明看一本书,第一天看了全书的13,第二天看了剩下的25,还剩下144页没有看.问某人从甲城去乙城,第一天走了全程的14,第二天走了剩下的,这时距乙城还有40千米.问甲、乙两城相距多少千米?23五年级原来有学生325人,新学期男生增加25人,女生减少了,结果总人数增加了16人.请问:现有男生多少人?120这本书共有多少页?「分析」已知条件中又有好几个分率,它们对应的单位“1”也不一样,需要将它们统一.「分析」题目中的两个分率,都是以墨莫手里的牌数作为单位“1”,但墨莫手里的牌数前后不一样,需要将两个分率统一.阿呆和阿瓜一起玩游戏牌.开始时阿呆手里的牌数是阿瓜手里牌数的35;玩了若干局后,阿呆赢了阿瓜的20张牌,此时阿呆手里的牌数反而是阿瓜手里牌数的75.请问:阿呆此时一共有多少张牌?现有苹果、桔子、梨三种水果各若干个,苹果的数目是其它两种水果总数的16,桔子的数目是其它两种水果总数的516,梨有26个.这些水果一共有多少个?丢番图的墓志铭古希腊的大数学家丢番图。

小学奥数循环小数计算精选练习例题含答案解析(附知识点拨及考点)

小学奥数循环小数计算精选练习例题含答案解析(附知识点拨及考点)

小学奥数循环小数计算精选练习例题含答案解析(附知识点拨及考点)教学目标循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.知识点拨1. 71的“秘密”1 0.142857 ,2 0.285714 ,3 0.428571 ,7772. 推导以下算式1234 12 611 1234 1 137⑶0.1234 ;0.12349900 4950 9990 1110以0.1234 为例,推导0.12341234 12 611.9900 4950设0.1234 A ,将等式两边都乘以100,得:100A 12.34 ;再将原等式两边都乘以10000,得:10000A 1234.34 ,两式相减得:10000A 100A 1234 12,所以A1234 12 6119900 49503. 循环小数化分数结论纯循环小数混循环小数分子循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n 个9,其中n 等于循环节所含的数字个数按循环位数添9,不循环位数添0,组成分母,其中9 在0 的左侧循环小数的计算6 0.8571427⑴ 0.1 1;0.12 129 99⑵ 0.1212 1 11;90 90 4;;330.1231230.123999123 1290041 1234;0.1234 ;333 999937 1234 123;0.1234300 90001111;;9000例题精讲模块一、循环小数的认识例 1 】在小数 l.80524102007上加两个循环点,能得到的最小的循环小数是 ________ (注:公元 2007 年10 月 24 日北京时间 18 时 05 分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。

)考点】循环小数的认识【难度】 2 星【题型】填空关键词】希望杯,1 试解析】因为要得到最小的循环小数,首先找出小数部分最小的数为 0,再看 0后面一位上的数字,有 05、02、00、07,00 最小,所以得到的最小循环小数为l.80524102007答案】 l.80524102007巩固】给下列不等式中的循环小数添加循环点: 0.1998 0.1998 0.1998 0.1998 考点】循环小数的认识【难度】 3 星【题型】计算解析】根据循环小数的性质考虑,最小的循环小数应该是在小数点后第五位出现最小数字 1 的小数,因此一定是 0.1998 ,次小的小数在小数点后第五位出现次小数字 8,因此一定是0.1998 .其后添加的循环点必定使得小数点后第五位出现9,因此需要考虑第六位上的数字,所以最大的小数其循环节中在9 后一定还是9,所以最大的循环小数是0.1998 ,而次大数为0.1998 ,于是得到不等式: 0.1998 0.1998 0.1998 0.1998答案】 0.1998 0.1998 0.1998 0.1998例 2】真分数 a 化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么 a 是7多少 ?2=0.285714 , 3 =0.428571 , 4 =0.571428 , 5 =0.714285 ,6 =0.857142 .因 7 7 7 7 7此,真分数a 化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27 ,又7因为1992 ÷ 27=73 ?? -2211,2=76,而6=2+4,所以 a =0.857142 ,即 a 6 .7答案】 a 6巩固】真分数a 化成循环小数之后,从小数点后第1位起若干位数字之和是 9039 ,则 a 是多少?7考点】循环小数的认识【难度】 3 星【题型】计算解析】我们知道形如a 的真分数转化成循环小数后,循环节都是由1、2、4、5、7、8这 6个数字组7成,只是各个数字的位置不同而已,那么 9039就应该由若干个完整的 1 4 2 8 5 7 和一个不完整 1 4 2 8 5 7组成。

五年级高斯奥数之数字谜综合含答案

五年级高斯奥数之数字谜综合含答案

第10讲 数字谜综合一内容概述涉及小数、分数、循环小数酌数字谜问题;需要利用数论知识解决的数字谜问题.典型问题兴趣篇1.有一个四位数,在它的某位数字后加上一个小数点,得到一个小数,再把这个小数和原来的四位数相加,得数是4003.64求这个四位数.2.试将1、2、3、4、5、6、7分别填人下面的方框中,每个数字只用一次:口口口(这是一个三位数),口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求另外两个数.3.用1至9这9个数字各一次组成若干个数,这些数中最多有多少个合数?4.如图13-!,4个小三角形的顶点处有6个圆圈,在这些圆圈中分别填上6个质数(可以重复),使得它们的和是20,而且每个小三角形3个顶点上的数之和相等,请问:这6个质数的乘积是多少?5.在一个带有余数的除法算式中,商比除数大2,在被除数、除数、商和余数中,最大数与最小数之差是1023.请问:此算式中的4个数之和最大可能是多少?6.在乘法算式“好好好春杯迎杯=⨯”中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.请问:“迎+春+杯+好”等于多少?7.将1至9这9个数填入下面算式中的9个方框内(每个数字只能用一次),使等式成立. 口口口×口口=口口×口口=55688.循环小数B A.0化成最简分数后,分子与分母之和为40,那么A 和B 分别是多少? 9.在算式“7=+金杯竞赛华罗庚数学”中,华、罗、庚、金、杯、数、学、竞、赛九个字,分别代表数字1、2、3、4、5、6、7、8、9.已知“竞 = 8,赛 = 6”,请把这个算式写出来.10.已知“GOOD BAD BAD =+”是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字,已知GOOD 不是8的倍数.请问:ABGD 代表的四位数是什么?拓展篇1.[4.2×5 - (1+2.5 + 9.1 + 0.7)] + 0.04=100.改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?2.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940,另外三个数可能是多少?3.学数学科学数数=⨯.在上面的算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?4.在等式“口△×△口×口O×◇△=口△口△口△”中,口、△、O 、◇分别代表不同的数字.四位数◇O 口△是多少?5.将1、2、3、4、5、6、7、8、9这9个数字分别填人下式的各个方框中,使等式成立:口口×口口=口口×口口口=3634.6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数差B A a 33.0222=.请问:a 是多少?7.把质数373按数位拆开(不改变各数之间的顺序),只能得到3、7、37、73这四个数,它们仍然都是质数,请找出所有具有这种性质的质数.8.在下面各题中,请你用给出的四个数,适当进行加、减、乘、除运算,每个数恰好用一次,使得计算结果等于24. (1)1,4,5,6; (2)1,5,5,5; (3)3,3,7,7; (4)3,3,8,8.9.把1至6填人下面的方框中,每个数字恰好使用一次,使得等式成立,请写出所有的答案. 口.口×口.口=口.口10.如图13-2所示,三角形纸片盖住的都是质数数字,正方形纸片盖住的都是合数数字,要使得两个加数的差尽可能小,较大的加数是多少?11.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.花相似人不同代表的六位数是多少? 花相似岁岁年年=⨯ 不同人年年年年÷=÷12.在图13-3所示的算式中,每个字母代表一个数字,不同的字母代表不同的数字.如果CHINA代表的五位数能被24整除,那么这个五位数是多少?超越篇1.两个学生计算同一个乘法算式,两个乘数都是两位数,他们各抄错了一个数字,但计算结果都是1360.实际上正确结果的个位不是0,那么正确结果应该是多少?2.用0至9这10个数字组成一些质数(每个数字恰好用一次),这些质数的和最小是多少?3.已知b 13a.0A 是纯循环小数,将它写成最简分数后,使得分母最小.那么这个分数是多少?4.数学家维纳在博士毕业典礼上说:“我现在年龄的三次方是一个四位数,现在年龄的四次方是一个六位数,并且这两个数刚好包含数字0至9各一次,所以所有数字都得朝拜我,我将在数学领域干出一番大事业.”请问:他是几岁毕业的?5.一个四位数的每一位数字都是非零的偶数,它又恰好是某个偶数数字组成的数的平方,请问:这个四位数是多少?6.在图134所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.7.a 、b 、c 是三个互不相同的自然数,且满足cba ×7bc =bca ×abc ,求三位数abc8.已知算式234235286= cab ×bca ×abc ,其中a > b > c .后来发现右边的乘积的数字顺序出现错误,但是知道个位的6是正确的,那么原式中的abc 是多少?第13讲数字谜综合一内容概述涉及小数、分数、循环小数酌数字谜问题;需要利用数论知识解决的数字谜问题.典型问题兴趣篇1.有一个四位数,在它的某位数字后加上一个小数点,得到一个小数,再把这个小数和原来的四位数相加,得数是4003.64求这个四位数.答案:3964详解:在一个数的十位后添加小数点,相当于缩小10倍,由这个小数和原来的四位数相加,得数是4003.64,可知这个小数点至少是在百位以后,若是在百位以后添加小数点,则原数是小数的100倍4003.64÷(100+1)=39.64,原数是3964,若是在千位以后添加小数点,则原数是小数的1000倍4003.64÷(1000+1),但是它除不尽,所以原来的四位数是3964.2.试将1、2、3、4、5、6、7分别填人下面的方框中,每个数字只用一次:口口口(这是一个三位数),口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求另外两个数.答案:5和263详解:714=2×3×7×17,因为两两互质,另外两个数一定不包含714的约数,2.3.6排除,所以这个一位数只能填5,剩下的三位数之能有2,3,6组成,这个数不能是偶数,所以个位只能是3,263和623,623=7×89有约数7,排除。

高斯小学奥数五年级上册含答案_分数基本计算

高斯小学奥数五年级上册含答案_分数基本计算

第五讲分数基本计算一、分数的定义实际生活中,人们在进行测量和计算时往往不能得到整数的结果,为了适应实际的需要,人们发明了分数来表示这些非整数的结果.一般来说,把一个整体分成若干等份,取其中的一份或几份所表示的数就叫做分数.注意,一个物体或一些物体都可以看做一个整体.如图所示,如果将一个圆平均分成四份,那么取其中的一份用分数表示就是14,取另外的三份用分数表示就是34,如果将四份都取出,那用分数表示就是44,也就是单位“1”了.1434二、分数的分类及转化所有分数可以分成三类:真分数,假分数和带分数.我们把分母比分子大的分数称为真分数,例如:12、723、49、…;把分子比分母大或分子分母相等的分数称为假分数,例如:3221、77、239、…;把包含整数部分的分数称为带分数,例如:596、317、3104、….注意:(1)在书写分数的时候不要将带分数与假分数混淆起来,即不能出现所谓的“带假分数”如:523,正确的写法是233或113;(2)带分数都可以写成一个整数与一个真分数相加的形式.假分数转化成带分数:非常简单,只需做一个带余除法.....分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子.例如:将5221化为带分数,5221210÷=,则521022121=.有的时候会发现假分数的分子除以分母之后,刚好除尽没有余数,那么这时假分数就转换成了整数.例如:2847=、919=.带分数转化成假分数:刚好是带余除法的逆运算.........分母不变,用整数部分与分母的乘积再加原分子的和作为分子.例如:1022110522212121⨯+==.【分析】熟练掌握假分数与带分数的转化法则即可.(1)将下面的假分数转化成带分数或整数.74,3215,7813,107,2919. (2)将下面的带分数转化成假分数.154,519,263,9713,7115.三、分数的基本性质及约分、通分在学习分数的运算之前,我们要先学会分数的基本性质:分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变. 利用分数的这种性质,我们可以把分数的分子、分母同时除以某个数,使得分数的大小不变,这个过程叫作约分.例如:7515590186==.56不能再约分了,像这样的,不能再约分的分数叫做最简分数.根据分数基本性质,把几个分母不同的分数分别化成与原分数相等的同分母分数,叫做通分.如:将13,38这两个分数通分,可以分别变为:18324=,39824=.(1)将下面的假分数转化成带分数或整数.3533214128+-,9711427⨯,1553216÷,7412181122⨯÷,7212. (2)将下面的带分数转化成假分数.133,327,112,11111,51012.【分析】在进行约分和通分时,一定要注意分子和分母要同时..乘或除以一个数,否则分数的大小就会发生改变.(1)将下列分数约分成最简分数:8014,9177,3969,3415. (2)将下面几组分数进行通分:①34,25;②14,16,58;③12,34,25,710.四、分数的四则运算首先,先来看一下分数的加减法:分数加减:先把分数通分,再加减,计算结果能约分的,要约成最简分数.(1)将下列分数约分成最简分数:2836,3524,3857,9184,(2)将下面几组分数进行通分:①16,38;②23,34,512;③79,34,16,712.【分析】前面练习过通分的方法,现在终于能派上用场了.计算下列各式:(1)4556+;(2)131306-;(3)3526424129+-;(4)24932651510-+.然后来看一下分数的乘法.分数的乘法计算起来比加减法更方便,但同学们要注意,计算时要把带分数化为假分数再计算.分数乘法:用分子相乘的积作分子,分母相乘的积作分母,其中能约分的可以先约分. 在介绍分数的除法之前,我们先要介绍一下倒数.顾名思义,倒数就是倒过来的分数,将一个分数的分子和分母倒过来得到的新的分数就叫做原分数的倒数,例如23的倒数就是32.注意:(1)一个整数的倒数就是这个整数分之一.例如,5的倒数就是15.(2)带分数需要化成假分数,才能计算倒数.例如,112的倒数就是23.(3)倒数与原数的乘积为1.知道了倒数的概念,就可以计算分数的除法了. 分数除法:除以一个分数等于乘以这个分数的倒数.计算下列各式: (1)5173+;(2)71204-;(3)2775321481224+-;(4)749465121520-+.例 题 3【分析】熟练掌握乘除法的运算法则即可.(1)731214⨯;(2)153138149⨯⨯;(3)157118188⨯÷;(4)3221124332÷÷.掌握了分数运算的基本方法之后,我们就可以来做分数的混合运算了.分数混合运算的顺序与整数混合运算的顺序是一样的.如果有括号要先算括号里边的,先乘除后加减,同级运算就按照从左到右的顺序计算.计算下列各式: (1)854921720⨯⨯;(2)27168348219⨯⨯;(3)79111151421⨯÷; (4)22114772÷÷.【分析】熟练掌握分数加减乘除的运算法则即可.同整数计算一样,也要先乘除后加减.【分析】这个新的运算“*”看起来很是陌生,还是赶紧转化成我们比较熟悉的运算方式吧.定义新运算“*”如下:对于两个整数a 和b ,有*aba b b a =+,比如1211*22212=+=. (1)计算:()()2*43*12÷= _____________________. (2)____193*3=.153217412⎛⎫⨯+÷= ⎪⎝⎭_____________;855101516279⨯+÷=______________; 121153513⎡⎤⎛⎫÷+⨯= ⎪⎢⎥⎝⎭⎣⎦____________;291411583⎛⎫⨯⨯-= ⎪⎝⎭_______________.课堂内外古代的分数在历史上,分数几乎与自然数一样古老。

小学奥数讲义5年级-1-循环小数与分数-难版

小学奥数讲义5年级-1-循环小数与分数-难版

在进行分数和小数的大小比较以及分数、小数的混合运算中,常常要把分数化成小数,或者把小数化成分数。

所以,理解和掌握分数和小数互化的方法,不仅可以沟通分数和小数的联系,深刻理解分数、小数的意义,而且可以为学习分数、小数的混合运算打好基础。

从本质上看,小数(这里指有限小数和无限循环小数,不包括无限不循环小数)可以看作分数的另一种表示形式,所以分数和小数可以互化。

1.17的“秘密” 10.1428577∙∙=,20.2857147∙∙=,30.4285717∙∙=,…, 60.8571427∙∙= 2.推导以下算式 ⑴10.19=;1240.129933==; ⑵121110.129090-==;12312370.123900300-==; 以0.1234为例,推导1234126110.123499004950-==. 设0.1234A =,将等式两边都乘以100,得:10012.34A =;再将原等式两边都乘以10000,得:100001234.34A =,两式相减得:10000100123412A A -=-,所以12341261199004950A -==. 3.循环小数化分数结论知识梳理0.9a =; 0.99ab =; 0.09910990ab =⨯=; 0.990abc =,……【例1】★把纯循环小数化分数: (1)0.6 (2)3.10210.610 6.66660.6=0.66660.69 662 0.6=93⨯=⨯==解:()两式相减得所以 23.1020.1020.1021000102.102.1020.1020.102.102 0.10299910210234 0.102999333102 3.1023999⨯==⨯=====解:()先看小数部分…… ?…两式相减得所以343333【例2】★计算下面各题:12.45+3.13 22.6091.32(3)4.3 2.4 (4)1.240.3⨯÷()()-【解析】先把循环小数化成分数后计算。

五年级奥数题:分数问题含答案

五年级奥数题:分数问题含答案

分数问题年级 班 姓名 得分一、填空题1.在4136、8372、2924、1312四个分数中,第二大的是 . 2.有一个分数,分子加1可以约简为31,分子减1可约简为51,这个分数是 .3.已知51154%75%90321÷=⨯=÷=⨯=⨯E D C B A .把A 、B 、C 、D 、E 这五个数从小到大排列,第二个数是 .4.所有分母小于30并且分母是质数的真分数相加,和是 .5.三个质数的倒数和为231a ,则a = . 6.计算,把结果写成若干个分母是质数的既约分数之和:199519511919591-+-+= . 7.将8473、5746、10089、3625和6251分别填入下面各( )中,使不等式成立. ( )<( )<( )<( )<( ). 8.纯循环小数0.abc 写成最简分数时,分子与分母之和是58,请你写出这个循环小数 . 9.()()()2413111=++ .(要求三个加数的分母是连续的偶数). 10.下式中的五个分数都是最简真分数,要使不等式成立,这些分母的和最小是 .()()()()()54321>>>>. 11.我们把分子为1,分母为大于1的自然数的分数称为单位分数.试把61表示成分母不同的两个单位分数的和.(列出所有可能的表示情况).. .12.试比较2⨯2⨯…⨯2与5⨯5⨯…⨯5的大小.301个2 129个513.已知两个不同的单位分数之和是121,求这两个单位分数之差的最小值.14.(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?———————————————答 案—————————————————————— 1.4136 提示,将分子“通分”为72,再比较分母的大小. 2. 154 事实上,所求分数为31和51的平均数,即(31+51)÷2=154. 3. C因为655434109321⨯=⨯=⨯=⨯=⨯E D C B A ,又321341096554<<<<,所以D >E >B >C >A ,故从小到大第二个数是C . 4. 2159 分母是n 的所有真分数共有n -1个,这n -1个分数的分子依次为1~n -1, 和为2)1(-n n ,所以分母n 的所有真分数之和等于21-n .本题的解为 212-+212921232119211721132111217215213-+-+-+-+-+-+-+-+- =21+1+2+3+5+6+8+9+11+14=2159. 5. 131因为231=3⨯7⨯11,易知这3个质数分别为3,7和11,又31+11171+=231131,故a =131. 6. 19174+. 原式=13383399249399173219958532199512110596==-=-=+--,令19713383b a +=,则19⨯a +7⨯b =83,易见a =4,b =1,符合要求. 7. 100898473625157463625<<<<. 提示:各分数的倒数依次为73111,46111,89111,25111,89111. 8. 0.567 0.abc 化为分数时是999abc ,当化为最简分数时,因为分母大于分子,所以分母大于58÷2=29,即分母是大于29的两位数,由999=3⨯3⨯3⨯37,推知999大于29的两位数约数只有37,所以分母是37,分子是58-37=21.因为999567273727213721=⨯⨯=,所以这个循环小数是0.567.9. 4,6,8.. . . . . .令241341211=++++a a a (a 为偶数).由aa a a 3412112413<++++=,得1375<a ,故a =2或4,a =2时,2413614121>++,不合题意,因此,4=a . 10. 40提示:145114835221>>>>. 11. 令6111=+b a ,则a a a b 661611-=-=.所以636666-+=-=a a a b . 由a 、b 为整数,知636-a 为整数,即a -6为36的约数,所以16=-a ,2,3,4,6,9,12,18,36.所以a =7,8,9,10,12,15,18,24,42,相应地b =42,24,18,15,12,10,9,8,7.注意到b a ≠,所有可能情况为10115171421812419118161+=+=+=+=. 12. 因为301=43⨯7,129=43⨯3,11251285252434337129301>⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=,所以3012>1295.13. 令b a 11121+=,且a <b ,由121=241+241知a <24<b .依题意, a 尽可能大. 注意到121=281211301201+=+=22,23不合要求,所以差的最小值为841281211=-. 14. (1)把9块中的三块各分为两部分:43411+=,42421+=,43411+=. 每个孩子得412块: 甲:1+1+41;乙:1+4243+;丙: 1+42+43;丁:1+1+41. (2)好分,每人分721块: 甲:1+72;乙:7475+;丙:7673+;丁:71171++;戊:7376+;己:7574+;庚:172+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲 分数与循环小数内容概述掌握分数与小数互相转化酌方法,并在分数与循环小数混合运算中进行合理应用;学会通过分数酌形式判断相应酌小数类型;注意利用圄期性分析循环小数的小数部分.典型问题兴趣篇1.把下列分数化为小数:;334,113,92)2(;2513,813,43)1(⋅374,133,72)4(;907,225,65)3(2.把下列循环小数转化为分数:.83.0,80.0)3(;53.0,10.0)2(;4.0,1.0)1(3.把下列循环小数转化为分数:321.0,321.0,21.0,7.04.计算:;7.05.03.0)3(;4.03.02.0)2(;3.02.01.0)1( ++++++ .32.021.0)5(;312.021.01.0)4( +++5..41235.035124.024513.013452.052341.0 ++++6.计算下列各式,并用小数表示计算结果:.815.083.0)2(;153.068.1)1( ÷⨯7.将算式6.03.06.03.06.03.0 ÷+⨯-+的计算结果用循环小数表示是多少?8.将算式12111110191+++的计算结果用循环小数表示是多少?9.冬冬将32.1 乘以一个数口时,把32.1 误看成1. 23,使乘积比正确结果减少0. 3.则正确结果应该是多少?10.真分数7a化成小数后,如果从小数点后第一位起连续若干个数字之和是2000.a 应该是多少?拓展篇1.将下列分数化为小数:⋅1310,72,944,65,832.把下列循环小数转化为分数:.13846536.6,3071.3,3351.0,84.0 3.(1)把下面这些分数化为小数后,哪些是有限小数,哪些是纯循环小数,哪些是混循环小数:;111111,625135,30884,19218,15017,7715,172,5031,43 (2)把下列分数化成循环小数:⋅14312,3714,3534.计算:;4312.021.01.0)2(;54.013.020.0)1( ++++ .011021.0212.076.0)4(;96.035.021.0.)3( ++++5.计算:;98.087.043.032.021.010.0)1( ++++++.98.087.043.032.021.010.0)2( +++++6.计算:;50.2)84.02.4)(1( ÷-).513.0531.0(231.0)2( +⨯7.计算:.1980.2)81.09162.1( ÷+(将结果表示为分数和小数两种形式)8.计算:⋅+++++111917151311(结果用循环小数表示)9.将最简真分数7a化成小数后,从小数点后第一位开始的连续n 位数之和为9006,a 与n 分别为多少?10.冬冬写了一个错误的不等式:.2008.02008.02008.02008.0>>>请给式子中每个小数都添加循环点,使不等号成立.请问:添加循环点后这四个数中最大数与最小数的和等于多少?11.(1)1018810113和化成小数后,两个循环小数的小数点后第2008位数字的和是多少? (2)把200868320081325和化成小数后,两个循环小数的小数点后第2008位数字的和是多少?12.冬冬将123.0 乘以一个数a 时,看丢了一个循环点,使得乘积比正确结果减少了30.0 正确结果应该是多少?超越篇1.将循环小数720.0 与279671.0 相乘,取近似值,要求保留一百位小数.该近似值的最后一位小数是多少?2.有一个算式37.111□5 □2 □≈++,算式左边的方格中都是整数,右边的结果为四舍五入到百分位后的近似值,那么方格中填人的三个数分别是多少?3.划去0.5738367981的小数点后的六个数字,再添上表示循环节的两个圆点,可以得到一个循环小数.这样的小数中最大的数为多少?最小的数为多少?4.给小数0.2138045976添加表示循环节的两个圆点,得到一个循环小数,要使得这个循环小数的小数点后第100位数字是7,应该怎么添加?5.有两个循环小数a 和b ,a 的循环节有3位,b 的循环节有6位.这两个数之和的循环节最多有多少位?最少有多少位?6.只用数字1、2、3各一次可以组成很多不含重复数字的循环小数(循环点和小数点可以任意添加,例如23.1 ,3.12 ,21.3 ).这些小数的总和是多少?7.写出一个最简真分数,它的分子是2,并且化成小数后是一个混循环小数,不循环部分为2位,循环带为3位,那么这个分数最大是多少?8.我们把由数字0和7组成的小数叫做“特殊数”,例如70.7 、77.007都是“特殊数”,如果我们将l 写成若干个“特殊数”的和,最少要写成多少个?第5讲 分数与循环小数内容概述掌握分数与小数互相转化的方法,并在分数与循环小数混合运算中进行合理应用;学会通过分数的形式判断相应的小数类型;注意利用周期性性分析循环小数的小数部分。

典型问题兴趣篇1.把下列分数化为小数:;334,113,92)2(;2513,813,43)1(⋅374,133,72)4(;907,225,65)3( 答案:(1)0.75 1.625 0.52 (2) 2.0 72.0 21.0 (3) 38.0 722.0 70.0 (4 )485712.0 930762.0 801.0解析:(1)43=3÷4=0.75 813=13÷8=1.625 2513=13÷25=0.52 (2)92=2÷9=2.0 72.0113113 =÷= 334=4÷33=21.0 (3)65=5÷6=38.0 225=5÷22=722.0 907=70.0 (4)72=2÷7=485712.0 133=3÷13=930762.0 801.0374 = 2.把下列循环小数转化为分数:.83.0,80.0)3(;53.0,10.0)2(;4.0,1.0)1( 答案(1)91 94 (2)991 9935(3)454 187解析1)0.1=91 0.4=94(2)0.01=991 0.35=9935(3)0.08=908=4540.38=903-38=9035=1873.把下列循环小数转化为分数:321.0,321.0,21.0,7.0 答案:97 334 33341 49561解析:0.7=97 0.12=9912=334 0.123=999123=33341 0.123=9901-123=49561990122=4.计算:;7.05.03.0)3(;4.03.02.0)2(;3.02.01.0)1( ++++++ .32.021.0)5(;312.021.01.0)4( +++ 答案: 6.0 1 6.1 635.0 .453.0解析:3.02.01.0)1( ++=6.096939291 ==++ 4.03.02.0)2( ++=1949392=++ 7.05.03.0)3( ++=6.1961979593 ==++ 635.0312.032.0312.021.01.0 =+=++ .453.032.021.0 =+ 5..41235.035124.024513.013452.052341.0 ++++ 答案:6.1解析:6.132199999666661999991666659999951234999994512399999345129999923451999991234541235.035124.024513.013452.052341.0 ====++++=++++6.计算下列各式,并用小数表示计算结果:.815.083.0)2(;153.068.1)1( ÷⨯ 答案: 56.0 75.0解析:(1)原式=56.0996537139918599935199861 ==⨯=⨯ (2)75.04314271872714187==⨯=÷=原式7.将算式6.03.06.03.06.03.0 ÷+⨯-+的计算结果用循环小数表示是多少? 答案:72.1 解析:72.118232192-132313231-16.03.06.03.0-6.03.0 ==+=÷+⨯=÷+⨯+8.将算式12111110191+++的计算结果用循环小数表示是多少? 答案:3538.0解析:原式3538.0308.090.01.01.0 =+++=9.冬冬将32.1 乘以一个数口时,把32.1 误看成1. 23,使乘积比正确结果减少0. 3.则正确结果应该是多少?答案:111解析:由题意得:1.23 1.230.3a a -=,即:0.0030.3a =,所以有:1039003=a .解得90a =,所以2321.23 1.239019011190a -⎛⎫=⨯=+⨯= ⎪⎝⎭.10.真分数7a化成小数后,如果从小数点后第一位起连续若干个数字之和是2000.a 应该是多少?答案:a=2解析:7a化成小数很神奇,都是有142857这六个数字组成,并循环的,而且六个数字从左到右的相对顺序位置是不变的10.1428577=,20.2857147=,30.4285717=,40.5714287=,50.7142857=,60.8571427=.一个循环节的6位数字之和是14285727+++++=,274272000。

=÷,循环节的前几位数字之和是2的只有0.285714,此时a 就是2.拓展篇1.将下列分数化为小数:⋅1310,72,944,65,83答案:375.0 38.0 8.4 485712.0 069237.0 解析:375.08383=÷= 38.06565 =÷= 8.4944944 =÷= 485712.07272 =÷= 069237.013101310 =÷=2.把下列循环小数转化为分数:.13846536.6,3071.3,3351.0,84.0答案 :3316 30341 135233 52196解析:3316994884.0== 999913533351.0= =30341 1352334995851399901-170333071.3=== 52196999999003653842569999990036-365384616.13846536.6=== 3.(1)把下面这些分数化为小数后,哪些是有限小数,哪些是纯循环小数,哪些是混循环小数:;111111,625135,30884,19218,15017,7715,172,5031,43 答案:能化成有限小数:43 5031 19218 625135能化成纯循环小数:1727715 30884 111111能化成混循环小数:15017解析:先化简分数,之后将分母分解质因数。

相关文档
最新文档